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MULTISCALE FINITE ELEMENT APPROACH
FOR “WEAKLY” RANDOM PROBLEMS AND RELATED ISSUES
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Abstract. We address multiscale elliptic problems with random coefficients that are a perturbation of
multiscale deterministic problems. Our approach consists in taking benefit of the perturbative context
to suitably modify the classical Finite Element basis into a deterministic multiscale Finite Element
basis. The latter essentially shares the same approximation properties as a multiscale Finite Element
basis directly generated on the random problem. The specific reference method that we use is the
Multiscale Finite Element Method. Using numerical experiments, we demonstrate the efficiency of our
approach and the computational speed-up with respect to a more standard approach. In the stationary
setting, we provide a complete analysis of the approach, extending that available for the deterministic
periodic setting.
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1. Overview of our approach and results

The Multiscale Finite Element Method (henceforth abbreviated as MsFEM) is a popular numerical approach
for multiscale problems (see [3, 11, 18, 20, 30–32,37–39]). It consists in a Galerkin approximation of the original
problem over a finite dimensional space generated by basis functions that are specifically adapted to the problem
under consideration.

This approach is popular for a twofold reason. First, its use is not restricted to multiscale problems that
converge to a homogenized problem in the limit of vanishing ratio between the small scale and the macroscopic
scale. It may be applied to much more general situations. Second, when the problem does converge to a homog-
enization problem, the MsFEM approach is meant to approximate the solution of the problem with the small
scale ε at its actual small value and not “only” in the asymptotic regime ε→ 0, which is the regime addressed
by homogenization theory.
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To fix the ideas, consider the problem of finding uε solving

−div [Aε∇uε] = f in D, uε = 0 on ∂D, (1.1)

on a bounded domain D ⊂ R
d, with f ∈ L2(D), and where Aε is a uniformly bounded, coercive matrix that

varies at scale ε. A standard Finite Element Method (FEM) would require a space discretization of the domain
at the scale ε in order to capture the oscillations of uε at scale ε. This is prohibitively expensive. The MsFEM
aims at accurately approximating uε using a limited number of degrees of freedom. It does not require the
matrix Aε to be periodic (namely Aε(x) = Aper(x/ε) for a fixed periodic matrix Aper) or stationary.

We now briefly describe the approach and present the aim of this article. Starting from a coarse mesh Th

with a standard (say P1) Finite Element basis set of functions
{
φ0

i

}L

i=1
, generating the associated space

Vh := span(φ0
i , i = 1, . . . , L),

we first numerically build the MsFEM basis functions φε
i . Several definitions of these basis functions have been

proposed in the literature (yielding different numerical methods), and we detail this in the sequel (see e.g. (2.7)-
(2.8)-(2.9)). For the moment, it is sufficient to know that, to each φ0

i , which varies at the macroscopic scale,
is associated a function φε

i , with variations at the scale ε. In practice, φε
i is numerically computed (in fact,

pre-computed), using the specificities of the problem addressed. These highly oscillatory functions φε
i generate

the finite dimensional space
Wh := span(φε

i , i = 1, . . . , L).

Note that Wh and Vh share the same dimension.
We next define the MsFEM solution uM using a Galerkin approximation of (1.1) on Wh, instead of Vh.

Again, details will be given below. The MsFEM solution uM provided by the approach reads

uM (x) =
L∑

i=1

(UM )i φ
ε
i (x),

for some coefficients {(UM )i}L
i=1. Of course, these coefficients depend on ε, but this dependency is kept implicit

in the sequel.
We now turn our attention to the stochastic problem

−div [Aε(·, ω)∇uε(·, ω)] = f in D, uε(·, ω) = 0 on ∂D, (1.2)

and a typical quantity of interest E [uε(x, ·)], which is traditionally approximated using a Monte Carlo method.
Introducing a set of M realizations of the stochastic matrix {Aε,m}1≤m≤M, a direct, näıve application of
the MsFEM paradigm would consist in first computing for each realization m the stochastic MsFEM basis
functions φε,m

i (x, ω), next performing a Galerkin approximation of (1.2) using this MsFEM basis set to compute
{um

M (x, ω)}1≤m≤M, and eventually approximating E [uε(x, ·)] by

E [uε(x, ·)] ≈ 1
M

M∑
m=1

um
M (x, ω).

Such an approach is unpractical because of the prohibitively expensive computational load.
To reduce the computational cost and make the MsFEM approach practical in such a stochastic context,

a natural idea we investigate in this article is to consider a less generic setting, for which a dedicated, more
computationally affordable approach, can be designed. One possibility is to consider matrices Aε(x, ω) ≡ Aε(x)+
B(x, ω) in (1.2) that are not highly oscillatory in their stochastic part. In such cases, dedicated approaches have
been proposed, we refer to [35] for more details. Another approach is to reduce the number of Monte−Carlo



MULTISCALE FINITE ELEMENT APPROACH FOR “WEAKLY” RANDOM PROBLEMS AND RELATED ISSUES 817

simulations used for the computation of the multiscale basis functions. In [1,26], the authors assume that their
coefficient can be written as a Karhunen-Loève type expansion, and apply a collocation method to a priori
choose some sparse realizations for which they compute the multiscale basis functions.

In this article, we consider one of the many alternate variants of problem (1.2). We suppose that Aε(x, ω)
is highly oscillatory in both its deterministic and stochastic components, but that it is a perturbation of a
deterministic matrix. More precisely, we assume that

Aε(x, ω) ≡ Aε
η(x, ω) = Aε

0(x) + ηAε
1(x, ω), (1.3)

where Aε
0 is a deterministic matrix and η is a small deterministic parameter. This model may be well suited for

heterogeneous materials (or, more generally, media) that, although not periodic, are not fully stochastic, in the
sense that they may be considered as a perturbation of a deterministic material. We call this setting the weakly
stochastic setting. Note that many practical situations, involving actual materials or media, can be considered,
at a good level of approximation, as perturbations of a deterministic (often periodic) setting (see e.g. [41]).

In a series of recent works (see [14,15,25] and [6–8]; see also [5] for a unified presentation), we have considered
such a setting, in the context of homogenization theory (the matrix Aε

η(x, ω) in (1.2)−(1.3) reads Aε
η(x, ω) =

Aη(x/ε, ω) for a stationary matrix Aη(x, ω), which is, in a sense to be made precise, a perturbation of a periodic
matrix). We have shown there that, in such a case, the workload for computing the homogenized solution
is significantly lighter than for generic stochastic homogenization, and actually comparable to the workload
for periodic homogenization. We will show in the sequel that the MsFEM can be adapted to this weakly
stochastic setting, providing an approximation of the solution uε

η to (1.2)−(1.3), for fixed ε, at a much smaller
computational cost than the direct approach.

The main idea of our proposed approach is to compute a set of deterministic MsFEM basis functions using
Aε

0, the deterministic part of Aε
η in the expansion (1.3), and then to perform Monte Carlo realizations at

the macroscale level using a set of M realizations of the random matrix
{
Aε,m

η (x, ω)
}

1≤m≤M (see Sect. 2 for a
detailed presentation). Note that, for each of these realizations, we solve the original problem, with the complete
matrix Aε

η, and not only its deterministic part. Only the basis set is taken deterministic. By construction, the
approach provides an approximation

uS(x, ω) =
L∑

i=1

(US(ω))i φ
ε
i (x)

of uε
η(x, ω), where the basis functions φε

i are deterministic. These basis functions are computed only once, hence
the cost to compute {um

S (x, ω)}1≤m≤M is much smaller than the cost to compute {um
M (x, ω)}1≤m≤M. This is

especially true if (1.2) has to be solved for many right-hand sides f . We expect that this approximation uS is
as accurate as uM for small η. We show below that this is indeed the case, when Aε

η is a perturbation of Aε
0 (see

Sect. 3 for numerical tests).
We would like to note that the MsFEM is not the only multiscale technique based on finite elements. The

bottom line of our approach, consisting of generating suitable multiscale functions for the discretization of
a weakly stochastic problem, using for this purpose the deterministic reference problem, can in principle be
applied to other multiscale techniques. Another popular technique is the HMM method [27–29], for which our
approach could in principle be easily adapted.

In the numerical tests reported on in Section 3, we compare, in the H1 norm, uε
η (the exact solution to (1.2)

with the matrix Aε ≡ Aε
η given by (1.3)) with uS (the solution provided by our approach) and uM (the solution

provided by the ideal, expensive approach). The quantity ‖uε
η −uM‖H1(D) represents the best possible accuracy

that we can achieve, in the sense that our approach inherits the limitations of the MsFEM approach. We
thus cannot expect our approximation uS to be more accurate than uM . We can only hope to compute an
approximation of comparable quality with a much reduced workload. The numerical results we obtain confirm
that, for small η in (1.3), the quantity ‖uS − uε

η‖H1(D) is of the same order of magnitude as ‖uM − uε
η‖H1(D),
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although, we repeat it, the computational cost to compute uS is much smaller than that to compute uM . In
Section 3, we also show the advantage of performing Monte Carlo realizations at the macroscale level (using the
random matrix Aε,m

η ) over solving a deterministic macroscale problem with only the deterministic part of Aε
η.

We next derive error bounds for our approach in Section 4. We recall that, in the deterministic setting, a
classical context for proving convergence of the MsFEM approach is the case when, in the reference problem (1.1),
the matrix reads Aε(x) = Aper

(x
ε

)
for a fixed periodic matrix Aper. Likewise, to be able to perform our

theoretical analysis in the stochastic setting, we assume in Section 4 that Aε
η(x, ω) = Aη

(x
ε
, ω
)

for a fixed

stationary random matrix Aη. The problem (1.2)−(1.3) then admits a homogenized limit when ε vanishes.
Our proof follows the same lines as that in the deterministic setting, which we now briefly review (see the

introduction of Sect. 4 for more details on the structure of the proof). The MsFEM is a Galerkin approximation,
that we assume momentarily, for the sake of clarity, to be a conforming approximation (this is indeed the case
when, for defining the highly oscillatory basis functions φε

i , oversampling is not used). The error is then estimated
using the Céa lemma:

‖uε − uM‖H1(D) ≤ C inf
vh∈Wh

‖uε − vh‖H1(D),

where uε is the solution to the reference deterministic highly oscillatory problem (1.1), uM is the MsFEM
solution and C is a constant independent of ε and h. Taking advantage of the homogenization setting, we
introduce the two-scale expansion

vε = u� + ε

d∑
i=1

w0
ei

( ·
ε

)
∂iu

�

of uε, where u� is the homogenized solution, w0
ei

is the periodic corrector associated to ei ∈ R
d, and ∂iu

� denotes

the partial derivative
∂u�

∂xi
. We next write

‖uε − uM‖H1(D) ≤ C

(
‖uε − vε‖H1(D) + inf

vh∈Wh

‖vε − vh‖H1(D)

)
.

The first term in the above right-hand side is estimated using standard homogenization results on the rate of
convergence of vε − uε. To estimate the second term, one considers a suitably chosen element vh ∈ Wh, for
which ‖vε − vh‖H1(D) can be directly bounded.

Following the same strategy in our stochastic setting, we estimate the distance between the solution uε
η to

the reference stochastic problem (1.2)−(1.3) and the weakly stochastic MsFEM solution uS as

‖uε
η(·, ω) − uS(·, ω)‖H1(D) ≤ C

(
‖uε

η(·, ω) − vε
η(·, ω)‖H1(D) + inf

vh∈Wh

‖vε
η(·, ω) − vh‖H1(D)

)
.

We observe that a key ingredient for the proof is the rate of convergence of the difference between the reference
solution uε

η and its two-scale expansion vε
η. Such a result is classical in periodic homogenization, but, to the

best of our knowledge, open in the general stationary case (in dimensions higher than one). One only knows
that uε

η − vε
η vanishes (in some appropriate norm) when ε→ 0. However, in the particular case when Aε

η is only
weakly stochastic, it is possible to obtain such a result, as we have shown in [42]. Hence, exploiting the specificity
of our weakly stochastic setting, we are able to obtain (see our main result, Thm. 4.5 and estimate (4.37)):√

E

[
‖uε

η − uS‖2
H1

h

]
≤ C

(√
ε+ h+

ε

h
+ η
( ε
h

)d/2

ln(N(h)) + η + η2C(η)
)
,

where ‖ · ‖H1
h

is a broken H1 norm, C is a constant independent of ε, h and η, C is a bounded function as η goes
to 0, and N(h) is the number of elements in the mesh (roughly of order h−d in dimension d). As is often the
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case in the deterministic setting, we use here (both for our numerical tests and in the analysis) the oversampling
technique. Consequently, the basis functions φε

i do not belong to H1
0 (D), hence the use of a broken H1 norm

in the above estimate. As we point out below, when η = 0 in (1.3), our approach reduces to the standard
deterministic MsFEM (with oversampling), and the above estimates then agree with those proved in [32].

This article is organized as follows. First, in Section 2, we describe the MsFEM approach. For consistency,
we begin by the deterministic setting in Section 2.1, and point out there that the direct adaptation to the
general stochastic setting yields a prohibitively expensive approach. The adaptation of the approach to the
weakly stochastic setting is described in Section 2.2. We next turn to numerical simulations, in Section 3. Some
procedures to efficiently implement the approach are first described in Section 3.1. We next consider a one-
dimensional test (see Sect. 3.2), which is useful for several reasons. First, it allows to calibrate some numerical
parameters, such as the number M of independent realizations when estimating the exact expectation by
an empirical mean. Second, we assess the accuracy of our approach with respect to the magnitude of η. We
demonstrate there that η does not have to be extremely small for our method to be very efficient. For instance,
on the test case considered in Section 3.2, we show that our approach is as accurate as the expensive, direct
approach as soon as η is such that∥∥∥∥ηaε

1

aε
0

∥∥∥∥
L∞(R×Ω)

is equal to or smaller than 0.1,

where aε
0 is the deterministic component of the diffusion coefficient aε

η and ηaε
1 is the stochastic component (see

expansion (1.3)). On the other hand, as pointed out above, our approach is not meant to address the regime
when η ≈ 1. Lastly, we also assess the accuracy of our approach with respect to the presence of frequencies in
the random coefficient aε

η that are not taken into account in the MsFEM basis set. We next turn to two test
cases in dimension two, where we observe that our approach performs as well as in the one-dimensional case
(see Sect. 3.3). In particular, in Section 3.3.2, we successfully address a classical test-case of the literature. In
Section 3.4, we compare our approach with a fully deterministic approach. All the information about variance is
lost when using the latter approach. In contrast, using our approach, we show that we can accurately approximate
some quantities of interest which are random in nature, such as the variance of the solution.

Section 4 is devoted to the analysis of the approach, in the homogenization setting (i.e. when the matrix
in (1.2) reads Aε(x, ω) = A

(x
ε
, ω
)

where A is stationary). Our main result, Theorem 4.5, is presented in
Section 4.1, and proved in Section 4.2. The proofs of some technical results are collected in Appendix A. In
addition, we specifically consider the one dimensional case in Section 4.3.

2. MsFEM-type approaches

For consistency and the convenience of the reader, we present in this section the MsFEM approach to solve
the original elliptic problem (1.1). For clarity, we begin by presenting the approach in a deterministic setting.
The reader familiar with the MsFEM may easily skip this section and directly proceed to Section 2.2, where we
present our approach in a weakly stochastic setting.

2.1. Description in a classical deterministic setting

Let uε ∈ H1(D) be the solution to (1.1), where the matrix Aε ∈ (L∞(D))d×d satisfies the standard coercivity
condition: there exists two constants a+ ≥ a− > 0 such that, for any ε,

∀ξ ∈ R
d, a−|ξ|2 ≤ ξTAε(x)ξ a.e. in D and ‖Aε‖L∞(D) ≤ a+.

Note that the MsFEM approach is not restricted to the periodic setting. We therefore do not assume that
Aε(x) = Aper(x/ε) for a fixed periodic matrix Aper.
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The MsFEM approach consists in performing a variational approximation of (1.1) where the basis functions
are precomputed and encode the fast oscillations present in (1.1). In the sequel we argue on the following
formulation, equivalent to (1.1):

Find uε ∈ H1
0 (D) such that, for any v ∈ H1

0 (D), Aε(uε, v) = b(v), (2.1)

where
Aε(u, v) =

∫
D

(∇v(x))TAε(x)∇u(x) dx and b(v) =
∫
D
f(x) v(x) dx.

The MsFEM is a three-step approach:

1. introduce a standard discretization of the domain D using a coarse mesh as compared to the small scale
oscillations of Aε;

2. for each element K of the coarse mesh, compute the basis function φε,K
i as the solution of an elliptic equation

posed in K (see e.g. (2.7)−(2.8)−(2.9) below);
3. solve the Galerkin approximation of (2.1), for the set of basis functions defined at Step 2.

The advantage of the approach is that, for the same accuracy of the approximation as that provided by a
standard FEM, the macroscale mesh can be chosen sufficiently coarse so that the resulting discretized problem
has a limited number of degrees of freedom, and may thus be computationally solved inexpensively. This is
observed in practice [37], and proven by a theoretical analysis (see [32, 38]) when the problem (2.1) admits a
homogenized limit. See also [30] and references therein.

To further illustrate this fact, we reproduce here a simple one-dimensional analysis we borrow from A. Lozinski
(see [44], Chap. 6 and [17]). This analysis explains remarkably well the interest of the approach, and, in contrast
to [32, 38], is not restricted to a homogenization setting. Consider the one-dimensional domain D = (0, 1) and
the reference problem

Lu = f, u(0) = u(1) = 0,

for the operator Lu := −(νu′)′, where f ∈ L2(0, 1) and ν ∈ L∞(0, 1) with ν(x) ≥ νmin > 0 almost everywhere
on (0, 1). The function ν may have oscillations at a small scale. The associated weak formulation reads

Find u ∈ H1
0 (0, 1) such that, for any v ∈ H1

0 (0, 1), a(u, v) = b(v), (2.2)

with

a(u, v) =
∫ 1

0

ν(x)u′(x)v′(x) dx and b(v) =
∫ 1

0

f(x)v(x) dx.

We now introduce the nodes 0 = x0 < x1 < · · · < xL = 1 that define the elements Ki = [xi−1, xi]. Let
h = max |xi − xi−1| be the mesh size. The multiscale finite element space

Wh =
{
vh ∈ C0(0, 1) such that Lvh = 0 on each Ki

}
, (2.3)

defined using the operator L, is adapted to the problem under study. We next proceed with a Galerkin approx-
imation of (2.2) using the space Wh:

Find uh ∈ Wh such that, for any vh ∈ Wh, a(uh, vh) = b(vh).

The solution uh then satisfies

‖u− uh‖E ≤ h

π
√
νmin

‖f‖L2(0,1) (2.4)

where ‖ · ‖E =
√
a(·, ·) is the energy norm. The proof of this estimate goes as follows. By definition of u and

uh, we have a(u− uh, vh) = 0 for any vh ∈ Wh. Hence, uh is the orthogonal projection of u on Wh according to
the scalar product a(·, ·). Since ‖ · ‖E is the norm associated to that scalar product, we have

‖u− uh‖E = inf
vh∈Wh

‖u− vh‖E . (2.5)
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Choose vh to be the finite element interpolant of u, which is defined by vh(xi) = u(xi) for any i = 0, 1, . . . , L,
and consider the interpolation error e = u− vh. On each element Ki, we have, precisely because the space Wh

is defined as (2.3),
Le = −(νe′)′ = f with e(xi−1) = e(xi) = 0.

We multiply by e, integrate by part and obtain∫ xi

xi−1

ν(x)|e′(x)|2 dx =
∫ xi

xi−1

f(x)e(x) dx ≤ ‖f‖L2(Ki)‖e‖L2(Ki). (2.6)

Since e vanishes on the boundary of Ki, the Poincaré inequality with the best constant (xi − xi−1)/π yields

‖e‖L2(Ki) ≤
xi − xi−1

π
‖e′‖L2(Ki) ≤

h

π
√
νmin

(∫ xi

xi−1

ν(x)|e′(x)|2 dx

)1/2

.

By substitution in (2.6), we obtain∫ xi

xi−1

ν(x)|e′(x)|2 dx ≤ h2

π2νmin
‖f‖2

L2(Ki)
.

Summing over the elements and using (2.5) yields (2.4). Using again that ν is bounded from below, we deduce
from (2.4) that

‖u− uh‖H1(0,1) ≤
h

CD π νmin
‖f‖L2(0,1),

where CD is the Poincaré constant of the domain D = (0, 1). As pointed out in Chapter 6 of [44], the interest of
the above estimate (or of estimate (2.4)) lies in the fact that the constant in the right-hand side only depends
on ν through νmin, and remains the same even if ν oscillates at a small scale. In contrast, for a standard finite
element method, the error is also proportional to h, but with a constant that depends on the H2 norm of the
exact solution u. With a standard finite element space Wh, we indeed classically deduce by Céa’s lemma that

‖u− uh‖H1(0,1) ≤
‖ν‖L∞(0,1)

CD νmin
inf

vh∈Wh

‖u− vh‖H1(0,1) =
‖ν‖L∞(0,1)

CD νmin
‖u−Rhu‖H1(0,1),

where CD is the Poincaré constant of the domain D = (0, 1), and Rhu is the projection of u on Wh according
to the H1 scalar product. We thus obtain that

‖u− uh‖H1(0,1) ≤ Ch
‖ν‖L∞(0,1)

νmin
‖u′′‖L2(0,1),

where C is independent from the functions ν and u. If ν oscillates at a small scale (e.g. ν(x) = ν(x/ε) for a
fixed function ν), the H2 norm of u may be large (of the order of ε−1). A FEM approach then requires h to be
smaller than ε to reach a good accuracy.

We conclude this illustration by noting that such a general analysis of the MsFEM approach is not available in
dimension d ≥ 2. The analysis presented in [32,38], which is performed without any restriction on the dimension,
additionally assumes that the matrix Aε in (2.1) reads Aε(x) = Aper(x/ε) for a fixed periodic matrix Aper.

We now describe the MsFEM in a multidimensional setting.

2.1.1. Definition of the coarse mesh

For simplicity (see Rem. 2.1 below), we consider a classical P1 discretization of the domain D. We denote by
Th the corresponding mesh, with L nodes. Let φ0

i , i = 1, . . . , L, be the basis functions. We introduce the finite
element space

Vh := span(φ0
i , i = 1, . . . , L),
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Figure 1. Definition of S (in 2D for clarity).

and define the restriction
φ0,K

i := φ0
i

∣∣
K

of these functions in each element K.

Remark 2.1. We refer to [3] for a presentation of a MsFEM method that uses P2 macroscale basis functions.

2.1.2. Definition of the MsFEM basis

Several definitions of the MsFEM basis functions have been proposed in the literature (see
e.g. [3, 30, 32, 37–39]). They all follow the same pattern but they give rise to various methods. We present
in the following the particular method that we have implemented. It makes use of the oversampling technique
introduced in [37] and developed in [36].

For any element K, we consider a domain S ⊃ K (see Fig. 1), obtained from K by an homothetic transfor-
mation of center the centroid of K, and of ratio larger than 1.

Let xS
j denote the coordinate of the vertex j of the domain S. For any vertex i of S, we introduce the affine

function χ0,S
i (defined on S) that satisfies the condition χ0,S

i (xS
j ) = δij for all j. Let χε,S

i ∈ H1(S) be the unique
solution to the problem

−div
[
Aε(x)∇χε,S

i (x)
]

= 0 in S, χε,S
i = χ0,S

i on ∂S, (2.7)

which, in practice, is numerically solved e.g. using a finite element method with a mesh size adapted to the
small scale ε. We then define the local basis functions

φε,K
i =

d+1∑
j=1

αij χ
ε,S
j

∣∣∣
K

(2.8)

as linear combinations of the restrictions of χε,S
i on K, with αij chosen such that

∀1 ≤ i, j ≤ d+ 1, φ0,K
i (xK

j ) =
d+1∑
j=1

αijχ
0,S
j (xK

j ) = δij , (2.9)

where xK
j denotes the coordinate of the jth vertex of the element K. Note that the condition (2.9) is enforced

on the function φ0,K
i , and not on φε,K

i . The coefficients αij are consequently independent from ε. As φ0,K
i and
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χ0,S
j

∣∣∣
K

are both affine on K, condition (2.9) implies that

∀1 ≤ i ≤ d+ 1, ∀x ∈ K, φ0,K
i (x) =

d+1∑
j=1

αijχ
0,S
j (x). (2.10)

We next introduce the functions φε
i defined on D by φε

i |K = φε,K
i for all elements K.

Note that the problems (2.7), indexed by S, are all independent from one another. They may be solved in
parallel.

2.1.3. Macroscale problem

We now introduce the finite dimensional space

Wh := span(φε
i , i = 1, . . . , L),

and proceed with the approximation

Find uM ∈ Wh such that, for any v ∈ Wh, Ah
ε (uM , v) = b(v), (2.11)

of (2.1), where

Ah
ε (u, v) =

∑
K

∫
K

(∇v(x))TAε(x)∇u(x) dx and b(v) =
∫
D
f(x) v(x) dx.

Observe that φε
i has jumps across the edges of the triangulation (due to the use of the oversampling technique),

hence Wh �⊂ H1(D), thus the broken integral used to define Ah
ε (u, v). On the other hand, since Wh ⊂ L2(D),

the linear form b is well defined for v ∈ Wh. The formulation (2.11) is a non-conforming Galerkin approximation
of (2.1). This brings additional error terms in the error estimation (see Lem. 4.7 in Section 4). On another note,
remark that the dimension of Wh is equal to L. The formulation (2.11) hence requires solving a linear system
with only a limited number of degrees of freedom.

We are now in position to substantiate our claim in the introduction, where we briefly mentioned that, in
the stochastic setting, a direct application of the MsFEM to approximate the solution to (1.2) is unpractical. It
would indeed lead to compute, for each realization of Aε(x, ω), first a basis set and second a macroscale solution.
This approach has been briefly examined theoretically in [21]. It is prohibitively expensive. We therefore turn
to an alternate approach.

2.2. A weakly stochastic setting

We now restrict the general setting and propose a dedicated, practical MsFEM type approach. Following
up on previous works (see [5, 13, 24, 41]) and as announced in (1.3), we assume here that the random matrix
Aε(x, ω) in (1.2) is a perturbation of a deterministic matrix, in the sense that

Aε(x, ω) ≡ Aε
η(x, ω) = Aε

0(x) + η Aε
1(x, ω), (2.12)

where η ∈ R is a small deterministic parameter, Aε
0 and Aε

1 are bounded matrices, and Aε
0 is coercive, uniformly

in ε. We also assume that the matrix Aε
η itself satisfies the coercivity and boundedness assumptions, uniformly

in η and ε (we refer to [6–8] and [15,25] for other perturbative settings).
The principle of the proposed approach is to compute the MsFEM basis set of functions with the deter-

ministic part Aε
0 of the matrix Aε

η, and next to perform Monte−Carlo realizations for the macroscale prob-
lem (1.2)−(2.12), where we keep the exact matrix Aε

η (and not only its deterministic part). Following the
approach sketched in Section 2.1, we first solve (2.7) with Aε(x) ≡ Aε

0(x), and build the deterministic finite
dimensional space

Wh := span(φε
i , i = 1, . . . , L)
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following (2.8)−(2.9). We next proceed with a standard Galerkin approximation of (1.2)−(2.12) using Wh. For
each m ∈ {1, . . . ,M}, we consider a realization Aε,m

η (·, ω) and compute um
S (·, ω) ∈ Wh such that

∀v ∈ Wh,
∑
K

∫
K

(∇v(x))TAε,m
η (x, ω)∇um

S (x, ω) dx =
∫
D
f(x) v(x) dx. (2.13)

Since the MsFEM basis functions are only computed once (rather than for each realization of Aε
η(x, ω)), a large

computational gain is expected, and obtained, in comparison to the direct approach described above.

3. Numerical simulations

This section is devoted to the many numerical simulations we have performed. We first discuss some imple-
mentation details. Next, we numerically estimate the performance of our approach on various test cases, and
assess its sensitivity with respect to the magnitude of η. We consider in Section 3.2 a test case in dimension
one. In Section 3.3, we next study two test cases in dimension two. We also study how the presence in Aε

1 (the
random component of the matrix Aε

η) of high frequencies that are not present in the deterministic component
Aε

0, and that are thus not encoded in the highly oscillatory basis functions, affects the accuracy of our approach.
In Section 3.4, we eventually compare our approach with a fully deterministic approach.

Let uε
η be the reference solution to (1.2)−(1.3) obtained using a finite element method with a mesh size

adapted to the small scale ε, uS be the approximation given by our approach (described in Sect. 2.2) and uM

be the approximation given by the direct approach (in which the MsFEM basis set is recomputed for each
realization Aε,m

η (x, ω), as explained at the end of Sect. 2.1). Our goal is to compare the error uS − uε
η of our

numerical approximation with the error uM − uε
η of the direct and expensive approach. When η is small, we

expect the approximation uS to be essentially as accurate as the approximation uM , and we show below that
this is indeed the case.

In the sequel, we assess the accuracy using the estimators

eL2(u1, u2) = E

(‖u1 − u2‖L2(D)

‖u2‖L2(D)

)
and eH1(u1, u2) = E

(
‖u1 − u2‖H1

h

‖u2‖H1
h

)
, (3.1)

where u1 and u2 are the solutions obtained with any two different methods, and

‖u‖H1
h

:=

( ∑
K∈Th

‖u‖2
H1(K)

)1/2

(3.2)

is the broken H1 norm. The expectation is in turn computed using a Monte−Carlo method. Considering

M realizations {Xm(ω)}1≤m≤M of a random variable, e.g. X(ω) =
‖u1(·, ω) − u2(·, ω)‖H1

h

‖u2(·, ω)‖H1
h

, we compute the

empirical mean μM and the empirical standard deviation σM as

μM (X) =
1
M

M∑
m=1

Xm(ω), σ2
M (X) =

1
M − 1

M∑
m=1

(Xm(ω) − μM (X))2 . (3.3)

As a classical consequence of the Central Limit Theorem, the following estimate is commonly employed:

|E(X) − μM (X)| ≤ 1.96
σM (X)√

M
·

It provides a practical evaluation of E(X) from the knowledge of μM (X) and σM (X). The numerical parameters
have been determined by an empirical study of convergence. For instance, for the reference solution, we choose
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the mesh size h such that the quantity
‖uε,h

η − u
ε,h/2
η ‖H1(D)

‖uε,h/2
η ‖H1(D)

is smaller than 0.03%, thereby formally admitting

that the approximation has converged in h. The MsFEM parameters are determined likewise.
All the computations have been performed using FreeFem++ [33], with the MPI tools.

3.1. Implementation details

In the deterministic version of the MsFEM, the same matrix Aε appears in the definition (2.7) of the basis
functions and in the macroscale variational formulation (2.11). This can be used to expedite the computation of
the stiffness matrix associated with (2.11). In our approach, described in Section 2.2, the matrix that appears in
the definition of the basis functions is Aε

0, whereas the macroscale variational problem involves Aε
η ≡ Aε

0 + ηAε
1.

An additional numerical computation is thus needed.
To solve (2.13), we need to compute, for each element K and each realization Aε,m

η (x, ω), the integrals

Kη,m
ij (ω) =

∫
K

(
∇φε,K

i (x)
)T

Aε,m
η (x, ω)∇φε,K

j (x) dx, (3.4)

where φε,K
i are deterministic functions. We recall that Aε

η(x, ω) = Aε
0(x) + ηAε

1(x, ω) (see (2.12)). To allow for
an efficient evaluation of (3.4), we assume henceforth that Aε

1 is of the form

Aε
1(x, ω) =

∑
k∈Zd

1Q+k

(x
ε

)
Xk(ω) Bk

ε (x), (3.5)

where Q = (0, 1)d, where (Xk)k∈Zd are scalar random variables, and for any k ∈ Z
d, x �→ Bk

ε (x) ∈ R
d×d are

some deterministic functions. We comment on this assumption in Remark 3.1 below. The important consequence
of (3.5) is that we can write the integral (3.4) as a linear combination of deterministic integrals over cells of
size ε, with random coefficients. To simplify the notation, we assume that the spatial dimension is d = 2. We
define

p =
⌊
min

(yi

ε
,
yj

ε
,
yk

ε

)⌋
, q =

⌊
max

(yi

ε
,
yj

ε
,
yk

ε

)⌋
+ 1,

where yi, yj and yk are the y-axis coordinates of the three vertex of K (see Fig. 2). We likewise define the
integers l and m (see Fig. 2). We can then write (3.4) as

Kη,m
ij (ω) =

∫
K

(
∇φε,K

i (x)
)T

Aε,m
η (x, ω)∇φε,K

j (x) dx = K0,K
ij + η

q−1∑
α=p

m−1∑
β=l

Xm
α,β(ω)K1,K

αβij , (3.6)

where

K0,K
ij =

∫
K

(
∇φε,K

i (x)
)T

Aε
0(x)∇φ

ε,K
j (x) dx, (3.7)

K1,K
αβij =

(α+1)ε∫
αε

(β+1)ε∫
βε

1K(x)
(
∇φε,K

i (x)
)T

Bα,β
ε (x)∇φε,K

j (x) dx. (3.8)

We thus compute once the deterministic integrals (3.7) and (3.8). Next, for each realization of Aε
η, we evaluate

the stiffness matrix elements Kη,m
ij (ω) using the right hand side of (3.6). No numerical quadrature is needed. As a

consequence of (3.5), most of the work for assembling the stiffness matrix is only performed once, independently
of the number of Monte Carlo realizations. This significantly contributes to the gain in term of computational
cost.
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Figure 2. To practically compute the integral (3.4), we write that each element K (here in
dimension d = 2) is a subset of a quadrangle (here [lε,mε]× [pε, qε]) composed of cells of size εd.

Remark 3.1. Assumption (3.5) is quite general, and already covers many interesting cases in practice. As
explained above, the point in (3.5) is that Aε

1 is a direct product (or here, a sum of direct products) of a function
depending on x with a random variable that only depends on ω. Otherwise stated, Aε

1(x, ω) depends linearly,
in an explicit way, of ω. A similar assumption is made when applying reduced basis methods [45] to a problem
of the type

Find uλ such that, for any v, a(uλ, v;λ) = b(v), (3.9)

where a(·, ·;λ) is a bilinear form parameterized by λ. Assume this problem has been solved for some values
{λi}I

i=1 of the parameter, yielding the functions {uλi}
I
i=1. Under the assumption that a(·, ·;λ) = a0(·, ·)+λa1(·, ·)

(namely, a(·, ·;λ) depends linearly on λ), one can precompute the stiffness matrix elements a0(uλi , uλj ) and
a1(uλi , uλj ) for any 1 ≤ i, j ≤ I. This allows to next perform a very efficient Galerkin approximation of the
problem (3.9) (for any λ) on the space Span(uλi , i = 1, . . . , I).

3.2. One-dimensional test-case

The purpose of this section is threefold. We first calibrate the number M of realizations considered for the
Monte−Carlo method for the two-dimensional numerical experiments that we consider in the sequel. We next
investigate how the accuracy of our approach depends on η and on the presence of frequencies in the random
coefficient aε

η that are not taken into account in the MsFEM basis set functions. The low computational costs
that we face in this one-dimensional situation allow us to test our approach more comprehensively than in the
two-dimensional test-cases described below.

Let (Xk)k∈Z
denote a sequence of independent, identically distributed scalar random variables uniformly

distributed in [0, 1]. We consider the random coefficient

aε
η(x, ω) =

∑
k∈Z

1(k,k+1]

(x
ε

) (
5 + 50 sin2

(πx
ε

)
+ ηXk(ω) κ sin2

(
ζπx

ε

))
,



MULTISCALE FINITE ELEMENT APPROACH FOR “WEAKLY” RANDOM PROBLEMS AND RELATED ISSUES 827

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

4

6

8

10

12

14

16
x 10

−4

M

Figure 3. Convergence of the indicator eH1(uM , uε
η) (see (3.1)), for η = 1, ζ = 1 and κ = 55.

For each value of M , we plot the empirical mean along with its confidence interval, computed
from the first M realizations. We only plot the results for the first 50 realizations.

which is a particular example of the expansion (2.12) with

aε
0(x) = 5 + 50 sin2

(πx
ε

)
and aε

1(x, ω) =
∑
k∈Z

1(k,k+1]

(x
ε

)
Xk(ω) κ sin2

(
ζπx

ε

)
,

and that satisfies the structural assumption (3.5). We set ε = 0.025 and choose κ such that the quantity

R(κ, ζ) =
∥∥∥∥aε

1

aε
0

∥∥∥∥
L∞(D×Ω)

= SupEssω∈Ω

∥∥∥∥aε
1(·, ω)
aε
0

∥∥∥∥
L∞(D)

(3.10)

has the same value R(κ, ζ) = 1 for the three different values of ζ = {1, 3, 7} we consider below. This yields the
choices (κ, ζ) = (55, 1), (κ, ζ) = (14.38, 3) and (κ, ζ) = (8.39, 7). We analytically compute the reference function
uε

η, solution to

− d
dx

(
aε

η (x, ω)
duε

η

dx
(x, ω)

)
= 1 in (0, 1), uε

η(0, ω) = uε
η(1, ω) = 0,

as well as the MsFEM basis functions for both approaches. Let uM and uS be the approximation of uε
η by the

two MsFEM approaches described above, where the coarse mesh size is h = 1/30.
We first calibrate the number of independent realizations to accurately approximate the exact expectation

in (3.1) by the empirical mean (3.3). To this aim, we present on Figure 3 the mean and the confidence interval
computed using (3.3) for an increasing number M of realizations (we compute up to 1000 independent realiza-
tions). We check that this indicator reaches a plateau for M ≥ 30, and thus converges fast. On this example,
considering 30 realizations is hence sufficient to accurately compute the error (3.1). Based on this observation,
we will only consider M = 30 realizations in the two dimensional examples of Section 3.3.

Remark 3.2. There is no reason to think that the calibration of our parameters that we perform in the one-
dimensional situation provides an adequate adaptation of these parameters for the higher dimensional setting.
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Table 1. H1(0, 1) error (3.1) (in %) for κ = 55 and ζ = 1.

η eH1(uM , uε
η) eH1(uS , uε

η) eH1(uS , uM )
1 0.14644 ± 0.00036 2.62550 ± 0.02696 2.44359 ± 0.02696
0.1 0.16001 ± 0.00006 0.15021 ± 0.00051 0.07036 ± 0.00044
0.01 0.16258 ± 0.00000 0.10837 ± 0.00002 0.04825 ± 0.00025

Table 2. H1(0, 1) error (3.1) (in %) for κ = 14.38 and ζ = 3

η eH1(uM , uε
η) eH1(uS , uε

η) eH1(uS , uM )
1 0.18269 ± 0.00030 2.38950 ± 0.02277 2.23869 ± 0.02230
0.1 0.16529 ± 0.00003 0.14959 ± 0.00055 0.08082 ± 0.00041
0.01 0.16314 ± 0.00000 0.10840 ± 0.00000 0.04954 ± 0.00001

Table 3. H1(0, 1) error (3.1) (in %) for κ = 8.39 and ζ = 7.

η eH1(uM , uε
η) eH1(uS, uε

η) eH1(uS , uM )
1 0.17436 ± 0.00026 2.34495 ± 0.02105 2, 27358 ± 0.02089
0.1 0.16465 ± 0.00004 0.15748 ± 0.00067 0.09803 ± 0.00053
0.01 0.16308 ± 0.00000 0.10846 ± 0.00000 0.05054 ± 0.00001

We however see no other manner to proceed and the approach has indeed provided us with good results (see
Rem. 3.4 below).

Note also that the MsFEM approach is much more accurate in the one-dimensional setting than in the two-
dimensional setting (compare Tabs. 1, 2 and 3 with Tabs. 9 and 10 below). This is due to the specificity of the
one dimensional setting. However, one-dimensional examples remain relevant for e.g. assessing how the MsFEM
accuracy depends on η.

Note finally that the fact that considering M = 30 independent realizations is sufficient is related to our
specific context, namely stochastic homogenization. In other application fields of Monte Carlo methods, larger
values of M are often required.

We now check how the accuracy of our approach depends on η. In Tables 1, 2, 3, 4, 5 and 6, we report
the estimators (3.1), along with their confidence intervals, for various choices of (κ, ζ) that all correspond to
R(κ, ζ) = 1. For η ≤ 0.1, we observe that ‖uS −uε

η‖ and ‖uM −uε
η‖ are of the same order of magnitude, and are

both larger than ‖uM − uS‖ (both in L2 and broken H1 norms). We thus obtain the same accuracy with the
direct and the weak stochastic MsFEM approaches, whereas the weak stochastic MsFEM is computationally
(much) less expensive. For η = 1, as expected, the accuracy of the approximation uS deteriorates. The accuracy
of uM is independent of η.

Remark 3.3. In Section 4, we estimate in the H1 (broken) norm the error between the reference solution uε
η

and the weak stochastic MsFEM solution uS. For information, we also include in Tables 1–6 the numerical
comparison in the L2 norm.

We now turn to a different question. In the example considered here, some frequencies present in aε
1 do not

appear in aε
0, and are thus not captured in the highly oscillatory basis functions φε

i . We now show that our
approach can still handle this case, provided the amplitude of these modes remains small.

We first consider the case when the amplitude κ associated to the frequency ζ is kept constant, and compare
the performance of our approach in the case ζ = 1 and ζ = 3. In the latter case, a relevant high frequency is not
taken into account in the basis set functions. Comparing Tables 1 and 4 (corresponding to ζ = 1) with Tables 7
and 8 (corresponding to ζ = 3) for a given value of η, we see that the accuracy of our approach deteriorates.
This is not unexpected, of course. Otherwise stated, to achieve a given accuracy (say an error of 0.15% in the
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Table 4. L2(0, 1) error (3.1) (in %) for κ = 55 and ζ = 1.

η eL2(uM , uε
η) eL2(uS , uε

η) eL2(uS , uM )
1 0.00018 ± 0.00000 0.07286 ± 0.00317 0.06861 ± 0.00306
0.1 0.00018 ± 0.00000 0.00045 ± 0.00002 0.00024 ± 0.00001
0.01 0.00018 ± 0.00000 0.00015 ± 0.00000 0.00002 ± 0.00000

Table 5. L2(0, 1) error (3.1) (in %) for κ = 14.38 and ζ = 3.

η eL2(uM , uε
η) eL2(uS , uε

η) eL2(uS , uM )
1 0.00019 ± 0.00000 0.06658 ± 0.00270 0.06238 ± 0.00261
0.1 0.00018 ± 0.00000 0.00036 ± 0.00001 0.00019 ± 0.00001
0.01 0.00018 ± 0.00000 0.00015 ± 0.00000 0.00002 ± 0.00000

Table 6. L2(0, 1) error (3.1) (in %) for κ = 8.39 and ζ = 7.

η eL2(uM , uε
η) eL2(uS , uε

η) eL2(uS , uM )
1 0.00018 ± 0.00000 0.08903 ± 0.00310 0.08410 ± 0.00261
0.1 0.00018 ± 0.00000 0.00037 ± 0.00002 0.00016 ± 0.00000
0.01 0.00018 ± 0.00000 0.00015 ± 0.00000 0.00003 ± 0.00000

Table 7. H1(0, 1) error (3.1) (in %) for κ = 55 and ζ = 3.

η eH1(uM , uε
η) eH1(uS, uε

η) eH1(uS, uM )
1 0.21826 ± 0.00073 12.30047 ± 0.10647 12.01694 ± 0.10617
0.1 0.17142 ± 0.00013 0.59293 ± 0.00519 0.49523 ± 0.00489
0.01 0.16383 ± 0.00001 0.11448 ± 0.00014 0.05247 ± 0.00007

Table 8. L2(0, 1) error (3.1) (in %) for κ = 55 and ζ = 3.

η eL2(uM , uε
η) eL2(uS , uε

η) eL2(uS , uM )
1 0.00022 ± 0.00000 1.53780 ± 0.03878 1.51837 ± 0.00385
0.1 0.00019 ± 0.00000 0.00503 ± 0.00027 0.00406 ± 0.00024
0.01 0.00018 ± 0.00000 0.00018 ± 0.00000 0.00005 ± 0.00000

broken H1 norm), we need to take smaller values of η (namely η ≤ 0.01) when ζ = 3 than when ζ = 1 (in which
case η = 0.1 is already a sufficiently small value).

We now run the comparison differently. As we increase the gap between the frequency present in aε
1 and that

present in aε
0 (i.e., as we increase ζ), we simultaneously decrease the amplitude κ of that mode. In practice,

we do this by keeping constant the parameter R(κ, ζ) defined by (3.10). Then the accuracy of our approach
remains constant, and is independent of ζ. See indeed the numerical results of Tables 1−6, that all correspond
to the choice R(κ, ζ) = 1, for three different values of ζ. We observe that, at fixed η, errors are comparable, and
independent of the value of (κ, ζ).

In conclusion, the accuracy of our approach depends both on the amplitude κ and the value ζ of the high
frequency not taken into account in the MsFEM basis set functions. If ζ and κ are scaled so that R(κ, ζ) remains
constant (which implies that κ decreases if ζ increases), then the accuracy of our approach remains constant.

3.3. Two-dimensional test-cases

We now test our approach on two-dimensional test cases. Using the first test case, we show, similarly to the
one-dimensional situation, that the weak stochastic MsFEM yields accurate results, provided the parameter η
is sufficiently small, and provided that the amplitude associated to frequencies present in Aε

η but not encoded
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Table 9. H1(D) error (3.1) (in %) for κ = 73.61 and ζ = 1.

η eH1(uM , uε
η) eH1(uS, uε

η) eH1(uS, uM )
1 7.8437 ± 0.1350 19.8818 ± 0.4123 18.8662 ± 0.4216
0.1 6.8053 ± 0.0165 7.3868 ± 0.0276 3.1528 ± 0.0517
0.01 6.7338 ± 0.0017 6.9795 ± 0.0016 1.8763 ± 0.0013

Table 10. H1(D) error (3.1) (in %) for κ = 10 and ζ = 3.

η eH1(uM , uε
η) eH1(uS, uε

η) eH1(uS, uM )
1 6.7224 ± 0.0368 12.7292 ± 0.2172 10.8128 ± 0.2442
0.1 6.7154 ± 0.0044 7.1069 ± 0.0128 2.2925 ± 0.0206
0.01 6.1725 ± 0.0004 6.9770 ± 0.0010 1.8504 ± 0.0003

in the deterministic basis functions is small (see Sect. 3.3.1). Next, in Section 3.3.2, we consider a test case
similar to a classical benchmark test case of the literature. We again observe that our approach is efficient. For
both cases, we show that the parameter η does not need to be extremely small for our approach to be highly
competitive.

3.3.1. A multi-frequency case

In line with what we observed in the one-dimensional case, we show here that the weak stochastic MsFEM
provides interesting results even in the case when not all the frequencies present in Aε

η are captured in the
deterministic basis functions, provided their amplitude is not too large. To this aim, we consider the following
numerical example.

Let (Xk,l)(k,l)∈Z2 denote a sequence of independent, identically distributed scalar random variables uniformly
distributed in the interval [0, 1]. We consider the random matrix

Aε
η(x, y, ω) = aε

0(x, y) Id2 + ηaε
1(x, y, ω) Id2,

with

aε
0(x, y) = 5 + 50 sin2

(πx
ε

)
sin2

(πy
ε

)
,

aε
1(x, y, ω) =

∑
(k,l)∈Z2

1(k,k+1]

(x
ε

)
1(l,l+1]

(y
ε

)(
Xk,l(ω) κ sin2

(
ζπx

ε

)
sin2

(
ζπy

ε

))
·

Again, this choice is a particular example of the expansion (2.12) satisfying the structural assumption (3.5).
We consider two different values of ζ, namely ζ = 1 and ζ = 3. As in the previous test case, the frequency ζ is
not present in the deterministic part of Aε

η, and thus not encoded in the basis functions. In line with what we
observed in Section 3.2, we choose the amplitude κ associated to that frequency such that the quantity (3.10) has
the same value R(κ, ζ) = 1 for both values of ζ, which yields the choices (κ, ζ) = (73.61, 1) and (κ, ζ) = (10, 3).
We compute uε

η solution to

−div
[
Aε

η(·, ω)∇uε
η(·, ω)

]
= 1 in D, uε

η(·, ω) = 0 on ∂D,

on the domain D = (0, 1)2 with ε = 0.025. Let uM and uS be its approximation by the two MsFEM approaches
described above. The numerical parameters for the computation are again determined using an empirical study
of convergence. We use for the reference solution uε

η a fine mesh of size hf = ε/40. The MsFEM basis functions
are computed in each element K using a mesh of size hM = ε/80. The oversampling parameter (i.e. the scale
ratio of the homothetic transformation between K and S, see Fig. 1) is equal to 3. The coarse mesh size is
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Table 11. L2(D) error (3.1) (in %) for κ = 73.61 and ζ = 1.

η eL2(uM , uε
η) eL2(uS , uε

η) eL2(uS, uM )
1 1.4355 ± 0.0795 4.1649 ± 0.1652 2.8468 ± 0.1694
0.1 1.0630 ± 0.0108 1.1369 ± 0.0075 0.1441 ± 0.0354
0.01 1.0211 ± 0.0011 1.1512 ± 0.0007 0.1351 ± 0.0014

Table 12. L2(D) error (3.1) (in %) for κ = 10 and ζ = 3.

η eL2(uM , uε
η) eL2(uS , uε

η) eL2(uS, uM )
1 1.0744 ± 0.0127 1.8433 ± 0.0582 0.8426 ± 0.0832
0.1 1.0226 ± 0.0015 1.1249 ± 0.0038 0.1147 ± 0.0073
0.01 1.0170 ± 0.0001 1.1551 ± 0.0004 0.1427 ± 0.0003

h = 1/30. In view of the results of Section 3.2, we consider M = 30 independent realizations, which will prove
to again be sufficient to obtain accurate results.

In Tables 9 and 10 (Tabs. 11 and 12 respectively), we report the estimator (3.1), along with its confidence
interval, for the broken H1(D) norm and for the L2(D) norm, respectively. The results obtained here confirm
our observations in the one-dimensional setting (Sect. 3.2):

• for given ζ and κ, we observe that, when η is sufficiently small (here, η ≤ 0.1), the alternative approach
provides a solution uS that is an approximation of uε

η as accurate as uM , for a much smaller computational
cost (as the MsFEM basis set has only been computed once rather than for each independent realization
of Aε

η).
• our approach yields accurate results even if the frequency ζ is not encoded in the basis functions φε

i , provided
the associated amplitude κ is scaled accordingly. Figures in Table 9 (respectively Tab. 11) are very close to
those of Table 10 (respectively Tab. 12). This confirms that the error made by the weak stochastic MsFEM
seems to be independent of κ and ζ, provided these two parameters are scaled so that R(κ, ζ) remains
constant. If ζ becomes different than 1, the frequency present in aε

0, then the amplitude κ associated to the
frequency ζ has to decrease to keep R(κ, ζ) (and thus the accuracy of uS) constant.

These observations again demonstrate the efficiency of the approach.

Remark 3.4. In Tables 9−12, we observe that the size of the confidence interval is much smaller than the
distance between two different errors. This a posteriori validates the choice of the number M of Monte Carlo
realizations according to the calibration we performed in the one-dimensional setting. In the two-dimensional
setting studied here, we observe that considering M = 30 realizations is again sufficient. The same conclusion
holds for results presented in Tables 13−16 below.

3.3.2. A classical test case

We consider in this section a test case similar to a classical test case of the literature (see e.g. [19, 32, 37, 39]).
Let (Xk,l)(k,l)∈Z2 denote a sequence of independent, identically distributed scalar random variables uniformly
distributed in the interval [0, 1]. We consider the random matrix

Aε
η(x, y, ω) =

∑
(k,l)∈Z2

1(k,k+1]

(x
ε

)
1(l,l+1]

(y
ε

)(2 + P sin(2πx/ε)
2 + P sin(2πy/ε)

+
2 + sin(2πy/ε)

2 + P sin(2πx/ε)

)
(1 + ηXk,l(ω)) Id2,

with P = 1.8 and ε = 0.025. We compute the reference solution uε
η and its two approximations uM and uS with

the same numerical parameters as in Section 3.3.1.
In Tables 13 and 14, we report the estimator (3.1), along with its confidence interval, for the broken H1(D)

norm and for the L2(D) norm, respectively. We again see that, when η is sufficiently small, uS is an approximation
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Table 13. H1(D) error (3.1) (in %).

η eH1(uM , uε
η) eH1(uS, uε

η) eH1(uS, uM )
1 8.1154 ± 0.1913 17.3678 ± 0.7784 15.5113 ± 0.8689
0.1 7.1664 ± 0.0199 7.0524 ± 0.0705 2.5638 ± 0.1006
0.01 7.1453 ± 0.0020 7.2837 ± 0.0067 1.3882 ± 0.0020

Table 14. L2(D) error (3.1) (in %).

η eL2(uM , uε
η) eL2(uS , uε

η) eL2(uS, uM )
1 0.5620 ± 0.0803 1.6855 ± 0.4860 1.4739 ± 0.5048
0.1 0.5354 ± 0.0160 0.5688 ± 0.0630 0.1984 ± 0.0712
0.01 0.5347 ± 0.0012 0.6192 ± 0.0054 0.1072 ± 0.0032

Table 15. H1(D) error (3.1) (in %).

η eH1(uS, uε
η)

1 17.3678 ± 0.7784
0.5 15.9578 ± 0.3461
0.25 10.6130 ± 0.1591
0.1 7.0524 ± 0.0705
0.01 7.2837 ± 0.0067

Table 16. L2(D) error (3.1) (in %).

η eL2(uS , uε
η)

1 1.6855 ± 0.4860

0.5 1.0246 ± 0.4414

0.25 0.5291 ± 0.2285

0.1 0.5688 ± 0.0630

0.01 0.6192 ± 0.0054

of the reference solution uε
η as accurate as uM . In Tables 15 and 16, we report on the accuracy of uS for more

values of η. Assuming that the accuracy of uM does not depend on η (which is consistent with the results reported
in Tabs. 13 and 14), we see that our approach is as accurate as the direct, expensive MsFEM approach, as soon
as η ≤ 0.1 (if we use the broken H1 norm to assess accuracy) and η ≤ 0.25 (if we rather use the L2 norm). The
parameter η hence does not need to be extremely small for our approach to be highly competitive.

3.4. Comparison to a fully deterministic approach

Our setting being a perturbation of a deterministic setting,

Aε(x, ω) ≡ Aε
η(x, ω) = Aε

0(x) + η Aε
1(x, ω),

it seems a good, simple strategy to consider the following completely deterministic MsFEM approach (compare
with our approach described in Sect. 2.2):

• consider the same deterministic finite dimensional space Wh as in our approach, where we solve (2.7) with
Aε(x) ≡ Aε

0(x);
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Table 17. Estimator (3.12) for the test-case of Section 3.2 (left: κ = 8.39 and ζ = 7; right:
κ = 55 and ζ = 1).

η Std(uε
η) Std(uM ) Std(uS)

1 4.02 4.02 5.56

0.25 1.20 1.20 1.40

0.1 0.505 0.505 0.559

0.05 0.257 0.257 0.280

0.01 0.0522 0.0522 0.0560

η Std(uε
η) Std(uM) Std(uS)

1 5.05 5.06 6.50

0.25 1.44 1.44 1.63

0.1 0.60 0.60 0.65

0.05 0.30 0.30 0.33

0.01 0.061 0.061 0.065

• define next uD ∈ Wh such that

∀v ∈ Wh,
∑
K

∫
K

(∇v)TAε
0∇uD =

∫
D
f v. (3.11)

In contrast to our approach (see (2.13)), the above macroscopic problem only depends on the deterministic part
of Aε

η.
It turns out that, with respect to estimators (3.1), the approximation uD is essentially as accurate as our

approximation uS when η is small (results not shown). However, the approximation uD being deterministic, all
the information about the variance of the reference solution uε

η(·, ω) cannot be approximated using uD. In sharp
contrast, our approximation uS(·, ω) yields accurate approximations for many such quantities of interest, as we
now show.

Consider first the one-dimensional test case of Section 3.2, and define, for any u,

Std(u) =

√∫ 1

0

Var u(x, ·) dx

E

[
‖u‖L2(0,1)

] · (3.12)

This quantity measures the variance of u, integrated over the computational domain (0, 1). The results are
shown on Table 17. We see that the results provided by our approximation uS are very close to the reference
results (there is less than 10% of error when η ≤ 0.1). The variance of the solution (in the sense of (3.12)) is
therefore well-captured by the approach. This is not the case for the deterministic approach described above,
since Std(uD) = 0.

Consider now, for the two-dimensional test-case of Section 3.3.1, the normalized standard error of
‖u(·, ω)‖L2(D) defined by

Std(‖u‖L2) =

√
Var ‖u‖L2(D)

E

[
‖u‖L2(D)

] · (3.13)

The results for this estimator are shown on Table 18. Again, we see that the results provided by our approx-
imation uS are very close to the reference results. The variance of the L2 norm of the solution (in the sense
of (3.13)) is therefore well-captured.

We thus see that our approach is more informative than the deterministic approach described above, as it
provides accurate approximations not only in terms of L2 and H1 errors according to the estimators (3.1) but
also, and this is important practically, for quantities of interest which are random in nature, such as (3.12)
and (3.13). The additional cost of our approach consists in solving M macroscopic problems (2.13) rather than
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Table 18. Estimator (3.13) for the test-case of Section 3.3.1 (left: κ = 73.61 and ζ = 1; right:
κ = 10 and ζ = 3).

η Std(‖uε
η‖L2) Std(‖uM‖L2) Std(‖uS‖L2)

0.25 1.05 × 10−3 1.11 × 10−3 1.11 × 10−3

0.1 4.56 × 10−4 4.82 × 10−4 4.59 × 10−4

0.05 2.35 × 10−4 2.48 × 10−4 2.33 × 10−4

η Std(‖uε
η‖L2) Std(‖uS‖L2)

0.25 4.47 × 10−4 4.53 × 10−4

0.1 1.87 × 10−4 1.84 × 10−4

0.05 9.51 × 10−5 9.27 × 10−5

the unique macroscopic problem (3.11). However, as is standard for MsFEM approaches, the main cost of our
approach is the offline cost, when constructing the highly oscillatory basis functions φε

i of the approximation
space Wh. In comparison, the online cost, when solving (2.13), is very limited. Hence, our approach and the
fully deterministic approach described above essentially share the same cost.

4. Analysis

This section is devoted to the analysis of the approach introduced in Section 2.2, and to the derivation of
error bounds. As is often the case for the MsFEM (see e.g. [32]), we perform the analysis in a setting where
the problem (1.2)−(1.3) that we consider admits a homogenized limit as ε vanishes (although, we repeat it, the
approach can be used in practice for more general cases, but is not supported by certified error bounds). The
structure of our proof is similar to that for the deterministic setting, which we now overview (we refer to [32]
for all the details).

In the case when the oversampling technique is not used, the MsFEM is a conforming Galerkin approximation,
and the error is estimated using the Céa lemma:

‖uε − uM‖H1 ≤ C inf
vh∈Wh

‖uε − vh‖H1 ,

where uε is the solution to the reference deterministic highly oscillatory problem (1.1), uM is the MsFEM
solution, and the constant C is independent from ε and h. On the other hand, when the oversampling technique
is used, the MsFEM is a non-conforming Galerkin method. The error is then bounded from above by the sum
of the best approximation error (the right-hand side of the above estimate) and the non-conforming error (that
we do not detail here):

‖uε − uM‖H1 ≤ C

[
inf

vh∈Wh

‖uε − vh‖H1 + non-conforming error
]
.

Note that, in the non-conforming case, the MsFEM solution uM does not belong to H1, and one should write
the above estimate with a broken H1 norm and not the H1 norm. For clarity, we ignore this distinction in this
formal discussion.

Taking advantage of the homogenization setting, we introduce the two-scale expansion

vε = u� + ε

d∑
i=1

w0
ei

( ·
ε

)
∂iu

�

of uε, where u� is the homogenized solution, w0
ei

is the periodic corrector associated to ei ∈ R
d, and ∂iu

� denotes

the partial derivative
∂u�

∂xi
. We next write

‖uε − uM‖H1 ≤ C

[
‖uε − vε‖H1 + inf

vh∈Wh

‖vε − vh‖H1 + non-conforming error
]
.
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The first term in the right-hand side is estimated using standard homogenization results. To estimate the second
term, one considers a suitably chosen element vh ∈ Wh, for which ‖vε − vh‖H1 can be estimated directly. The
main idea is that the highly oscillating part of vε can be well approached by an element in Wh, since, by
construction, the highly oscillatory basis functions are defined by a problem similar to the corrector problem,
and thus encode the same highly oscillatory behavior as that present in the correctors w0

ei
. We are thus left with

approximating the slowly varying components of vε, for which standard FEM estimates are used. Lastly, we again
use the fact that our problem admits a homogenized limit to estimate the third term, i.e. the non-conforming
error.

In the sequel, we follow the same strategy in our stochastic setting. We hence first write (see (4.38) below)
that

‖uε
η(·, ω) − uS(·, ω)‖H1 ≤ C

[
inf

vh∈Wh

‖uε
η(·, ω) − vh(·, ω)‖H1 + non-conforming error

]
, (4.1)

where uε
η is the solution to the reference stochastic problem (1.2)−(1.3) and C is a deterministic constant

independent from ε, h and η (note that, in (4.38), we use a broken H1 norm rather than the H1 norm; as
pointed out above, this is due to the fact that our approach is a non-conforming Galerkin approximation; we
ignore this distinction in the current discussion). To estimate the best approximation error (the first term in
the right-hand side of (4.1) above), we use the triangle inequality, and write (see (4.58) below) that

inf
vh∈Wh

‖uε
η(·, ω) − vh(·, ω)‖H1 ≤ ‖uε

η(·, ω) − vε
η(·, ω)‖H1 + inf

vh∈Wh

‖vε
η(·, ω) − vh(·, ω)‖H1 , (4.2)

where vε
η is the two-scale expansion of the solution uε

η truncated at order ε2. A first difficulty owes to the fact
that, in the general stochastic setting, no estimate is known on ‖uε

η(·, ω) − vε
η(·, ω)‖H1 . One only knows that

its expectation vanishes when ε → 0. However, in the present article, we consider a weakly stochastic case. In
that setting, we have derived such a convergence rate type result in [42], and we can thus bound the first term
of (4.2) (see Sect. 4.1.2 below for more details). The second term of (4.2), inf

vh∈Wh

‖vε
η(·, ω)− vh‖H1 , is estimated

using an explicit construction of a suitable vh (see (4.59)), similarly to the deterministic setting. We again use
there our specific weakly stochastic setting. Lastly, the non-conforming error (the second term in the right-hand
side of (4.1) above) is estimated following arguments similar to those of the deterministic case, using that our
problem admits a homogenized limit and is weakly stochastic.

This section is organized as follows. The error estimation is presented in Section 4.1. We first recall in
Section 4.1.1 the formulation of the homogenized problem, and some results specific to the weakly stochastic
case. Next, in Section 4.1.2, we establish an error bound between the reference solution uε

η and its two-scale
expansion vε

η (see Thm. 4.2), which allows to bound the first term in the right-hand side of (4.2). Our main result,
Theorem 4.5, is given in Section 4.1.3, and proved in Section 4.2. The proof essentially consists in explicitly
building a function vh ∈ Wh such that the second term of (4.2) can be directly estimated. It also makes use
of several technical results (Lems. 4.8, 4.9 and 4.11 below) to bound the non-conforming error, i.e. the second
term in the right hand side of (4.1). The proof of these technical results is postponed until Appendix A. Last,
in Section 4.3, we specifically consider the one dimensional case.

Before proceeding further, we recall the setting of stochastic homogenization we work with. The reader familiar
with this theory may directly proceed to Section 4.1. Let (Ω,F ,P) be a probability space. For a random variable
X ∈ L1(Ω, dP), we denote by E(X) =

∫
Ω X(ω)dP(ω) its expectation value. We assume that the group (Zd,+)

acts on Ω. We denote by (τk)k∈Zd this action, and assume that it preserves the measure P, i.e.

∀k ∈ Z
d, ∀A ∈ F , P(τkA) = P(A).

We assume that τ is ergodic, that is,

∀A ∈ F ,
(
∀k ∈ Z

d, τkA = A
)
⇒ (P(A) = 0 or 1).
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We define the following notion of stationarity: any F ∈ L1
loc

(
R

d, L1(Ω)
)

is said to be stationary if

∀k ∈ Z
d, F (x+ k, ω) = F (x, τkω) almost everywhere, almost surely. (4.3)

Note that we have chosen to present the theory in a discrete stationary setting, which is more appropriate for
our specific purpose, which is to consider a setting close to periodic homogenization. Random homogenization
is more often presented in the continuous stationary setting. This is only a matter of small modifications. We
refer to the bibliography for the latter.

For the sake of analysis, we assume in this section that the matrix Aε
η(x, ω) in (1.2)−(1.3) reads Aε

η(x, ω) =

Aη

(x
ε
, ω
)
, where the random matrix Aη is stationary in the sense of (4.3). The problem (1.2) now reads

−div
[
Aη

( ·
ε
, ω
)
∇uε

η(·, ω)
]

= f in D, uε
η(·, ω) = 0 on ∂D, (4.4)

where Aη(·, ω) ∈ (L∞(Rd))d×d satisfies the standard coercivity and boundedness conditions: there exist two
deterministic constants a+ ≥ a− > 0 such that

∀η, ∀ξ ∈ R
d, a−|ξ|2 ≤ Aη(x, ω)ξ · ξ a.e. on R

d, a.s. and ‖Aη(·, ω)‖L∞(Rd) ≤ a+ a.s. (4.5)

Due to the stationarity assumption on Aη, the problem (4.4) admits a homogenized limit when ε → 0. Note
that, to the best of our knowledge, all analyses of the MsFEM approach in the deterministic setting that have
been proposed in the literature are performed under a similar assumption (the matrix Aε in (1.1) is assumed
to read Aε(x) = Aper

(x
ε

)
for a fixed periodic matrix Aper, see e.g. [32, 38]).

In addition, in line with (1.3) and (2.12), we assume that Aη is of the form

Aη(x, ω) = Aper(x) + η A1(x, ω), (4.6)

where η ∈ R is small parameter (we henceforth assume that |η| ≤ 1), Aper is a symmetric bounded Q-periodic
matrix (Q = [0, 1]d) satisfying the ellipticity condition almost everywhere on R

d, and A1 is a symmetric bounded
stationary matrix: |A1(x, ω)| ≤ C almost everywhere in R

d, almost surely. Since η is small, our problem is weakly
stochastic.

In line with (3.5), we furthermore assume that A1 is of the form

A1(x, ω) =
∑
k∈Zd

1Q+k(x)Xk(ω)Bper(x), (4.7)

where (Xk(ω))k∈Zd is a sequence of i.i.d. scalar random variables such that

∃C, ∀k ∈ Z
d, |Xk(ω)| ≤ C almost surely,

and Bper ∈
(
L∞(Rd)

)d×d is a Q-periodic matrix. Besides being used in Theorem 4.2 below, this assumption is
also used in the proof of Lemma 4.11, to recognize that some quantity (namely, (A.16) below) is a normalized
sum of i.i.d. variables, on which we can use Central Limit Theorem arguments. As mentioned in Section 3.1
above, the form (4.7) is not essential. The point in (4.7) is that A1 is a sum of direct products of a function
depending on x with a random variable only depending on ω. Assumptions alternative to (4.7) could be made,
that still satisfy this framework.

Finally, we assume that

Aper is Hölder continuous, (4.8)
Bper is Hölder continuous. (4.9)
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We use these assumptions to obtain a rate of convergence of the two-scale expansion of uε
η (see [42] and Thm. 4.2

below), and hence control the first term in the right-hand side of (4.2). Such assumptions are standard when
proving convergence rates of two-scale expansions (see e.g. [40], p. 28). In turn, to control the second term
in (4.2) and the non-conforming error (the second term in (4.1)), we do not need Bper to be Hölder continuous,
and only use the fact that Aper is Hölder continuous (to obtain e.g. Lems. 4.4, 4.8, 4.9 and 4.12). The numerical
examples that we have considered in Section 3 satisfy assumptions (4.8)−(4.9) (remark that assumption (4.8)
is also satisfied in the numerical examples considered in e.g. [30]).

Note that we have assumed Aper and Bper to be symmetric only for the sake of simplicity. The arguments
used below carry over to the non-symmetric case up to slight modifications.

4.1. Error estimation

To bound the error between the reference solution uε
η and the MsFEM solution uS , we use in many instances

that we work in a weakly stochastic homogenization setting. We first recall in Section 4.1.1 some results specific
to weakly stochastic homogenization. This setting also allows to state rates of convergence for the two-scale
expansion of uε

η, as we explain in Section 4.1.2. Our main result, Theorem 4.5, is given in Section 4.1.3.

4.1.1. The homogenized equation

Under the conditions recalled above, it is known (see e.g. [12, 40]) that the solution uε
η(·, ω) to (4.4) a.s.

converges weakly in H1
0 (D) as ε→ 0 to the deterministic solution u�

η of the homogenized equation

−div
[
A�

η∇u�
η

]
= f in D, u�

η = 0 on ∂D. (4.10)

The homogenized matrix is given by

(
A�

η

)
ij

= E

(∫
Q

(ei + ∇wη
ei

(y, ·))TAη(y, ·)(ej + ∇wη
ej

(y, ·)) dy
)
, (4.11)

where, for any p ∈ R
d, wη

p is the unique (up to the addition of a random constant) solution to the corrector
problem ⎧⎪⎨⎪⎩

−div
[
Aη (·, ω) (p+ ∇wη

p(·, ω))
]

= 0 in R
d,

∇wη
p is stationary in the sense of (4.3), E

(∫
Q

∇wη
p (y, ·) dy

)
= 0.

(4.12)

The variational problem associated with (4.10) writes: find u�
η ∈ H1

0 (D) such that

∀v ∈ H1
0 (D), A�

η(u�
η, v) = b(v),

where
A�

η(u, v) =
∫
D

(∇v(x))T
A�

η∇u(x) dx and b(v) =
∫
D
f(x)v(x) dx. (4.13)

As shown in [13,24], in the weakly stochastic setting, the homogenized matrix A�
η can be expanded in terms

of a series in powers of η:
A�

η = A�
per + ηA�

1 + η2A�
2(η), (4.14)

where A�
2(η) is a deterministic matrix, that depends on η and is bounded as η → 0, and where, for any

1 ≤ i, j ≤ d,

(A�
per)ij =

∫
Q

(ei + ∇w0
ei

)TAper(ej + ∇w0
ej

), (4.15)

(A�
1)ij =

∫
Q

(ei + ∇w0
ei

)T
E(A1)(ej + ∇w0

ej
), (4.16)
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where, for any p ∈ R
d, w0

p is the unique (up to the addition of a constant) solution to the deterministic corrector
problem associated to the periodic matrix Aper:

−div
[
Aper(p+ ∇w0

p)
]

= 0, w0
p is Q-periodic. (4.17)

Under the assumption (4.7), we have A�
1 = E(X0)B, with

∀1 ≤ i, j ≤ d, Bij =
∫

Q

(ei + ∇w0
ei

)TBper(ej + ∇w0
ej

). (4.18)

Remark 4.1. In general, when Aper is not symmetric, the expression of A�
1 includes additional terms. Indeed,

writing ∇wη
p = ∇w0

p + η∇w1
p + O(η2), we in general need E(∇w1

p) to compute A�
1 (see e.g. [13, 24]). In the

symmetric case, these additional terms vanish, see e.g. Remark 4.2, page 117 of [4]. In the non-symmetric case,
the expression (4.16) of A�

1 needs to be slightly modified, but the expansion (4.14) remains true. Our arguments
hence carry over to the non-symmetric case.

Using the expansion (4.14) of A�
η with respect to η, it is easy to see that the solution u�

η to (4.10) can also
be expanded in a series in powers of η. We have

u�
η = u�

0 + ηE(X0)u�
1 + η2rη with ‖rη‖H1(D) ≤ C, (4.19)

where C is a constant independent of η, and where u�
0 solves

−div
[
A�

per∇u�
0

]
= f in D, u�

0 = 0 on ∂D, (4.20)

and u�
1 solves

−div
[
A�

per∇u�
1

]
= div

[
B∇u�

0

]
in D, u�

1 = 0 on ∂D. (4.21)

The expansion (4.19) will be useful in the sequel. We will also need a bound on u�
η and rη in the H2 norm.

Recall that u�
η is the solution to (4.10), whereas rη is solution to

−div
[
A�

η∇rη
]

= div [A�
2(η) (∇u�

0 + ηE(X0)∇u�
1) + E(X0)A�

1∇u�
1] in D, rη = 0 on ∂D. (4.22)

In view of (4.5), we have, almost surely and almost everywhere, a− Id ≤ Aη ≤ a+ Id in the sense of symmetric
matrices. Recalling that homogenization preserves the order of symmetric matrices (see e.g. [48], p. 12), we
deduce that

∀η, ∀ξ ∈ R
d, a−|ξ|2 ≤ A�

ηξ · ξ ≤ a+|ξ|2.
In addition, the right-hand sides of (4.10) and (4.22) are bounded uniformly in η in the L2 norm. Using
Theorems 9.15 and 9.14 of [34], we obtain that there exists C such that

∀η, ‖u�
η‖H2(D) ≤ C and ‖rη‖H2(D) ≤ C. (4.23)

4.1.2. Two scale expansion of the reference solution uε
η

As recalled above, the standard error analysis for the MsFEM in the deterministic setting is performed in the
case when the matrix Aε in (1.1) reads Aε(x) ≡ Aper(x/ε) for a fixed periodic matrix Aper. The problem (1.1)
then admits a homogenized limit. To obtain bounds on the MsFEM error, one step of the proof is to approximate

the oscillatory solution uε by its two-scale expansion u� + ε

d∑
i=1

w0
ei

( ·
ε

)
∂iu

�, where u� is the homogenized

solution, w0
p is the periodic corrector associated to p ∈ R

d, and ∂iu
� =

∂u�

∂xi
. In the deterministic case, it is

known (see e.g. [12, 23, 40]) that, under some regularity assumptions on Aper and u�,∥∥∥∥∥uε −
[
u� + ε

d∑
i=1

w0
ei

( ·
ε

)
∂iu

�

]∥∥∥∥∥
H1(D)

≤ C
√
ε (4.24)

for a constant C independent of ε.
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In the stochastic case, it is known that E

⎡⎣∥∥∥∥∥uε −
[
u� + ε

d∑
i=1

wei

( ·
ε
, ω
)
∂iu

�

]∥∥∥∥∥
2

H1(D)

⎤⎦ converges to 0 as

ε → 0 (see [47], Thm. 3), but no rate of convergence is known (except in some one-dimensional situations, see
e.g. [10,16,43]). However, in the present article, and as announced above, we consider a weakly stochastic case.
In this setting, we have derived in [42] a result similar to (4.24). We now state this result, which will be useful
for our analysis.

Theorem 4.2 (from [42], Thm. 2). Assume d > 1. Let uε
η be the solution to (4.4), and assume that Aη

satisfies (4.6)−(4.7)−(4.8)−(4.9). Let A�
per, w0

p, u�
0 and u�

1 be defined by (4.15), (4.17), (4.20) and (4.21). The
two-scale expansion vε

η of uε
η reads

vε
η(·, ω) =u�

0 + ηE(X0)u�
1 + ε

d∑
i=1

[
w0

ei

( ·
ε

)
(∂iu

�
0 + ηE(X0)∂iu

�
1)

+ ηE(X0)ψei

( ·
ε

)
∂iu

�
0 + η

∑
k∈Iε

(Xk(ω) − E(X0)) χei

( ·
ε
− k
)
∂iu

�
0

]
, (4.25)

where
Iε =

{
k ∈ Z

d such that ε(Q+ k) ∩ D �= ∅
}
,

and where, for any p ∈ R
d, ψp is the solution (unique up to the addition of a constant) to

−div [Aper∇ψp] = div
[
Bper

(
p+ ∇w0

p

)]
, ψp is Q-periodic, (4.26)

and χp is the unique solution to{−div [Aper∇χp] = div
[
1QBper(p+ ∇w0

p)
]

in R
d,

χp ∈ L2
loc(R

d), ∇χp ∈
(
L2(Rd)

)d
, lim

|x|→∞
χp(x) = 0. (4.27)

We assume that u�
0 ∈ W 2,∞(D) and u�

1 ∈W 2,∞(D). Then√
E

[
‖uε

η − vε
η‖2

H1(D)

]
≤ C

(√
ε+ η

√
ε ln(1/ε) + η2

)
, (4.28)

where C is a constant independent of ε and η.

As pointed out above and in [42], the assumptions (4.8)−(4.9) are standard assumptions when proving con-
vergence rates of two-scale expansions (see e.g. [40], p. 28). Likewise, the assumption u�

0 ∈ W 2,∞(D) (and
subsequently u�

1 ∈W 2,∞(D)) is a standard assumption (see e.g. [2], Thm. 2.1 and [40], p. 28). In view of (4.20),
this assumption implies that the right hand side f in (4.4) belongs to L∞(D).

In dimension d = 1, the boundary conditions of (4.27) need to be modified for this problem to have a
solution. We have derived in [42] the following result, which is the one-dimensional version of Theorem 4.2
(note that we need below weaker assumptions than in Theorem 4.2, as pointed out in [42]: we do not need to
assume (4.8)−(4.9), and the assumption f ∈ L2(D) is enough):

Theorem 4.3 (from [42], Theorem 3). Assume that the dimension d is equal to one. Let uε
η be the solution

to (4.4) in the domain D with f ∈ L2(D), and assume that Aη satisfies (4.6)−(4.7). Let vε
η be defined by (4.25),

where the definition (4.27) is replaced by{
− [Aperχ

′]′ =
[
1(0,1)Bper(1 + (w0)′)

]′ in R,
χ ∈ L2

loc(R), χ′ ∈ L2(R),
(4.29)
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where w0 solves (4.17). Then√
E

[
‖uε

η − vε
η‖2

L∞(D)

]
+
√

E

[
‖uε

η − vε
η‖2

H1(D)

]
≤ C

(
ε+ η

√
ε+ η2

)
, (4.30)

where C is a constant independent of ε and η.

The following estimate, which is established in the proof of Proposition 11 of [42] and useful to demon-
strate (4.28), will also be useful here:

Lemma 4.4 (from [42], proof of Prop. 11). We assume (4.8) and d > 1. For any p ∈ R
d, any k ∈ Z

d, and any
bounded domain D ⊂ R

d, the function χp defined by (4.27) satisfies∥∥∥χp

( ·
ε
− k
)∥∥∥2

L2(D)
≤ CεdRd,ε, (4.31)

for a constant C independent of k and ε, where Rd,ε = 1 if d > 2, and Rd,ε = 1 + ln(1/ε) if d = 2.

4.1.3. Main result

Before presenting our main result, we need some useful notation. Following the approach presented in
Section 2.2, we recall that

Wh := span(φε
i , i = 1, . . . , L),

where φε
i are the highly oscillatory MsFEM basis functions. By construction, the solution uS ∈ Wh of the weak

stochastic MsFEM approach (2.13) satisfies

∀vh ∈ Wh, Ah
ε,η(uS , vh) = b(vh) a.s. (4.32)

where, for any u and v in Wh,

Ah
ε,η(u, v) =

∑
K∈Th

∫
K

(∇v(x))T Aη

(x
ε
, ω
)
∇u(x) dx and b(v) =

∫
D
f(x)v(x) dx. (4.33)

For future use, we also define, on the standard finite element space

Vh := span(φ0
i , i = 1, . . . , L),

the forms

Ãh
ε,η(u, v) =

∑
K∈Th

∫
K

(∇ (Rε
K(v)) (x))T

Aη

(x
ε
, ω
)
∇ (Rε

K(u)) (x) dx, b̃h(v) =
∑

K∈Th

∫
K

f(x)Rε
K(v)(x) dx,

(4.34)
where the local, linear operators Rε

K are defined on Vh by

∀1 ≤ i ≤ L, Rε
K(φ0

i

∣∣
K

) = φε
i |K . (4.35)

These local operators give rise to the global operator Rε : Vh → Wh defined by

∀K, ∀v ∈ Vh, Rε(v)|K = Rε
K (v|K). (4.36)

As pointed out above, the space Wh is not a subspace of H1
0 (D), as the basis functions φε

i may have jumps
at the finite element boundaries (due to the use of the oversampling technique). We will hence work with the
broken H1-norm introduced in (3.2), that reads, we recall,

∀vh ∈ Wh, ‖vh‖H1
h

=

[ ∑
K∈Th

‖vh‖2
H1(K)

]1/2

.
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We are now in position to present the main result of this article. We introduce the notation Qε
i = ε(i+Q) for

any i ∈ Z
d, and denote by NK the number of cells Qε

i in the element K: NK = Card(i;Qε
i ⊂ K). We make in

the theorem below a regularity hypothese on the macroscopic mesh, assuming that the volume of each element
is bounded from below by αhd, for some α > 0, and hence that NK ≥ α (h/ε)d.

Theorem 4.5. Assume that Aη satisfies (4.6)−(4.7)−(4.8)−(4.9). We assume that u�
0 and u�

1 respectively de-
fined by (4.20) and (4.21) satisfy u�

0 ∈W 2,∞(D) and u�
1 ∈ W 2,∞(D). Let uε

η be the solution to (4.4) and uS be
the weakly stochastic MsFEM solution to (4.32). Suppose that d > 1, ε ≤ h, |η| ≤ 1, and that there exists α > 0,

independent of K, h and ε, such that NK ≥ α

(
h

ε

)d

. We then have

√
E

[
‖uε

η − uS‖2
H1

h

]
≤ C

(√
ε+ h+

ε

h
+ η
( ε
h

)d/2

ln(N(h)) + η + η2C(η)
)
, (4.37)

where C is a constant independent of ε, h and η, N(h) is the number of elements K in the domain D (which is
of order h−d in dimension d), and C is a bounded function as η goes to 0.

The restriction to d > 1 comes from the fact that the proof of this result uses the rate of convergence on the
two-scale expansion of uε

η that we stated in Theorem 4.2. This rate of convergence is not optimal in dimension
one, as can be seen from the comparison of (4.28) and (4.30). The one-dimensional version of the above result
is stated in Section 4.3 below (see Thm. 4.13), where we briefly consider the one-dimensional situation.

Remark 4.6. In the case η = 0, our approach reduces to the standard deterministic MsFEM and we obtain
the same estimate as in the deterministic case with oversampling (see e.g. [32], Thm. 3.1). Note also that the
linear dependency of the estimate with respect to η is consistent with the numerical results of Section 3 (at
least when parameters are chosen such that the error associated to η dominates the overall error).

4.2. Proof of Theorem 4.5

The proof of Theorem 4.5 is the direct consequence of three lemmas. First we recall the second Strang’s
Lemma (see e.g. Thm. 4.2.2, p. 210 of [22]).

Lemma 4.7. Consider a family of Hilbert spaces Wh with the norm ‖ · ‖H1
h
, a family of continuous bilinear

forms Ah
ε,η on Wh that are uniformly Wh-elliptic, and a continuous linear form b on Wh. For any h > 0,

introduce uS solution to
∀vh ∈ Wh, Ah

ε,η(uS , vh) = b(vh)

and uε
η ∈ H1

0 (D) solution to
∀v ∈ H1

0 (D), Ah
ε,η(uε

η, v) = b(v).

Then there exists a constant C independent of η, h and ε such that

‖uε
η − uS‖H1

h
≤ C

(
inf

vh∈Wh

‖uε
η − vh‖H1

h
+ sup

wh∈Wh

∣∣Ah
ε,η(uε

η, wh) − b(wh)
∣∣

‖wh‖H1
h

)
· (4.38)

The first term in the right hand side of (4.38) is the so-called best approximation error. The main part
(Step 2) of the proof of Theorem 4.5 is devoted to its estimation, following up on the estimate (4.28) provided
by Theorem 4.2.

The second term in the right hand side of (4.38) is the so-called nonconforming error, which vanishes in the
case Wh ⊂ H1

0 (D) (the method is then conforming, and we are left with the standard Céa lemma). In our case,
we use the oversampling technique, hence our approximation is not conforming, and this second term does not
vanish. It will be estimated in the step 3 of the proof of Theorem 4.5, using the following two results, which are
proved in Appendix A.
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Lemma 4.8. Consider the two bilinear forms A�
η and Ãh

ε,η respectively defined in (4.13) and (4.34). Under
assumption (4.8), there exists a deterministic constant C, independent of η, ε and h, such that, for any vh ∈ Vh,

sup
wh∈Vh

∣∣∣Ãh
ε,η(vh, wh) −A�

η(vh, wh)
∣∣∣

‖wh‖H1(D)
≤ C

( ε
h

+ ηλ(ω, h, ε) + η2C(η)
)
‖vh‖H1(D) a.s., (4.39)

where C is a deterministic function independent of ε and h and bounded when η → 0, and λ is defined by

λ(ω, h, ε) = max
K

max
1≤p,m≤d

∣∣∣∣∣ 1
|Iε

K|

∫
Iε
K

[
ep + ∇w0

ep

(x
ε

)]T [
A1

(x
ε
, ω
)
− E

(
A1

(x
ε
, ·
))] [

em + ∇w0
em

(x
ε

)]
dx

∣∣∣∣∣
(4.40)

where Iε
K is the largest domain composed of cells of size ε included in K:

Iε
K =

⋃
Qε

i ⊂K

Qε
i , Qε

i = ε(i+Q), i ∈ Z
d.

Lemma 4.9. Consider the two linear forms b and b̃h respectively defined in (4.13) and (4.34). Under assump-
tion (4.8), there exists a deterministic constant C independent of η, ε and h such that

sup
wh∈Vh

∣∣∣̃bh(wh) − b(wh)
∣∣∣

‖wh‖H1(D)
≤ Cε‖f‖L2(D). (4.41)

Before turning to the proof of Theorem 4.5, we first give some properties of the random variable λ(ω, h, ε)
that appears in the right hand side of (4.39), and we next detail a two scale expansion of the highly oscillatory
basis functions φε

i , which will be useful in the sequel.

Remark 4.10. We will show in Lemma 4.11 below that λ defined by (4.40) is uniformly bounded with respect
to h, ε and ω. Since A�

η is coercive, we deduce from (4.39) that Ãh
ε,η is also coercive, in the sense that there

exists a deterministic constant α > 0, independent of h, ε and η, such that

∀vh ∈ Vh, α‖vh‖2
H1(D) ≤ Ãh

ε,η(vh, vh).

4.2.1. Properties of λ(ω, h, ε)

We state here some useful properties of the random variable λ(ω, h, ε) that appears in (4.39). They will be
proved in Appendix A. As mentioned above, we recall that the assumption NK ≥ α (h/ε)d that we make below
is a regularity assumption on the macroscopic mesh (the volume of each element K is bounded from below
by αhd).

Lemma 4.11. Let λ(ω, h, ε) be defined by (4.40). Then, there exists a deterministic constant C such that, for
any h and ε, we have 0 ≤ λ(ω, h, ε) ≤ C almost surely.

Assume now that the random matrix A1 satisfies (4.7), where the law of Xk(ω) is absolutely continuous with
respect to the Lebesgue measure. Assume furthermore that the number NK = Card(i;Qε

i ⊂ K) of cells in K

satisfies NK ≥ α

(
h

ε

)d

for some α > 0 independent of the element K, h and ε. Then

E(λ(·, h, ε)2) ≤ C
εd

hd
[ln(N(h))]2 , (4.42)

where, we recall, N(h) is the number of elements K in the domain D (which is of order h−d in dimension d)
and C is a deterministic constant independent of h and ε.



MULTISCALE FINITE ELEMENT APPROACH FOR “WEAKLY” RANDOM PROBLEMS AND RELATED ISSUES 843

Because of the specific form (4.7) of A1, we will see in the proof of that result (see Appendix A below) that

λ(ω, h, ε) = max
K

max
1≤m,p≤d

|Sm,p
K | , (4.43)

where each random variable Sm,p
K is a normalized sum of (h/ε)d i.i.d. variables. Applying the Central Limit

Theorem, we hence know that Sm,p
K converges, when ε→ 0, to a Gaussian random variable (up to an appropriate

renormalization). Likewise, computing the expectation of (Sm,p
K )2 is not difficult. However, in the above lemma,

the difficulty stems from the fact that λ(ω, h, ε) is the maximum of many such random variables Sm,p
K (in (4.43),

the number of elements K is indeed of the order of h−d). Our main task is hence to control how E(λ(·, h, ε)2)
depends on h. See also Remark A.1.

4.2.2. Two-scale expansion of the highly oscillatory basis functions

Following [32], we recall here an expansion of φε,K
i that will be useful in the sequel. By definition (see (2.8)

and (2.9)), we have, for any 1 ≤ i ≤ d+ 1,

φε,K
i =

d+1∑
j=1

αij χ
ε,S
j

∣∣∣
K
, (4.44)

where αij is such that

φ0,K
i =

d+1∑
j=1

αij χ
0,S
j

∣∣∣
K
. (4.45)

We thus first turn to χε,S
i , which, by definition (see (2.7)), is the unique solution to

−div
[
Aper

(x
ε

)
∇χε,S

i (x)
]

= 0 in S, χε,S
i (x) = χ0,S

i (x) on ∂S. (4.46)

We introduce the function

θε,S
i (x) = ε−1

⎛⎝χ0,S
i (x) + ε

d∑
j=1

w0
ej

(x
ε

)
∂jχ

0,S
i (x) − χε,S

i (x)

⎞⎠ , (4.47)

where w0
ei

is solution to the periodic corrector problem (4.17). By construction, using (4.47), (4.17), (4.46) and
the fact that ∇χ0,S

i is constant on S, we have

−div
[
Aper

(x
ε

)
∇θε,S

i (x)
]

=
1
ε
div

⎡⎣Aper

(x
ε

)
∇

⎛⎝χε,S
i (x) − χ0,S

i (x) − ε

d∑
j=1

w0
ej

(x
ε

)
∂jχ

0,S
i

⎞⎠⎤⎦
=

1
ε
div
[
Aper

(x
ε

)
∇χε,S

i (x)
]
− 1
ε

d∑
j=1

∂jχ
0,S
i div

[
Aper

(x
ε

)(
ej + ∇w0

ej

(x
ε

))]
= 0,

while, from (4.47), θε,S
i (x) =

d∑
j=1

∂jχ
0,S
i (x)w0

ej

(x
ε

)
on ∂S. So, by linearity, we obtain

θε,S
i (x) =

d∑
j=1

∂jχ
0,S
i ξj

ε(x), (4.48)
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where ξj
ε ∈ H1(S) is the unique solution to

−div
[
Aper

(x
ε

)
∇ξj

ε(x)
]

= 0 in S, ξj
ε(x) = w0

ej

(x
ε

)
on ∂S. (4.49)

Using (4.47), we now obtain a useful relation between φε,K
i and φ0,K

i . Indeed, collecting (4.44), (4.45), (4.47)
and (4.48), we obtain the exact expression

φε,K
i (x) = φ0,K

i (x) + ε

d∑
j=1

(
w0

ej

(x
ε

)
− ξj

ε(x)
∣∣
K

)
∂jφ

0,K
i . (4.50)

Recall now that φε,K
i (x) = Rε

K(φ0,K
i ), by definition of the local operator Rε

K (see (4.35)). Correspondingly, the
global operator Rε, defined on Vh by (4.36), equivalently writes

∀u ∈ Vh, Rε(u) = u+ ε

d∑
j=1

(
w0

ej

( ·
ε

)
− ξj

ε

)
∂ju, (4.51)

where ξj
ε is locally defined on each element K by ξj

ε

∣∣∣
K

= ξj
ε

∣∣
K

. By construction, for each K, ξj
ε ∈ H1(K), but

it a priori does not belong to H1(D). The relation (4.51) allows to extend the operator Rε on H1(D).
We now recall the following bound on the function ξj

ε , that appears in (4.50). In [32], this lemma is stated in
dimension d = 2, but its proof, which essentially makes use Lemma 16 of [9], carries over to any dimension.

Lemma 4.12 (see [32], Lem. 2.1). Let ξj
ε be the solution to (4.49), with Aper satisfying (4.8). Consider K ⊂ S,

with diam(K) = h and dist(K, ∂S) ≥ h. Then there exists a constant C independent of h and ε such that

‖∇ξj
ε‖L∞(K) ≤

C

h
. (4.52)

4.2.3. Proof of Theorem 4.5

The proof is based on the bound (4.38) in Lemma 4.7, where the bilinear form Ah
ε,η and the linear form b are

defined by (4.33). In Step 1, we show that the bilinear form Ah
ε,η is coercive for the norm ‖·‖H1

h
defined by (3.2).

Step 2 is devoted to appropriately selecting an element vh ∈ Wh such that ‖uε
η − vh‖H1

h
can be analytically

estimated. This will provide a bound on the first term in the right hand side of (4.38). In Step 3, we bound from
above the second term in the right hand side of (4.38), using Lemmas 4.8 and 4.9. Step 4 collects our estimates
and concludes.

Step 1. We first show that the bilinear form Ah
ε,η defined by (4.33) is coercive for the norm ‖ · ‖H1

h
defined

by (3.2). Consider the bilinear form Ãh
ε,η defined by (4.34). We pointed out above (see Rem. 4.10) that it is

coercive on Vh. Hence, there exists α > 0 such that, for all vh ∈ Wh,

α‖ṽh‖2
H1(D) ≤ Ãh

ε,η(ṽh, ṽh) = Ah
ε,η(vh, vh), (4.53)

where ṽh ∈ Vh is such that vh = Rε(ṽh). Since, in the bilinear form Ah
ε,η, the matrix Aη is bounded, we deduce

the estimate
‖ṽh‖2

H1(D) ≤ C‖vh‖2
H1

h
, (4.54)

that we will use in the sequel. The sequel of this step is devoted to proving that there exists C̃ independent of
h and ε such that, for all ṽh ∈ Vh,

‖vh‖2
H1

h
≤ C̃‖ṽh‖2

H1(D) with vh = Rε(ṽh). (4.55)

Combined with (4.53), this shows that Ah
ε,η is coercive for the norm ‖ · ‖H1

h
.
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To prove (4.55), we first write that, since vh = Rε(ṽh) and ṽh ∈ Vh, there exist some coefficients {βi}L
i=1

such that, for any x ∈ D, ṽh =
∑L

i=1 βiφ
0
i and vh = Rε(ṽh) =

∑L
i=1 βiφ

ε
i . Consider now an element K, and its

corresponding oversampling domain S. We know from (2.8) and (2.10) that

∀x ∈ K, ṽh(x) =
L∑

i=1

d+1∑
j=1

βiαijχ
0,S
j (x), vh(x) =

L∑
i=1

d+1∑
j=1

βiαijχ
ε,S
j (x).

Consider now the functions

w̃S
h (x) :=

L∑
i=1

d+1∑
j=1

βiαijχ
0,S
j (x), wS

h(x) :=
L∑

i=1

d+1∑
j=1

βiαijχ
ε,S
j (x),

defined on S, and that satisfy, by construction,

∀x ∈ K, ṽh(x) = w̃S
h (x), vh(x) = wS

h(x). (4.56)

In view of (2.7), we have
−div

[
Aε(x)∇wS

h (x)
]

= 0 in S, wS
h = w̃S

h on ∂S,

which implies that
‖wS

h‖H1(S) ≤ C‖w̃S
h‖H1(S).

We deduce from (4.56) and the above bound that

‖vh‖H1(K) = ‖wS
h‖H1(K) ≤ ‖wS

h‖H1(S) ≤ C‖w̃S
h‖H1(S). (4.57)

We next see that there exists C independent of h such that, for any piecewise-affine function τ on S, we have

‖τ‖H1(S) ≤ C‖τ‖H1(K), provided there exists 0 < c− ≤ c+ independent of the element such that c− ≤ |S|
|K| ≤ c+.

Using this bound for τ = w̃S
h , we infer from (4.57) and (4.56) that

‖vh‖H1(K) ≤ C‖w̃S
h‖H1(S) ≤ C̄‖w̃S

h‖H1(K) = C̄‖ṽh‖H1(K).

Summing over all elements K, we obtain (4.55), and this concludes this first step.

Step 2. We now bound the first term of the right-hand side of (4.38), which is the best approximation error. Let
Πhu�

η be the H1 projection of u�
η, solution to (4.10), on the standard FEM space Vh. We have Rε

(
Πhu�

η

)
∈ Wh

(recall Rε is defined by (4.36), and equivalently writes as in (4.51)). Our argument is based on the following
triangle inequality:

E

[
inf

vh∈Wh

‖uε
η−vh‖2

H1
h

]
≤2E

[
‖uε

η−vε
η‖2

H1(D)

]
+2E

[
inf

vh∈Wh

‖vε
η−vh‖2

H1
h

]
(4.58)

≤2E

[
‖uε

η−vε
η‖2

H1(D)

]
+2E

[
‖vε

η−Rε(Πhu�
η)‖2

H1
h

]
(4.59)

≤2E

[
‖uε

η−vε
η‖2

H1(D)

]
+4E

[
‖vε

η−Rε(u�
η)‖2

H1
h

]
+4‖Rε(u�

η) −Rε(Πhu�
η)‖2

H1
h

(4.60)

where vε
η(·, ω) ∈ H1(D) is defined by (4.25). The estimate (4.28) in Theorem 4.2 bounds the first term from

above. In the following two sub-steps, we bound the other two terms of (4.60).



846 C. LE BRIS ET AL.

Step 2a. Bound on E

(
‖vε

η −Rε(u�
η)‖2

H1
h

)
Using the expansion (4.19) of u�

η in a series in powers of η, and (4.51), we write

Rε(u�
η) = u�

0 + ηE(X0)u�
1 + ε

d∑
p=1

(
w0

ep

( ·
ε

)
− ξp

ε

)
(∂pu

�
0 + ηE(X0)∂pu

�
1) + η2gη,

where

gη = rη + ε
d∑

p=1

(
w0

ep

( ·
ε

)
− ξp

ε

)
∂prη. (4.61)

Using (4.25), we thus have

vε
η(·, ω) −Rε(u�

η) = ηε

d∑
p=1

(
E(X0)ψep

( ·
ε

)
∂pu

�
0 +

∑
k∈Iε

(Xk(ω) − E(X0)) χep

( ·
ε
− k
)
∂pu

�
0

)

+ ε

d∑
p=1

ξp
ε (∂pu

�
η − η2∂prη) − η2gη. (4.62)

To bound E

[∑
K

‖vε
η −Rε(u�

η)‖2
H1(K)

]
, we first establish a few simple results. First, there exists δ > 0 such

that, for any 1 ≤ p ≤ d, we have
w0

ep
∈ C1,δ(Q), (4.63)

where w0
p is the periodic corrector, solution to (4.17). This is a consequence of the fact that Aper is Hölder-

continuous (see Assumption (4.8)), in view of Theorem 8.22 and Corollary 8.36 of [34]. We infer from (4.63)
and the periodicity of w0

ep
that, for any 1 ≤ p ≤ d, we have

w0
ep

∈W 1,∞(Rd). (4.64)

Second, for any 1 ≤ p ≤ d, we have∥∥∥χep

( ·
ε
− k
)∥∥∥2

L2(D)
≤ CεdRd,ε and ∇χep ∈

(
L2(Rd)

)d
, (4.65)

where C is independent from ε and k, Rd,ε = 1 if d > 2 and Rd,ε = 1 + ln(1/ε) if d = 2 (see (4.27) and (4.31)).
Third, we see that, for any 1 ≤ p ≤ d,∥∥∥ξp

ε

∥∥∥
L∞(D)

≤ C and ‖∇ξp
ε‖L∞(K) ≤

C

h
, (4.66)

where C is independent from ε and h. The second assertion is given by Lemma 4.12 above, whereas the
first assertion comes from (4.49): using again Theorem 8.22 and Corollary 8.36 of [34], and (4.63), we first
see that, for any S, ξp

ε ∈ C1,δ(S) for some δ > 0. Using next the maximum principle on (4.49), we have
‖ξp

ε‖L∞(S) ≤
∥∥∥wep

( ·
ε

)∥∥∥
L∞(Rd)

≤ C. Lastly, using (4.61), (4.23), (4.64) and (4.66), we obtain that, for any

element K,
‖gη‖H1(K) ≤ C‖rη‖H2(K)

(
1 + ε+

ε

h

)
≤ C‖rη‖H2(K),

hence
‖gη‖2

L2(D) ≤
∑
K

‖gη‖2
H1(K) ≤ C‖rη‖2

H2(D) ≤ C. (4.67)
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We are now in position to estimate (4.62). Using that u�
0 ∈W 1,∞(D), we deduce from (4.65), (4.66) and (4.67)

that

E

[
‖vε

η −Rε(u�
η)‖2

L2(D)

]
≤ Cη2ε2

d∑
p=1

‖∂pu
�
0‖2

L∞

[
E(X0)2

∥∥∥ψep

( ·
ε

)∥∥∥2
L2(D)

+ Var(X0)
∑
k∈Iε

∥∥∥χep

( ·
ε
− k
)∥∥∥2

L2(D)

]

+Cε2
d∑

p=1

∥∥∥ξp
ε

∥∥∥2
L∞(D)

(
‖∇u�

η‖2
L2(D) + η4‖∇rη‖2

L2(D)

)
+ Cη4‖gη‖2

L2(D)

≤ Cη2ε2
(
1 + (Card Iε) εdRd,ε

)
+ Cε2 + Cη4

≤ C
[
η2ε2Rd,ε + ε2 + η4

]
(4.68)

for some constant C independent of ε, η and h, and where, we recall, Rd,ε = 1 + ln(1/ε) if d = 2 and Rd,ε = 1
if d > 2.

We thus have a bound on vε
η(·, ω) − Rε(u�

η) in the L2 norm. To prove a bound in the broken H1 norm, we
consider ∇vε

η(·, ω) −∇Rε(u�
η): we see from (4.62) that, in each element K,

∇vε
η(·, ω) −∇Rε(u�

η) = ηεD0 + ηD1 +D2 − η2∇gη, (4.69)

where

D0 =
d∑

p=1

(
E(X0)ψep

( ·
ε

)
∇∂pu

�
0 +

∑
k∈Iε

(Xk(ω) − E(X0))χep

( ·
ε
− k
)
∇∂pu

�
0

)
,

D1 =
d∑

p=1

(
E(X0)∇ψep

( ·
ε

)
∂pu

�
0 +

∑
k∈Iε

(Xk(ω) − E(X0))∇χep

( ·
ε
− k
)
∂pu

�
0

)
,

D2 = ε

d∑
p=1

(
ξp
ε ∇∂p(u�

η − η2rη) + ∇ξp
ε ∂p

(
u�

η − η2rη
))
.

Note that D0 and D1 are globally defined on D, but D2 is not (as ξp
ε may have jumps from one element K to

the other). We now bound these three quantities. Using (4.65) and the fact that u�
0 ∈ W 2,∞(D), we have

E(‖D0‖2
L2(D)) ≤ C

d∑
p=1

‖∇∂pu
�
0‖2

L∞

(
E(X0)2

∥∥∥ψep

( ·
ε

)∥∥∥2

L2(D)
+ Var(X0)

∑
k∈Iε

∥∥∥χep

( ·
ε
− k
)∥∥∥2

L2(D)

)
≤ CRd,ε, (4.70)

where C is a constant independent of ε and h. We now turn to D1: using again (4.65) and that u�
0 ∈W 1,∞(D),

we obtain

E(‖D1‖2
L2(D)) ≤ C

d∑
p=1

‖∂pu
�
0‖2

L∞

(
E(X0)2

∥∥∥∇ψep

( ·
ε

)∥∥∥2
L2(D)

+ Var(X0)
∑
k∈Iε

∥∥∥∇χep

( ·
ε
− k
)∥∥∥2

L2(D)

)

≤ C

d∑
p=1

(
1 + Var(X0)

∑
k∈Iε

εd
∥∥∇χep

∥∥2
L2(Rd)

)
≤ C, (4.71)
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where C is a constant independent of ε and h. Turning to D2, using (4.66), we have in each element K that

‖D2‖2
L2(K) ≤ Cε2‖u�

η − η2rη‖2
H2(K)

(
1 +

1
h2

)
≤ C

ε2

h2
‖u�

η − η2rη‖2
H2(K),

hence, using (4.23), ∑
K

‖D2‖2
L2(K) ≤ C

ε2

h2
‖u�

η − η2rη‖2
H2(D) ≤ C

ε2

h2
. (4.72)

Collecting (4.69), (4.70), (4.71), (4.72) and (4.67), we obtain that

E

[∑
K

‖∇vε
η −∇Rε(u�

η)‖2
L2(K)

]
≤ C

(
η2ε2Rd,ε + η2 +

ε2

h2
+ η4

)
.

Collecting this bound with (4.68), and assuming that |η| < 1 and ε2Rd,ε ≤ 1, we deduce that

E

[
‖vε

η −Rε(u�
η)‖2

H1
h

]
= E

[∑
K

‖vε
η −Rε(u�

η)‖2
H1(K)

]
≤ C

(
η2 +

ε2

h2

)
, (4.73)

where C is independent from ε, h and η.

Step 2b. Bound on ‖Rε(u�
η) −Rε(Πhu�

η)‖2
H1

h

Recall that Πhu�
η is the H1 projection of u�

η (on the standard P1 FEM space Vh), hence ‖Πhu�
η‖H1(D) ≤

‖u�
η‖H1(D). In addition, using (4.23), we have, using a standard result from the theory of P1 finite elements

(see [22], Thm. 3.1.6 p. 124)

‖u�
η −Πhu�

η‖L2(D) + h‖u�
η −Πhu�

η‖H1(D) ≤ Ch2‖∇2u�
η‖L2(D) ≤ Ch2, (4.74)

where C is a constant independent of h and η. In view of (4.51), we have

Rε(u�
η) −Rε(Πhu�

η) = u�
η −Πhu�

η + ε

d∑
p=1

(
w0

ep

( ·
ε

)
− ξp

ε

)
∂p(u�

η −Πhu�
η).

We deduce from (4.64), (4.66) and (4.74) that

‖Rε(u�
η) −Rε(Πhu�

η)‖L2(D) ≤ C(h2 + εh). (4.75)

We now turn to bounding the gradients. Recall that ∇(Πhu�
η) is constant in each element K. We thus have,

using (4.64) and (4.66), that

‖∇Rε(u�
η) −∇Rε(Πhu�

η)‖L2(K) ≤ ‖u�
η −Πhu�

η‖H1(K)

(
1 +

d∑
p=1

(∥∥∥∇w0
ep

( ·
ε

)∥∥∥
L∞(K)

+ ε‖∇ξp
ε‖L∞(K)

))

+ε
d∑

p=1

∥∥∥w0
ep

( ·
ε

)
− ξp

ε

∥∥∥
L∞(K)

‖u�
η‖H2(K)

≤ C‖u�
η −Πhu�

η‖H1(K)

(
1 +

ε

h

)
+ ε‖u�

η‖H2(K).

We then deduce, using (4.74) and (4.23), that∑
K

‖∇Rε(u�
η) −∇Rε(Πhu�

η)‖2
L2(K) ≤ C‖u�

η −Πhu�
η‖2

H1(D)

(
1 +

ε

h

)2

+ ε2‖u�
η‖2

H2(D)

≤ Ch2
(
1 +

ε

h

)2

+ Cε2,
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where C is a constant independent of ε, η and h. Collecting this bound and (4.75), we obtain

‖Rε(Πhu�
η) −Rε(u�

η)‖2
H1

h
=
∑
K

‖Rε(u�
η) −Rε(Πhu�

η)‖2
H1(K) ≤ C

(
h2 + ε2

)
, (4.76)

where C is a constant independent of ε, η and h.

Step 2c. We are now in position to bound the first term in (4.38). We infer from (4.60), (4.28), (4.73) and (4.76)
that √

E

(
inf

vh∈Wh

‖uε
η − vh‖2

H1
h

)
≤ C

(√
ε+ η

√
ε ln(1/ε) + η +

ε

h
+ h
)
≤ C

(√
ε+ η +

ε

h
+ h
)
, (4.77)

where we have assumed that ε ln(1/ε) ≤ 1.

Step 3. We next turn to estimating the non-conforming error, namely the second term of the right-hand side
of (4.38). For any wh ∈ Wh, introduce w̃h ∈ Vh such that Rε(w̃h) = wh (recall that Rε is defined by (4.36)).
We note that b(wh) = b̃h(w̃h), where the linear forms b and b̃h are defined by (4.33) and (4.34). Using the weak
form of the homogenized equation (see (4.13)), we see that b(w̃h) = A�

η(u�
η, w̃h). In addition, by definition of

Ãh
ε,η (see (4.34)), we have Ãh

ε,η(Πhu�
η, w̃h) = Ah

ε,η(Rε(Πhu�
η), wh). For any wh ∈ Wh, we have∣∣Ah

ε,η(uε
η, wh) − b(wh)

∣∣
≤
∣∣Ah

ε,η(uε
η, wh) −Ah

ε,η(Rε(Πhu�
η), wh)

∣∣+ ∣∣Ah
ε,η(Rε(Πhu�

η), wh) − b(w̃h)
∣∣+ |b(w̃h) − b(wh)|

≤ ‖Aη‖L∞‖uε
η −Rε(Πhu�

η)‖H1
h
‖wh‖H1

h
+
∣∣∣Ãh

ε,η(Πhu�
η, w̃h) −A�

η(u�
η, w̃h)

∣∣∣+ ∣∣∣b(w̃h) − b̃h(w̃h)
∣∣∣

≤ ‖Aη‖L∞‖uε
η −Rε(Πhu�

η)‖H1
h
‖wh‖H1

h
+
∣∣∣Ãh

ε,η(Πhu�
η, w̃h) −A�

η(Πhu�
η, w̃h)

∣∣∣
+‖A�

η‖ ‖u�
η −Πhu�

η‖H1(D)‖w̃h‖H1(D) +
∣∣∣b(w̃h) − b̃h(w̃h)

∣∣∣ ,
where we have successively used the continuity of the bilinear forms Ah

ε,η and A�
η. Using Lemmas 4.8 and 4.9

for the second and the fourth terms respectively, we deduce that∣∣Ah
ε,η(uε

η, wh) − b(wh)
∣∣ ≤ C‖uε

η −Rε(Πhu�
η)‖H1

h
‖wh‖H1

h

+ C
( ε
h

+ ηλ(ω, h, ε) + η2C(η)
)
‖Πhu�

η‖H1(D)‖w̃h‖H1(D) + C‖u�
η −Πhu�

η‖H1(D)‖w̃h‖H1(D) + Cε‖w̃h‖H1(D),

hence, using (4.54) and (4.74),∣∣Ah
ε,η(uε

η, wh) − b(wh)
∣∣

‖wh‖H1
h

≤ C‖uε
η −Rε(Πhu�

η)‖H1
h

+ C
(
h+

ε

h
+ ηλ(ω, h, ε) + ε+ η2C(η)

)
· (4.78)

The first term is bounded as in Step 2:

‖uε
η −Rε(Πhu�

η)‖H1
h
≤ ‖uε

η − vε
η‖H1(D) + ‖vε

η −Rε(u�
η)‖H1

h
+ ‖Rε(u�

η) −Rε(Πhu�
η)‖H1

h
,

hence, using (4.28), (4.73) and (4.76), and assuming that ε ln(1/ε) ≤ 1, we have√
E

[
‖uε

η −Rε(Πhu�
η)‖2

H1
h

]
≤ C

(√
ε+ η +

ε

h
+ h
)
. (4.79)
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Collecting (4.78) and (4.79), we thus obtain√√√√√E

⎡⎣( sup
wh∈Wh

∣∣Ah
ε,η(uε

η, wh) − b(wh)
∣∣

‖wh‖H1
h

)2
⎤⎦ ≤ C

(
h+

ε

h
+ η
√

E [λ2(·, h, ε)] +
√
ε+ η + η2C(η)

)
. (4.80)

Step 4. Collecting (4.38), (4.77) and (4.80), we get√
E

[
‖uε

η − uS‖2
H1

h

]
≤ C

(√
ε+ h+

ε

h
+ η
√

E [λ2(·, h, ε)] + η + η2C(η)
)

where C is a constant independent of ε, h and η, and C is a bounded function as η goes to 0. Using (4.42), we
deduce that √

E

[
‖uε

η − uS‖2
H1

h

]
≤ C

(√
ε+ h+

ε

h
+ η
( ε
h

)d/2

ln(N(h)) + η + η2C(η)
)

where N(h) is the number of elements K in the domain (which is of order h−d in dimension d). This concludes
the proof of Theorem 4.5.

4.3. The one dimensional case

In this section, we briefly consider the one dimensional situation. As in the multi-dimensional case, we assume
here that aε

η(x, ω) = aη

(x
ε
, ω
)
, where aη is a stationary random function satisfying, for any |η| ≤ 1, the condition

0 < a− ≤ aη(x, ω) ≤ a+ almost everywhere in R, almost surely. In line with (4.6), we assume that

aη(x, ω) = aper(x) + η a1(x, ω), (4.81)

where η is a small parameter (|η| ≤ 1), aper is a 1-periodic function satisfying the condition 0 < a− ≤ aper(x) ≤
a+ almost everywhere on R, and a1 is a bounded stationary random function: |a1(x, ω)| ≤ C almost everywhere
in R, almost surely. In the vein of (4.7), we suppose that

a1(x, ω) =
∑
k∈Z

1(k,k+1](x)Xk(ω) bper(x) such that ∃C, ∀k ∈ Z, |Xk(ω)| ≤ C almost surely, (4.82)

where (Xk(ω))k∈Z
is a sequence of i.i.d. scalar random variables and bper ∈ L∞(R) is a 1-periodic function.

Note that, in this one-dimensional setting, we do not make any regularity assumption on aper (in the vein
of (4.8)). In the multi-dimensional case, this assumption is useful to e.g. state that the periodic corrector satisfies
w0

p ∈ W 1,∞(Rd) for any p ∈ R
d. In the one-dimensional case, the corrector problem can be solved analytically,

and one can see that the above assumption aper(x) ≥ a− > 0 almost everywhere on R is sufficient to obtain
such regularity on the corrector. Similarly, we do not need to assume here, in contrast to Theorem 4.5, that u�

0

and u�
1 defined by (4.20) and (4.21) both belong to W 2,∞(D) (an assumption equivalent to f ∈ L∞(D), in the

present one-dimensional setting). The assumption f ∈ L2(D) is sufficient.
The problem (4.4) now reads

− d
dx

(
aη

(x
ε
, ω
) d

dx
uε

η(x, ω)
)

= f(x) in (0, 1), uε
η(0, ω) = uε

η(1, ω) = 0. (4.83)

We consider a uniform discretization of the interval (0, 1) in the elements Ki = (xi, xi+1), with xi+1 − xi = h =
1/L for some L ∈ N

�.
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The one-dimensional version of Theorem 4.5 reads as follows:

Theorem 4.13. In the one-dimensional setting, assume that aε
η satisfies (4.81)−(4.82). Let uε

η be the solution
to (4.83) with f ∈ L2(0, 1), and uS be the weakly stochastic MsFEM solution to (4.32). Suppose that h/ε ∈ N

�.
We then have √

E

[
‖uε

η − uS‖2
H1

h

]
≤ C

(
ε+ h+ η

( ε
h

)1/2

ln(1/h) + η + η2C(η)
)
, (4.84)

where C is a constant independent of ε, h and η and C is a bounded function as η goes to 0.

Proof. The proof of this result follows the same lines as that for the multi-dimensional case. It is based upon
the homogenization result contained in Theorem 4.3 above. �

As pointed out above, the rate of convergence stated in Theorem 4.2 (and hence the estimate provided
by Thm. 4.5) is not optimal in dimension one. This hence motivates Theorems 4.3 and 4.13, which are their
respective one-dimensional variants. On another note, the assumption h/ε ∈ N

� implies that some terms in the
error bound vanish. A result similar to (4.84) holds in the absence of such assumption, with the additional term
ε/h in the right-hand side.

Appendix A. Proofs of Lemmas 4.8, 4.9 and 4.11

Proof of Lemma 4.8. This result relies on the expansion

φε,K
j (x) = φ0,K

j (x) + ε
d∑

m=1

(
w0

em

(x
ε

)
− ξm

ε (x)|K
)
∂mφ

0,K
j

from (4.50) and the fact that ∇φ0,K
j is constant on K.

For any vh and wh in Vh, we write

∣∣∣A�
η(vh, wh) − Ãh

ε,η(vh, wh)
∣∣∣ =
∣∣∣∣∣∣
∑

K∈Th

⎛⎝∫
K

(∇wh)T A�
η∇vh −

L∑
i,j=1

vj
hw

i
h

∫
K

(
∇φε,K

i

)T

Aη

(x
ε
, ω
)
∇φε,K

j dx

⎞⎠
∣∣∣∣∣∣ ,

where vh =
L∑

j=1

vj
hφ

0
j and likewise for wh. Using the above expansion of φε,K

j and the fact that ∇φ0,K
j is constant

on K, we have

L∑
i,j=1

vj
hw

i
h

∫
K

(
∇φε,K

i

)T

Aη

(x
ε
, ω
)
∇φε,K

j dx

=
d∑

m,p=1

1
|K|

∫
K

[
ep + ∇w0

ep

(x
ε

)
− ε∇ξp

ε (x)
]T
Aη

(x
ε
, ω
) [
em + ∇w0

em

(x
ε

)
− ε∇ξm

ε (x)
]

dx

×
L∑

i,j=1

vj
hw

i
h

∫
K

∂pφ
0,K
i ∂mφ

0,K
j

=
d∑

m,p=1

1
|K|

∫
K

[
ep + ∇w0

ep

(x
ε

)
− ε∇ξp

ε (x)
]T
Aη

(x
ε
, ω
) [
em + ∇w0

em

(x
ε

)
− ε∇ξm

ε (x)
]

dx
∫
K

∂mvh∂pwh.

We thus obtain∣∣∣A�
η(vh, wh) − Ãh

ε,η(vh, wh)
∣∣∣ = ∣∣∣∣∣∑

K

d∑
m,p=1

ΛK
mp

∫
K

∂mvh∂pwh

∣∣∣∣∣ ≤∑
K

‖vh‖H1(K)‖wh‖H1(K)

d∑
m,p=1

|ΛK
mp|, (A.1)



852 C. LE BRIS ET AL.

where

ΛK
mp =

[
A�

η

]
mp

− 1
|K|

∫
K

[
ep + ∇w0

ep

(x
ε

)
− ε∇ξp

ε (x)
]T
Aη

(x
ε
, ω
) [
em + ∇w0

em

(x
ε

)
− ε∇ξm

ε (x)
]

dx,

which we write
ΛK

mp = D0 +D1 −D2, (A.2)

with

D0 =
[
A�

η

]
mp

− 1
|K|

∫
K

[
ep + ∇w0

ep

(x
ε

)]T
Aη

(x
ε
, ω
) [
em + ∇w0

em

(x
ε

)]
dx, (A.3)

D1 =
ε

|K|

(∫
K

[
ep + ∇w0

ep

( ·
ε

)]T
Aη

( ·
ε
, ω
)
∇ξm

ε +
∫
K

(∇ξp
ε (x))T

Aη

(x
ε
, ω
) [
em + ∇w0

em

(x
ε

)]
dx
)
,

D2 =
ε2

|K|

∫
K

(∇ξp
ε (x))T

Aη

(x
ε
, ω
)
∇ξm

ε (x) dx.

We are thus left with bounding |ΛK
mp| from above. We first bound D1 and D2. Using Lemma 4.12 (recall that

Aper satisfies (4.8), i.e. is Hölder continuous) and the fact that w0
ep

∈ H1(Q) and is Q-periodic, we obtain

|D2| ≤ C
ε2

h2
(A.4)

and ∣∣∣∣ ε|K|

∫
K

[
ep + ∇w0

ep

(x
ε

)]T
Aη

(x
ε
, ω
)
∇ξm

ε (x) dx
∣∣∣∣ ≤ ε

|K| ‖Aη‖L∞
C

h

∫
K

∣∣∣ep + ∇w0
ep

(x
ε

)∣∣∣ dx

≤ C
ε

|K|h

(
|K| + εd

∫
K/ε

|∇w0
ep

(y)| dy
)

≤ C
ε

h

hence
|D1| ≤ C

ε

h
, (A.5)

where C is a deterministic constant independent of h, ε and η. We next turn to D0. We introduce the cells
Qε

i = ε(Q+ i), i ∈ Z
d, let Iε

K =
⋃

Qε
i ⊂K

Qε
i , and recast (A.3) as

D0 = Dbulk
0 −Dboundary

0 (A.6)

with

Dbulk
0 =

[
A�

η

]
mp

− 1
|K|

∫
Iε
K

[
ep + ∇w0

ep

(x
ε

)]T
Aη

(x
ε
, ω
) [
em + ∇w0

em

(x
ε

)]
dx, (A.7)

Dboundary
0 =

1
|K|

∫
K\Iε

K

[
ep + ∇w0

ep

(x
ε

)]T
Aη

(x
ε
, ω
) [
em + ∇w0

em

(x
ε

)]
dx.

We denote by Jε
K the set of cells Qε

i that intersect the element K, i.e.

Jε
K =

⋃
Qε

i

⋂
K�=∅

Qε
i .
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By construction, Iε
K ⊂ K ⊂ Jε

K. Using that w0
ep

∈ H1(Q) and is Q-periodic, we write∣∣∣Dboundary
0

∣∣∣ ≤ ‖Aη‖L∞
1
|K|

√∫
Jε
K\Iε

K

[
ep + ∇w0

ep

(x
ε

)]2
dx

√∫
Jε
K\Iε

K

[
em + ∇w0

em

(x
ε

)]2
dx

≤ C
εd

|K|
|∂K|
εd−1

√∫
Q

[
ep + ∇w0

ep
(y)
]2

dy

√∫
Q

[
em + ∇w0

em
(y)
]2 dy

≤ C
ε

h
. (A.8)

We next consider (A.7):

Dbulk
0 =

|K \ Iε
K|

|K|
[
A�

η

]
mp

+
|Iε

K|
|K| D

bulk

0 , (A.9)

with
D

bulk

0 =
[
A�

η

]
mp

− 1
|Iε

K|

∫
Iε
K

[
ep + ∇w0

ep

(x
ε

)]T
Aη

(x
ε
, ω
) [
em + ∇w0

em

(x
ε

)]
dx.

Using the expansion (4.14) of A�
η, we write

D
bulk

0 =
∫

Q

[
ep + ∇w0

ep
(y)
]T
Aper(y)

[
em + ∇w0

em
(y)
]

dy

− 1
|Iε

K|

∫
Iε
K

[
ep + ∇w0

ep

(x
ε

)]T
Aper

(x
ε

) [
em + ∇w0

em

(x
ε

)]
dx

+ η

(∫
Q

[
ep + ∇w0

ep
(y)
]T

E(A1(y, ·))
[
em + ∇w0

em
(y)
]

dy

− 1
|Iε

K|

∫
Iε
K

[
ep + ∇w0

ep

(x
ε

)]T
A1

(x
ε
, ω
) [
em + ∇w0

em

(x
ε

)]
dx

)
+ η2C(η). (A.10)

The leading order term in (A.10) vanishes. We are hence left with

D
bulk

0 =
η

|Iε
K|

∫
Iε
K

[
ep + ∇w0

ep

(x
ε

)]T (
E

(
A1

(x
ε
, ·
))

−A1

(x
ε
, ω
)) [

em + ∇w0
em

(x
ε

)]
dx+ η2C(η). (A.11)

Collecting (A.2), (A.4), (A.5), (A.6), (A.8), (A.9) and (A.11), together with the fact that
|K \ Iε

K|
|K|

∣∣∣[A�
η

]
mp

∣∣∣ ≤
C
ε

h
, we obtain

|ΛK
mp| ≤ C

ε

h
+

η

|Iε
K|

∣∣∣∣∣
∫

Iε
K

[
ep + ∇w0

ep

(x
ε

)]T (
E

(
A1

(x
ε
, ·
))

−A1

(x
ε
, ω
)) [

em + ∇w0
em

(x
ε

)]
dx

∣∣∣∣∣+ η2C(η).

We set

λ(ω, h, ε) = max
K∈Th

max
1≤m,p≤d

∣∣∣∣∣ 1
|Iε

K|

∫
Iε
K

[
ep + ∇w0

ep

(x
ε

)]T (
E

(
A1

(x
ε
, ·
))

−A1

(x
ε
, ω
)) [

em + ∇w0
em

(x
ε

)]
dx

∣∣∣∣∣ .
We thus have, for any K,

d∑
m,p=1

|ΛK
mp| ≤ C

( ε
h

+ ηλ(ω, h, ε) + η2C(η)
)
. Using (A.1), we thus obtain that

∣∣∣A�
η(vh, wh) − Ãh

ε,η(vh, wh)
∣∣∣ ≤ C

( ε
h

+ ηλ(ω, h, ε) + η2C(η)
)
‖vh‖H1(D)‖wh‖H1(D).

This concludes the proof of Lemma 4.8. �
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Proof of Lemma 4.9. Again, as for Lemma 4.8, this result relies on the expansion (4.50) of φε,K
i and the fact

that ∇φ0,K
i is constant on K.

Setting wh(x) =
∑
i

wi
hφ

0
i (x), we observe that

∣∣∣̃bh(wh) − b(wh)
∣∣∣ = ∣∣∣∣∣∑

K

L∑
i=1

wi
h

∫
K

f(x)
(
φε,K

i (x) − φ0,K
i (x)

)
dx

∣∣∣∣∣ .
Using (4.50) and the fact that ∇φ0,K

i is constant on K, we obtain

L∑
i=1

wi
h

∫
K

f(x)
(
φε,K

i (x) − φ0,K
i (x)

)
dx =

d∑
p=1

ε

|K|

∫
K

f(x)
(
w0

ep

(x
ε

)
− ξp

ε (x)
)

dx
L∑

i=1

wi
h

∫
K

∂pφ
0,K
i . (A.12)

We have ∣∣∣∣∣
L∑

i=1

wi
h

∫
K

∂pφ
0,K
i

∣∣∣∣∣ =
∣∣∣∣∫

K

∂pwh

∣∣∣∣ ≤√|K| ‖wh‖H1(K) (A.13)

and ∣∣∣∣∫
K

f(x)
(
w0

ep

(x
ε

)
− ξp

ε (x)
)

dx
∣∣∣∣ ≤ ‖f‖L2(K)

(∥∥∥w0
ep

( ·
ε

)∥∥∥
L2(K)

+ ‖ξp
ε‖L2(K)

)
≤ ‖f‖L2(K)

√
|K|
(
‖w0

ep
‖L∞(Rd) + ‖ξp

ε‖L∞(K)

)
. (A.14)

Recall now that, since Aper satisfies (4.8) (i.e. is Hölder continuous), we know that ξp
ε and w0

ep
are both

continuous, and that w0
ep

∈ L∞(Rd). Using the maximum principle on (4.49), we write

‖ξp
ε‖L∞(K) ≤ ‖w0

ep
‖L∞(∂S) ≤ ‖w0

ep
‖L∞(Rd),

and we thus deduce from (A.14) that∣∣∣∣∫
K

f(x)
(
w0

ep

(x
ε

)
− ξp

ε (x)
)

dx
∣∣∣∣ ≤ C‖f‖L2(K)

√
|K| (A.15)

for a constant C independent of h and ε. Collecting (A.12), (A.13) and (A.15), we obtain∣∣∣̃bh(wh) − b(wh)
∣∣∣ ≤ Cε‖f‖L2(D)‖wh‖H1(D).

This concludes the proof of Lemma 4.9. �

Proof of Lemma 4.11. We first prove the uniform bound on λ. Recall that the field A1 is bounded almost surely
and almost everywhere. This implies that∣∣∣∣∣ 1
|Iε

K|

∫
Iε
K

[
ep + ∇w0

ep

(x
ε

)]T (
A1

(x
ε
, ω
)
− E

(
A1

(x
ε
, ·
))) [

em + ∇w0
em

(x
ε

)]
dx

∣∣∣∣∣
≤ 2‖A1‖L∞

1
|Iε

K|

∥∥∥ep + ∇w0
ep

( ·
ε

)∥∥∥
L2(Iε

K)

∥∥∥em + ∇w0
em

( ·
ε

)∥∥∥
L2(Iε

K)
.

Then, using the Q-periodicity of w0
ep

, we obtain∥∥∥ep + ∇w0
ep

( ·
ε

)∥∥∥2
L2(Iε

K)
=
∑

Qε
i ⊂Iε

K

∫
Qε

i

[
ep + ∇w0

ep

(x
ε

)]2
dx = |Iε

K|
∥∥∥ep + ∇w0

ep

∥∥∥2
L2(Q)

.
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We thus have

λ(ω, h, ε) ≤ 2‖A1‖L∞ max
1≤p,m≤d

[∥∥∥ep + ∇w0
ep

∥∥∥
L2(Q)

∥∥em + ∇w0
em

∥∥
L2(Q)

]
,

hence λ(ω, h, ε) is bounded almost surely by a deterministic constant independent of h and ε.
We next turn to (4.42). Rewrite (4.40) as

λ(ω, h, ε) = max
K

max
1≤m,p≤d

|Sm,p
K | ,

with
Sm,p

K :=
1

|Iε
K|

∫
Iε
K

[
ep + ∇w0

ep

(x
ε

)]T (
A1

(x
ε
, ω
)
− E(A1

(x
ε
, ·
)) [

em + ∇w0
em

(x
ε

)]
dx.

Using the periodicity of the correctors w0
p and the specific form (4.7) of A1, we have

Sm,p
K = τm,p 1

NK

∑
i;Qε

i ⊂Iε
K

Xi − E(X0)√
Var(X0)

(A.16)

with

τm,p =
√

Var(X0)
∫

Q

[
ep + ∇w0

ep
(y)
]T
Bper(y)

[
em + ∇w0

em
(y)
]

dy and NK = Card{i;Qε
i ⊂ Iε

K}.

Thus, λ(ω, h, ε) reads
λ(ω, h, ε) = γmax

K
|Sε

K(ω)| ,

where γ = max
1≤m,p≤d

τm,p and

Sε
K(ω) =

1
NK

∑
i;Qε

i ⊂Iε
K

Xi − E(X0)√
Var(X0)

.

Introduce FNK(x) = P
(√
NK|Sε

K| ≤ x
)
, and let ϕNK be the probability density function of the random variable√

NK|Sε
K(ω)|. Using the assumption that each element K contains a number NK of cells of size ε that satisfies

NK ≥ α

(
h

ε

)d

for some α > 0, independent of K, h and ε, we write

E

(
α
hd

εd

λ2(·, h, ε)
γ2

)
≤ E

(
NK max

K
|Sε

K|2
)

=
∫ ∞

0

x2 d
dx

P

(√
NK max

K
|Sε

K| ≤ x
)

dx.

Since

P

(√
NK max

K
|Sε

K| ≤ x
)

=
[
P

(√
NK|Sε

K| ≤ x
)]N(h)

= [FNK(x)]N(h)
,

we deduce that

E

(
α
hd

εd

λ2(·, h, ε)
γ2

)
≤
∫ ∞

0

x2N(h)FN(h)−1
NK

(x) ϕNK(x) dx = e1 + e2 (A.17)

where
e1 =

∫ ch

0

x2N(h)FN(h)−1
NK

(x) ϕNK(x) dx and e2 =
∫ ∞

ch

x2N(h)FN(h)−1
NK

(x) ϕNK(x) dx,

with ch = 2 ln(N(h)). We now successively bound from above e1 and e2. First, integrating by part, and using
that 0 ≤ FNK ≤ 1, we obtain

0 ≤ e1 =
[
x2F

N(h)
NK

(x)
]x=ch

x=0
−
∫ ch

0

2xFN(h)
NK

(x) dx ≤ c2h. (A.18)
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Second, again using 0 ≤ FNK ≤ 1, we get

0 ≤ e2 ≤
∫ ∞

ch

x2N(h)ϕNK(x) dx = N(h)E
(
1{√NK|Sε

K|>ch}NK|Sε
K|2
)
.

Using the Cauchy−Schwartz inequality, we obtain

e22 ≤ N(h)2 E
[
N2

K|Sε
K|4
]

P

(√
NK|Sε

K| > ch

)
.

Introduce Yi =
Xi − E(X0)√

Var(X0)
, so that Sε

K(ω) =
1
NK

∑
i

Yi(ω). Recall now that (Yi)i∈Zd is a sequence of indepen-

dent identically distributed variables, with mean zero. Any such variables satisfy the bounds

∀p ∈ N
�, ∃Cp > 0, ∀N ∈ N

�,

∣∣∣∣∣∣E
⎡⎣( 1

N

N∑
i=1

Yi

)2p
⎤⎦
∣∣∣∣∣∣ ≤ Cp

Np
,

for a constant Cp that depends on p and the moments of Yi, up to order 2p. Recall that all moments of Yi are
well defined, as Yi is bounded almost surely. Thus

e22 ≤ C4N(h)2 P

(√
NK|Sε

K| > ch

)
≤ C4N(h)2

[
P

(√
NKS

ε
K > ch

)
+ P

(
−
√
NKS

ε
K > ch

)]
. (A.19)

We now recall the Markov inequality: for any positive non-decreasing function ψ on R, and any real-valued
random variable Z, we have

∀b ∈ R, P(Z ≥ b) ≤ E(ψ(Z))
ψ(b)

·

We apply this inequality to the random variable Z(ω) =
√
NKS

ε
K(ω), with ψ = exp(t·) for some t ≥ 0, and

b = ch. This yields

P(
√
NKS

ε
K ≥ ch) ≤ e−tchE

[
exp
(
t
√
NKS

ε
K

)]
≤ e−tch

[
E

(
exp
(

t√
NK

Y0

))]NK

, (A.20)

where we have used the fact that Sε
K is a sum of i.i.d. variables. Using a Taylor expansion with respect to t, we

see that

E

[
exp
(

t√
NK

Y0

)]
= 1 +

t2

2NK
E(Y 2

0 ) +
1

6N3/2
K

E

[
Y 3

0 exp(ξY0/
√
NK)

]
for some ξ ∈ (0, t).

Thus [
E

(
exp
(

t√
NK

Y0

))]NK

≤ exp
[
t2

2
E(Y 2

0 ) +
1

6
√
NK

E

(
Y 3

0 exp(ξY0/
√
NK)

)]
.

Using (A.20), taking t = 1, and using that e−ch =
1

N(h)2
, we obtain

P(
√
NKS

ε
K ≥ ch) ≤ 1

N(h)2
exp
[
1
2

E(Y 2
0 ) +

1
6
√
NK

E

(
Y 3

0 exp(ξY0/
√
NK)

)]
for some ξ ∈ (0, 1),

≤ 1
N(h)2

exp
[
1
2

E(Y 2
0 ) +

1
6

E
(
|Y0|3 exp(|Y0|)

)]
. (A.21)

Likewise, considering Z(ω) = −
√
NKS

ε
K(ω), we obtain a similar bound. Collecting (A.19), (A.21) and the fact

that Y0 is bounded almost surely, we have
e22 ≤ C, (A.22)
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with C independent of h and ε. Collecting (A.17), (A.18) and (A.22), we get, for a constant C independent of
h and ε,

E(λ(·, h, ε)2) ≤ C
εd

hd
[ln(N(h))]2 .

This concludes the proof of Lemma 4.11. �

Remark A.1. The above proof shows that, when ε → 0, the random variable (h/ε)d/2 λ(ω, h, ε) converges in
law to Gh(ω) = max

K
|GK(ω)|, where GK(ω) are i.i.d. Gaussian random variables. Precise results on the behavior

of Gh(ω) when h → 0 (i.e., when the number of Gaussian random variables involved diverges) are given in
e.g. [46].
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[Numerical approximation of a class of problems in stochastic homogenization]. C.R. Acad. Sci. Série I 348 (2010) 99–103.

[26] P. Dostert, Y.R. Efendiev and T.Y. Hou, Multiscale finite element methods for stochastic porous media flow equations and
application to uncertainty quantification. Comput. Methods Appl. Mechanics Engrg. 197 (2008) 3445–3455.

[27] W. E and B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87–132.

[28] W. E and B. Engquist, The Heterogeneous Multiscale Method for homogenization problems, in Multiscale Methods in Science
and Engineering, vol. 44, Lect. Notes Comput. Sci. Engrg. Springer, Berlin (2005) 89–110.

[29] W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: a review. Commun. Comput.
Phys. 2 (2007) 367–450.

[30] Y.R. Efendiev and T.Y. Hou, Multiscale finite element methods: theory and applications, Surveys and tutorials in the applied
mathematical sciences. Springer, New York (2009).

[31] Y.R. Efendiev, T.Y. Hou and V. Ginting, Multiscale finite element methods for nonlinear problems and their applications.
Commun. Math. Sci. 2 (2004) 553–589.

[32] Y.R. Efendiev, T.Y. Hou and X.-H. Wu, Convergence of a nonconforming multiscale finite element method. SIAM J. Numer.
Anal. 37 (2000) 888–910.

[33] FreeFEM, http://www.freefem.org

[34] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, reprint of the 1998 edn., Classics in
Mathematics. Springer (2001).

[35] V. Ginting, A. Malqvist and M. Presho, A novel method for solving multiscale elliptic problems with randomly perturbed
data. SIAM Multiscale Model. Simul. 8 (2010) 977–996.

[36] A. Gloria, An analytical framework for numerical homogenization. Part II: Windowing and oversampling. SIAM Multiscale
Model. Simul. 7 (2008) 274–293.

[37] T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media.
J. Comput. Phys. 134 (1997) 169–189.

[38] T.Y. Hou, X.-H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating
coefficients. Math. Comput. 68 (1999) 913–943.

[39] T.Y. Hou, X.-H. Wu and Y. Zhang, Removing the cell resonance error in the multiscale finite element method via a Petrov-
Galerkin formulation. Commun. Math. Sci. 2 (2004) 185–205.

[40] V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer-Verlag
(1994).

[41] C. Le Bris, Some numerical approaches for “weakly” random homogenization, Numerical Mathematics and Advanced Appli-
cations 2009, in Proc. of ENUMATH 2009. Edited by G. Kreiss et al. Springer Lect. Ser. Notes Comput. Sci. Engrg. (2010)
29–45.

[42] C. Le Bris, F. Legoll and F. Thomines, Rate of convergence of a two-scale expansion for some weakly stochastic homogenization
problems. Asymptot. Anal. 80 (2012) 237–267.

[43] F. Legoll and F. Thomines, On a variant of random homogenization theory: convergence of the residual process and approxi-
mation of the homogenized coefficients. ESAIM: M2AN 48 (2014) 347–386.
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[46] Y. Mittal, Limiting behavior of maxima in stationary Gaussian sequences. Ann. Probab. 2 (1974) 231–242.

[47] G.C. Papanicolaou and S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, in vol. 10 of
Proc. Colloq. on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory, 1979. Edited by J.
Fritz, J.L. Lebaritz and D. Szasz. Colloquia Mathematica Societ. J. Bolyai, North-Holland (1981) 835–873.

[48] L. Tartar, Estimations of homogenized coefficients, in Topics in the mathematical modelling of composite materials, vol. 31 of
Progr. Nonlinear Differ. Equ. Appl., edited by A. Cherkaev and R. Kohn. Birkhäuser (1987).
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