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FORMAL PASSAGE FROM KINETIC THEORY TO INCOMPRESSIBLE
NAVIER–STOKES EQUATIONS FOR A MIXTURE OF GASES

Marzia Bisi1 and Laurent Desvillettes2

Abstract. We present in this paper the formal passage from a kinetic model to the incompressible
Navier−Stokes equations for a mixture of monoatomic gases with different masses. The starting point of
this derivation is the collection of coupled Boltzmann equations for the mixture of gases. The diffusion
coefficients for the concentrations of the species, as well as the ones appearing in the equations for
velocity and temperature, are explicitly computed under the Maxwell molecule assumption in terms of
the cross sections appearing at the kinetic level.
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1. Introduction

The formal derivation of the incompressible Navier−Stokes system for a single gas starting from the
Boltzmann equation was first described in details in [3]. It was later made rigorous under quite general assump-
tions on the cross section appearing in the Boltzmann equation (for monoatomic gases) [2, 17, 18, 24, 26–28].

Our goal here is to extend the formal derivation of the incompressible Navier−Stokes equations (still starting
from equations of Boltzmann type) to the case of a mixture of gases. More precisely, we consider the evolution
of a mixture of N elastically scattering monoatomic rarefied gases As, s = 1, . . . , N with particle mass of the
sth species denoted by ms. Let fs := fs(t,x,v) (s = 1, . . . , N) be the phase space density of each gas. The
Boltzmann equation in this setting writes (for s = 1, . . . , N)

∂tf
s + v · ∇xfs =

N∑
r=1

Qsr(fs, f r) , (1.1)

where

Qsr(fs, f r)(v) =
∫∫

q σsr(q, χ)
(

fs(v′) f r(w′) − fs(v) f r(w)
)

dw dΩ̂′, (1.2)
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v′ =
ms

ms + mr
v +

mr

ms + mr
w +

mr

ms + mr
|v − w| Ω̂′, (1.3)

w′ =
ms

ms + mr
v +

mr

ms + mr
w − ms

ms + mr
|v − w| Ω̂′, (1.4)

the quantity q = v − w = q Ω̂ is the pre-collision relative velocity (q and Ω̂ are its modulus and direction),
q′ = v′−w′ = q Ω̂′ is the post-collision one (q′ = q because of momentum and energy conservations), σsr is the
differential cross section (note that σsr = σrs) and χ is the angle formed by pre- and post-interaction relative
velocity: cosχ = Ω̂ · Ω̂′.

It has been shown in the case of a single gas [3] that the scaling of the Boltzmann equations for the distributions
fs(t,x,v), s = 1, . . . , N that turns out to be compatible with the incompressible fluid-dynamic limit is

ε ∂tf
s
ε + v · ∇xfs

ε =
1
ε

N∑
r=1

Qsr(fs
ε , f r

ε ), (1.5)

where the small parameter ε stands for the Knudsen number. The dominant process in the evolution is thus the
elastic scattering, while the time scale is taken of order ε−1. Analogously to [3], we look for solutions to (1.5)
in the form

fs
ε = ρs M s

(1,0,1)(1 + ε gs
ε), (1.6)

where ρs > 0 are constants and M s
(1,0,1) are absolute normalized Maxwellians with number density equal to 1,

mass velocity equal to 0, temperature equal to 1, i.e.

M s(v) =
(

ms

2π

)3/2

e−
ms

2 v2
. (1.7)

Without loss of generality, we may assume

ρ =
N∑

s=1

ρs = 1. (1.8)

A crucial role in the study of the re-scaled equations (1.5) will be played by the linearized bi-species elastic
operator

N∑
r=1

ρsρr
[
Qsr(gs

εM
s, M r) + Qsr(M s, gr

εM
r)
]
. (1.9)

In the case of gases with different particle masses and different cross sections, it is well known that classical
Grad’s methodology [19, 20] cannot be easily applied to study the formal mean free path limit. However, for
the most typical cross sections, that is, hard potentials with cutoff, it has been recently proved [12] that the
operator (1.9) has the same good properties as the linearized operator for gases with the same mass (studied for
instance in [5]). In particular the non multiplicative part of the operator (1.9) is compact in a suitable L2-type
space, so that linearized systems of Boltzmann equations may be solved owing to the Fredholm alternative. For
this reason we expect that the general form of evolution equations that we shall derive in the sequel still holds
for a large class of intermolecular potentials. However, since our aim is to build up consistent and completely
explicit macroscopic equations, that can be compared with analogous hydrodynamic systems (with coefficients
found by means of thermodynamical considerations) used in physical applications, we compute all diffusion
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coefficients appearing in the macroscopic equations in the case of cross sections of Maxwell molecules type. In
this collision frame, our main result is the following:

Proposition 1.1. Consider a family fs
ε of solutions of (1.5), with Qsr given by (1.2). Assume also that the

intermolecular potential is chosen in such a way that the collision kernels (differential cross section times the
relative speed) depend only on the deflection angle χ [15] (that is, the interaction is of Maxwell molecules type):

q σsr(q, χ) = ϑsr(χ), (1.10)

and define

κsr = 2π

∫ π

0

ϑsr(χ)(1 − cosχ) sin χ dχ,

νsr = 2π

∫ π

0

ϑsr(χ)(1 − cos2 χ) sin χ dχ.

(1.11)

Then formally, the scaling (1.6) holds, with

gs
ε(v) = αs + ms v · u +

(
1
2

ms v2 − 3
2

)
T + O(ε), (1.12)

where the parameters αs, u, T depend on t and x and satisfy the following Navier–Stokes system for mixtures:

− Incompressibility condition:
∇x · u = 0. (1.13)

− Boussinesq identity:

∇x

(
N∑

s=1

(
ρs αs

)
+ T

)
= 0. (1.14)

− Convection-diffusion equations for the densities of the species:

∂t

⎡
⎣∑

r �=s

ρrμsr κsr(αs − αr)

⎤
⎦ + u · ∇x

⎡
⎣∑

r �=s

ρrμsrκsr(αs − αr)

⎤
⎦

= Δx

⎡
⎣∑

r �=s

ρr(αs − αr)

⎤
⎦ , s = 1, . . . , N − 1,

(1.15)

where μsr = ms mr

ms+mr is the reduced mass.
− Convection-diffusion equation for the momentum:

∂tu + u · ∇xu + ∇xp = d1 Δxu. (1.16)

− Convection-diffusion equation for the temperature:

∂tT + u · ∇xT = d2 ΔxT. (1.17)

In the above equations, d1 > 0, d2 > 0 are diffusion coefficients given by the following formulas:

d1 =
N∑

s=1

ρs θs, (1.18)
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where the parameters θs are the unique solution of the linear system⎡
⎣3

4
ρsνss +

∑
r �=s

ρr μsr

ms + mr

(
2κsr +

3
2

mr

ms
νsr

)⎤⎦ θs

+
∑
r �=s

ρr μsr

ms + mr

(
− 2κsr +

3
2

νsr

)
θr =

( N∑
s=1

ρs ms

)−1

, s = 1, . . . , N ;

(1.19)

and

d2 =
N∑

s=1

ρs

√
ms

ηs, (1.20)

where the parameters ηs are the unique solution of the linear system⎧⎨
⎩1

2
ρs(ms)1/2νss +

∑
r �=s

ρr μsr

(ms + mr)2
[
(ms)−1/2

(
3(ms)2 + (mr)2

)
κsr + 2(ms)1/2mrνsr

]⎫⎬
⎭ ηs

+
∑
r �=s

ρr μsr

(ms + mr)2
ms(mr)1/2

(− 4κsr + 2 νsr
)
ηr = 1, s = 1, . . . , N.

(1.21)

We will see that the expression of the perturbation gs
ε given in (1.12), and the incompressibility and Boussinesq

constraints (1.13), (1.14) hold for any intermolecular potentials.
Note that the system (1.13)–(1.17) is not strongly coupled, in the sense that evolution equation (1.16) could

be solved separately (it does not depend on the other unknown fields αs, T ) providing global velocity u as
function of time t and space x. Then, there remains a system of N + 1 equations for concentrations αs and
temperature T : the Boussinesq condition (1.14) and the N evolution equations (1.15) and (1.17).

Note that the Boussinesq relation becomes
∑N

s=1

(
ρs αs

)
+T = 0 if suitable boundary conditions are imposed,

and this yields immediately one of the number densities (for instance αN ) as function of the other ones and of
the temperature. Moreover, note that the parameters αs, T are not necessarily nonnegative, since they are only
perturbations at the first order of the coefficients appearing in a Maxwellian function of v.

A self-consistent system coupling number densities and temperature like (1.14), (1.15), (1.17) provides a
mathematical justification of the fact, known in physical applications and in extended thermodynamics frame,
that in several problems regarding gas mixtures the evolution of concentrations is strongly affected by diffusion
of the global temperature, while it depends upon the velocity only through the advection term.

Note that in the present scaling, not all macroscopic degrees of freedom of the fluid appear in the macroscopic
equations. Velocities or temperatures specific to each species would appear only if we considered higher orders
in expansion (1.12), obtaining Burnett-type equations, or if we took as dominant operator (of order 1/ε) in
the sth Boltzmann equation only Qss(fs

ε , fs
ε ), describing elastic collisions between particles of the same species.

This scaling, leading of course to a completely different class of macroscopic models (multi-temperatures and
multi-velocities), has been studied for instance in [11]. Other formal hydrodynamic limits from kinetic models for
(inert or reactive) mixtures have been already performed in compressible asymptotic regimes [8,10]. For binary
mixtures, there are also results concerning a Cahn–Hilliard diffusion model coupled with a fluid motion [7,25,30].

The main differences between this work and the incompressible limit performed in [3] in the one-species case,
are the following:

• In the one-species case, the Boussinesq condition in strong form is simply α + T = 0, hence no equation
is needed for concentration α since it is completely known from the equation for T . For a mixture the
Boussinesq constraint is a link between T and the sum of number densities, so that N − 1 additional
independent evolution equations have to be consistently derived, and these are the ones given in (1.15).
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Note that in the case of a mixture of two species, one can directly consider the difference of the two kinetic
equations satisfied by the two species in order to get the needed equation. When more than two species are
concerned, one has to find the “right” linear combinations between the kinetic equations. These combinations
depend on the masses and cross sections, as can be seen in the limiting equation (1.15).

• Also, the assumption of different particle masses complicates the formal derivation of the equations for u
and T , even if at first glance they are exactly the ones expected by physical considerations. Even for Maxwell
molecules, the computation of d1 and d2, and the proof that these diffusion coefficients are actually strictly
positive for any values of masses and collision frequencies require several algebraic manipulations that are
not a direct extension of the case of a mixture of two gases.

Before starting the (formal) proof of Proposition 1.1, we compare the set of equations obtained in Proposition 1.1
to the equations which can be obtained by performing the limit of low Mach number regime in the systems
of compressible Navier−Stokes equations for mixtures. We indeed know that incompressible Navier–Stokes
equations may be derived also as low Mach number limit of the compressible ones in the case of a single rarefied
gas (cf. [1, 6, 23]).

We briefly indicate here how the same strategy can be applied for mixtures, starting from the compressible
Navier−Stokes equations for mixtures described for example in [13, 14]. Denoting ρs, ms the number density
and the particle mass of each species, and u the global mass velocity, the system writes in the case of a mixture
of monoatomic perfect gases:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ
s + ∇x · (ρsu) = ∇x ·Fs s = 1, . . . , N,

∂t

(
N∑

s=1

ρsmsu

)
+ ∇x ·

(
N∑

s=1

ρsmsu ⊗ u

)
+ ∇xp = ∇x · Π ,

∂t

[
N∑

s=1

ρs

(
ms u2

2
+

3
2

T

)]
+ ∇x ·

[
N∑

s=1

ρs

(
ms u2

2
+

5
2

T

)
u

]
= ∇x · (Π · u) + ∇x · q,

(1.22)

where p =
∑N

s=1 ρs T is the state law, and Fs, Π, q are the diffusion terms given by

Fs =
N∑

j=1

Lsj∇x

(
ρj

(2π T/mj)3/2

)
+ Lsq ∇x(1/T ),

Π =
(
−2

3
η

)
(∇x · u) I + η

(∇xu + (∇xu)T
)
,

q =
N∑

j=1

Lqj∇x

(
ρj

(2π T/mj)3/2

)
− Lqq ∇x(1/T ) .

(1.23)

Here the diffusion coefficients Lsj , Lsq, Lqj , Lqq, η may depend on the temperature T of the mixture. Moreover,
they satisfy the constraints of conservation of total mass

∑N
s=1 ρsms.

Note that the equation of conservation of energy can be rewritten as an equation for the temperature in the
following way:

∂tT + u · ∇xT +
2
3

p∑N
s=1 ρs

∇x · u =
2
3

1∑N
s=1 ρs

∇xu : Π +
2
3

1∑N
s=1 ρs

∇x · q.

The scaling of low Mach number corresponds [16] to keeping the first line of (1.22), and rescaling the velocity
and temperature equations as

ε2

[
∂t

(
N∑

s=1

ρsmsu

)
+ ∇x ·

(
N∑

s=1

ρsmsu ⊗ u

)
−∇x · Π

]
= −∇xp, (1.24)
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and

∂tT + u · ∇xT +
2
3

p∑N
s=1 ρs

∇x · u =
2
3

ε2∑N
s=1 ρs

∇xu : Π +
2
3

1∑N
s=1 ρs

∇x · q. (1.25)

We focus on the simple case when all masses are equal (we denote m = ms), and when the Soret and Dufour
coefficients Lqj and Lsq are zero, as is expected for Navier−Stokes equations coming out (by the Chapman–
Enskog procedure) from the Boltzmann equation in the case of Maxwell molecules (cf. [13]).

Expanding the densities, velocity, pressure and temperature around constant states ρs
0, u0, T0, p0, in powers

of ε, we end up with

ρs(t,x) = ρs
0 (1 + ε αs(t,x)) + O(ε2), u(t,x) = u0(t,x) + εu1(t,x) + O(ε2),

T (t,x) = T0 + ε T1(t,x) + O(ε2) , p(t,x) = p0 + ε2p2(t,x) + O(ε2).

Writing

∇x

(
N∑

s=1

ρs T

)
= ε∇x

(
T0

N∑
s=1

ρs
0α

s +
N∑

s=1

ρs
0 T1

)
+ O(ε2), (1.26)

and observing that the terms in O(ε) have to vanish, we get the Boussinesq relation (1.14), where ρs is replaced
by ρs

0
T0
ρ0

(with ρ0 =
∑N

s=1 ρs
0), and T is replaced by T1, that is

∇x

(
T0

ρ0

N∑
s=1

ρs
0 αs + T1

)
= 0.

Considering now the evolution equation for total mass density

m ∂t

(
N∑

s=1

ρs

)
+ mu · ∇x

(
N∑

s=1

ρs

)
+ m

N∑
s=1

ρs ∇x · u = 0, (1.27)

and observing that the first and the second terms in the equation are of order O(ε), we get in the limit the
incompressibility condition (1.13), with u replaced by u0, that is,

∇x · u0 = 0.

Using equation (1.27) at next order, we get

∂t

(
N∑

s=1

ρs
0α

s

)
+ u0 · ∇x

(
N∑

s=1

ρs
0α

s

)
+ ρ0 ∇x · u1 = 0. (1.28)

By using this into the expression of Π given in (1.23), we get that ∇x ·Π tends to η Δxu0, so that the momentum
equation (1.24) becomes

∂tu0 + u0 · ∇xu0 + ∇xp̃ = D1Δxu0, (1.29)

where the diffusion coefficient D1 = η/(m ρ0), and p̃ is a Lagrange multiplier. This corresponds to (1.16), with
u replaced by u0, p replaced by p̃, and d1 replaced by D1.

We now use the expansions in equation (1.25), and get

ε(∂tT1 + u0 · ∇xT1) +
2
3

ε
p0

ρ0
∇x · u1 =

2
3

1
ρ0

ε2 ∇xu0 : Π +
2
3

1
ρ0

∇x · q + O(ε2). (1.30)
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Using equation (1.28) in order to compute ∇x · u1 in the formula above, and dividing by ε, we end up with

5
3

(∂tT1 + u0 · ∇xT1) =
2
3

Lqq(T0)
ρ0T 2

0

ΔxT1.

We recover in this way equation (1.17), with T replaced by T1, u replaced by u0, and d2 = 2
5

Lqq(T0)

ρ0T 2
0

.
Finally, let us consider the evolution equation for number densities. We start from the first equation of (1.22),

and use the expansion of ρs. We first observe that

∂tρ
s + ∇x · (ρs u) = ε ρs

0(∂tα
s + u0 · ∇xαs + ∇x · u1) + O(ε2).

Using (1.28), we get

∂tρ
s + ∇x · (ρs u) = ε (∂t + u0 · ∇x)

(
ρs
0α

s − ρs
0

ρ0

N∑
r=1

ρr
0α

r

)
+ O(ε2).

We also expand
N∑

j=1

Lsj(T )∇x

(
ρj

(2π T/m)3/2

)

= ε

(
m

2π T0

)3/2 N∑
j=1

Lsj(T0)∇x

(
ρj
0α

j − 3
2

ρj
0

T0
T1

)
+ O(ε2)

= ε

(
m

2π T0

)3/2 N∑
j=1

Lsj(T0)∇x

(
ρj
0α

j +
3
2

ρj
0

ρ0

N∑
r=1

ρr
0α

r

)
+ O(ε2),

thanks to Boussinesq’s identity.
Finally, letting ε go to 0, we end up with the identity

(∂t + u0 · ∇x)

(
ρs
0α

s − ρs
0

ρ0

N∑
r=1

ρr
0α

r

)
=
(

m

2π T0

)3/2 N∑
j=1

Lsj(T0)Δx

(
ρj
0α

j +
3
2

ρj
0

ρ0

N∑
r=1

ρr
0α

r

)
.

We obtain therefore an identity which relates linearly the advection terms (∂t + u0 · ∇x)αs with the diffusion
terms Δxαj , as in equation (1.15), with u replaced by u0.

As can be seen, the passage from Boltzmann equation to the incompressible Navier−Stokes system gives
compatible results when compared with the passage from the compressible Navier−Stokes system towards the
incompressible one.

The rest of the paper is devoted to the formal proof of Proposition 1.1 and is organized as follows. In
Section 2, the expression (1.12) for the perturbation of a solution is derived. Then, Section 3 concerns the
incompressibility and Boussinesq relations (1.13), (1.14). Section 4 is devoted to the evolution equations (1.15)
for concentrations, (1.16) for momentum, (1.17) for temperature, respectively. Finally, we report in an Appendix
technical lemmas and evaluations of suitable collision contributions used to obtain explicit expressions for
diffusion coefficients d1, d2. Those computations are specific to the Maxwell molecules case.

2. The weak form of the collision operators

We recall that, in (1.5), Qsr denotes the bi-species elastic operator, describing elastic scattering between
particles of species s and r. The most useful tool in the sequel is its weak form:

N∑
r=1

∫
ϕs(v)Qsr(fs

ε , f r
ε ) dv =

N∑
r=1

∫∫∫
q σsr(q, χ)

[
ϕs(v′) − ϕs(v)

]
fs

ε (v)f r
ε (w) dv dw dΩ̂′. (2.1)



1178 M. BISI AND L. DESVILLETTES

We observe that ∫
M s(v) dv = 1,

∫
v M s(v) dv = 0, ms

∫
v2M s(v) dv = 3. (2.2)

By inserting distributions (1.6) into the Boltzmann equations (1.5), leading order terms vanish since
Maxwellians M s do not depend on x and satisfy Qsr(M s, M r) = 0. There remain the equations

ε ρs∂t(gs
εM

s) + v · ρs∇x(gs
εM

s) =
1
ε

N∑
r=1

ρsρr
[
Qsr(gs

εM
s, M r) + Qsr(M s, gr

εM r)
]

+
N∑

r=1

ρsρrQsr(gs
εM

s, gr
εM

r).

(2.3)

Leading order terms yield, for s = 1, . . . , N ,

N∑
r=1

ρsρr
[
Qsr(gs

εM
s, M r) + Qsr(M s, gr

εM
r)
]

= O(ε). (2.4)

Defining the linear operator L (with components L1, ..,LN ) as

Ls(h1, .., hN ) = (M s)−1/2
N∑

r=1

[
ρr Qsr(hs (M s)1/2, M r) + ρs Qsr

(
M s, hr (M r)1/2

) ]
, (2.5)

we know from [12] that (for cross sections of hard potentials type with angular cutoff, including pseudo-
Maxwellian molecules and hard spheres) this operator L is the sum of, on one hand, a compact operator K from
(L2(R3))N to (L2(R3))N and, on the other hand, a (component-wise) multiplication operator (−νs(v) Id)s=1,..,N

with spectrum included in an interval ] −∞,−Z], with Z > 0.
We also recall that using test functions ϕs(v) = gs

ε(v), we get the linearized entropy inequality

N∑
s=1

N∑
r=1

ρsρr

∫
gs

ε(v)
[
Qsr(gs

εM
s, M r) + Qsr(M s, gr

εM r)
]
dv

= −1
4

N∑
s=1

N∑
r=1

ρsρr

∫∫∫
q σsr(q, χ)

[
gs

ε(v
′) + gr

ε(w
′) − gs

ε(v) − gr
ε(w)

]2

M s(v)M r(w) dv dw dΩ̂′ ≤ 0

(2.6)

with equal sign if and only if the content of the square brackets vanishes ∀s, r.
Consequently, the spectrum of L is included in R

−, and 0 is an eigenvalue of order 4 + N of L whose
eigenvectors are [(M1)1/2, . . . , (MN)1/2,

∑N
s=1 msv(M s)1/2,

∑N
s=1 msv2(M s)1/2], cf. [15].

Using Weyl’s Theorem on compact perturbations of operators [15, 21], we see that the spectrum of L has a
gap between 0 and a strictly negative number −C, so that for any h = (h1, .., hN ) ∈ L2(RN ),

||Lh||(L2(R3))N ≥ C ||h − Ph||(L2(R3))N , (2.7)

where P is the L2 projector on the vector space spanned by [(M s)1/2, msv(M s)1/2, msv2(M s)1/2]s=1,..,N .
Using (2.4), we see that L([ρsgs

ε(M
s)1/2]s=1,...,N ) = O(ε), so that thanks to (2.7), gs

ε is, up to O(ε), a linear
combination (with t,x-dependent coefficients) of 1, msv, msv2, and (1.12) holds.

Notice that in (1.12) coefficients have been chosen in such a way that leading order species moments are∫
(gs

εM
s)(v) dv = αs + O(ε),

∫
v (gs

εM
s)(v) dv = u + O(ε),

ms

∫
v2(gs

εM
s)(v) dv = 3 (αs + T ) + O(ε).

(2.8)
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Consequently, putting together (2.2) and (2.8), the moments of distributions fs
ε are given by∫

fs
ε (v) dv = ρs(1 + ε αs) + O(ε2),

∫
v fs

ε (v) dv = ε ρs u + O(ε2),

ms

∫
v2fs

ε (v) dv = 3 ρs + ε 3 ρs(αs + T ) + O(ε2).
(2.9)

3. Conservation equations

By integrating the Boltzmann equations (1.5), we get

ε ∂t

∫
fs

ε (v) dv + ∇x ·
∫

vfs
ε (v) dv = 0, s = 1, . . . , N, (3.1)

representing conservation of single number densities, while by multiplying (1.5) by msv and summing up the
N equations, we recover the momentum equation

ε

N∑
s=1

ms ∂t

∫
vfs

ε (v) dv +
N∑

s=1

ms ∇x ·
∫

v ⊗ vfs
ε (v) dv = 0. (3.2)

If we insert the ansatz (1.6) into (3.1) and (3.2), we get

ε ∂t

∫
(gs

εM
s)(v) dv + ∇x ·

∫
v (gs

εM
s)(v) dv = 0, s = 1, . . . , N,

ε
N∑

s=1

ρs ms ∂t

∫
v(gs

εM
s)(v) dv +

N∑
s=1

ρs ms ∇x ·
∫

v ⊗ v(gs
εM

s)(v) dv = 0.

(3.3)

Keeping the leading order term in the first line of (3.3) provides

∇x ·
∫

v (gs
ε M s)(v) dv = O(ε),

that, bearing in mind the second equality of (2.8), is nothing but the divergence-free condition for global velocity,

∇x · u = 0, (3.4)

related to the incompressibility of the mixture.
On the other hand, keeping the leading order term in the second line of (3.3) yields

N∑
s=1

ρs ms
∑

j

∂

∂xj

∫
vi vj (gs

εM
s)(v) dv = O(ε),

i.e., taking into account the third part of (2.8) and the assumption (1.8),

∇x

(
N∑

s=1

(
ρs αs

)
+ T

)
= 0, (3.5)

which is a natural extension to a mixture of the Boussinesq relation of [3]. If we consider for example a bounded
(periodic) space domain such as a torus, condition (3.5) implies [4, 22] the stronger relation

N∑
s=1

(
ρs αs

)
+ T = 0. (3.6)

Note that since αs and T are perturbations, they are not required to be nonnegative; more precisely, con-
straint (3.6) implies that, for any fixed time t and position x, at least one of these fields is nonpositive.
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4. Equations for concentrations

As already pointed out earlier (see the first line of (3.3)), integrating the Boltzmann equations (1.5) yields

ε ∂t

∫
(gs

εM
s)(v) dv + ∇x ·

∫
v (gs

εM
s)(v) dv = 0, s = 1, . . . , N. (4.1)

Unlike in the previous papers [3, 4, 22] dealing with a single rarefied gas, it is now necessary to find a suitable
strategy that provides a consistent closure of the streaming part. The sought closure will be built up by resorting
to the momentum equation of each species. By multiplying the Boltzmann equations (1.5) by v, we get

ε ∂t

∫
vfs

ε (v) dv + ∇x ·
∫

v ⊗ vfs
ε (v) dv =

1
ε

∑
r �=s

∫
v Qsr(fs

ε , f r
ε ) dv, s = 1, . . . , N, (4.2)

since the contributions due to Qss(fs
ε , fs

ε ) vanish (elastic scattering between particles of the same species pre-
serves species momentum). By inserting (1.6) in the sth equation of (4.2), we obtain

ε2 ρs∂t

∫
v(gs

εM
s)(v) dv + ε ρs∇x ·

∫
v ⊗ v(gs

εM
s)(v) dv

=
∑
r �=s

{
ρsρr

∫
v
[
Qsr(gs

εM
s, M r) + Qsr(M s, gr

εM
r)
]
dv

+ ε ρsρr

∫
v Qsr(gs

εM
s, gr

εM
r) dv

}
.

(4.3)

Let us evaluate the dominant term∑
r �=s

ρsρr

∫
v
[
Qsr(gs

εM
s, M r) + Qsr(M s, gr

εM
r)
]
dv,

with the Maxwell molecule assumption (1.10). If we recall (1.11), all angular integrations needed here and in
the rest of the paper will be amenable to the following ones [9]:∫

S2
ϑsr(χ)(q′ − q) dΩ̂

′
= − κsr q, (4.4a)

∫
S2

ϑsr(χ)
∣∣q′ − q

∣∣2 dΩ̂
′
= 2 κsr q2, (4.4b)

∫
S2

ϑsr(χ)(q′ − q) ⊗ (q′ − q) dΩ̂
′
= 2 κsrq ⊗ q +

1
2

νsr
(
q2

III − 3q⊗ q
)
, (4.4c)

∫
S2

ϑsr(χ)
∣∣q′ − q

∣∣2 (q′ − q) dΩ̂
′
= −2

(
2 κsr − νsr

)
q2 q. (4.4d)

If we take ϕs(v) = v, from (1.3) we have

ϕs(v′) − ϕs(v) = − mr

ms + mr
(v − w) +

mr

ms + mr
|v − w| Ω̂′

,

hence from (1.10) and (4.4) we get∫
q σsr(q, χ)

[
ϕs(v′) − ϕs(v)

]
dΩ̂′ = − μsr

ms
κsr q,
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where μsr = ms mr

ms+mr stands for the reduced mass. Consequently, bearing in mind the weak form of the elastic
operator (2.1),

∫
v
[
Qsr(gs

εM
s, M r) + Qsr(M s, gr

εM r)
]
dv

= − μsr

ms
κsr

∫∫
(v − w)

[
(gs

εM
s)(v)M r(w) + M s(v) (gr

εM r)(w)
]
dv dw

= − μsr

ms
κsr

[∫
v (gs

εM
s)(v) dv −

∫
v (gr

εM r)(v) dv
]

.

(4.5)

In conclusion, the dominant term of the sth equation (4.3) may be rewritten as

∑
r �=s

ρsρr

∫
v
[
Qsr(gs

εM
s, M r) + Qsr(M s, gr

εM
r)
]
dv

= −
⎛
⎝∑

r �=s

ρrμsr κsr

⎞
⎠ ρs

ms

∫
v (gs

εM
s)(v) dv +

ρs

ms

⎛
⎝∑

r �=s

ρrμsr κsr

∫
v (gr

εM
r)(v) dv

⎞
⎠ .

(4.6)

Coming back to evolution equations for number densities, if we consider the following linear combinations of
equations (4.1):

ε

⎛
⎝∑

r �=s

ρrμsr κsr

⎞
⎠ ∂t

∫
(gs

εM
s)(v) dv − ε

∑
r �=s

ρrμsr κsr∂t

∫
(gr

εM
r)(v) dv

+∇x ·
⎧⎨
⎩
⎛
⎝∑

r �=s

ρrμsr κsr

⎞
⎠∫

v (gs
εM

s)(v) dv −
∑
r �=s

ρrμsr κsr

∫
v (gr

εM r)(v) dv

⎫⎬
⎭ = 0,

s = 1, . . . , N − 1,

(4.7)

we note that the content in the curly brackets is directly proportional to the right hand side of (4.6), hence we
can insert the sth momentum equation (4.3) into (4.7), ending up with

⎛
⎝∑

r �=s

ρrμsr κsr

⎞
⎠ ∂t

∫
(gs

εM
s)(v) dv −

∑
r �=s

ρrμsr κsr∂t

∫
(gr

εM r)(v) dv

+∇x ·
⎧⎨
⎩−ms∇x ·

∫
v ⊗ v(gs

εM
s)(v) dv + ms

∑
r �=s

ρr

∫
v Qsr(gs

εM
s, gr

εM
r) dv

⎫⎬
⎭ = O(ε)

(4.8)

(all terms have been divided by ε).
Let us recall that distributions gs

ε take the form (1.12), therefore

∫
(gs

εM
s)(v) dv = αs + O(ε),

ms

∫
v ⊗ v(gs

εM
s)(v) dv = (αs + T ) I + O(ε).

(4.9)
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Moreover,∫
v Qsr(gs

εM
s, gr

εM
r) dv = − μsr

ms
κsr

∫∫
(v − w)(gs

εM
s)(v) (gr

εM r)(w) dv dw

= − μsr

ms
κsr

[
αr

∫
v (gs

εM
s)(v) dv − αs

∫
v (gr

εM
r)(v) dv

]
+ O(ε) (4.10)

= − μsr

ms
κsr(αr − αs)u + O(ε)

(in the last two equalities, we have used the first and the second parts of (2.8)). Putting results (4.9) and (4.10)
into the macroscopic equation (4.8), we obtain⎛

⎝∑
r �=s

ρrμsr κsr

⎞
⎠ ∂tα

s −
∑
r �=s

ρrμsr κsr∂tα
r − Δx(αs + T ) + u · ∇x

⎛
⎝∑

r �=s

ρrμsrκsr(αs − αr)

⎞
⎠ = 0, (4.11)

where we have taken into account that ∇x ·u = 0 (see (3.4)). Using the Boussinesq condition (3.5) and bearing
in mind that

∑N
s=1 ρs = 1, we get

αs + T = αs −
N∑

r=1

ρrαr = (1 − ρs)αs −
∑
r �=s

ρrαr =
∑
r �=s

ρr(αs − αr). (4.12)

In conclusion, equation (4.11) may be recast as

∂t

⎡
⎣∑

r �=s

ρrμsr κsr(αs − αr)

⎤
⎦ + u · ∇x

⎡
⎣∑

r �=s

ρrμsrκsr(αs − αr)

⎤
⎦

= Δx

⎡
⎣∑

r �=s

ρr(αs − αr)

⎤
⎦ , s = 1, . . . , N − 1,

(4.13)

or in the equivalent form:

∂t

[
αs −

∑
r �=s ρrμsr κsr αr∑

r �=s ρrμsr κsr

]
+ u · ∇x

[
αs −

∑
r �=s ρrμsrκsr αr∑

r �=s ρrμsrκsr

]

= Δx

[∑
r �=s ρr(αs − αr)∑

r �=s ρrμsrκsr

]
, s = 1, . . . , N − 1.

(4.14)

These equations are reported in Proposition 1.1.

5. Momentum equation

We write down again the momentum equation given by the second line of (3.3), but separating the drift term
into two parts:

ε

N∑
s=1

ρs ms ∂t

∫
v(gs

εM
s)(v) dv +

N∑
s=1

ρs ms ∇x ·
∫ (

v ⊗ v − 1
3

v2I
)

(gs
εM

s)(v) dv

+
N∑

s=1

ρs ms ∇x

∫
1
3

v2(gs
εM

s)(v) dv = 0.
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Dividing by ε and setting

p =
1
ε

N∑
s=1

ρs ms

∫
1
3

v2(gs
εM

s)(v) dv and B(v) = v ⊗ v − 1
3

v2I, (5.1)

the momentum equation reads as

N∑
s=1

ρs ms ∂t

∫
v(gs

εM
s)(v) dv +

1
ε

N∑
s=1

ρs ms ∇x ·
∫

B(v)(gs
εM

s)(v) dv + ∇xp = 0. (5.2)

We multiply the sth Boltzmann equation (2.3) by msθs B(v) (where θs stand for constants to be determined
later), we integrate in dv and then we sum over s. We get

ε2
N∑

s=1

ρs msθs ∂t

∫
B(v)(gs

εM
s)(v) dv + ε

N∑
s=1

ρs msθs ∇x ·
∫

B(v) ⊗ v(gs
εM

s)(v) dv

=
N∑

s,r=1

ρsρrmsθs

∫
B(v)

[
Qsr(gs

εM
s, M r) + Qsr(M s, gr

εM r)
]
dv

+ ε

N∑
s,r=1

ρsρrmsθs

∫
B(v)Qsr(gs

εM
s, gr

εM
r) dv.

(5.3)

As concerns the dominant (elastic) contribution, we resort to the following lemma:

Lemma 5.1. For any constant C 
= 0, it is possible to determine θs in such a way that

N∑
s,r=1

ρsρrmsθs

∫
B(v)

[
Qsr(gs

εM
s, M r) + Qsr(M s, gr

εM r)
]
dv

= C

N∑
s=1

ρs ms

∫
B(v)(gs

εM
s)(v) dv + O(ε).

(5.4)

For Maxwell molecule interactions, constants θs, s = 1, . . . , N , are the unique solution of the following linear
system:

C =
N∑

r=1

ρr μsr

ms + mr

[
2
(− θs + θr

)
κsr − 3

2

(
mr

ms
θs + θr

)
νsr

]
, s = 1, . . . , N. (5.5)

The proof of this lemma involves a lot of quite technical computations, and for this reason is postponed to
the Appendix.

Remark 5.2. We may achieve another (equivalent) explicit expression for the constant C, that will be useful
in the sequel. If we multiply the sth equation of (5.5) by ρsms, i.e.

ρsmsC =
N∑

r=1

ρsρr μsr

ms + mr

[
2ms

(− θs + θr
)
κsr − 3

2
(mrθs + msθr) νsr

]
, s = 1, . . . N,
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and then we sum over s, we get(
N∑

s=1

ρsms

)
C =

N∑
s,r=1

ρsρr μsr

ms + mr

[
2ms

(− θs + θr
)
κsr − 3

2
(mrθs + msθr) νsr

]

=
N∑

s=1

ρsθs

[
N∑

r=1

ρr μsr

ms + mr

(
−2msκsr − 3

2
mrνsr

)]

+
N∑

r=1

ρrθr

[
N∑

s=1

ρs μsr

ms + mr

(
2msκsr − 3

2
msνsr

)]

= −
N∑

s,r=1

ρsρr μsr

ms + mr
[2(ms − mr)κsr + 3mrνsr ] θs,

(5.6)

hence

C = −
N∑

s,r=1

ρsρr(μsr)2
[
2
ms − mr

msmr
κsr +

3
ms

νsr

]
θs
/(

N∑
s=1

ρsms

)
. (5.7)

Note that in case of equal masses we would have the much simpler result

C = − 3
4

N∑
s,r=1

ρsρrνsrθs. (5.8)

The right-hand side of (5.4) is the same contribution appearing in the momentum equation (5.2), hence we
can insert the equation (5.3) into (5.2), ending up with

N∑
s=1

ρs ms ∂t

∫
v(gs

εM
s)(v) dv +

1
C

∇x ·
{

N∑
s=1

ρs msθs ∇x ·
∫

B(v) ⊗ v(gs
εM

s)(v) dv

−
N∑

s,r=1

ρsρrmsθs

∫
B(v)Qsr(gs

εM
s, gr

εM r) dv

}
+ ∇xp = O(ε).

(5.9)

At this point, let us recall that the distributions gs
ε take the form (1.12). We immediately get

N∑
s=1

ρs ms ∂t

∫
v(gs

εM
s)(v) dv =

(
N∑

s=1

ρsms

)
∂tu + O(ε). (5.10)

Moreover,
N∑

s=1

ρsmsθs ∇x ·
∫

B(v) ⊗ v(gs
εM

s)(v) dv|ij

=
N∑

s=1

ρsmsθs
∑

k

∂

∂xk

∫
vk Bij(v)(gs

εM s)(v) dv

=
N∑

s=1

ρsmsθs
∑

k

∂

∂xk

∫ (
vivj − 1

3
v2 δij

)
vk

∑
h

ms vhuh M s(v) dv + O(ε)

(the other terms of gs
ε give vanishing contributions by parity arguments). Bearing in mind that∫

v4
i M s(v) dv =

1
5

∫
v4 M s(v) dv,

∫
v2

i v2
j M s(v) dv =

1
15

∫
v4 M s(v) dv (i 
= j),
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and ∫
v4 M s(v) dv =

15
(ms)2

,

a careful algebra yields

N∑
s=1

ρsmsθs
∑

k

∂

∂xk

∫
vk Bij(v)(gs

εM s)(v) dv =
N∑

s=1

ρsθs

[
∂ui

∂xj
+

∂uj

∂xi
− 2

3
∇x · u δij

]
+ O(ε)

=

(
N∑

s=1

ρsθs

)(
∂ui

∂xj
+

∂uj

∂xi

)
+ O(ε) (5.11)

(where we have taken into account that ∇x · u = 0).
Finally, as concerns the collision contribution appearing in (5.9), we get

N∑
s,r=1

ρsρrmsθs

∫
B(v)Qsr(gs

εM
s, gr

εM
r) dv

=
N∑

s,r=1

ρsρr(μsr)2θs

(
2

ms − mr

msmr
κsr +

3
ms

νsr

)
B(u) + O(ε)

(5.12)

(see details of computation in the Appendix).
By inserting (5.10), (5.11), (5.12) into the momentum equation (5.9) and taking into account again that u is

divergence-free, we get(
N∑

s=1

ρsms

)
∂tu +

1
C

{(
N∑

s=1

ρsθs

)
Δxu

−
[

N∑
s,r=1

ρsρr(μsr)2θs

(
2

ms − mr

msmr
κsr +

3
ms

νsr

)](
u · ∇xu− 1

3
∇x(u2)

)}
+ ∇xp = 0.

(5.13)

Now, bearing in mind that C takes the form (5.7), the momentum equation may be cast as

∂tu + u · ∇xu + ∇xp̃ = d1 Δxu, (5.14)

where
p̃ =

1∑N
s=1 ρsms

p − 1
3

u2,

and the diffusion coefficient is

d1 = − 1
C

(
N∑

s=1

ρs θs

)/(
N∑

s=1

ρsms

)
.

Lemma 5.3. The diffusion coefficient d1 is strictly positive.

Proof. We recall that constants θs arise as solution of the linear system A · θ = b given in (5.5), that can be
written in the equivalent form⎡

⎣3
4

ρsνss +
∑
r �=s

ρr μsr

ms + mr

(
2κsr +

3
2

mr

ms
νsr

)⎤⎦ θs

+
∑
r �=s

ρr μsr

ms + mr

(
− 2κsr +

3
2

νsr

)
θr = −C, s = 1, . . . , N.

(5.15)
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It is possible to prove that the coefficient matrix A is strictly diagonally dominant. Denoting by asr the entry
of the sth row and the rth column, we have

|ass| =
3
4

ρsνss +
∑
r �=s

ρr μsr

ms + mr

(
2κsr +

3
2

mr

ms
νsr

)
,

|asr| = ρr μsr

ms + mr

∣∣∣∣− 2κsr +
3
2

νsr

∣∣∣∣ , r 
= s.

Unfortunately − 2κsr + 3
2 νsr has not a definite sign. If we set

D+ =
{

r = 1, . . . , N, r 
= s : − 2κsr +
3
2

νsr ≥ 0
}
,

D− =
{

r = 1, . . . , N, r 
= s : − 2κsr +
3
2

νsr < 0
}
,

then

|ass| −
∑
r �=s

|asr| =
3
4
ρsνss +

∑
r∈D+

ρr μsr

ms + mr

(
4κsr +

3
2

mr − ms

ms
νsr

)

+
3
2

∑
r∈D−

ρr μsr

ms + mr

(
mr

ms
+ 1

)
νsr .

(5.16)

Recalling now the definitions of κsr and νsr given in (1.11), we get

4κsr +
3
2

mr − ms

ms
νsr =

2π

ms

∫ π

0

ϑsr(χ)(1 − cosχ)
[
4ms +

3
2
(mr − ms) +

3
2
(mr − ms) cosχ

]
sin χ dχ

=
π

ms

∫ π

0

ϑsr(χ)(1 − cosχ) [5ms + 3mr + 3(mr − ms) cosχ] sin χ dχ ≥ 0,

therefore
|ass| >

∑
r �=s

|asr |, ∀s = 1, . . . , N.

Since A is diagonally dominant, then it is invertible. Thus for any fixed C, there is a unique solution θ1, . . . ,
θN to the linear system (5.15). If we multiply the sth equation (5.15) by ρs, we get the following linear system
Ā · θ = b̄: ⎡

⎣3
4

(ρs)2νss +
∑
r �=s

ρsρr μsr

ms + mr

(
2κsr +

3
2

mr

ms
νsr

)⎤⎦ θs

+
∑
r �=s

ρsρr μsr

ms + mr

(
− 2κsr +

3
2

νsr

)
θr = − ρsC, s = 1, . . . , N,

(5.17)

which is equivalent to (5.15), in the sense that it admits the same unique solution θ1, θ2, . . . θN . The matrix Ā is
again diagonally dominant (|āss| >

∑
r �=s |āsr|, ∀s = 1, . . . , N), has strictly positive diagonal entries, and

moreover is symmetric (unlike A). These properties allow to infer that Ā is positive definite, i.e. θT · Ā · θ ≥ 0.
This yields

N∑
s,r=1

θs āsr θr =
N∑

s=1

θs b̄s = −C

N∑
s=1

ρsθs > 0 ∀θ 
= 0,

and this proves that d1 > 0. �
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The formula for the diffusion coefficient d1 appearing in Proposition 1.1 is obtained by taking C =

−
(

N∑
s=1

ρs ms

)−1

.

In the case of a single species, in [4] the authors prove positivity of diffusion coefficients by abstract arguments,
using essentially positivity and symmetry properties of the linearized Boltzmann operator. The generalization
of this technique to a mixture seems very awkward since such coefficients arise from a combination of N kinetic
equations (hence from a linear system), and moreover possible symmetries are not so evident because of different
particle masses. Of course a rigorous proof of this kind for a large class of collision kernels would be an interesting
future work.

6. Temperature equation

Let us multiply the sth Boltzmann equation (2.3) by 1
2 msv2 − 5

2 and then sum over s:

ε
N∑

s=1

ρs∂t

∫ (
1
2

msv2 − 5
2

)
(gs

εM
s)(v) dv +

N∑
s=1

ρs∇x ·
∫

Ds(v)(gs
εM

s)(v) dv = 0, (6.1)

where

Ds(v) =
(

1
2

msv2 − 5
2

)
v. (6.2)

We multiply the sth Boltzmann equation (2.3) by ε (ms)p ηs Ds(v) (where constants ηs and power p will be
suitably determined later), we integrate in dv and then we sum over s. We get

ε2
N∑

s=1

ρs (ms)p ηs ∂t

∫
Ds(v)(gs

εM s)(v) dv + ε
N∑

s=1

ρs (ms)pηs ∇x ·
∫

Ds(v) ⊗ v(gs
εM s)(v) dv

=
N∑

s,r=1

ρsρr(ms)pηs

∫
Ds(v)

[
Qsr(gs

εM
s, M r) + Qsr(M s, gr

εM r)
]
dv

+ ε

N∑
s,r=1

ρsρr(ms)p ηs

∫
Ds(v)Qsr(gs

εM
s, gr

εM
r) dv.

(6.3)

We can prove the following property (details of the proof are again postponed to the Appendix):

Lemma 6.1. For any constant K 
= 0, it is possible to determine explicitly a family of constants ηs and a
power p > 0 (namely p = 1/2) in such a way that

N∑
s,r=1

ρsρr(ms)p ηs

∫
Ds(v)

[
Qsr(gs

εM
s, M r) + Qsr(M s, gr

εM
r)
]
dv

= K

N∑
s=1

ρs

∫
Ds(v)(gs

εM s)(v) dv + O(ε).

(6.4)

For Maxwell molecules, constants ηs, s = 1, . . . , N , are the unique solution of the following linear system:

K =
N∑

r=1

ρrμsr

{
1

(ms + mr)2

[
−(ms)p

(
3ms +

(mr)2

ms

)
ηs + 4 ms(mr)p ηr

]
κsr

− 2(μsr)2

msmr

[
(ms)p−1ηs + (mr)p−1ηr

]
νsr

}
, s = 1, . . . , N.

(6.5)
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The validity of a proportionality property like (6.4), as well as the corresponding (5.4) for momentum equation,
is of course well expected, since the weight functions Ds(v) and B(v) are orthogonal to the kernel of the
linearized Boltzmann operator. The major difficulty in the present mixture frame is the precise computation
of proportionality constants, and for this reason we have tried to treat this point in the most general way,
leaving unknowns in the proposed linear combinations, in order to obtain the precise one-to-one relations
(η1, . . . , ηN ) ↔ K and, in the previous section, (θ1, . . . , θN ) ↔ C. The point here is that the constants are not
guessed but obtained after a systematic computation.

Remark 6.2. With the choice p = 1/2, the constant K given in (6.5) becomes

K =
N∑

r=1

ρrμsr

{
1

(ms + mr)2

[
−√

ms

(
3ms +

(mr)2

ms

)
ηs + 4 ms

√
mr ηr

]
κsr

− 2(μsr)2

msmr

[
ηs

√
ms

+
ηr

√
mr

]
νsr

}
, s = 1, . . . , N.

(6.6)

If we multiply the sth equation of (6.6) by ρs, and then we sum over s, we get an equivalent expression for the
constant K:

K =
N∑

s,r=1

ρsρrμsr

{
1

(ms + mr)2

[
−√

ms

(
3ms +

(mr)2

ms

)
ηs + 4 ms

√
mr ηr

]
κsr

− 2(μsr)2

msmr

[
ηs

√
ms

+
ηr

√
mr

]
νsr

}

= −
N∑

s,r=1

ρsρr μsr
√

ms

(ms + mr)2

[(
3ms +

(mr)2

ms
− 4mr

)
κsr + 4 mrνsr

]
ηs.

(6.7)

Note that in case of equal masses we would have the much simpler result

K = − 1
2
√

m

N∑
s,r=1

ρsρrνsrηs. (6.8)

The right-hand side of (6.4) is the same contribution appearing in the temperature equation (6.1), hence we
can insert the equation (6.3) with p = 1/2 into (6.1):

N∑
s=1

ρs ∂t

∫ (
1
2

msv2 − 5
2

)
(gs

εM
s)(v) dv +

1
K

∇x ·
{

N∑
s=1

ρs
√

ms ηs ∇x ·
∫

Ds(v) ⊗ v(gs
εM

s)(v) dv

−
N∑

s,r=1

ρsρr
√

ms ηs

∫
Ds(v)Qsr(gs

εM
s, gr

εM
r) dv

}
= O(ε).

(6.9)

Recalling now that the distributions gs
ε take the form (1.12), we get

N∑
s=1

ρs ∂t

∫ (
1
2

msv2 − 5
2

)
(gs

εM
s)(v) dv =

N∑
s=1

ρs∂t

[
3
2
(αs + T )− 5

2
αs

]
+ O(ε)

=
3
2

∂tT − ∂t

(
N∑

s=1

ρsαs

)
+ O(ε) =

5
2

∂tT + O(ε),

(6.10)
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where the last equality holds because of the constraint (3.6). Moreover, by parity arguments,

N∑
s=1

ρs
√

ms ηs
∑

k

∂

∂xk

∫
Ds

k(v)vi(gs
εM

s)(v) dv

=
N∑

s=1

ρs
√

ms ηs
∑

k

∂

∂xk

∫ (
1
2

msv2 − 5
2

)
vivk

[
αs +

(
1
2

msv2 − 3
2

)
T

]
M s(v) dv + O(ε)

that, bearing in mind

ms

∫
v2M s(v) dv = 3, (ms)2

∫
v4M s(v) dv = 15, (ms)3

∫
v6M s(v) dv = 105, (6.11)

results in
N∑

s=1

ρs
√

ms ηs
∑

k

∂

∂xk

∫
Ds

k(v)vi(gs
εM

s)(v) dv =

(
N∑

s=1

ρs

√
ms

ηs

)
5
2

∂T

∂xi
· (6.12)

Finally,
N∑

s,r=1

ρsρr
√

ms ηs

∫
Ds(v)Qsr(gs

εM
s, gr

εM
r) dv =

=
5
2

N∑
s,r=1

ρsρrηs μsr
√

ms

(ms + mr)2

{(
3ms − 4mr +

(mr)2

ms

)
κsr + 4 mrνsr

}
uT + O(ε)

(6.13)

(see details in the Appendix). Putting all results (6.10), (6.12), (6.13) into equation (6.9), and dividing all terms
by 5/2, the temperature equation reads as

∂tT +
1
K

∇x ·
{(

N∑
s=1

ρs

√
ms

ηs

)
∇xT

−
N∑

s,r=1

ρsρrηs μsr
√

ms

(ms + mr)2

[(
3ms − 4mr +

(mr)2

ms

)
κsr + 4 mrνsr

]
uT

}
= 0.

Bearing in mind that K takes the form (6.7) and that u is divergence-free, this equation may be recast as

∂tT + u · ∇xT = d2ΔxT, (6.14)

where the diffusion coefficient is given by

d2 = − 1
K

(
N∑

s=1

ρs

√
ms

ηs

)
.

Lemma 6.3. The diffusion coefficient d2 is strictly positive.

Proof. The proof is similar to the one of Lemma 5.3 of previous section. We recall that constants ηs arise as the
unique solution of the linear system (6.6). If we multiply the sth equation by ρs/

√
ms, we get an equivalent linear

system Â · η = b̂ (it admits the same unique solution η1, η2, . . . ηN ). The coefficient matrix Â is diagonally
dominant, has strictly positive diagonal entries, and moreover is symmetric (see the proof of Lem. A.1 in the
Appendix A, we skip details here). Therefore it is positive definite, i.e. ηT · Â · η ≥ 0 and this yields

N∑
s,r=1

ηs âsr ηr =
N∑

s=1

ηs b̂s = −K

N∑
s=1

ρs

√
ms

ηs > 0 ∀η 
= 0,

and this proves that d2 > 0. �
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The formula for d2 appearing in Proposition 1.1 is obtained by specifying K = −1. This concludes the proof
of Proposition 1.1. �

Appendix A.

In this appendix we will include the detailed proof of technical Lemmas 5.1 and 6.1 and the explicit evalua-

tion of collision contributions
∫

B(v)Qsr(gs
εM

s, gr
εM

r)dv and
∫

Ds(v)Qsr(gs
εM

s, gr
εM

r)dv, useful to compute

explicit diffusion coefficients in the Maxwell molecules frame.

Lemma A.1. For any constant C 
= 0, it is possible to determine θs in such a way that

N∑
s,r=1

ρsρrmsθs

∫
B(v)

[
Qsr(gs

εM
s, M r) + Qsr(M s, gr

εM r)
]
dv

= C

N∑
s=1

ρs ms

∫
B(v)(gs

εM
s)(v) dv + O(ε).

(A.1)

Proof. To evaluate collision contributions, we resort to formula (2.1) and to the same steps sketched in detail
in [9] (see Sect. 4.3.1, some details will be omitted here). If we set ϕs

ij(v) = Bij(v) = vivj − 1
3 v2 δij (δij denotes

the Kronecker delta), it may be checked, bearing in mind (1.3), that

ϕs
ij(v

′) − ϕs
ij(v) =

μsr

ms

[
(q′i − qi)vj + vi(q′j − qj)

]
+
(

μsr

ms

)2

(q′i − qi)(q′j − qj)

− 2
3

μsr

ms

∑
k

vk(q′k − qk)δij − 1
3

(
μsr

ms

)2

|q′ − q|2δij , (A.2)

hence under the usual Maxwell molecules assumption (1.10), owing to (4.4), we have

Υij(v,w) =
∫

q σsr(q, χ)
[
ϕs

ij(v
′) − ϕs

ij(v)
]
dΩ̂′ = κsr Υκ

ij(v,w) + νsr Υ ν
ij(v,w), (A.3)

where the averaged collision frequencies κsr and νsr are given in (1.11), and

Υκ
ij(v,w) =

μsr

ms

[
− 2vivj + viwj + wivj +

2
3

v2 δij − 2
3

∑
k

vkwkδij

]

+
(

μsr

ms

)2
[
2vivj − 2viwj − 2wivj + 2wiwj − 2

3
v2 δij +

4
3

∑
k

vkwkδij − 2
3

w2 δij

]
,

Υ ν
ij(v,w) =

1
2

(
μsr

ms

)2
[
v2 δij + w2 δij − 2

∑
k

vkwkδij − 3vivj + 3viwj + 3wivj − 3wiwj

]
.

(A.4)

Let us first consider

Φij :=
∫∫

Υκ
ij(v,w)

[
gs

ε(v) + gr
ε(w)

]
M s(v)M r(w) dv dw.
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Using a parity argument (actually two parity arguments, v �→ −v, and w �→ −w), we see that

Φij =

[(
μsr

ms

)2

− μsr

ms

]∫∫ [
2vivj − 2

3
v2δij

] [
gs

ε(v) + gr
ε(w)

]
M s(v)M r(w) dv dw

+
(

μsr

ms

)2 ∫∫ [
2wiwj − 2

3
w2δij

] [
gs

ε(v) + gr
ε(w)

]
M s(v)M r(w) dv dw + O(ε)

= − 2
(

μsr

ms

)2
ms

mr

∫ [
vivj − 1

3
v2δij

] [
gs

ε(v) + αr
]
M s(v) dv

+ 2
(

μsr

ms

)2 ∫ [
wiwj − 1

3
w2δij

] [
αs + gr

ε(w)
]
M r(w) dw + O(ε)

= 2
(

μsr

ms

)2 {
− ms

mr

∫
Bij(v) gs

ε(v)M s(v) dv +
∫

Bij(w) gr
ε(w)M r(w) dw

}
+ O(ε).

We now turn to

Ψij :=
∫∫

Υ ν
ij(v,w)

[
gs

ε(v) + gr
ε(w)

]
M s(v)M r(w) dv dw.

Owing to the usual parity arguments, it’s easy to see that

Ψij :=
1
2

(
μsr

ms

)2 ∫∫ [
v2 δij + w2 δij − 3vivj − 3wiwj

][
gs

ε(v) + gr
ε(w)

]
M s(v)M r(w) dv dw + O(ε)

=
1
2

(
μsr

ms

)2 {∫ [
v2 δij − 3vivj

][
gs

ε(v) + αr
]
M s(v) dv

+
∫ [

w2 δij − 3wiwj

][
αs + gr

ε(w)
]
M r(w) dw

}
+ O(ε)

= − 3
2

(
μsr

ms

)2 {∫
Bij(v) gs

ε(v)M s(v) dv +
∫

Bij(w) gr
ε(w)M r(w) dw

}
+ O(ε).

In conclusion,

N∑
s,r=1

ρsρrmsθs

∫
B(v)

[
Qsr(gs

εM
s, M r) + Qsr(M s, gr

εM r)
]
dv

=2
N∑

s,r=1

ρsρrmsθs

(
μsr

ms

)2

κsr

{
− ms

mr

∫
B(v) gs

ε(v)M s(v) dv +
∫

B(w) gr
ε(w)M r(w) dw

}

− 3
2

N∑
s,r=1

ρsρrmsθs

(
μsr

ms

)2

νsr

{∫
B(v) gs

ε(v)M s(v) dv +
∫

B(w) gr
ε(w)M r(w) dw

}
+ O(ε)

=
N∑

s,r=1

ρsρr μsr

ms + mr

[
2 ms

(− θs + θr
)
κsr − 3

2
(
mrθs + msθr

)
νsr

] ∫
B(v) gs

ε(v)M s(v) dv + O(ε).

The sought relation (A.1) is satisfied if we may choose θs, s = 1, . . . , N , such that

C =
N∑

r=1

ρr μsr

ms + mr

[
2
(− θs + θr

)
κsr − 3

2

(
mr

ms
θs + θr

)
νsr

]
, s = 1, . . . , N. (A.5)
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This is a linear system of the kind A · θ = b for the N unknowns θs, where coefficients matrix A has already
been proved to be diagonally dominant (see the proof of Lem. 5.3), then it is non-singular (the determinant is
different from zero). Thus for any fixed C, there is a unique solution θ1, . . . , θN to the linear system (A.5). �

Lemma A.2. As concerns the collision contribution appearing in (5.9), we have

N∑
s,r=1

ρsρrmsθs

∫
B(v)Qsr(gs

εM
s, gr

εM
r) dv =

N∑
s,r=1

ρsρr(μsr)2θs

(
2

ms − mr

msmr
κsr +

3
ms

νsr

)
B(u) + O(ε).

(A.6)

Proof. Notice that∫
Bij(v)Qsr(gs

εM
s, gr

εM r)dv =
∫∫ [

κsr Υκ
ij(v,w) + νsr Υ ν

ij(v,w)
]
(gs

εM
s)(v) (gr

εM r)(w) dv dw, (A.7)

where Υκ
ij and Υ ν

ij are given in (A.4). Bearing in mind the properties of the distributions gs
ε, and in particular

that ∫
vi (gs

εM
s)(v) dv = ui + O(ε),

∫ (
vi vj − 1

3
v2 δij

)
(gs

εM
s)(v) dv = O(ε),

we get ∫∫
Υκ

ij(v,w)(gs
εM

s)(v) (gr
εM r)(w) dv dw

= 2
μsr

ms
Bij(u) − 4

(
μsr

ms

)2

Bij(u) + O(ε) = 2
(

μsr

ms

)2
ms − mr

mr
Bij(u) + O(ε)

(A.8)

(of course this term would vanish in case of equal masses), and∫∫
Υ ν

ij(v,w)(gs
εM s)(v) (gr

εM r)(w) dv dw = 3
(

μsr

ms

)2

Bij(u) + O(ε). (A.9)

�

Lemma A.3. For any constant K 
= 0, it is possible to determine explicitly a family of constants ηs and a
power p > 0 (namely p = 1/2) in such a way that

N∑
s,r=1

ρsρr(ms)p ηs

∫
Ds(v)

[
Qsr(gs

εM
s, M r) + Qsr(M s, gr

εM
r)
]
dv = K

N∑
s=1

ρs

∫
Ds(v)(gs

εM s)(v) dv + O(ε).

(A.10)

Proof. The strategy of proof is similar to the one of Lemma A.1, but for readers’ convenience we report the
details of computation. If we set ϕs

i (v) = Ds
i (v) = 1

2 (msv2 − 5) vi, from (1.3), we get

ϕs
i (v

′) − ϕs
i (v) =

1
2

μsrv2(q′i − qi) +
1
2

ms

(
μsr

ms

)2

vi|q′ − q|2 +
1
2

ms

(
μsr

ms

)3

(q′i − qi)|q′ − q|2

+ μsrvi

∑
j

vj(q′j − qj) + ms

(
μsr

ms

)2 ∑
j

vj(q′i − qi)(q′j − qj) − 5
2

μsr

ms
(q′i − qi), (A.11)

hence under the Maxwell molecules assumption (1.10), we get (see (4.4))

Θi(v,w) =
∫

q σsr(q, χ)
[
ϕs

i (v
′) − ϕs

i (v)
]
dΩ̂′ = κsr Θκ

i (v,w) + νsr Θν
i (v,w), (A.12)
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where averaged collision frequencies κsr and νsr are given in (1.11), and

Θκ
i (v,w) = μsr

[
− 1

2
v2qi +

μsr

ms
viq

2 − 2
(

μsr

ms

)2

qiq
2 − vi

∑
j

vjqj

+ 2
μsr

ms

∑
j

vjqiqj +
5
2

1
ms

qi

]
,

Θν
i (v,w) =

(μsr)2

ms

[
μsr

ms
q2qi +

1
2

viq
2 − 3

2

∑
j

vjqiqj

]
.

(A.13)

Taking into account that q = |v − w|, a careful algebra yields

Θκ
i (v,w) =

μsr

(ms + mr)2

[
−
(

3
2

(ms)2 +
1
2

(mr)2
)

viv
2 + mr(ms − mr)viw

2

+ 2mr(ms − mr)
∑

j

vjwiwj + 2(mr)2wiw
2 +

1
2

(ms − mr)2wiv
2 (A.14)

+ (ms − mr)2vi

∑
j

vjwj +
5
2

(ms + mr)2

ms
(vi − wi)

]
,

Θν
i (v,w) =

(μsr)3

(ms)2mr

[
− msviv

2 +
(

1
2

ms +
3
2

mr

)
viw

2 +
(
− 3

2
ms +

1
2

mr

)∑
j

vjwiwj

−mrwiw
2 +

(
3
2

ms +
1
2

mr

)
wiv

2 +
(

1
2

ms − 3
2

mr

)
vi

∑
j

vjwj

]
.

(A.15)

Let us first consider

Φ̃i :=
∫∫

Θκ
i (v,w)

[
gs

ε(v) + gr
ε(w)

]
M s(v)M r(w) dv dw.

Using parity arguments (v �→ −v and w �→ −w), we see that some integrals vanish, and we have

Φ̃i =
μsr

(ms + mr)2

{∫∫ [
−
(

3
2

(ms)2 +
1
2

(mr)2
)

viv
2 + mr(ms − mr)viw

2

+ 2mr(ms − mr)
∑

j

vjwiwj +
5
2

(ms + mr)2

ms
vi

]
gs

ε(v)M s(v)M r(w) dv dw

+
∫∫ [

2(mr)2wiw
2 +

1
2

(ms − mr)2wiv
2 + (ms − mr)2vi

∑
j

vjwj

− 5
2

(ms + mr)2

ms
wi

]
gr

ε(w)M s(v)M r(w) dv dw
}

+ O(ε).

(A.16)

Recalling (2.2), we finally get (skipping all intermediate details)

Φ̃i = − μsr

(ms + mr)2

(
3ms +

(mr)2

ms

)∫
Ds

i (v)gs
ε(v)M s(v) dv

+
4μsrmr

(ms + mr)2

∫
Dr

i (w)gr
ε(w)M r(w) dw + O(ε).

(A.17)
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We now turn to

Ψ̃i :=
∫∫

Θν
i (v,w)

[
gs

ε(v) + gr
ε(w)

]
M s(v)M r(w) dv dw.

By usual parity arguments, integrals providing non-vanishing contributions are

Ψ̃i =
(μsr)3

(ms)2mr

{∫∫ [
− msviv

2 +
(

1
2

ms +
3
2

mr

)
viw

2

+
(
− 3

2
ms +

1
2

mr

)∑
j

vjwiwj

]
gs

ε(v)M s(v)M r(w) dv dw

+
∫∫ [

− mrwiw
2 +

(
3
2

ms +
1
2

mr

)
wiv

2

+
(

1
2

ms − 3
2

mr

)
vi

∑
j

vjwj

]
gr

ε(w)M s(v)M r(w) dv dw
}

+ O(ε),

(A.18)

from which we obtain

Ψ̃i = − 2(μsr)3

(ms)2mr

{∫
Ds

i (v)gs
ε(v)M s(v) dv +

∫
Dr

i (w)gr
ε(w)M r(w) dw

}
+ O(ε). (A.19)

In conclusion,

N∑
s,r=1

ρsρr(ms)p ηs

∫
Ds(v)

[
Qsr(gs

εM
s, M r) + Qsr(M s, gr

εM
r)
]
dv

=
N∑

s,r=1

ρsρr(ms)p ηs κsr

{
− μsr

(ms + mr)2

(
3ms +

(mr)2

ms

)∫
Ds(v)gs

ε(v)M s(v) dv

+
4μsrmr

(ms + mr)2

∫
Dr(w)gr

ε(w)M r(w) dw
}

−
N∑

s,r=1

ρsρr(ms)p ηs νsr 2(μsr)3

(ms)2mr

{∫
Ds(v) gs

ε(v)M s(v) dv +
∫

Dr(w) gr
ε(w)M r(w) dw

}
+ O(ε)

=
N∑

s,r=1

ρsρrμsr

{
1

(ms + mr)2

[
−(ms)p

(
3ms +

(mr)2

ms

)
ηs + 4 ms(mr)p ηr

]
κsr

− 2(μsr)2

msmr

[
(ms)p−1ηs + (mr)p−1ηr

]
νsr

}∫
Ds(v) gs

ε(v)M s(v) dv + O(ε).

The sought relation (A.10) is satisfied if we can choose p > 0 and ηs, s = 1, . . . , N , such that

K =
N∑

r=1

ρrμsr

{
1

(ms + mr)2

[
−(ms)p

(
3ms +

(mr)2

ms

)
ηs + 4 ms(mr)p ηr

]
κsr

− 2(μsr)2

msmr

[
(ms)p−1ηs + (mr)p−1ηr

]
νsr

}
, s = 1, . . . , N.

(A.20)
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This is a linear system Ã · η = b̃ for the N unknowns ηs, that may be rewritten as⎧⎨
⎩1

2
ρs(ms)pνss +

∑
r �=s

ρr μsr

(ms + mr)2
[
(ms)p−1

(
3(ms)2 + (mr)2

)
κsr + 2(ms)pmrνsr

]⎫⎬
⎭ ηs

+
∑
r �=s

ρr μsr

(ms + mr)2
ms(mr)p

(− 4κsr + 2 νsr
)
ηr = −K, s = 1, . . . , N.

(A.21)

If we are able to find a value for the power p such that the corresponding coefficient matrix Ã is diagonally
dominant, then the existence of a solution ηs, s = 1, . . . , N , is guaranteed. Recalling now the definitions of κsr

and νsr given in (1.11), we get

− 4κsr + 2νsr = − 4π

∫ π

0

ϑsr(χ)(1 − cosχ)2 sin χ dχ ≤ 0,

therefore

|ãss| −
∑
r �=s

|ãsr| =
1
2

ρs(ms)pνss +
∑
r �=s

ρr μsr

(ms + mr)2

{[
(ms)p−1

(
3(ms)2 + (mr)2

)

− 4 ms(mr)p
]
κsr + 2

[
(ms)pmr + ms(mr)p

]
νsr

}
.

(A.22)

We can prove that if p = 1/2 the coefficient in the square brackets in front of κsr turns out to be nonnegative
for all values of ms, mr. In fact, it may be written as

(ms)3/2

[(
mr

ms

)2

− 4
(

mr

ms

)1/2

+ 3

]
,

and it’s easy to check that the function
f(y) = y2 − 4y1/2 + 3

takes its minimum for y = 1 and f(1) = 0, hence f(y) ≥ 0 ∀y ≥ 0. In conclusion, for p = 1/2

|ãss| >
∑
r �=s

|ãsr |, ∀s = 1, . . . , N,

hence for any fixed K there is a unique solution η1, . . . , ηN to the linear system (A.21). �

Lemma A.4. As concerns the collision contribution appearing in (6.9), we have

N∑
s,r=1

ρsρr
√

ms ηs

∫
Ds(v)Qsr(gs

εM
s, gr

εM
r) dv

=
5
2

N∑
s,r=1

ρsρrηs μsr
√

ms

(ms + mr)2

{(
3ms − 4mr +

(mr)2

ms

)
κsr + 4 mrνsr

}
uT + O(ε).

(A.23)

Proof. Notice that∫
Ds

i (v)Qsr(gs
εM

s, gr
εM r) dv =

∫∫ [
κsr Θκ

i (v,w) + νsr Θν
i (v,w)

]
(gs

εM
s)(v) (gr

εM r)(w) dv dw, (A.24)

where Θκ
i and Θν

i are given in (A.14)−(A.15). Taking into account moments of the distributions gs
ε given in (2.8),

and moreover the third order moment∫
vi v2(gs

εM
s)(v) dv =

5
ms

ui + O(ε),
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we get∫∫
Θκ

i (v,w)(gs
εM s)(v) (gr

εM r)(w) dv dw =
5
2

μsr

ms(ms + mr)2
(
3(ms)2 − 4msmr + (mr)2

)
uiT + O(ε), (A.25)

and ∫∫
Θν

i (v,w)(gs
εM s)(v) (gr

εM r)(w) dv dw = 10
(μsr)3

(ms)2mr
uiT + O(ε). (A.26)
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