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NUMERICAL ANALYSIS OF MODULAR REGULARIZATION METHODS
FOR THE BDF2 TIME DISCRETIZATION OF THE NAVIER-STOKES

EQUATIONS ∗

William Layton
1
, Nathaniel Mays

2
, Monika Neda

3
and Catalin Trenchea

4

Abstract. We consider an uncoupled, modular regularization algorithm for approximation of the
Navier-Stokes equations. The method is: Step 1.1: Advance the NSE one time step, Step 1.1: Regularize
to obtain the approximation at the new time level. Previous analysis of this approach has been for
specific time stepping methods in Step 1.1 and simple stabilizations in Step 1.1. In this report we
extend the mathematical support for uncoupled, modular stabilization to (i) the more complex and
better performing BDF2 time discretization in Step 1.1, and (ii) more general (linear or nonlinear)
regularization operators in Step 1.1. We give a complete stability analysis, derive conditions on the
Step 1.1 regularization operator for which the combination has good stabilization effects, characterize
the numerical dissipation induced by Step 1.1, prove an asymptotic error estimate incorporating the
numerical error of the method used in Step 1.1 and the regularizations consistency error in Step 1.1
and provide numerical tests.
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1. Introduction

This report continues the numerical analysis of modular, uncoupled stabilization/regularization methods for
(primarily under-resolved) flow problems, extending their analytical foundation from one step Crank−Nicolson
(CN) method and linear filtering done in [17] to the multi-step BDF2 time discretization and both linear and
nonlinear regularization operators. To begin, for Ω a polyhedral domain in R

d, d = 2, 3, the fluid velocity u(x, t)
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and pressure p(x, t) satisfy:

ut + u · ∇u − ν�u + ∇p = f(x, t) and ∇ · u = 0, in Ω × (0, T ],

u = 0 on ∂Ω and u(x, 0) = u0(x) in Ω.

The frequent necessity of underresolved flow simulations has led to numerous regularizations and stabilizations
in Computational Fluid Dynamics. Regularizations based on “evolve one time step then regularize” fits well with
the modular development of complex codes and with legacy codes, and has been studied by Boyd [7], Fischer
and Mullen [18, 33], Mathew et al. [32], Dunca [12], as well as [16, 30, 31]. Numerical analysis of the stability,
dissipation and error behaviour in linear filter based stabilization of the Crank−Nicolson method with finite
element discretization was performed in [17], including effects of deconvolution and relaxation. The case of
backward Euler time discretization plus nonlinear filtering, and relaxation was considered in [30]. Mathew,
Lechner, Foysi, Sesterhenn and Friedrich [32] pointed out that this stabilization induces a new implicit time
relaxation term that acts to damp oscillations in marginally resolved scales. See also Section 5.3.3 in Garnier,
Adams and Sagaut [19] and Visbal and Rizzetta [46]. The connection to time relaxation links the methods
herein to work of Schochet and Tadmor [37], Roseneau [35], Adams, Kleiser, Leonard and Stolz [1–3, 39–42],
Dunca [12–14] and Layton, Neda, Manica, Rebholz, Ervin and Connors [11, 16, 26, 28, 29].

To present the method, let X = (H1
0 (Ω))d, Q = L2

0(Ω); we let Xh ⊂ X, Qh ⊂ Q denote velocity, pressure finite
element spaces satisfying the usual discrete inf-sup condition, see Section 2 for full details. Let Vh ⊂ Xh denote
the discretely divergence free subspace of Xh. We shall denote the regularization operator by the, possibly
nonlinear, map Gh : X → Vh. We give five examples of computationally attractive Gh(·) satisfying (1.3) in
Section 2.2.

Algorithm 1.1 (BDF2, Regularize, Relax for NSE).
Choose χ with 0 ≤ χ ≤ 1.

Step 1: Given un
h, un−1

h find wn+1
h ∈ Xh, pn+1

h ∈ Qh satisfying(
3wn+1

h −4un
h+un−1

h

2�t , vh

)
+ b∗(wn+1

h , wn+1
h , vh) + ν(∇wn+1

h ,∇vh) − (pn+1
h ,∇·vh) = (fn+1, vh), ∀vh ∈ Xh,(∇ · wn+1

h , qh

)
= 0, ∀qh ∈ Qh.

(1.1)
Step 2: (a) Regularize wn+1

h to give Gh(wn+1
h ), and

(b) relax
un+1

h = (1 − χ)wn+1
h + χGh

(
wn+1

h

)
. (1.2)

Step 1.1, without Step 1.1 of Algorithm 1.1 is the classical BDF2-FEM (finite element method) discretization
of the Navier-Stokes equations analyzed in [4] (under a small data condition) and [15, 34, 47]. The relaxation
in (1.2) in Step 1.1 with the typical choice χ = Δt, was introduced by Fischer and Mullen in [18, 33] to keep
numerical diffusion from blowing up as Δt → 0.

This report gives a comprehensive stability and convergence analysis of Algorithm 1.1 for general Gh(·),
including low and high order filters, nonlinear filters, deconvolution based regularizations and others. This
analysis shows, Section 3, that the key requirements for unconditional stability are: 0 ≤ χ ≤ 1 and

(Gh(v), v) > 0 and (v − Gh(v), Gh(v)) > 0 for all v 	= 0. (1.3)

If we denote the regularization’s consistency error by

ε(u) := ‖u − Gh(u)‖
then the temporal consistency error of Algorithm 1.1 is O(Δt3 + χε(u)) which forecasts a global error of
O(Δt2 + χ

Δtε(u)+spatial FEM error). We prove that under (1.3) this error is indeed attained. Section 5 presents
tests of Algorithm 1.1 of underresolved flows.
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2. Preliminaries

The L2(Ω) norm and inner product will be denoted by ‖·‖ and (·, ·). The Lp(Ω) and W k
p (Ω) norms are

denoted by ‖ · ‖Lp and ‖ · ‖W k
p
, respectively and the semi-norm by | · |W k

p
. Hk denotes W k

2 (Ω), and ‖ · ‖k the
norm in Hk. The space H−k denotes the dual space of Hk

0 . For functions v(x, t) define

‖v‖∞,k := EssSup[0,T ]‖v(t, ·)‖k , and ‖v‖m,k :=

(∫ T

0

‖v(t, ·)‖m
k dt

)1/m

.

Let X := (H1
0 (Ω))d, Q := L2

0(Ω). We shall assume that the solution to the NSE is a strong solution and satisfies

u ∈ L2(0, T ; X) ∩ L∞(0, T ; L2(Ω)) ∩ L4(0, T ; X), (2.1)
p ∈ L2(0, T ; Q), ut ∈ L2(0, T ; X∗) , (2.2)

and

(ut, v) + (u · ∇u, v) − (p,∇ · v) + ν(∇u,∇v) = (f, v) ∀v ∈ X, (2.3)
(∇ · u, q) = 0 ∀q ∈ Q. (2.4)

We renorm X by ‖v‖X := ‖∇v‖ which, because of the boundary condition, is a norm. The space of divergence
free functions is given by

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q}.
We shall denote conforming velocity-pressure finite element spaces based on an edge to edge triangulation of Ω
(with maximum triangle diameter h) by

Xh ⊂ X, Qh ⊂ Q.

We shall assume that (Xh, Qh) satisfy the usual inf-sup condition necessary for the stability of the pressure,
e.g. [20, 21] and that the usual approximation properties of piecewise polynomials of degree k, k − 1 hold for
(Xh, Qh). The discretely divergence free subspace of Xh is

Vh = {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh}.

Taylor−Hood elements (see e.g. [8, 20]) are one common example of such a choice with k = 2 for (Xh, Qh),
and are also the elements we use in our numerical experiments. Define the usual explicitly skew symmetrized
trilinear form

b∗(u, v, w) :=
1
2
(u · ∇v, w) − 1

2
(u · ∇w, v).

To set notation, let

tn = nΔt, n = 0, 1, 2, . . . , NT , T := NT Δt, and dtf
n :=

f(tn) − f(tn−1)
�t

·

Introduce the following discrete norms

‖|v|‖∞,k := max
0≤n≤NT

‖vn‖k, ‖|v|‖m,k :=

(
Δt

NT∑
n=0

‖vn‖m
k

)1/m

.
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2.1. Regularization operators

Proposition 2.1. Under assumptions (1.3), the regularization map Gh satisfies additionally: for all v ∈ X

0 < (v − Gh(v), v), v 	= 0, (2.5)
(Gh(v), v) ≤ ‖v‖2, (2.6)

(v − Gh(v), v) ≤ ‖v‖2. (2.7)

Proof. For all v ∈ X we have that

(v − Gh(v), v) = ‖v − Gh(v)‖2 + (v − Gh(v), Gh(v)) ≥ (v − Gh(v), Gh(v))

and (2.5) follows immediately from (1.3). To prove the second claim, note that

(Gh(v), v) = ‖v‖2 − (v − Gh(v), v)

and use (2.5). Finally, by (1.3) we obtain

(v − Gh(v), v) = ‖v‖2 − (Gh(v), v) ≤ ‖v‖2. �

The work of computing the action of a general, nonlinear regularization operator G(φ) can be considerable.
We shall thus restrict Gh(·) to be semilinear (Assumption 2.2) satisfying a uniform positivity assumption
(Assumption 2.3) below.

Assumptions 2.2.
Gh(φ) = Gh(φ)φ

where ∀w ∈ X,Gh(w) ∈ L(Vh, Vh) is a linear and continuous operator.

Assumptions 2.3. For any w ∈ X , the linear operator Gh(w) ∈ L(Vh, Vh) satisfies

(Gh(w)φ, φ) > 0 for all φ 	= 0, (2.8)
(φ − Gh(w)φ,Gh(w)φ) > 0 for all φ 	= 0. (2.9)

Assumption 2.2 means, given φ̂, computing the action φ → Gh(φ̂)φ (even for φ̂ = φ) requires linear work.
This restriction includes the case of Gh(·) being fixed linear operator (e.g. a linear filter) and also plays a key
role in the error analysis for nonlinear filters.

Uniform positivity, Assumption 2.3, implies positivity, (1.3), and for linear regularizations they are equivalent.
Following the proof of Proposition 2.1, we note that, under Assumption 2.3, Gh(w) is non-expansive and

0 < ((I − Gh(w))v, v) ≤ ‖v‖2 for all v 	= 0. (2.10)

2.2. Examples of regularization operators

Here δ > 0 denotes a regularization length scale and φ ∈ L2(Ω).

2.2.1. Discrete differential filter.

The discrete differential filter Gh : L2(Ω) → Xh, is given as Gh(φ) := φh, where φh ∈ Xh is the unique
solution of

δ2(∇φh,∇vh) + (φh, vh) = (φ, vh) ∀vh ∈ Xh. (2.11)
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2.2.2. Discrete Stokes differential filter.

The discrete Stokes differential filter preserves discrete incompressibility. Gh : X∗ → Xh, and φh = Gh(φ)
where (φh, ρ) ∈ Xh × Qh is the unique solution of

δ2(∇φh,∇vh) + (φh, vh) − (ρ,∇ · vh) = (φ, vh) ∀vh ∈ Xh,

(∇ · φh, q) = 0 ∀q ∈ Qh.
(2.12)

The choices (2.11) and (2.12) of Gh satisfy (1.3), with regularization error (e.g. Lem. 2.1 in [17])

ε(φ) + δ2‖∇(φ − Gh(φ))‖2 ≤ C inf
vh∈Vh

{
δ2‖∇(φ − vh)‖2 + ‖φ − vh‖2

}
+ Cδ4‖Δφ‖2.

2.2.3. Nonlinear filters.

Select a smooth function a : X → R, a = a(φ,∇φ, · · · ) (denoted by a(φ)) with the properties

0 < amin ≤ a(φ) ≤ 1 for any φ ∈ V,

see [30] for examples of such a(·). Define Gh(φ) := φh as the unique solution of: find (φh, λh) ∈ Xh × Qh

satisfying

(δ2a(φ)∇φ
h
,∇vh) + (φ

h
, vh) − (λh,∇ · vh) = (φ, vh) ∀vh ∈ Xh , (2.13)

(∇ · φh
, q) = 0 ∀q ∈ Qh. (2.14)

Note that φh := Gh(φ) = Gh(φ)φ, where the linear and continuous operator Gh(w)φ := φ̃ is the unique solution
(φ̃h, λh) ∈ Xh × Qh of

(δ2a(w)∇φ̃h,∇vh) + (φ̃h, vh) − (λh,∇ · vh) = (φ, vh) ∀vh ∈ Xh , (2.15)

(∇ · φ̃h, q) = 0 ∀q ∈ Qh. (2.16)

Lemma 2.4. Let Gh(·) be the nonlinear filter (2.13)−(2.14). Assumption 2.3 holds. Thus (1.3) holds as well:
for all φ ∈ Vh we have

(Gh(φ), φ) > 0, and (Gh(w)φ, φ) > 0 for all w, φ 	= 0
(φ − Gh(φ), Gh(φ)) > 0, and (φ − Gh(w)φ,Gh(w)φ) > 0 for all w, φ 	= 0.

Proof. It is sufficient to prove that any w ∈ X,Gh(w) satisfies (2.8), (2.9). For vh ∈ Vh (2.15)−(2.16) are
equivalent to:

(δ2a(w)∇φ̃h,∇vh) + (φ̃h, vh) = (φ, vh) ∀vh ∈ Vh.

To prove the first assertion, set vh = φ̃h. We then have

(Gh(w)φ, φ) = (φ, φ̃h) =
∫

Ω

δ2a(w)|∇φ̃h|2 + |φ̃h|2.

For the second claim, note that

(φ − φ̃h, φ̃h) =
∫

Ω

δ2a(w)|∇φ̃h|2dx ≥ δ2amin‖∇φ̃h‖2.

This is positive for φ 	= 0. Indeed, if ‖∇φ̃h‖2 = 0, then φ̃h ≡ 0 (due to the zero boundary conditions) and then
(φ, vh) = 0 ∀vh ∈ Vh. �
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It has been shown in [30] that the nonlinear filter (2.13)−(2.14) has the following regularization error.

Theorem 2.5. Let Xh, Qh satisfy the inf-sup condition and φ ∈ V . Then the discrete nonlinear filter Gh(φ)
given by (2.13)−(2.14) satisfies

ε(φ) +
∫

Ω

δ2a(φ)|∇(φ − Gh(φ))|2dx ≤ C inf
φ̂∈Vh

{∫
Ω

δ2a(φ)|∇(φ − φ̂)|2dx + ‖φ − φ̂‖2

}
+ Cδ4

max‖∇ · (a(φ)∇φ)‖2.

For the frozen nonlinearity discrete nonlinear filter (2.15)−(2.16): for any given wh ∈ Vh, we have that ∀φ ∈ V∫
Ω

δ2a(wh)|∇(φ − Gh(wh)φ)|2dx + ‖φ − Gh(wh)φ‖2 (2.17)

≤ C inf
φ̂∈Vh

{∫
Ω

δ2a(wh)|∇(φ − φ̂)|2dx +‖φ− φ̂‖2

}
+ Cδ2 min{‖∇φ‖2, δ2‖∇·(a(wh)∇φ)‖2}.

2.2.4. Modular VMS methods.

Let XH ⊂ Xh, QH ⊂ Qh denote subspaces of the velocity-pressure FEM spaces associated typically with
either lower degree polynomials on the same mesh or the same finite element spaces on a coarser mesh. Define
PH : ∇Xh → ∇XH to be the L2 projection operator. Let νT be a bounded, positive, elementwise constant, eddy
viscosity parametrization and δ > 0 the filter lengthscale. The modular VMS regularization operator introduced
in [31] is the linear operator Gh(φ) = φ ∈ Vh, the solution of

(νT [I − PH ]∇φ, [I − PH ]∇vh) + (φ, vh) = (φ, vh) for all vh ∈ Vh. (2.18)

Lemma 2.6. Gh(·), defined by (2.18), satisfies (1.3): for all φ ∈ Xh

(Gh(φ), φ) > 0 and (φ − Gh(φ), Gh(φ)) ≥ 0.

Proof. The proof is similar to the Lemma 2.4. For the first claim set vh = φ in (2.18). For the second claim set
vh = φ again. We have

(φ − φ, φ) =
∫

Ω

νT |[I − PH ]∇φ|2dx ≥ 0. �

Note that ∇φ is the L2 projection into ∇XH , thus provided φ ∈ H2(Ω)

ε(φ) = ‖φ − Gh(φ)‖ ≤ CH‖∇φ‖.

2.2.5. Approximate Deconvolution.

One rich source of high accuracy regularization operators and higher order filters is approximate deconvolution
of a filter Fh, (such as the filters in examples 1 and 2). The van Cittert deconvolution operator is defined by
repeated application of a simpler filter Fh as follows.

Definition 2.7 (Discrete van Cittert deconvolution). Let φ = Fh(φ) be a linear filter satisfying Assumption 2.3.
Then the Nth discrete van Cittert operator is:

DN
h φ :=

N∑
n=0

(I − Fh)nφ.

We then define Gh(φ) = DN
h φ. In [17] the conditions (1.3) were proven for Fh being the discrete Stokes filter.
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Lemma 2.8. We have DN
h : Vh → Vh and for all φ ∈ Vh

(DN
h (φ), φ) > 0 and (φ − DN

h (φ), DN
h (φ)) > 0 if φ 	= 0,

‖DN
h (φ)‖ ≤ ‖φ‖ and ‖φ − DN

h (φ)‖ ≤ ‖φ‖.

Proof. Using the symmetry and linearity of Fh, and Assumption 2.3 for Fh, we have

(DN
h (φ), φ)=

[N
2 −1]∑
i=0

([
(I − Fh)2i + (I − Fh)2i+1

]
(φ), φ

)
+
(
1−2

{
N
2

}) (
(I − Fh)N (φ), φ

)

=
[N

2 −1]∑
i=0

(
2((I − Fh)(I − Fh)iφ, Fh(I − Fh)iφ) + ‖Fh(I − Fh)iφ‖2

)
+
(
1 − 2

{
N
2

}) (
Fh(I − Fh)[

N
2 ]φ, (I − Fh)[

N
2 ]φ

)
> 0.

To prove the second estimate, we note first that φ − DN
h (φ) = (I − Fh)N+1φ, and therefore

(φ − DN
h (φ), DN

h (φ))=
[ N

2 −1]∑
i=0

([
(I−Fh)2i+N+1+(I−Fh)2i+N+2

]
(φ),φ

)
+(1−2{N

2 })
(
(I−Fh)2N+1(φ),φ

)
>0.

The last two estimates follow as in the proof of Proposition 2.1. (See also [17] and Stanculescu [38].) �

We also use the following from [28].

Lemma 2.9. For smooth φ the discrete Nth order discrete approximate deconvolution regularization operator
satisfies for 0 ≤ s ≤ N

ε(φ)=‖φ−DN
h (φ)‖ ≤ C1 δ2s+2 ‖φ‖H2s+2 + C2

(
δhk + hk+1

)N+1∑
n=1

|Fn
h (φ)|k+1. (2.19)

Suppose φ ∈ H1
0 (Ω) ∩ H4(Ω). If N = 1 and (Xh, Qh) are the Taylor−Hood elements, then

ε(φ) = ‖φ − DN
h (φ)‖ ≤ C1 δ3‖φ‖3 + C2

(
δh2 + h3

) ‖φ‖3. (2.20)

Proof. For Taylor−Hood elements (k = 2), (2.20) follows by (2.19) taking s = 1/2, k = 2, N = 1 and thus[
k+1
2

]− 1 = 0. We have then ‖φ‖3 ≤ C‖φ‖3 with uniform constant. �

The dependence of the |Fn
h (φ)|k+1 terms in (2.19) upon the filter radius δ, for a general smooth function φ,

is not fully understood. In the case of φ periodic the |Fn
h (φ)|k+1 are independent of δ. Also, for φ satisfying

homogeneous Dirichlet boundary conditions, with the additional property that Δjφ = 0 on ∂Ω for 0 ≤ j ≤[
k+1
2

]− 1, the |Fn
h (φ)|k+1 are also independent of δ, see [27, 28].

Motivated by the (2.20), for N ≥ 2 we assume the following in the convergence analysis.

Assumption DG1: Let DN
h (·) be the van Cittert regularization operator. For some α, 0 < α ≤ N

ε(φ) = ‖φ − DN
h (φ)‖ ≤ C1 δ2α+2 ‖φ‖H2α+2 + C2

(
δhk + hk+1

) ‖φ‖k+1. (2.21)

3. Stability of Algorithm 1.1

We prove an energy equality, unconditional stability and give the numerical dissipation induced in Step 1.1
of Algorithm 1.1. We begin with an algebraic identity.
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Lemma 3.1 [17, 30].
Assume χ ∈ [0, 1] and let uh = (1 − χ)wh + χGh(wh). Then

‖wh‖2−‖uh‖2 = χ(2−χ)
(
wh − Gh(wh), wh

)
+ χ2

(
wh − Gh(wh), Gh(wh)

)
,

‖wh‖2−‖uh‖2 = −‖uh − wh‖2 + 2χ
(
wh − Gh(wh), wh

)
. (3.1)

Proof. The proof follows closely the proof in the case where Gh is a linear operator in [17, 30]. �
Definition 3.2. Let ρχ,h : Xh → R

+ ∪ {0} denote the following non-negative functional

ρχ,h(v) :=
(
(1 − χ)v + χGh(v), χ(v − Gh(v)

) 1
2 , for all v ∈ Xh.

Proposition 2.1 guarantees that, under assumption (1.3), ρχ,h is well-defined. While not a norm when Gh(·) is
nonlinear, when Gh is linear, ρχ,h(·) is a weighted norm on Xh. Let also denote

D+D−vn−1 =
vn − 2vn−1 + vn−2

Δt2
·

Proposition 3.3 (Stability).
Under Assumption 2.3, Algorithm 1.1 satisfies the energy equality

1
4
‖un+1

h ‖2 +
1
4
‖2un+1

h − un
h‖2 + Δt

n∑
j=1

Δt3

4

∥∥D+D−uj
h

∥∥2 + Δt

n∑
j=1

3χ

2Δt

(
wn+1

h − Gh(wn+1
h ), wn+1

h

)
+

1
4
ρ2

χ,h(wn+1
h ) +

1
4
ρ2

χ,h

(
2wn+1

h − wn
h

)
+ Δt

n∑
j=1

Δt3

4
ρ2

χ,h

(
D+D−wj

h

)
+ νΔt

n∑
j=1

‖∇wn+1
h ‖2

=
1
4
‖u1

h‖2 +
1
4
‖2u1

h − u0
h‖2 + Δt

n∑
j=1

(
f j+1, wj+1

h

)
,

where the terms (w − Gh(w), w) ≥ 0, and the stability bound

1
4
‖un+1

h ‖2 +
1
4
‖2un+1

h − un
h‖2 + Δt

n∑
j=1

Δt3

4

∥∥D+D−uj
h

∥∥2 + Δt

n∑
j=1

3χ

2Δt

(
wj+1

h − Gh(wj+1
h ), wj+1

h

)
+

1
4
ρ2

χ,h(wn+1
h ) +

1
4
ρ2

χ,h

(
2wn+1

h − wn
h

)
+ Δt

n∑
j=1

Δt3

4
ρ2

χ,h(D+D−wj
h) +

ν

2
Δt

n∑
j=1

‖∇wn+1
h ‖2

≤ 1
4
‖u1

h‖2 +
1
4
‖2u1

h − u0
h‖2 +

Δt

2ν

n∑
j=1

‖f j+1‖2
�.

Proof. In Step 1.1 in Algorithm 1.1 set vh = wn+1
h . Using the identity

1
4
[a2+ (2a − b)2] − 1

4
[b2+ (2b − c)2] +

1
4
(a−2b+c)2 =

1
2
(3a−4b+c)a, (3.2)

gives

1
4Δt

(‖un+1
h ‖2 + ‖2un+1

h − un
h‖2

)− 1
4Δt

(‖un
h‖2 + ‖2un

h − un−1
h ‖2

)
+

1
4Δt

‖un+1
h − 2un

h + un−1
h ‖2

+
3

2Δt

(
χ(wn+1

h − Gh(wn+1
h )), wn+1

h

)
+

1
4Δt

(
ρ2

χ,h

(
wn+1

h

)
+ ρ2

χ,h

(
2wn+1

h −wn
h

))
− 1

4Δt

(
ρ2

χ,h(wn
h ) + ρ2

χ,h

(
2wn

h−wn−1
h

))
+

1
4Δt

ρ2
χ,h

(
wn+1

h −2wn
h +wn−1

h

)
+ ν‖∇wn+1

h ‖2

=
(
fn+1, wn+1

h

)
.
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Multiplying by Δt and summing, with the assumption w0
h = w1

h = 0, we obtain the energy equality

1
4
‖un+1

h ‖2 +
1
4
‖2un+1

h − un
h‖2 + Δt

n∑
j=1

1
4Δt

‖uj+1
h − 2uj

h + uj−1
h ‖2

+ Δt

n∑
j=1

3χ

2Δt

(
wn+1

h − Gh(wn+1
h ), wn+1

h

)
+

1
4
ρ2

χ,h

(
wn+1

h

)
+

1
4
ρ2

χ,h

(
2wn+1

h − wn
h

)
+ Δt

n∑
j=1

1
4Δt

ρ2
χ,h

(
wj+1

h − 2wj
h + wj−1

h

)
+ νΔt

n∑
j=1

‖∇wn+1
h ‖2

=
1
4
‖u1

h‖2 +
1
4
‖2u1

h − u0
h‖2 + Δt

n∑
j=1

(
f j+1, wj+1

h

)
.

Using the Cauchy−Schwarz-Young inequality on the right hand side and subsuming one term into the LHS
proves global stability. �

The energy equality of Proposition 3.3 shows that the total energy dissipation in Algorithm 1.1 has the
components:

Viscous / Molecular Dissipation:=ν‖∇wn+1
h ‖2,

Numerical Dissipation from Step 1.1:=
�t3

4

∥∥D+D−un
h

∥∥2

Numerical Dissipation from Step 1.1:=
3χ

2Δt

(
wn+1

h −Gh

(
wn+1

h

)
, wn+1

h

)
+
�t3

4
ρ2

χ,h (D+D−wn
h) ≥ 0.

4. Error analysis of the Algorithm 1.1

In this section we present a detailed error analysis. We first establish computability of the procedure.

Lemma 4.1. Assume χ ∈ [0, 1] and Assumptions 2.2, 2.3 hold. For Algorithm 1.1, wn
h , un

h exist at each time
step.

Proof. The existence of a solution wn
h to (1.1) follows from the Leray–Schauder Principle [48]. Specifically, with

A : Vh → Vh, defined by y = A(w)

(y, v) := −2Δt

3
b∗(w, w, v) − 2Δt

3
ν(∇w,∇v) +

1
3
(
4un−1

h − un−2
h , v

)
+

2Δt

3
(fn, v),

the operator A is compact and any solution of w = sA(w), for 0 ≤ s < 1, satisfies the bound ‖w‖ ≤ γ, where γ
is independent of s.

The existence and uniqueness of wn
hh follows directly from the assumption on the well-posedness of the

regularization operator. The existence and uniqueness of un
h follows from that for wn

h and wn
h

h and the definition
of Gh. �

In order to establish the optimal asymptotic error estimates for the approximation we need to assume that
the true solution is more regular than that given by (2.1), (2.2).

u ∈ L∞(0,T ;W k+1
4 (Ω)) ∩ H1(0,T ;Hk+1(Ω)) ∩ H3(0,T ;L2(Ω)) ∩ W 2

4(0,T ;H1(Ω)), (4.1)
p ∈ L∞(0, T ; Hs+1(Ω)) , and f ∈ H2(0, T ; L2(Ω)). (4.2)
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For clarity of presentation, we introduce the mesh dependent, nonnegative (energy dissipative) homogeneous
weighted functionals

ρχ,1(v) :=(v−Gh(wn
h )v, v)

1
2, ρχ,2(v) :=(v−Gh(wn

h)v,Gh(wn
h)v)

1
2, ‖v‖χ,3 :=(v−Gh(wn

h)v, v−Gh(wn
h)v)

1
2. (4.3)

These are defined on Xh, weighted by the computed velocities wn
h ; the dependence on wn

h will be suppressed.
For the error between u(tn) and un

h, and u(tn) and wn
h , we have the following result.

Theorem 4.2. For u, p, and f as described by (4.1), (4.2), satisfying (2.3)−(2.4), and un
h, wn

h given by
Algorithm 1.1 we have that, for Δt sufficiently small,

‖|u−uh|‖∞,0 ≤ F(Δt, h, χ) + Chk+1‖|u|‖∞,k+1 + CΔt2‖utt‖∞,0 + C
(
1 +

χ

Δt

)⎛⎝Δt

n∑
j=2

[ε(uj)]2

⎞⎠
1
2

, (4.4)

‖|u−wh|‖∞,0 ≤ F (Δt, h, χ) + Chk+1‖|u|‖∞,k+1 + C
(
1+

χ

Δt

)⎛⎝Δt

n∑
j=2

[ε(uj)]2

⎞⎠
1
2

, (4.5)

χ(1−χ)ρχ,1(u(tn)−wn
h)+χρ2

χ,2(u(tn)−wn
h) ≤ F(Δt, h, χ)+C

(
1 +

χ

Δt

)⎛⎝Δt

n∑
j=2

[ε(uj)]2

⎞⎠
1
2

, (4.6)

⎛⎝Δt

n∑
j=2

(
Δt3‖D+D−(uj−1−uj−1

h )‖2+ν‖∇(uj−wj
h)‖2+

χ

Δt
ρ2

χ,1

(
uj−wj

h

))⎞⎠ 1
2 (4.7)

≤ F(Δt, h, χ) + C
(
1 +

χ

Δt

)⎛⎝Δt
n∑

j=2

[ε(uj)]2

⎞⎠
1
2

,

for 2 ≤ n ≤ NT , where

F(Δt, h, χ) := C
(
‖u1−u1

h‖ + ‖2(u1−u1
h) − (u0−u0

h)‖
)

+ Cν− 1
2

(
hk+ 1

2 ‖|u|‖2
4,k+1 + hk+ 1

2 ‖|∇u|‖2
4,0 + hs+1‖|p|‖2,s+1

)
+ C

(
hk+1 ‖ut‖2,k+1 + ν−1 hk‖|u|‖∞,k+1 + ν

1
2 hk‖|u|‖2,k+1 +

χ

Δt
hk+1 ‖|u|‖2,k+1 + Δt2‖uttt‖2,0

)
.

Remark 4.3 (The regularization error ε(u)).

1. For the nonlinear filter, the regularization error satisfies⎛⎝Δt

n∑
j=2

[
ε(uj)

]2⎞⎠
1
2

≤ C
(
δhk + hk+1 + δ2 min

{
δ−1, ‖∇ · (a(wh)∇u)‖}) ‖|u|‖2

2,k+1.

2. For approximate deconvolution, provided u∈L∞(0, T ; H2N+2(Ω)) for 2N +2 ≥ k +1, under the assumption
DG1, the regularization error satisfies⎛⎝Δt

n∑
j=2

[ε(uj)]2

⎞⎠
1
2

≤ C(δ2N+2 + δhk + hk+1)(‖|u|‖2
2,2N+2 + ‖|u|‖2

2,k+1).
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Proof of Theorem 4.2. At time tn = nΔt, u given by (2.3)−(2.4) satisfies(
3u(tn)−4u(tn−1)+u(tn−2), vh

)
+2Δtν(∇u(tn),∇vh)+2Δtb∗ (u(tn), u(tn), vh) − 2Δt(p(tn),∇ · vh)

= 2Δt(f(tn), vh) + ΔtIntp(un; vh), (4.8)

for all vh ∈ Vh, where 1
2Intp(un; vh) is the local truncation error. Subtracting (1.1) from (4.8), we have for

εn = u(tn) − wn
h , and the pointwise error en = u(tn) − un

h, (recall that fn = f(tn))(
3εn − 4en−1 + en−2, vh

)
+ 2Δtν(∇εn,∇vh) = −2Δtb∗(εn, u(tn), vh) (4.9)

− 2Δtb∗(wn
h , εn, vh) + 2Δt(p(tn) − pn

h,∇ · vh) + ΔtIntp(un; vh),

for all vh ∈ Vh.
Let Un ∈ Vh, εn = u(tn) − wn

h = (u(tn) − Un) + (Un − wn
h) := Λn + Fn, and en = u(tn) − un

h =
(u(tn) − Un) + (Un − un

h) := Λn + En. With the choice vh = Fn, using (∇·Fn, qh) = 0, ∀qh ∈ Qh, and (3.2) we
obtain

1
2
‖En‖2 +

1
2
‖2En − En−1‖2 − 1

2
‖En−1‖2 − 1

2
‖2En−1 − En−2‖2 +

1
2
‖En − 2En−1 + En−2‖2

+ 3(Fn − En, Fn) +
(
3En − 4En−1 + En−2, Fn − En

)
+ 2Δtν‖∇Fn‖2

= − (3Λn − 4Λn−1 + Λn−2, Fn
)− 2Δtν(∇Λn,∇Fn)

− 2Δtb∗(Λn, u(tn), Fn) − 2Δtb∗(Fn, u(tn), Fn) − 2Δtb∗(wn
h , Λn, Fn)

+ 2Δt(p(tn) − pn
h − qh,∇ · Fn) + ΔtIntp(un; Fn).

Summing for j = 2 to n yields

1
2
‖En‖2 +

1
2

∥∥2En − En−1
∥∥2 +

1
2

n∑
j=2

‖Ej − 2Ej−1 + Ej−2‖2 (4.10)

+3
n∑

j=2

(
F j−Ej, F j

)
+

n∑
j=2

(
3Ej−4Ej−1+Ej−2, F j − Ej

)
+2Δtν

n∑
j=2

‖∇F j‖2

=
1
2
‖E1‖2+

1
2
‖2E1−E0‖2−

n∑
j=2

(
3Λj−4Λj−1+Λj−2, F j

)−2Δtν
n∑

j=2

(∇Λj,∇F j
)

−2Δt
n∑

j=2

b∗
(
Λj, u(tj), F j

)−2Δt
n∑

j=2

b∗
(
F j , u(tj), F j

)−2Δt
n∑

j=2

b∗
(
wj

h, Λj, F j
)

+ 2Δt

n∑
j=2

(p(tj) − pj
h − qh,∇ · F j) + Δt

n∑
j=2

Intp(uj ; F j).

The relations (4.4)−(4.7) will be obtained from an estimate on Fn, which will be next derived from (4.10).
For reader’s convenience we present this derivation in several steps.

First step. We estimate the terms on the RHS of (4.10) individually.

(3Λj−4Λj−1+Λj−2, F j) = 2Δt

(
3Λj−4Λj−1+Λj−2

2Δt
, F j

)
= 2Δt

(
Λt(tj), F j

) ≤ Δt‖Λt(tj)‖2 + Δt‖F j‖2, (4.11)

2Δtν(∇Λj ,∇F j) ≤ Δtν‖∇F j‖2 + Δtν‖∇Λj‖2. (4.12)
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Using b∗(u, v, w) ≤ C(Ω)
√‖u‖ ‖∇u‖‖∇v‖ ‖∇w‖, for u, v, w ∈ X , and Young’s inequality, we bound also the

nonlinear terms

b∗(Λj , u(tj), F j) ≤ C
√
‖Λj‖ ‖∇Λj‖ ‖∇u(tj)‖ ‖∇F j‖ ≤ ν

16
‖∇F j‖2 + Cν−1‖Λj‖‖∇Λj‖‖∇u(tj)‖2, (4.13)

b∗(F j , u(tj), F j) ≤ C‖F j‖1/2‖∇F j‖3/2‖∇u(tj)‖ ≤ ν

16
‖∇F j‖2 + Cν−3‖∇u(tj)‖4‖F j‖2, (4.14)

b∗(wj
h, Λj , F j) ≤ C‖∇wj

h‖‖∇Λj‖‖∇F j‖ ≤ ν

16
‖∇F j‖2 + Cν−1‖∇wj

h‖2‖∇Λj‖2, (4.15)

(p(tj) − pj
h − qh,∇ · F j) ≤ ‖p(tj) − pj

h − qh‖‖∇ · F j‖ ≤ ν

16
‖∇F j‖2 + Cν−1 ‖p(tj) − pj

h − qh‖2. (4.16)

With the bounds (4.11)−(4.16), the relation (4.10) becomes

1
2
‖En‖2 +

1
2
||2En − En−1||2 +

1
2

n∑
j=2

‖Ej − 2Ej−1 + Ej−2‖2 (4.17)

+ 3
n∑

j=2

(
F j−Ej, F j

)
+

n∑
j=2

(
3Ej−4Ej−1+Ej−2, F j − Ej

)
+

Δtν

2

n∑
j=2

‖∇F j‖2

≤ 1
2
‖E1‖2 +

1
2
||2E1 − E0||2 + Δt

n∑
j=2

‖Λt(tj)‖2 + CΔt

n∑
j=2

(
1 + ν−3‖∇u(tj)‖4

) ‖F j‖2 + Δtν

n∑
j=2

‖∇Λj‖2

+ Cν−1Δt

n∑
j=2

‖Λj‖‖∇Λj‖‖∇uj‖2 + Cν−1Δt

n∑
j=2

‖∇wj
h‖2‖∇Λj‖2

+ 2Cν−1Δt

n∑
j=2

‖p(tj) − pj
h − qh‖2 + Δt

n∑
j=2

Intp(uj; F j).

Second step. We now estimate the LHS of (4.10) and express it in terms of Fn. As un
h and wn

h are connected
through Step 1.1 of Algorithm 1.1, we use equation (1.2) to obtain a relationship between ‖Fn‖ and ‖En‖. The
true solution u(·, tn) = un satisfies

un = (1 − χ)un + χGh(wn
h)un + χ(un − Gh(wn

h)un). (4.18)

Subtracting (1.2) evaluated at n from (4.18) yields

en = (1 − χ)εn + χGh(wn
h )εn + χ(un − Gh(wn

h)un), (4.19)

and equivalently

En = (1 − χ)Fn + χGh(wn
h )Fn − χ(I − Gh(wn

h))Λn + χ(I − Gh(wn
h ))un. (4.20)

Using the assumption (1.3) (χ ∈ [0, 1]) and (2.10), this implies

‖En‖ ≤ ‖Fn‖ + χ‖(I − Gh(wn
h))Λn‖ + χ‖(I − Gh(wn

h))un‖, (4.21)

and squaring up and simplifying

‖En‖2 ≤ ‖Fn‖2 + Δt‖Fn‖2 + 2χ2(1+(Δt)−1)‖Λn−Gh(wn
h)Λn‖2 + 2χ2(1+(Δt)−1)‖un−Gh(wn

h)un‖2. (4.22)

Note that by Cauchy−Schwarz inequality we have

1
2
‖Fn‖2 +

(
‖Fn‖2 − ‖En‖2

)
≤ 1

2
‖En‖2 + 3(Fn − En, Fn).
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Third step. Using the bound (4.22) into (4.17) yields

1
2
‖Fn‖2 +

1
2
||2En − En−1||2 +

1
2

n∑
j=2

‖Ej − 2Ej−1 + Ej−2‖2 (4.23)

+ 3
n−1∑
j=2

(
F j − Ej , F j

)
+

n∑
j=2

(
3Ej − 4Ej−1 + Ej−2, F j − Ej

)
+

Δtν

2

n∑
j=2

‖∇F j‖2

≤ Δt‖Fn‖2 + 2χ2(1 + (Δt)−1)‖Λn−Gh(wn
h)Λn‖2 + 2χ2(1 + (Δt)−1)‖un−Gh(wn

h)un‖2

+
1
2
‖E1‖2 +

1
2
‖2E1 − E0‖2 + Δt

n∑
j=2

‖Λt(tj)‖2 + CΔt

n∑
j=2

(
1 + ν−3‖∇u(tj)‖4

) ‖F j‖2 + Δtν

n∑
j=2

‖∇Λj‖2

+ 2Cν−1Δt

n∑
j=2

‖Λj‖‖∇Λj‖‖∇uj‖2 + 2Cν−1Δt

n∑
j=2

‖∇wj
h‖2‖∇Λj‖2

+ 2Cν−1Δt

n∑
j=2

‖p(tj) − pj
h − qh‖2 + Δt

n∑
j=2

Intp(uj ; F j).

Fourth step. In order to further simplify the LHS of (4.23), note that (4.20) also yields

F j − Ej = χ(I − Gh(wn
h))F j + χ(I − Gh(wn

h ))Λj − χ(I − Gh(wn
h ))uj ,

3Ej − 4Ej−1 + Ej−2 = (1 − χ)
(
3F j − 4F j−1 + F j−2

)
+ χGh(wn

h)(3F j − 4F j−1 + F j−2)

− χ(I − Gh(wn
h))

(
3Λj − 4Λj−1 + Λj−2

)
+ χ (I − Gh(wn

h))
(
3uj − 4uj−1 + uj−2

)
.

Then using the identity (3.2), Cauchy−Schwarz, Assumptions (2.8)−(2.9) (‖Gh(wj
h)‖≤1, ‖I −Gh(wj

h)‖≤1), the
assumption ‖F 1‖ = ‖2F 1 − F 0‖ = 0, the Minkowski inequality yields the following lower bound for the fourth
and fifth terms in (4.23)

3
n−1∑
j=2

(F j − Ej , F j) +
n∑

j=2

(3Ej − 4Ej−1 + Ej−2, F j − Ej) (4.24)

≥ C1,χ,T − χ2

2
‖Λn‖2

χ,3−
1
2
χ2‖2Λn−Λn−1‖2

χ,3 −
χ2

2
‖un‖2

χ,3−
1
2
χ2‖2un−un−1‖2

χ,3−
χ2

2
‖un − 2un−1 + un−2‖χ,3

− Δt
n∑

j=0

‖F j‖2 − C
χ2

Δt
(1 + χ)

n∑
j=2

‖(I − Gh(wj
h))Λj‖2

− CΔt

(
1 + χ +

χ2

(Δt)2
+

χ3

(Δt)2
+

χ4

(Δt)2

) n∑
j=2

‖(I − Gh(wj
h))uj‖2

where

C1,χ,T = 3χ

n−1∑
j=2

ρ2
χ,1(F

j) +
(1 − χ)χ

2
ρ2

χ,1(F
n) +

χ2

2
ρ2

χ,2(F
n).
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Fifth step. Using (4.24) into (4.23) we obtain (use χ ∈ [0, 1], Δt < 1, (2.7), (2.10))

1
2
‖Fn‖2 + CT +

Δtν

2

n∑
j=2

‖∇F j‖2 (4.25)

≤ C0 + Cχ2(Δt)−1
n∑

j=2

‖Λj‖2 + C
(
1+χ2(Δt)−2

)
Δt

n∑
j=2

[ε(uj)]2

+ Δt
n∑

j=2

‖Λt(tj)‖2 + CΔt
n∑

j=0

(
1 + ν−3‖∇u(tj)‖4

) ‖F j‖2 + Δtν
n∑

j=2

‖∇Λj‖2

+ Cν−1Δt
n∑

j=2

‖Λj‖‖∇Λj‖‖∇uj‖2 + Cν−1Δt
n∑

j=2

‖∇wj
h‖2‖∇Λj‖2

+ Cν−1Δt

n∑
j=2

‖p(tj) − pj
h − qh‖2 + Δt

n∑
j=2

Intp(uj ; F j),

where

C0 =
1
2
‖E1‖2 +

1
2
‖2E1 − E0‖2

CT = 3χ

n−1∑
j=2

ρ2
χ,1(F

j) +
(1−χ)χ

2
ρ2

χ,1(F
n) +

χ2

2
ρ2

χ,2(F
n) +

1
2
‖2En−En−1‖2 +

1
2

n∑
j=2

‖Ej−2Ej−1+Ej−2‖2.

Sixth step. Finally, we further simplify the terms in the RHS of (4.25) as follows.

C
χ2

Δt

n∑
j=2

‖Λj‖2 ≤ C
χ2

Δt

n∑
j=2

h2k+2|uj|2k+1 ≤ Cχ2(Δt)−2h2k+2‖|u|‖2
2,k+1, (4.26)

νΔt

n∑
j=2

‖∇Λj‖2 ≤ CνΔt

n∑
j=2

h2k|uj|2k+1 ≤ Cνh2k‖|u|‖2
2,k+1. (4.27)

For the next term

Cν−1Δt

n∑
j=2

‖∇uj‖2‖Λj‖‖∇Λj‖≤Cν−1h2k+1Δt

n∑
j=2

|uj|2k+1‖∇uj‖2 (4.28)

≤Cν−1h2k+1Δt
( n∑

j=2

|uj |4k+1+
n∑

j=2

‖∇uj‖4
)
≤Cν−1h2k+1

(‖|u|‖4
4,k+1+‖|∇u|‖4

4,0

)
.

Using the boundedness of νΔt
∑n

j=2 ‖∇wj
h‖ (Prop. 3.3)

Cν−1Δt
n∑

j=2

‖∇wj
h‖2‖∇Λj‖2 ≤ Cν−2 h2k ‖|u|‖2

∞,k+1. (4.29)

Next

Δt

n∑
j=2

‖Λt(tj)‖2 ≤ Δt

n∑
j=2

h2k+2‖ut(tj)‖2
k+1 ≤ h2k+2‖ut‖2

2,k+1. (4.30)

ν−1Δt

n∑
j=2

‖p(tj)−pj
h−qh‖2≤ν−1Δt

l∑
n=1

h2s+2‖p(tj)‖2
s+1≤Cν−1h2s+2‖|p|‖2

2,s+1.
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As in [20] the interpolation error in (4.25) can be bounded as

Δt

n∑
j=2

|Intp(un; Fn)| ≤ Δt

n∑
j=2

‖F j‖2 + C(Δt)4‖uttt‖2
2,0. (4.31)

Seventh step. In conclusion, combining (4.27)–(4.31), the inequality (4.25) yields the desired estimate on Fn

1
2
‖Fn‖2 + CT +

Δtν

2

n∑
j=2

‖∇F j‖2 (4.32)

≤ C0 + CΔt

n∑
j=2

(
1 + ν−3‖∇u(tj)‖4

)
‖F j‖2 + h2k+2‖ut‖2

2,k+1 + Cνh2k‖|u|‖2
2,k+1

+ Cν−1h2k+1
(
‖|u|‖4

4,k+1 + ‖|∇u|‖4
4,0

)
+ Cν−2h2k‖|u|‖2

∞,k+1

+ Cν−1h2s+2‖|p|‖2
2,s+1 + Cχ2(Δt)−2h2k+2‖|u|‖2

2,k+1

+ C(1 + χ2(Δt)−2)Δt

n∑
j=2

[ε(uj)]2 + C(Δt)4‖uttt‖2
2,0.

The proof of Theorem 4.2 resumes with the application of the discrete Gronwall Lemma [23]. Hence, with
Δt sufficiently small, i.e. Δt < C(1 + ν−3‖|∇u|‖4∞,0)−1, we have

‖Fn‖2 + (1 − χ)χρ2
χ,1(F

n) + χ2ρ2
χ,2(F

n) +
χ

Δt
Δt

n∑
j=2

ρ2
χ,1(F

j) (4.33)

+ ||2En − En−1||2 + Δt

n∑
j=2

Δt3‖D+D−Ej−1‖2 + Δtν

n∑
j=2

‖∇F j‖2

≤ C
(
‖E1‖2 + ||2E1 − E0||2

)
+ Ch2k+2‖ut‖2

2,k+1 + Cνh2k‖|u|‖2
2,k+1 + Cν−1h2k+1

(
‖|u|‖4

4,k+1 + ‖|∇u|‖4
4,0

)
+ Cν−2h2k‖|u|‖2

∞,k+1 + Cν−1h2s+2‖|p|‖2
2,s+1 + Cχ2(Δt)−2h2k+2‖|u|‖2

2,k+1

+ C
(
1 + χ2(Δt)−2

)
Δt

n∑
j=2

[ε(uj)]2 + C(Δt)4‖uttt‖2
2,0.

Using the second and the third term, respectively the fourth, sixth and seventh terms in the left hand side
of (4.33), we immediately obtain (4.6) and (4.7). The estimate given in (4.5) for ‖|u − wh|‖∞,0 follows from
the triangle inequality, Lemma 2.9 and (4.33). Finally, the estimate for ‖|u − uh|‖∞,0 follows from (4.21), the
triangle inequality and the estimate on ‖|u − wh|‖∞,0. �

For the case of Taylor−Hood approximating elements, i.e. k = 2, s = 1, we have the following asymptotic
estimate.
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Corollary 4.4. Under the assumptions of Theorem 4.2, with δ = Ch and (Xh, Qh) given by the Taylor−Hood
approximation elements, we have

‖|u − wh|‖∞,0+‖|u−uh|‖∞,0 +

⎡⎣Δt

n∑
j=2

(
Δt3‖D+D−(un − un

h)‖2 + ν‖∇(un − wn
h)‖2 +

χ

Δt
ρ2

χ,1(u
n − wn

h)
)⎤⎦1/2

≤ C(u, p, ν)

⎧⎪⎨⎪⎩Δt2 + h2 +
h3

Δt
+

χ

Δt

⎛⎝Δt

n∑
j=2

[ε(uj)]2

⎞⎠
1
2

⎫⎪⎬⎪⎭ . (4.34)

Next we analyze the effect of Step 1.1 on stability and accuracy, phrased in terms of the functional ρχ,1,
defined in (4.3). This functional has the property of controlling small scale, fluctuating components of the error.
Separating uh and wh, estimate (4.35) shows that the high frequency components of wn

h , typically spurious
oscillations, are diminished in forming un

h, i.e., ‖un
h‖χ,1 < ρχ,1(wn

h). The second estimate (4.36) establishes
a relationship between the high frequency components of the error in un

h and wn
h , i.e. ρχ,1(un − un

h) and
ρχ,1(un − wn

h), respectively. Note that taking φ := (I − Gh(wn
h))v in assumptions (2.8)−(2.10) we obtain

((I − Gh(wn
h ))v , (I − Gh(wn

h))Gh(wn
h) v) ≥ 0 ∀v ∈ Vh.

Theorem 4.5. Under the assumptions of Theorem 4.2, for n = 1, 2, . . . , NT , 0 ≤ δ ≤ 1,

ρ2
χ,1(u

n
h) = ρ2

χ,1(w
n
h) − χ(2 − χ)‖wn

h‖2
χ,3 − χ2

(
wn

h−Gh(wn
h)wn

h , (I−Gh(wn
h))Gh(wn

h)wn
h

)
, (4.35)

ρ2
χ,1(u

n−un
h) ≤ ρ2

χ,1(u
n−wn

h) − χ2
(
(I−Gh(wn

h))(un−wn
h), (I−Gh(wn

h))Gh(wn
h)(un−wn

h)
)

− 3
2
χ(1−χ)‖un−wn

h‖2
χ,3 + 2χ(1+χ)‖un‖2

χ,3 + χ2ρ2
χ,1((I−Gh(wn

h))un). (4.36)

Proof. Taking the inner product of both sides of (1.2) at level n with un
h − Gh(wn

h)un
h, we obtain

ρ2
χ,1(u

n
h) = (un

h, (I − Gh(wn
h))un

h)

=
(
wn

h − χ(I−Gh(wn
h ))wn

h , (I−Gh(wn
h ))

[
wn

h − χ(I − DhGh)wn
h

])
= ρ2

χ,1(w
n
h) + χ2

(
(I−Gh(wn

h))wn
h , (I−Gh(wn

h))2wn
h

)− χ
(
wn

h , (I−Gh(wn
h))2wn

h

)
− χ

(
(I − Gh(wn

h))wn
h , (I − Gh(wn

h))wn
h

)
= ρ2

χ,1(w
n
h) + χ2‖wn

h‖2
χ,3 − χ2

(
(I−Gh(wn

h))wn
h , (I−Gh(wn

h))Gh(wn
h)wn

h

)− 2χ‖wn
h‖2

χ,3

= ρ2
χ,1(w

n
h) − χ(2 − χ)‖wn

h‖2
χ,3 − χ2

(
(I − Gh(wn

h))wn
h , (I − Gh(wn

h))Gh(wn
h)wn

h

)
,

which establishes (4.35).
To establish (4.36) we begin with (4.19). Taking the inner product of both sides with εn − Gh(wn

h)εn,

(en, (I − Gh(wn
h))εn) = ρ2

χ,1(ε
n) − χ‖εn‖2

χ,3 + χ
(
(I − Gh(wn

h))un, (I − Gh(wn
h))εn

)
,

and by the polarization identity

1
2
ρ2

χ,1(e
n) +

1
2
ρ2

χ,1(ε
n) − 1

2
ρ2

χ,1(e
n − εn) = ρ2

χ,1(ε
n) − χ‖εn‖2

χ,3 + χ
(
(I − Gh(wn

h))un, (I − Gh(wn
h))εn

)
.

Thus,
ρ2

χ,1(ε
n) = ρ2

χ,1(e
n)– ρ2

χ,1(e
n − εn) + 2χ‖εn‖2

χ,3– 2χ
(
(I–Gh(wn

h))un, (I–Gh(wn
h))εn

)
. (4.37)

In addition, rearranging (4.20) we have

en − εn = −χ(I − Gh(wn
h))εn + χ(I − Gh(wn

h))un
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and thus,

ρ2
χ,1(e

n − εn) =
(
(en − εn), (I − Gh(wn

h))(en − εn)
)

(4.38)

= χ2ρ2
χ,1((I−Gh(wn

h))εn)+ χ2ρ2
χ,1((I−Gh(wn

h))un)

− χ2
(
(I−Gh(wn

h ))εn, (I−Gh(wn
h))2un

)− χ2
(
(I−Gh(wn

h))un, (I−Gh(wn
h ))2εn

)
.

Substituting (4.38) into (4.37) and rearranging

ρ2
χ,1(ε

n) = ρ2
χ,1(e

n) − χ2ρ2
χ,1((I−Gh(wn

h))εn)− χ2ρ2
χ,1((I−Gh(wn

h))un) (4.39)

+ χ2
(
(I−Gh(wn

h))εn, (I−Gh(wn
h))2un

)
+ χ2

(
(I−Gh(wn

h ))un, (I−Gh(wn
h ))2εn

)
+ 2χ‖εn‖2

χ,3− 2χ
(
(I−Gh(wn

h))un, (I−Gh(wn
h))εn

)
.

Note that

− χ2ρ2
χ,1((I−Gh(wn

h))εn) + 2χ‖εn‖2
χ,3 = (2χ − χ2)‖εn‖2

χ,3 + χ2
(
(I − Gh(wn

h))εn,Gh(wn
h )(I − Gh(wn

h))εn
)
,

(4.40)

χ2
(
(I − Gh(wn

h))εn, (I − Gh(wn
h))2un

) ≤ χ2

4
‖εn‖2

χ,3 + χ2‖(I − Gh(wn
h))un‖2

χ,3, (4.41)

χ2
(
(I − Gh(wn

h))un, (I − Gh(wn
h))2εn

) ≤ χ2‖un‖2
χ,3 +

χ2

4
‖(I − Gh(wn

h))εn‖2
χ,3, (4.42)

2χ
(
(I − Gh(wn

h))un, (I − Gh(wn
h))εn) ≤ 1

2
χ‖εn‖2

χ,3 + 2χ‖un‖2
χ,3. (4.43)

Thus, using (4.40)−(4.43) in (4.39), we obtain

ρ2
χ,1(ε

n) ≥ ρ2
χ,1(e

n) +
3
2
χ(1−χ)‖εn‖2

χ,3+χ2
(
(I−Gh(wn

h))εn,Gh(wn
h)(I−Gh(wn

h))εn
)

− 2χ(1 + χ)‖un‖2
χ,3 − χ2ρ2

χ,1((I − Gh(wn
h))un). �

5. Numerical experiments

In this section we present four numerical experiments. Using the Green−Taylor vortex problem and selecting
regularization by deconvolution Gh(φ) = DN

h (φ), we confirm the predicted convergence rates and compare the
accuracy for deconvolution orders N = 0, 1, 2. We then consider the flow around a cylinder, Poisseuille and shear
layer benchmark problems, and rotating flow between offset cylinders. Regularizations are required for under
resolved flows. Thus, in these tests we have selected flows for which we can obtain a fully resolved, unregularized
“truth” solution to compare the coarser mesh, under resolved regularized approximation.

Using FreeFEM++ [22], Algorithm 1.1 is discretized in space using Taylor−Hood elements (continuous piece-
wise quadratic polynomials for the velocity and continuous linears for the pressure). The nonlinear system at
each time step was solved by a fixed point iteration. The Stokes filter and van Cittert deconvolution of orders
N = 0, 1 or 2 were used in all the computations. It was applied with the same boundary conditions as given for
the problem being solved.

5.1. Convergence rate verification

Our first test is designed to test (and does confirm) the predicted rates of convergence. The problem of
simulating decay of the Green−Taylor vortex, [44,45], is an interesting test problem in which the true solution
is known (which is required to compute the errors to obtain rates of convergence). It is a commonly used
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Table 1. Poor convergence without relaxation or deconvolution.

m ‖|u − uh|‖∞,0 Rate ‖|∇u −∇uh|‖2,0 Rate

16 2.74021 × 10−2 1.64089 × 10−1

32 2.61947 × 10−2 0.06 1.50942 × 10−1 0.12

48 2.42064 × 10−2 0.19 1.3133 × 10−1 0.34

64 2.12955 × 10−2 0.45 1.09657 × 10−1 0.63

80 1.78571 × 10−2 0.79 9.03406 × 10−2 0.87

96 1.47115 × 10−2 1.06 7.46497 × 10−2 1.05

Table 2. Errors and convergence rates for deconvolution N = 1, χ = 0.

m ‖|u − uh|‖∞,0 Rate ‖|∇u −∇uh|‖2,0 Rate

16 2.60813 × 10−2 1.52619 × 10−1

32 1.4652 × 10−2 0.83 8.08192 × 10−2 0.96

48 5.61527 × 10−3 2.37 4.03054 × 10−2 1.72

64 2.49971 × 10−3 2.81 2.29939 × 10−2 1.95

80 1.27253 × 10−3 3.03 1.44953 × 10−2 2.07

96 7.14506 × 10−4 3.17 9.88172 × 10−3 2.10

test for accuracy experiments, e.g., [10, 25, 43]. For an insightful analysis see [5, 6]. The prescribed solution in
Ω = (0, 1) × (0, 1) is given by

u1(x, y, t) = − cos(ωπx) sin(ωπy)e−2ω2π2t/τ ,

u2(x, y, t) = sin(ωπx) cos(ωπy)e−2ω2π2t/τ ,

p(x, y, t) = −1
4
(cos(2ωπx) + cos(2nπy))e−2ω2π2t/τ .

When τ = Re, this is a solution of the NSE with f = 0, consisting of an ω×ω array of oppositely signed vortices
that decay as t → ∞.

In our tests we choose ω = 1, T = 1, Reynolds number Re = 100 (i.e. ν = 0.01) and δ = h = 1/m, the
interval (0, 1). The results for Algorithm 1.1 are presented in Table 2, using order of deconvolution N = 1
without relaxation (i.e. χ = 0). Tables 3 and 4 present the results for N = 1 and N = 2 with relaxation for
χ = Δt, respectively. Results using the simple averaging filter, i.e. deconvolution with order N = 0 and χ = 0,
are presented in Table 1. The convergence rate is calculated from the error at two successive values of h in the
usual manner by postulating e(h) = Chβ and solving for β via β = ln(e(h1)/e(h2))/ ln(h1/h2).

From the tables we see the convergence rate approaches the second order rate predicted for ‖|∇u−∇uh|‖2,0

and we also see what appears to be an L2 lift for ‖|u − uh|‖∞,0 for order of deconvolution N = 1 and N = 2.
The method with the simple averaging filter, order of deconvolution N = 0, has much larger errors and slower
rates of convergence, as expected. From this test it is clear that (i) relaxation is important to control the loss
of accuracy due to blow up of the numerical dissipation as Δt → 0, and (ii) regularization using filtering plus
deconvolution is superior to low order filtering alone, as predicted in Remark 4.3.

5.2. Flow around a cylinder

Our next numerical illustration is for two dimensional under-resolved flow around a cylinder. Thus, our goal
is not to use a fine mesh and reproduce the benchmark values from [24, 36] but rather to see how close to
those values we can come on a mesh coarse enough that accuracy cannot be reasonably expected. We compute
values for the maximal drag cd,max and lift cl,max coefficient at the cylinder, and for the pressure difference
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Table 3. Errors and convergence rates for deconvolution N = 1 with χ = Δt.

m ‖|u − uh|‖∞,0 Rate ‖|∇u −∇uh|‖2,0 Rate

16 1.00069 × 10−3 1.61231 × 10−2

32 1.48731 × 10−4 2.75 2.62388 × 10−3 2.62

48 4.19167 × 10−5 3.12 9.44449 × 10−4 2.52

64 1.63416 × 10−5 3.27 4.71362 × 10−4 2.42

80 7.71333 × 10−6 3.36 2.8071 × 10−4 2.32

96 4.12874 × 10−6 3.43 1.86365 × 10−4 2.25

Table 4. Errors and convergence rates for deconvolution N = 2 with χ = Δt.

m ‖|u − uh|‖∞,0 Rate ‖|∇u −∇uh|‖2,0 Rate

16 4.98747 × 10−4 1.54581 × 10−2

32 4.63728 × 10−5 3.43 2.38295 × 10−3 2.70

48 1.0654 × 10−5 3.63 8.57864 × 10−4 2.52

64 3.66425 × 10−6 3.71 4.34974 × 10−4 2.36

80 1.59044 × 10−6 3.74 2.6326 × 10−4 2.25

96 8.04969 × 10−7 3.73 1.77074 × 10−4 2.18

Δp(t) between the front and back of the cylinder at the final time T = 8. It is not turbulent but does have
interesting features. The flow patterns are driven by the interaction of a fluid with a wall which is an important
scenario for industrial flows. This flow is actually quite difficult to simulate successfully by a model with sufficient
regularization to handle higher Reynolds number problems.

The time dependent inflow profile is

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
sin(π t/8)y(0.41 − y) ,

u2(0, y, t) = u2(2.2, y, t) = 0.

No slip boundary conditions are prescribed along the top and bottom walls, “do-nothing” at the outflow, and
the initial condition is u(x, y, 0) = 0. The viscosity is ν = 10−3 and the external force f = 0. The Reynolds
number of the flow, based on the diameter of the cylinder and on the mean velocity inflow is 0 ≤ Re ≤ 100.
The domain is a rectangle 2.2 × 0.41, with circle centered at (0.2, 0.2) of radius 0.05. A mesh with 62 757 total
number of degrees of freedom (velocity and pressure) is used for all simulation for a clear comparison of the
different parameter settings presented in this report. The filter radius is chosen as the perimeter of the cylinder
divided by the number of mesh points around the cylinder.

From time t = 2 to t = 4 two vortices start to develop behind the cylinder. Between t = 4 and t = 5, the
vortices separate from the cylinder, so that a vortex street develops, and they continue to be visible through the
final time t = 8. This can be seen in Figure 1. The evolutions of cd,max, cl,max and Δp are presented in Figure 2.

For the computation of drag and lift coefficients fd the one dimensional method described by John [24].
Results on the computations of maximal drag and lift coefficients and pressure drop, for N = 1, are presented
in Table 5. The following reference intervals are given in [36]

cref
d,max ∈ [2.93, 2.97], cref

l,max ∈ [0.47, 0.49], Δpref ∈ [−0.115, −0.105]

and also the following reference values are given in [24]
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Figure 1. The velocity at t = 2, 4, 5, 6, 7, and 8 of Algorithm 1.1, with N = 1 and χ = Δt =
0.005.

Table 5. Drag/lift coefficients and pressure difference for N = 1 deconvolution.

Relax. coeff. Δt t(cd,max) cd,max t(cl,max) cl,max Δp(8 s)

0.02 3.94 2.81978 6.14 0.320677 −0.109436

χ = 0 0.01 3.93 2.75983 6.02 0.366276 −0.0996473

0.005 3.925 2.66524 6.03 0.325459 −0.098704

0.02 3.94 2.94149 6.12 0.360383 −0.106385

χ = Δt 0.01 3.93 2.94231 5.96 0.454216 −0.108634

0.005 3.935 2.94268 5.925 0.477011 −0.111908

t(cref
d,max) = 3.93625, cref

d,max = 2.950921575

t(cref
l,max) = 5.693125, cref

l,max = 0.47795

Δpref(8s) = −0.1116

Table 5 shows that using a regularization operator in Step 1.1 of Algorithm 1.1 works well in combina-
tion with the BDF2 time discretization in Algorithm 1.1. It computes the drag and lift coefficients, and the
pressure difference, within the benchmark intervals, and illustrates the positive role of using relaxation in the
approximation algorithm.
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Figure 2. The development of cd(t), cl(t) and Δp(t) of Algorithm 1.1 with N = 1 and χ =
Δt = 0.005.

5.3. Poisseuille flow

A discussion of this problem can be found in Canuto, Hussaini, Quarteroni, and Zang [9]. The goal of this test
is to test the contribution of the BDF2 discretization in Step 1.1 by comparing the sensitivity to perturbations
over longer time intervals and higher Re of Algorithm 1.1 to Algorithm 1.1 with Step 1.1 replaced by the CN
method, studied in [17]. To do so we initialize with a linearly stable equilibrium solution and take many steps
with a large Δt to check for deviations from equilibrium. At each time step there are small perturbations due
to discretization effects. Thus we test if this linearly stable flow remains linearly stable under CN versus BDF2
methods used in Step 1.1 of Algorithm 1.1.

The results show that BDF2 increases the stability of Algorithm 1.1 over the CN time discretization. In
Ω = (−1, 1)× (−0.5, 0.5), a parabolic velocity v(x, t) = 0 and u(x, y, t) = (y + 0.5) (0.5− y) is prescribed at the
inflow and outflow. No-slip boundary conditions are given at the top and bottom. The exact solution is well
known to be v(x, y) = 0, u(x, y) = (y + 0.5) (0.5 − y), p(x, y) = −2νx, and we take it as our initial condition.
We take the viscosity ν = 10−5, filter width δ = 0.1, order of deconvolution N = 1 and relaxation parameter
χ = �t. A uniform mesh consisting of triangles with 1953 number of degrees of freedom was used.

For time step �t = 1, the results of the velocity fields after 123 time steps show that Algorithm 1.1 is both
more accurate and less sensitive to perturbation. At T = 123 using CN in Algorithm 1.1 the flow lost its features,
see Figure 3, while the velocity field computed by the Algorithm 1.1 is properly simulated even at T = 200, see
Figure 4.

Relative velocity errors for the given initial condition with time step �t = 0.5 and 1 and relative velocity
errors for a perturbed initial condition v(x, y) = 0, u(x, y) = (y + 0.5)(0.5 − y) + 0.001 sin(4πy) with time step
�t = 0.5 and 1 are given in Figures 5 and 6 from left to right, respectively.

The velocity errors from the CN method in Step 1.1 are larger, while the ones with BDF2 method in 1.1 are
smaller, especially in the left plot of Figure 5, where the error curve for BDF2 is very close to the horizontal-axis,
and thus hard to observe on the graph.

5.4. Shear layer roll-up problem

This is a benchmark problem studied in [18]. The domain is Ω = [0, 1]2 the unit square, initial conditions are

u = tanh(ρ(y − 0.25)) for y ≤ 0.5, u = tanh(ρ(0.75 − y)) for y > 0.5, v = 0.05 sin(2πx),
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Figure 3. Incorrect velocity field when Step 1.1 uses Crank−Nicolson.

Figure 4. Correct velocity field when Step 1.1 uses BDF2.

and doubly-periodic boundary conditions are applied on Ω. The time step �t = 0.002, Reynolds number
Re = 40 000 (i.e. ν = 1/40 000), Taylor−Hood finite elements, and uniform triangular mesh, were used in
all cases. The relaxation parameter χ = �t, while the filter radius δ = 1/m, where m denotes the number
of subintervals on each side of the square domain Ω. We present the true unfiltered vorticity solution (i.e.
Navier-Stokes solution) obtained on a fine mesh with m = 170, then, the rest of the plots in Figure 7 are on a
coarse mesh with m = 90. All the presented plots are at the final time T = 1.2. These vorticity plots show the
advantage of applying filtering/deconvolution and relaxation step (i.e. steps 2a and 2b of the Algorithm 1.1) in
comparison with no filtering, i.e. Navier-Stokes solution that has lots of spurious vortices on the coarse mesh.

5.5. Rotating flow between offset cylinders

Finally we compare four options (CN without Step 1.1, BDF2 without Step 1.1, BDF2 with N=1 deconvo-
lutions in Step 1.1 and BDF2 with N = 2 deconvolutions in Step 1.1) on a problem motivated by the classic
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Figure 5. Relative velocity error vs. time �t = 0.5, �t = 1. From left to right, CN: large, and
BDF2: error close to x-axis (very small).

Figure 6. Relative velocity error vs. time for �t = 0.5, �t = 1 with perturbed initial condition.

problem of flow between rotating cylinders. We take the domain to be a disk with a smaller, off center, obstacle
inside. Let r1 = 1, r2 = 0.1, c = (c1, c2) = (1

2 , 0),

Ω = {(x, y) : x2 + y2 ≤ r2
1 and (x − c1)2 + (y − c2)2 ≥ r2

2}.
The boundary conditions are no slip, Re = 250 and the flow is driven by a body force (rather than rotation of
either cylinder)

f(x, y) = (−2y, 2x)

which induces a counter clockwise rotation. The flow rotates about (0, 0), interacts with the immersed cylinder
(x − c1)2 + (y − c2)2 ≤ r2

2 which induces a von Kármán vortex street. This vortex street rotates and itself
re-interacts with the immersed cylinder, creating more complex structures. This flow also contains complex
structures in the boundary layer near x2 + y2 = r2

1 which are not resolved on the mesh. (To resolve these would
require a mesh with at least 3 points within O(1/Re) = O(1/250) of each wall.) The mesh is parameterized by
the number of mesh points around the outer cylinder (n = 40 and 60) and n

4 mesh points around the immersed
cylinder, and extended to all of Ω as a Delaunay mesh. 5

5An expanded version of this report is available at http://www.mathematics.pitt.edu/research/technical-reports.
phphttp://www.mathematics.pitt.edu/research/technical-reports.php containing plots of the n = 20 case and plots of en-
ergy vs. time for n = 40 and 60.

http://www.mathematics.pitt.edu/research/technical-reports.php
http://www.mathematics.pitt.edu/research/technical-reports.php
http://www.mathematics.pitt.edu/research/technical-reports.php
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(a) NSE, fine mesh (b) NSE, coarse mesh

(c) deconvolution N = 0, χ = �t coarse mesh (d) deconvolution N = 1, χ = �t, coarse

Figure 7. Vorticity for different settings, at Re = 40 000, and T = 1.2.

We give plots over 0 ≤ t ≤ 40 of the following quantities:

A(t) := ‖x · u‖ .= angular momentum,

‖curlu‖ = RMS vorticity,

‖gradu‖2 =
1
ν
∗ enstrophy.

All three are inviscid invariants of 2d flows without boundaries and are interesting for rotational flows. We
selected χ = Δt = 0.01. Our observations on this interesting flow are preliminary, not intended to describe flow
details and only intended to test the effects of Step 1.1 on the global balance in three important quantities.
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Figure 8. Angular momentum for CN (top left), BDF2 (top right), BDF2 with N = 1
(bottom left), and BDF2 with N = 2 (bottom right) calculated with Re = 250, n = 40 mesh
points around outer cylinder.

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40

Figure 9. ‖gradu‖2, for CN (top left), BDF2 (top right), BDF2 with N = 1 (bottom left), and
BDF2 with N = 2 (bottom right) calculated with Re = 250, n = 40 mesh points around outer
cylinder.

Our goal here is to test if Step 1.1 and the BDF2 time discretization over diffuse rotational quantities in
this flow. We begin with the unregularized, centered, conservative Crank−Nicolson (CN) time discretization
and meshes with n = 20, 40, 60 points around the outer cylinder. For the step n = 20 (not shown) to n = 40
(A(t) in Fig. 8, enstrophy in Fig. 9), the angular momentum, enstrophy and total (RMS) vorticity increased
by 40% to 50%. For n = 40 to n = 60, the increase in each was less than 5%. We take this as evidence that
the n = 40 (and n = 60) mesh is adequate to represent the global, net amount of each of these rotational
quantities. Following this, we repeated the n = 40 and n = 60 tests with BDF2 with Step 1.1 regularization
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Figure 10. Vorticity for CN (top left), BDF2 (top right), BDF2 with N = 1 (bottom left),
and BDF2 with N = 2 (bottom right) calculated with Re = 250, n = 40 mesh points around
outer cylinder.
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Figure 11. Angular momentum, for CN (top left), BDF2 (top right), BDF2 with N = 1
(bottom left), and BDF2 with N = 2 (bottom right) calculated with Re = 250, n = 60 mesh
points around outer cylinder.

and without regularization. The results (RMS vorticity in Figs. 10, 13, and enstrophy in Figs. 9 and 12) of the
global, net amounts of these same quantities are consistent to the n = 40 and n = 60 CN tests. (The details
are not identical. For example, for BDF2 plus regularization, enstrophy increased by 2% from the n = 40 to
n = 60 meshes.) This is evidence that neither BDF2 nor the regularization in Step 1.1 over diffused rotational
quantities. Further, without regularization, both CN and BDF2 show initial transients in all quantities (see
Figs. 8 through 13) which are nearly eliminated when Step 1.1 is included.
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Figure 12. ‖gradu‖2 for CN (top left), BDF2 (top right), BDF2 with N = 1 (bottom left),
and BDF2 with N = 2 (bottom right) calculated with Re = 250, n = 60 mesh points around
outer cylinder.
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Figure 13. Vorticity for CN (top left), BDF2 (top right), BDF2 with N = 1 (bottom left),
and BDF2 with N = 2 (bottom right) calculated with Re = 250, n = 60 mesh points around
outer cylinder.

6. Conclusions

The BDF2 time discretization is second order, A-stable and has stability properties that are superior to those
of Crank−Nicolson for underresolved flow simulations. We have seen that modular stabilization by filter, then
stabilize works well in combination with BDF2. The numerical experiments confirm the stability and convergence
theory and show that this combination is much better than unstabilized methods and somewhat better than
Crank−Nicolson plus the same stabilization.
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The correct scaling of the relaxation parameter χ seems to be χ = O(Δt). However, the precise determination
of χ step by step so as to match numerical dissipation to that occurring on unresolved scales is an important
open problem.
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