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CONVERGENCE ANALYSIS OF THE LOWEST ORDER WEAKLY PENALIZED
ADAPTIVE DISCONTINUOUS GALERKIN METHODS
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Abstract. In this article, we prove convergence of the weakly penalized adaptive discontinuous
Galerkin methods. Unlike other works, we derive the contraction property for various discontinuous
Galerkin methods only assuming the stabilizing parameters are large enough to stabilize the method.
A central idea in the analysis is to construct an auxiliary solution from the discontinuous Galerkin
solution by a simple post processing. Based on the auxiliary solution, we define the adaptive algorithm
which guides to the convergence of adaptive discontinuous Galerkin methods.
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1. Introduction

The design of adaptive finite element methods based on reliable and efficient a posteriori error estimates has
been the subject in the past [2, 6, 7, 13, 32]. The adaptive finite element method consists typically the following
successive loops of the sequence

SOLVE → ESTIMATE → MARK → REFINE.

Convergence analysis of adaptive finite element methods has been initiated by Dörfler [24] who introduced
an important marking strategy. Subsequently important theoretical developments have been made by many
researchers. We refer to [20,29,30] for the work on conforming finite element methods, to [19,21] for the results
on mixed finite element methods, to [9, 18] for the work on nonconforming methods and finally to [12, 26, 27]
for discontinuous Galerkin methods. On the other hand, the optimality of adaptive finite element method is
derived in [11] for two dimensional problems and in [31] for high dimensional problems.

In this article, we focus on the low order adaptive discontinuous Galerkin (DG) methods. Karakashian and
Pascal [27] were the first to prove contraction properties for the symmetric interior penalty Galerkin (SIPG)
method. Therein, the authors have proved the contraction property for SIPG method under an interior node
property. Subsequently the interior node property is relaxed independently in the works of [12,26]. Moreover the
quasi-optimal convergence rates are derived in [12]. However, the common issue with the three articles [12,26,27]
is that the contraction property is derived assuming the penalty parameters are sufficiently large (i.e. larger than
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what is needed for stability of the method). In this article, we prove contraction properties for various symmetric
weakly penalized discontinuous Galerkin methods only assuming that the penalty parameters are large enough
to guarantee stability of the method. For example, in the case of the LDG method the stabilizing parameters
only have to be positive. This is achieved by a new marking strategy that uses an auxiliary solution obtained by
post-processing the discontinuous Galerkin solution which turns out to be the Crouzeix–Raviart non-conforming
approximation [23]. In fact, we borrow the marking strategies [9,18] that have been developed for non-conforming
methods and show that these are enough to contract the error of the entire DG approximation. We are able to do
this by using a result of Burman and Stamm [17] which shows that weakly penalized DG approximation can be
written as the Crouzeix–Raviart approximation plus a discontinuous part with zero averages across interfaces.
We show that the discontinuous part is controlled by data oscillations.

The weakly penalized method differ from classic DG methods in the fact that only the lower moments of the
jumps are penalized on interfaces of the triangulation. For example, for piecewise linear elements and the SIPG
method the penalty term looks like

∑
e∈Eh

α

he

∫
e

[[wh]][[vh]].

In contrast, in the weakly penalized case, one uses the term

∑
e∈Eh

α

he

∫
e

Πe

(
[[wh]]

)
Πe

(
[[vh]]

)

where we use the average of the jump Πe

(
[[wh]]

)
= 1

he

∫
e[[wh]]. Note that this is equivalent to using the midpoint

rule to evaluate the integrals
∫

e
[[wh]][[vh]], so the weakly penalized method is cheaper to implement. Weak

penalization has been used in weakly over penalized methods [14, 15]. Moreover, the weakly penalized DG
method considered here was already analyzed by Burman and Stamm [17] and by Ayuso and Zikatonov [5].
Burman and Stamm [17] gave an a priori error analysis and their results are crucial in our analysis. Ayuso and
Zikatanov [5] study the convergence of a multigrid algorithm for this method.

We consider the following model problem of finding u ∈ H1
0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω), (1.1)

where

a(w, v) = (∇w,∇v) ∀w, v ∈ H1
0 (Ω), (1.2)

and (·, ·) denotes the L2(Ω) inner product. We assume that Ω ⊂ R
2 is a bounded domain with polygonal

boundary ∂Ω and f ∈ L2(Ω).

The rest of the article is organized as follows. In Section 2, we introduce the notation and preliminary results.
In Section 3, we recall the DG methods and corresponding stability results. In Section 4, we construct an
auxiliary solution by averaging the DG solution and there in we derive some useful properties and results for
the auxiliary solution. Section 5 is devoted to the convergence analysis of DG methods. Finally we conclude the
article in Section 6.
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2. Notation and preliminaries

The following notation will be used throughout the article:

Th = a face to face, shape regular simplicial triangulations of Ω

T = a triangle of Th hT = diameter of T

E i
h = set of all interior edges of Th

Eb
h = set of all boundary edges of Th

Eh = E i
h ∪ Eb

h

MT = set of midpoints of the edges of T

Mi
h = set of all midpoints of the edges in E i

h

Mb
h = set of all midpoints of the edges in Eb

h

Mh = Mi
h ∪Mb

h

he = length of the edge e ∈ Eh

∇h = piecewise (element-wise) gradient
Pm(T ) = space of polynomials of degree less than or equal to m ≥ 0 and defined on T.

The discontinuous finite element space is defined by

Vh = {vh ∈ L2(Ω) : vh|T ∈ P1(T )}.

In the analysis below, we need the following Crouzeix–Raviart nonconforming space [23]:

VCR = {vh ∈ Vh :
∫

e

[[vh]] ds = 0 ∀e ∈ Eh},

and the following vector valued discrete space:

Wh = {wh ∈ L2(Ω)2 : wh|T ∈ [P0(T )]2}.

Define a broken Sobolev space

H1(Ω, Th) = {v ∈ L2(Ω) : vT = v|T ∈ H1(T ) ∀ T ∈ Th}.

For the DG methods, we require to define jump and mean of discontinuous functions. For any e ∈ E i
h, there

are two triangles T+ and T− such that e = ∂T+ ∩ ∂T−. Let n− be the unit normal of e pointing from T− to T+,
and n+ = −n−. (cf. Fig. 1). For any v ∈ H1(Ω, Th), we define the jump and mean of v on e by

[[v]] = v−n− + v+n+, and {{v}} =
1
2
(v− + v+), respectively,

where v± = v
∣∣
T±

. Similarly define for w ∈ H1(Ω, Th)2 the jump and mean of w on e ∈ E i
h by

[[w]] = w− · n− + w+ · n+, and {{w}} =
1
2
(w− + w+), respectively,

where w± = w|T± .
For any edge e ∈ Eb

h, there is a triangle T ∈ Th such that e = ∂T ∩ ∂Ω. Let ne be the unit normal of e that
points outside T . For any v ∈ H1(T ), we set on e ∈ Eb

h

[[v]] = vne and {{v}} = v,
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Figure 1. Two neighboring triangles T− and T+ that share the edge e = ∂T− ∩ ∂T+ with
initial node A and end node B and unit normal ne. The orientation of ne = n− = −n+ equals
the outer normal of T−, and hence, points into T+.

and for w ∈ H1(T )2,

[[w]] = w · ne, and {{w}} = w.

The discontinuous Galerkin methods use a lifting operator r : L2(Eh)2 → Wh defined by∫
Ω

r(w) · τ dx = −
∑
e∈Eh

∫
e

w · {{τ}} ds ∀τ ∈ Wh, (2.1)

and a local analogue re : L2(e)2 → Wh defined by∫
Ω

re(w) · τ dx = −
∫

e

w · {{τ}} ds ∀τ ∈ Wh. (2.2)

Let Πe : L2(e) → R be the L2-projection onto constants defined by

Πe(v) =
1
he

∫
e

v ds. (2.3)

3. Discontinuous Galerkin methods

We consider four stable and symmetric weakly penalized discontinuous Galerkin Methods namely, the IP (or
SIPG method) method [3, 25, 33], the LDG method [4, 22], the method by Brezzi et al. [16] and the method
by Bassi et al. [8]. The original articles have considered the formulations using the penalty term with strong
jumps, we replace them here with weak jumps. The concept of stabilizing the DG formulation by weak jumps
was introduced in [14, 15].

The bilinear form for the IP method [3, 25, 33] is defined by

Ah(wh, vh) =
∑

T∈Th

∫
T

∇wh · ∇vh dx −
∑
e∈Eh

∫
e

{{∇wh}}[[vh]] ds

−
∑
e∈Eh

∫
e

{{∇vh}}[[wh]] ds +
∑
e∈Eh

α

he

∫
e

Πe

(
[[wh]]

)
Πe

(
[[vh]]

)
. (3.1)

where α > 0 is the stabilizing parameter.
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Table 1. Conditions for α.

Method Condition on α

IP Method [3,25,33] α satisfies (3.6)
LDG Method [4,22] α > 0

Brezzi et al. [16] α > 0
Bassi et al. [8] α > 3

The bilinear form for the LDG method [4, 22] is defined by

Ah(wh, vh) =
∑

T∈Th

∫
T

∇wh · ∇vh dx −
∑
e∈Eh

∫
e

{{∇wh}}[[vh]] ds −
∑
e∈Eh

∫
e

{{∇vh}}[[wh]] ds

+
∫

Ω

r(Πe([[wh]]))r(Πe([[vh]])) +
∑
e∈Eh

α

he

∫
e

Πe

(
[[wh]]

)
Πe

(
[[vh]]

)
. (3.2)

The bilinear form for the Brezzi et al. method [16] is defined by

Ah(wh, vh) =
∑

T∈Th

∫
T

∇wh · ∇vh dx −
∑
e∈Eh

∫
e

{{∇wh}}[[vh]] ds −
∑
e∈Eh

∫
e

{{∇vh}}[[wh]] ds

+
∫

Ω

r(Πe([[wh]]))r(Πe([[vh]])) +
∑
e∈Eh

α

∫
Ω

re

(
Πe([[wh]])

)
re

(
Πe([[vh]])

)
. (3.3)

The bilinear form for the Bassi et al. method [8] is defined by

Ah(wh, vh) =
∑

T∈Th

∫
T

∇wh · ∇vh dx −
∑
e∈Eh

∫
e

{{∇wh}}[[vh]] ds −
∑
e∈Eh

∫
e

{{∇vh}}[[wh]] ds

+
∑
e∈Eh

α

∫
Ω

re

(
Πe([[wh]])

)
re

(
Πe([[vh]])

)
. (3.4)

The DG method is to find uh ∈ Vh such that

Ah(uh, vh) = (f, vh) ∀vh ∈ Vh, (3.5)

where Ah is any of the bilinear form defined in (3.1)–(3.4).
It is proved in Lemma 1, [1] that the IP method is stable for any α satisfying

α > 4 max
T∈Th

ρ(ST ), (3.6)

where ρ(ST ) is the spectral radius of the local stiffness matrix [ST ]mn = (∇hλm,∇hλn), where λm’s are barycen-
tric coordinates of T . In Table 1, we present the condition on α for the above DG methods.

Define the mesh dependent norm

‖v‖2
1,h =

∑
T∈Th

∫
T

|∇v|2 dx +
∑
e∈Eh

Πe([[v]])2 ∀v ∈ H1(Ω, Th). (3.7)

The following lemma on the stability of the DG methods (3.5) is well-known [4].

Lemma 3.1. Assume that α satisfies the conditions in Table 1. Then, it holds that

C‖vh‖2
1,h ≤ Ah(vh, vh) ∀vh ∈ Vh.
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4. An auxiliary solution by post processing

Here we collect some results of the DG approximation that show how it is related to the Crouzeix–Raviart
approximation. Lemmas 4.1, 4.3, 4.5, were proved by Burman and Stamm [17].

Let uh ∈ Vh be the solution of any of the DG methods (3.5). Define an auxiliary solution u∗
h ∈ VCR by the

following:

u∗
h(me) :=

⎧⎨
⎩

{{uh}}(me), if me ∈ Mi
h

0, if me ∈ Mb
h.

(4.1)

In the following lemma, we establish an integral relation for uh and u∗
h.

Lemma 4.1. For any vh ∈ Vh, it holds that

∑
T∈Th

∫
T

∇uh · ∇vh dx −
∑
e∈Eh

∫
e

{{∇vh}}[[uh]] ds =
∑

T∈Th

∫
T

∇u∗
h · ∇vh ds. (4.2)

Proof. Using integration by parts, we find

∑
T∈Th

∫
T

∇(uh − u∗
h) · ∇vh dx =

∑
e∈Eh

∫
e

{{∇vh}}[[uh − u∗
h]] ds +

∑
e∈Ei

h

∫
e

[[∇vh]]{{uh − u∗
h}} ds.

The definition of u∗
h implies

∑
e∈Ei

h

∫
e

[[∇vh]]{{uh − u∗
h}} ds = 0,

∑
e∈Eh

∫
e

{{∇vh}}[[u∗
h]] ds = 0.

This completes the proof. �

In the following lemma, we estimate the error between uh and u∗
h.

Lemma 4.2. It holds that∑
T∈Th

(
h−2

T ‖uh − u∗
h‖2

L2(T ) + ‖∇(uh − u∗
h)‖2

L2(T )

)
≤ C

∑
e∈Eh

Πe

(
[[uh]]

)2

Proof. The proof is an easy consequence of the following estimate: for any vh ∈ P1(T ), it holds that

‖vh‖2
L2(T ) ≤ C|T |

∑
me∈MT

vh(me)2. (4.3)

The following identity is useful in our subsequent analysis. �

Lemma 4.3. It holds that

Ah(uh − u∗
h, uh − u∗

h) = (f, uh − u∗
h)

Proof. Using (3.5), we find

Ah(uh − u∗
h, uh − u∗

h) − (f, uh − u∗
h) = −Ah(u∗

h, uh − u∗
h)



CONVERGENCE ANALYSIS OF THE LOWEST ORDER WEAKLY PENALIZED ADAPTIVE DG METHODS 759

It is remaining to show that Ah(u∗
h, uh − u∗

h) = 0. Using the fact that Πe([[u∗
h]]) = 0 for all e ∈ Eh, integration

by parts and (4.1), we obtain

Ah(u∗
h, uh − u∗

h) =
∑

T∈Th

∫
T

∇u∗
h · ∇(uh − u∗

h)dx −
∑
e∈Eh

∫
e

{{∇u∗
h}}[[uh − u∗

h]]ds

=
∑
e∈Ei

h

∫
e

[[∇u∗
h]]{{uh − u∗

h}}ds

= 0.

This completes the proof. �

In the following lemma, we estimate the error u∗
h − uh by volume residual. It is crucial that the u∗

h − uh is
bounded only by an oscillation term for the contraction property to hold. Our bound is different from the bound
given by Burman and Stamm [17].

Lemma 4.4. Assume that α satisfies the conditions in Table 1. Then there exists some C∗ > 0 such that

‖u∗
h − uh‖2

1,h ≤ C∗
∑

T∈Th

h2
T ‖f‖2

L2(T ).

Proof. Using Lemma 3.1, Lemma 4.3, Cauchy–Schwarz inequality, Lemma 4.2 and Young’s inequality, we find

C‖u∗
h − uh‖1,h ≤ Ah(u∗

h − uh, u∗
h − uh) = (f, u∗

h − uh)

≤
(∑

T∈Th

h2
T ‖f‖2

L2(T )

)1/2(∑
T∈Th

h−2
T ‖u∗

h − uh‖2
L2(T )

)1/2

≤ C

(∑
T∈Th

h2
T ‖f‖2

L2(T )

)1/2(∑
e∈Eh

Πe([[uh]])2
)1/2

≤ C

ε

(∑
T∈Th

h2
T ‖f‖2

L2(T )

)
+ ε‖u∗

h − uh‖2
1,h.

We complete the proof by choosing ε sufficiently small. �

Lemma 4.5. The auxiliary solution u∗
h satisfies

(∇hu∗
h,∇hvh) = (f, vh) ∀vh ∈ VCR,

i.e, u∗
h is the solution of the classical nonconforming method [23].

Proof. Using (3.5) for any vh ∈ VCR, we find

∑
T∈Th

∫
T

∇uh · ∇vh dx −
∑
e∈Eh

∫
e

{{∇vh}}[[uh]] ds = (f, vh).

Then using (4.2), we complete the proof. �
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The following a posteriori error estimator is an easy consequence of Lemma 4.4 and the results in [18]:

Lemma 4.6. Let u and uh be the solutions of (1.1) and (3.5). Let u∗
h be the auxiliary solution defined in (4.1).

Then it holds that

‖∇h(u − uh)‖L2(Ω) ≤ C

⎛
⎝∑

T∈Th

h2
T ‖f‖2

L2(T ) +
∑
e∈Ei

h

∫
e

he[[∂u∗
h/∂s]]2 ds

⎞
⎠

1/2

,

where ∂/∂s denotes the tangential derivative along the edge e.

Proof. First using triangle inequality

‖∇h(u − uh)‖L2(Ω) ≤ ‖∇h(u − u∗
h)‖L2(Ω) + ‖∇h(u∗

h − uh)‖L2(Ω),

and then using Lemma 4.4 and the results in [18], we complete the proof. �

5. Convergence of adaptive DG methods

Let uh ∈ Vh be the solution of any of the DG method (3.5) and let u∗
h ∈ VCR be the auxiliary solution

constructed in (4.1). Using Lemma 4.5, recall that u∗
h is the solution of the Crouzeix–Raviart nonconforming

method and Lemma 4.4 implies that there exists a positive constant C∗ > 0 such that

‖u∗
h − uh‖2

h +
∑
e∈Eh

Πe([[uh]])2 ≤ C∗‖hf‖2,

where hereafter ‖ · ‖h = ‖∇h · ‖ and
‖hf‖2 =

∑
T∈Th

h2
T ‖f‖2

L2(T ).

Let Th be the conforming refinement of TH obtained by refining the all the marked elements in TH that are
marked in the step MARK. The functions with h (resp. H) suffix corresponds to the mesh Th (resp. TH). Below,
we consider separately two different marking strategies that are introduced by Carstensen and Hoppe [18] and
by Becker et al. [9] and prove the error reduction for both the algorithms separately.
Marking by Carstensen and Hoppe [18]:

Given the universal constants with 0 < Θ, ρ2 < 1, the outcome of MARK is a set of edges M ⊂ EH such that

Θ
∑

e∈Ei
H

∫
e

He[[∂u∗
H/∂s]]2 ds ≤

∑
e∈M

∫
e

He[[∂u∗
H/∂s]]2 ds. (5.1)

The refined regular triangulation Th from REFINE generated by refining at least all the edges in M (and possibly
further edges to avoid hanging nodes) with the new mesh-size h < H is supposed to satisfy

ρ2‖Hf‖2
L2(Ω) ≤ ‖hf‖2

L2(Ω). (5.2)

The results in Carstensen and Hoppe ([18], Thm. 1.1), imply that there exists 0 < ρ1 < 1 and C1 > 0 such that

‖u − u∗
h‖2

h ≤ ρ1‖u − u∗
H‖2

H + C1‖Hf‖2, (5.3)

‖hf‖2 ≤ ρ2‖Hf‖2. (5.4)

The results in (5.3)–(5.4) imply the following Q-linear convergence ([18], line 6 on page 254):(
‖u − u∗

h‖2
h + β‖hf‖2

)
≤ max{ρ1, (1 + ρ2)/2}

(
‖u − u∗

H‖2
H + β‖Hf‖2

)
where β = 2C1/(1 − ρ2).

In the following theorem, we derive the contraction property for the adaptive DG methods (3.5) using the
marking strategy by Carstensen and Hoppe (5.1).
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Theorem 5.1. Let the marking be done by (5.1). Then there exists γ > 0 and 0 < ρ∗ < 1 such that

‖u − uh‖2
h + γ‖hf‖2 ≤ ρ∗

(
‖u − uH‖2

H + γ‖Hf‖2
)
.

Proof. Let ε > 0. Using triangle inequality and Young’s inequality, we find

‖u − uh‖2
h + γ‖hf‖2 ≤ (1 + ε)‖u − u∗

h‖2
h + (1 + 1/ε)‖uh − u∗

h‖2
h + γ‖hf‖2.

Using Lemma 4.4, we obtain

‖u − uh‖2
h + γ‖hf‖2 ≤ (1 + ε)‖u − u∗

h‖2
h +

(
C∗(1 + 1/ε) + γ

)
‖hf‖2.

Using the error reduction for u∗
h (5.3), we find

‖u − uh‖2
h + γ‖hf‖2 ≤ (1 + ε)ρ1

(
‖u − u∗

H‖2
H + C1‖Hf‖2

)
+
(
C∗(1 + 1/ε) + γ

)
‖hf‖2.

Again using triangle inequality, Young’s inequality and lemma 4.4, we find

‖u − uh‖2
h + γ‖hf‖2 ≤ (1 + ε)ρ1

(
(1 + ε)‖u − uH‖2

H + C∗(1 + 1/ε)‖Hf‖2 + C1‖Hf‖2
)

+
(
C∗(1 + 1/ε) + γ

)
‖hf‖2.

Therefore

‖u − uh‖2
h + γ‖hf‖2 ≤ (1 + ε)2ρ1‖u − uH‖2

H + (1 + ε)ρ1

(
C∗(1 + 1/ε) + C1

)
‖Hf‖2

+
(
C∗(1 + 1/ε) + γ

)
‖hf‖2.

We now use (5.4) and find

‖u − uh‖2
h + γ‖hf‖2 ≤ (1 + ε)2ρ1‖u − uH‖2

H + (1 + ε)ρ1

(
C∗(1 + 1/ε) + C1

)
‖Hf‖2

+
(
C∗(1 + 1/ε) + γ

)
ρ2‖Hf‖2.

By simplifying

‖u − uh‖2
h + γ‖hf‖2 ≤ (1 + ε)2ρ1‖u − uH‖2

H

+
[
(1 + ε)ρ1

(
C∗(1 + 1/ε) + C1

)
+
(
C∗(1 + 1/ε)

)
ρ2 + γρ2

]
‖Hf‖2.

Choosing γ sufficiently large such that

[
(1 + ε)ρ1

(
C∗(1 + 1/ε) + C1

)
+
(
C∗(1 + 1/ε)

)
ρ2 + γρ2

]
≤ γ(1 + ρ2)/2.

That is by choosing γ such that

2
[
(1 + ε)ρ1

(
C∗(1 + 1/ε) + C1

)
+
(
C∗(1 + 1/ε)

)
ρ2

]
/(1 − ρ2) ≤ γ,

we complete the proof by ρ∗ = min{(1 + ε)2ρ1, (1 + ρ2)/2} and ε such that (1 + ε)2ρ1 < 1. �

Remark 5.2. The marking strategy by Carstensen and Hoppe in (5.1)–(5.2) is improved by Becker, Mao and
Shi [9] so that the optimal rate of convergence can be derived. Below, we prove the contraction property for DG
methods using Becker, Mao and Shi marking strategy.
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Marking by Becker, Mao and Shi [9]: Choose the parameters 0 < θ, σ < 1 and γ. Then the out come of
MARK step is the set of edges or elements according to the following:
If ‖Hf‖2

L2(Ω) ≤ γ
∑

e∈Ei
H

∫
e
He[[∂u∗

H/∂s]]2 ds, then mark a subset M ⊂ E i
h with minimal cardinality such that

θ
∑

e∈Ei
H

∫
e

He[[∂u∗
H/∂s]]2 ds ≤

∑
e∈M

∫
e

He[[∂u∗
H/∂s]]2 ds, (5.5)

else find a subset M1 ⊂ TH with minimal cardinality such that

σ
∑

T∈TH

H2
T ‖f‖2

L2(T ) ≤
∑

T∈M1

H2
T ‖f‖2

L2(T ). (5.6)

The result by Becker, Mao and Shi [9] is that there exist 0 < ρ < 1 and β∗ > 0 such that

‖u − u∗
h‖2

h + β‖hf‖2 ≤ ρ
(
‖u − u∗

H‖2
H + β‖Hf‖2

)
, (5.7)

for all β such that β ≥ β∗. Although, the result in Becker, Mao and Shi ([9], Thm. 4.1) states that this holds
for a β sufficiently large a careful inspection of their proof shows that such an inequality holds for all β > β∗

with β∗ sufficiently large [10].
Below, we prove the convergence of adaptive DG methods under the Becker, Mao and Shi marking (5.5)–(5.6).

Theorem 5.3. Suppose that the marking is done by (5.5)–(5.6). Then there exists γ > 0 and 0 < ρ∗ < 1 such
that

‖u − uh‖2
h + γ‖hf‖2 ≤ ρ∗

(
‖u − uH‖2

H + γ‖Hf‖2
)
.

Proof. Let ε > 0. Using triangle inequality and Young’s inequality, we find

‖u − uh‖2
h + γ‖hf‖2 ≤ (1 + ε)‖u − u∗

h‖2
h + (1 + 1/ε)‖uh − u∗

h‖2
h + γ‖hf‖2.

Using Lemma 4.4, we obtain

‖u − uh‖2
h + γ‖hf‖2 ≤ (1 + ε)‖u − u∗

h‖2
h +

(
C∗(1 + 1/ε) + γ

)
‖hf‖2,

or equivalently

‖u − uh‖2
h + γ‖hf‖2 ≤ (1 + ε)

(
‖u − u∗

h‖2
h +

(
C∗(1 + 1/ε) + γ

)
/(1 + ε)‖hf‖2

)
.

Assume that γ is sufficiently large such that(
C∗(1 + 1/ε) + γ

)
/(1 + ε) =: β ≥ β∗. (5.8)

Then, using (5.7) we arrive at

‖u − uh‖2
h + γ‖hf‖2 ≤ (1 + ε)ρ

(
‖u − u∗

H‖2
H + β‖Hf‖2

)
.

Again using triangle inequality and Young’s inequality and Lemma 4.4, we find

‖u − uh‖2
h + γ‖hf‖2 ≤ (1 + ε)ρ

[
(1 + ε)‖u − uH‖2

H + C∗(1 + 1/ε)‖Hf‖2 + β‖Hf‖2
]
.

Therefore

‖u − uh‖2
h + γ‖hf‖2 ≤ (1 + ε)2ρ‖u − uH‖2

H + (1 + ε)ρ
(
C∗(1 + 1/ε) + β

)
‖Hf‖2.
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First note that we can choose ε sufficiently small such that (1 + ε)2ρ < 1. Then the proof will be completed if
we can show that there is some 0 < ρ2 < 1 such that

(1 + ε)ρ
(
C∗(1 + 1/ε) + β

)
≤ ρ2γ, (5.9)

with ρ∗ = min{(1 + ε)2ρ, ρ2}.
Using (5.8) in (5.9),

(1 + ε)ρC∗(1 + 1/ε) +
(1 + ε)ρC∗(1 + 1/ε)

(1 + ε)
+ ργ ≤ ρ2γ,

equivalently

(1 + ε)ρC∗(1 + 1/ε) +
(1 + ε)ρC∗(1 + 1/ε)

(1 + ε)
≤ (ρ2 − ρ)γ.

The proof is completed by choosing ρ2 such that ρ < ρ2 < 1 and γ sufficiently large. �

Remark 5.4. Using the triangle inequality and Lemma 4.4, we find

‖u − uh‖h ≤ ‖u − u∗
h‖h + ‖u∗

h − uh‖h

≤ ‖u − u∗
h‖h + C‖hf‖.

Therefore the adaptive DG methods converge at least at the rate of adaptive nonconforming method. It was
shown that the adaptive algorithm of Becker, Mao and Shi [9] has optimal rate of convergence for the noncon-
forming method.

6. Conclusions and future work

In this article, we have proved the contraction property for various symmetric discontinuous Galerkin (DG)
methods. Unlike in the existing works for strongly penalized DG methods, we prove the convergence of weakly
penalized adaptive DG methods without further assuming the stabilizing parameter is larger than what is
required for stability. Although the analysis in this article is restricted to the lowest order case, we hope that
similar ideas may be used in higher order cases. We remark that the convergence analysis of adaptive DG
methods using strong jumps is still open when the stabilizing parameter is chosen just according to the stability
of the method.

We would like to note that different markings can be used for which the contraction for the non-conforming
method holds. For example, we can use the marking by Mao et al. [28].

In a future work we will consider the more general equation

∇(A∇u) + b · ∇u + c u = f.

In this case the corresponding post-processed solution u∗
h will not be exactly the corresponding Crouzeix–Raviart

solution. Instead, it satisfies a perturbed problem where the perturbation can be controlled by volume residuals.
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