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LOCAL DISCONTINUOUS GALERKIN METHODS FOR FRACTIONAL
DIFFUSION EQUATIONS ∗, ∗∗
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Abstract. We consider the development and analysis of local discontinuous Galerkin methods for
fractional diffusion problems in one space dimension, characterized by having fractional derivatives,
parameterized by β ∈ [1, 2]. After demonstrating that a classic approach fails to deliver optimal order of
convergence, we introduce a modified local numerical flux which exhibits optimal order of convergence
O(hk+1) uniformly across the continuous range between pure advection (β = 1) and pure diffusion
(β = 2). In the two classic limits, known schemes are recovered. We discuss stability and present an
error analysis for the space semi-discretized scheme, which is supported through a few examples.
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1. Introduction

The basic ideas behind fractional calculus have a history during three hundred year that is similar to and
aligned with that of more classic calculus and the topic has attracted the interests of mathematicians who
contributed fundamentally to the development of classical calculus, including L’Hospital, Leibniz, Liouville,
Riemann, Grünward, and Letnikov [4]. In spite of this, the development and analysis of fractional calculus and
fractional differential equations are not as mature as that associated with classical calculus. However, during
the last decade this has begun to change as it has become clear that fractional calculus naturally emerges as a
model for a broad range of non-classical phenomena in the applied sciences and engineering. A striking example
of this is as a model for anomalous transport processes and diffusion, leading to partial differential equations
(PDEs) of fractional type [2, 22]. These models are found in a wide range of applications such as porous flows,
models of a variety of biological processes, and transport in fusion plasmas, to name a few.

With this emerging range of applications and models based on fractional calculus comes a need for the de-
velopment of robust and accurate computational methods for solving these equations. A fundamental difference
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between problems in classic calculus and fractional calculus is the global nature of the latter formulations.
Nevertheless, methods based on finite difference methods [23] and finite element formulations [10,11] have been
developed and successfully applied.

The global nature of such models often leads to computational techniques which are substantially more
resource intense than those associated with more classic problems. On the other hand, the solutions of fractional
diffusion problem are generally endowed with substantial smoothness when the boundary conditions and/or the
source term are specified properly. While these observations both suggest that it may be worth considering
higher order accurate formulation as attractive alternatives, there appears to be very limited work in that
direction with a few notable exceptions being [5,16,17] in which spectral methods are used to discretize classical
space derivative to solve time fractional PDEs and confirms the possible advantages of doing so.

In this work we introduce discontinuous Galerkin (DG) methods for the fractional diffusion problem in
one space dimension. This development is built on the extensive work on DG for problems founded in classic
calculus [6, 7, 12, 13, 24]. In particular we consider the extension of the local discontinuous Galerkin (LDG)
method [6], based on previous work in [3], to problems containing fractional spatial derivatives. We find that
the majority of the characteristics [13] of DG methods when used to solve classical PDEs carry over to fractional
PDEs, i.e., the methods are naturally formulated for any order of accuracy in each element, there is flexibility
in choosing element sizes in different places, allowing for adaptivity, and the mass matrix is local and easily
invertible, leading to an explicit formulation for time dependent problems. We shall also discuss, however, that
the choice of the numerical flux is essential to ensure the accuracy and stability of the scheme.

There is recent, yet limited, work along similar lines, e.g., in [18–21], where discontinuous Galerkin methods
are discussed, although with an emphasis on first order methods and with a specific class of fractional problems
in mind, primarily with the non classic operator being in time. Very recently [14] presents a purely qualitative
study of the solution of spatial fractional problems in one and two dimensions using a high-order discontinuous
Galerkin methods. However, no analysis or theoretical results are offered in this work.

We shall concern ourselves with equations on the form

∂u(x, t)
∂t

= d
∂βu(x, t)

∂xβ
+ f(x, t), (1.1)

subject to appropriate boundary conditions. Here f(x, t) is a source term, β ∈ [1, 2], and d ∈ R+, becoming a
velocity in the advective limit (β = 1) and a pure diffusion coefficient in the pure diffusion limit of (β = 2). In
the continuous range of β ∈ (1, 2) we refer to this as the generalized diffusion coefficient. In this non-classical
range, we shall by ∂βu

∂xβ understand the Riemann−Liouville derivative of order β. When β = 1 and 2, the
Riemann−Liouville operator still makes sense and recovers exactly the first order and second order classical
derivatives, respectively. Hence, within this framework we can unify the classical and fractional calculus and
recover known formulations in the classic special cases.

To illustrate the importance of considering the development and analysis of discontinuous Galerkin methods
for fractional problems, let us briefly consider the example

∂u(x, t)
∂t

=
Γ (6 − β)

Γ (6)
∂βu(x, t)

∂xβ
− e−t(x5 + x5−β)

on the computational domain x ∈ Ω = (0, 1). Here Γ (x) is the classic Gamma function. We consider the initial
condition u(x, 0) = x5, subject to the Dirichlet boundary conditions u(0, t) = 0, u(1, t) = e−t and β ∈ [1, 2]. The
exact solution is given by e−tx5. Following the classic work on local discontinuous Galerkin methods [6,24], we
express the fractional problem through new variables defined as

∂u(x, t)
∂t

−
√

d
∂q(x, t)

∂x
= f(x, t), q − aDβ−2

x p(x, t) = 0, p −
√

d
∂u(x, t)

∂x
= 0,

and discretize the two classic differential problems using a standard discontinuous Galerkin formulation with
an alternating flux while recovery of q from p is obtained by a direct integration. Using this setup with a first
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Table 1. Error and order of convergence of a local discontinuous Galerkin method with a first
order polynomial approximation (k = 1) when β is very close to 1. M denotes the number of
elements.

β M = 26 M = 27 M = 28 M = 29 M = 210

error error order error order error order error order

1.10 5.66e-04 1.90e-04 1.58 5.22e-05 1.86 1.32e-05 1.98 3.31e-06 2.00

1.09 5.98e-04 2.09e-04 1.51 5.96e-05 1.81 1.53e-05 1.96 3.86e-06 1.99

1.08 6.32e-04 2.31e-04 1.45 6.85e-05 1.76 1.78e-05 1.94 4.53e-06 1.98

1.07 6.66e-04 2.56e-04 1.38 7.94e-05 1.69 2.12e-05 1.90 5.40e-06 1.98

1.06 7.00e-04 2.82e-04 1.31 9.26e-05 1.61 2.57e-05 1.85 6.52e-06 1.98

1.05 7.35e-04 3.11e-04 1.24 1.09e-04 1.52 3.17e-05 1.78 8.11e-06 1.97

1.04 7.69e-04 3.43e-04 1.17 1.29e-04 1.41 4.01e-05 1.68 1.04e-05 1.95

1.03 8.03e-04 3.75e-04 1.10 1.52e-04 1.30 5.18e-05 1.55 1.45e-05 1.84

1.02 8.36e-04 4.10e-04 1.03 1.80e-04 1.19 6.89e-05 1.39 2.16e-05 1.67

1.01 8.69e-04 4.46e-04 0.96 2.12e-04 1.07 9.31e-05 1.19 3.44e-05 1.44

1.00 9.00e-04 4.83e-04 0.90 2.49e-04 0.95 1.27e-04 0.97 6.38e-05 0.99

order local approximations over M elements, we show in Table 1 the accuracy and order of approximation for
β decreasing from 1.1 to 1.0. It is easily observed that there is a clear dependance of the rate of convergence
on β, decreasing from second order to first order as β approaches the classic limit of one. Results for other order
show a similar reduction for the optimal k + 1 to k if the standard local discontinuous Galerkin and alternating
flux is used. One of the main results of this work is to introduce a penalization that overcomes this reduction.

What remains of this paper is organized as follows. In Section 2, we review the definition and properties
of fractional derivatives and introduce the appropriate functional setting. This sets the stage for Section 3 in
which we introduce ways to specify appropriate initial and boundary conditions, and propose a new penalized
local discontinuous Galerkin scheme and Section 4 contains the detailed stability and error analyses of the
space semi-discretized schemes. In Section 5 the analysis is confirmed through extensive numerical results and
Section 6 contains a few concluding remarks and outlook for future work.

2. Preliminaries on fractional calculus

Below we offer the formal definitions of fractional derivatives and associated functional setting, required to
proceed with the analysis in the subsequent sections.

2.1. Fractional calculus

The formal definition of the fractional integral emerges as a natural generalization of multiple integration. It
is well-known that integrating a function v(x) n times amounts to∫ x

a

dξn

∫ ξn

a

dξn−1 . . .

∫ ξ2

a

v(ξ1)dξ1 =
1

(n − 1)!

∫ x

a

(x − ξ)n−1v(ξ)dξ, x > a,

for which we introduce the notation

aD−n
x v(x) =

1
Γ (n)

∫ x

a

(x − ξ)n−1v(ξ)dξ, x > a. (2.1)

Clearly, (2.1) still makes sense if we replace n by α (∈ R
+), leading to the definition of the fractional integral,

aD−α
x v(x) =

1
Γ (α)

∫ x

a

(x − ξ)α−1v(ξ)dξ, x > a, α ∈ R
+, (2.2)

where a ∈ R and a can be −∞.
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Based on this, it could appear that the related definition of the fractional derivative can be obtained by
simply mixing fractional integration with classical derivatives [4]. However, one quickly observes that there
are several options for this definition. Indeed, there are at least three slightly different such definitions of
fractional derivatives. In this work we focus on the two closely related Riemann−Liouville derivative and the
Caputo derivative, respectively. The third form, known as the Grünwald−Letnikov derivative and based on
ideas derived from finite difference methods, is equivalent to the Riemann−Liouville derivative provided the
functions are sufficiently smooth.

The Riemann−Liouville derivative is recovered by first performing integration followed by classic differenti-
ation, leading to the definition

aDα
x v(x) =

1
Γ (n − α)

dn

dxn

∫ x

a

(x − ξ)n−α−1v(ξ)dξ, x > a, α ∈ [n − 1, n). (2.3)

Reversing the order of integration and differentiation results in the Caputo derivative of the form

C
a Dα

x v(x) =
1

Γ (n − α)

∫ x

a

(x − ξ)n−α−1 dnv(ξ)
dξn

dξ, x > a, α ∈ [n − 1, n). (2.4)

From an analysis point of view, the Riemann−Liouville derivative is natural since we can define the operator
aDα

x (α ∈ R) which ‘connects’ −∞ to +∞. When α are negative integers, zero, and positive integers, they
correspond exactly to multiple integrations, the identity operator, and the classical derivatives [9], respectively.

More precisely, for α ∈ R+ and n a natural number, if we denote lim
α→n+

as the right limit and lim
α→n−

the left

limit, respectively, we have

lim
α→0+

aD−α
x v(x) = lim

α→0+
aDα

x v(x) = v(x), (2.5)

lim
α→(n−1)+

aD−α
x v(x) = aD−(n−1)

x v(x), lim
α→n− aD−α

x v(x) = aD−n
x v(x), (2.6)

lim
α→(n−1)+

aDα
xv(x) =

dn−1v(x)
dxn−1

, lim
α→n− aDα

x v(x) =
dnv(x)
dxn

, (2.7)

lim
α→(n−1)+

C
a Dα

x v(x) =
dn−1v(x)
dxn−1

− dn−1v(x)
dxn−1

∣∣∣∣
x=a

, lim
α→n−

C
a Dα

xv(x) =
dnv(x)
dxn

. (2.8)

The goal in this work is to develop computational methods which mirror these attractive properties to the
extend possible.

The main advantage of considering the Caputo derivative is the ease by which we can specify the proper
initial and boundary conditions of the fractional differential equations. Using (2.4), we need to provide the values
of dkv(x)

dxk , k = 0, 1, . . . , n − 1 at the boundaries, similar to the situation for the classical differential equations.
In contrast to this, for the Riemann−Liouville derivative (2.3), one needs to specify values of aDk+α−n

x v(x),
k = 0, 1, . . . , n− 1 at the boundaries. While not a fundamental obstacle, it appears as a practical problem when
solving problems for which the simple and geometric interpretation of the classic derivatives are more natural.

In this work, we exploit the advantages of both of the two forms of fractional derivatives and focus on problems
where (1.1) is equivalent under the two forms. Situations for which is true are understood through [15],

aDα
xv(x) = C

a Dα
xv(x) if v(k)(a) = 0, k = 0, 1, . . . , n − 1, (2.9)

where n is the smallest integer greater than or equal to α, and v(x) is sufficiently smooth.
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At times, (2.2) and (2.3) are referred to as the left Riemann−Liouville fractional integral and the left
Riemann−Liouville fractional derivative, respectively. In some cases it is natural to consider the interval [x, b]
instead of [a, x], leading to the right Riemann−Liouville fractional integral being defined as

xD−α
b v(x) =

1
Γ (α)

∫ b

x

(ξ − x)α−1v(ξ)dξ, x < b, α ∈ R
+, (2.10)

where b ∈ R and b can be +∞. For the two operators (2.2) and (2.10), we have the following result

Lemma 2.1 ([11]). The left and the right Riemann−Liouville fractional integral operators are adjoint w.r.t.
the L2(a, b) inner product, i.e., for all α > 0,(

aD−α
x u, v

)
L2(a,b)

=
(
u, xD−α

b v
)

L2(a,b)
∀α > 0, a < b, and u, v ∈ L2(a, b). (2.11)

2.2. Negative fractional norms and fractional integral spaces

Recall the Fourier transform v̂(ω) of v(x) defined as

F(v(x)) =
∫ +∞

−∞
e−ix·ωv(x)dx = v̂(ω).

As in classic Fourier analysis, we define a higher norm for functions in H̃−α(R) in terms of the Fourier transform.
We use the notation H̃ instead of H since the usual definition of the Sobolev space of order −α uses a factor
(1 + |ω|2)−α/2 not |ω|−α. In this subsection, α, α1, and α2 belong to (0, 1).

Definition 2.2. Let α ∈ (0, 1). Define the norm

‖v‖H̃−α(R) := ‖ |ω|−αv̂‖L2(R), (2.12)

and let H̃−α(R) denote the closure of C∞
0 (R) w.r.t. ‖ · ‖H̃−α(R).

In a similar fashion, we define the norm associated with the left Riemann−Liouville derivative

Definition 2.3. Let α ∈ (0, 1). Define the norm

‖v‖J−α
L (R) := ‖−∞D−α

x v‖L2(R), (2.13)

and let J−α
L (R) denote the closure of C∞

0 (R) w.r.t. ‖ · ‖J−α
L (R),

as well as the the norm associated with the left Riemann−Liouville derivative

Definition 2.4. Let α ∈ (0, 1). Define the norm

‖v‖J−α
R (R) := ‖xD−α

∞ v‖L2(R), (2.14)

and let J−α
R (R) denote the closure of C∞

0 (R) w.r.t. ‖ · ‖J−α
R (R).

The three norms are closely related as stated in the following result
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Theorem 2.5. The three spaces H̃−α, J−α
L , and J−α

R are equal with equivalent norms.

Proof. The Fourier transforms of the left and right Riemann−Liouville fractional integrals are, respectively,

F(−∞D−α
x v(x)) = (iω)−αv̂(ω); and F(xD−α

∞ v(x)) = (−iω)−αv̂(ω).

Since
|(iω)−α| = |(−iω)−α| = |ω|−α.

Applying Plancherel’s theorem, we have
√

2π‖v‖H̃−α(R) = ‖ |ω|−αv̂‖L2(R) =
√

2π‖v‖J−α
L

=
√

2π‖v‖J−α
R

. �

Using the same idea in the proof of Lemma 2.4 of [11], we obtain

Lemma 2.6.
(−∞D−α

x v, xD−α
∞ v) = cos(απ)‖−∞D−α

x v‖2
L2(R) = cos(απ)‖v‖2

H̃−α(R)
. (2.15)

Let us now restrict attention to the case in which supp(v) ⊂ Ω = (a, b). Then −∞D−α
x v = aD−α

x v, and
xD−α

∞ v = xD−α
b v. Straightforward extension of the definitions given above yields

Definition 2.7. Define the spaces H̃−α
0 (Ω), J−α

L,0(Ω), and J−α
R,0(Ω) as the closures of C∞

0 (Ω) under their re-
spective norms.

The following theorem gives the relations among the fractional integral spaces with different α.

Theorem 2.8. If −α2 < −α1 < 0, then J−α1
L,0 (Ω) (H̃−α1

0 (Ω) or J−α1
R,0 (Ω)) is embedded into J−α2

L,0 (Ω) (H̃−α2
0 (Ω)

or J−α2
R,0 (Ω)), and L2(Ω) is embedded into both of them.

Proof. Using the semigroup properties of fractional integral operators [4], we have

aD−α2
x v = aD−(α2−α1)

x aD−α1
x v.

Using Young’s inequality [1] and the definition of the fractional integral, we have

‖v‖
J

−α2
L,0 (Ω)

= ‖aD−α2
x v‖L2(Ω) = ‖aD

−(α2−α1)
x aD−α1

x v‖L2(Ω)

= 1
Γ (α2−α1)

‖xα2−α1−1 ∗ aD−α1
x v‖L2(Ω)

� 1
Γ (α2−α1)

‖xα2−α1−1‖L1(Ω) · ‖aD
−α1
x v‖L2(Ω)

= |a|α2−α1+|b|α2−α1

Γ (α2−α1+1) ‖v‖
J

−α1
L,0 (Ω)

,

where ∗ means the convolution product. Continuing in a similar fashion, we have

‖v‖
J

−α1
L,0 (Ω)

= ‖aD−α1
x v‖L2(Ω) � |a|α1 + |b|α1

Γ (α1 + 1)
‖v‖L2(Ω),

from which the result follows. �

Note. The definitions of the three norms can be naturally extended to the case α ∈ [0, 1). In this case, all equals
the L2-norm when α = 0.
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3. The local discontinuous Galerkin schemes for the fractional diffusion

equation

The fractional derivative can be treated in two ways: the Riemann−Liouville fractional derivative of order
β, aDβ

xu(x) or, alternatively, one classical derivative acting on the Riemann−Liouville fractional derivative of
order β − 1. Assuming that u(a, t) = 0 it follows from (2.9) that aDβ−1

x u(x, t) = C
a Dβ−1

x u(x, t), and we can
easily identify and specify the boundary conditions of (1.1). This allows us to more clearly describe the model
discussed here

∂u(x, t)
∂t

=
∂

∂x
d aDβ−2

x

∂

∂x
u(x, t) + f(x, t) in ΩT = (a, b) × (0, T ), (3.1)

with the initial condition

u(x, 0) = u0(x) on Ω = (a, b), (3.2)

and the Dirichlet boundary conditions

u(a, t) = 0, u(b, t) = g(t) on (0, T ), (3.3)

where β ∈ [1, 2], d > 0; and (a, b) is bounded. Note that the homogeneous left boundary condition is necessary.
In the special case of β = 1, the equation degenerates to a pure convection problem and only the boundary
condition at x = b is required.

We note that the decomposition in (3.1) is not unique, i.e., one could express the fractional derivative in
several different ways such as

∂2

∂x2 aDβ−2
x ,

∂

∂x
aDβ−2

x

∂

∂x
, aDβ−2

x

∂2

∂x2
,

by combining the classic and Riemann−Liouville operators in different ways. The choice we propose here is not
only related to the need to specify boundary conditions in a straightforward manner, but the order also impacts
the properties of the numerical scheme.

3.1. The weak formulation

Following the standard approach for the development of local discontinuous Galerkin methods for problems
with higher derivatives [6, 13, 24], let us introduce the auxiliary variables p and q, and rewrite (3.1)–(3.3) as

∂u(x, t)
∂t

−
√

d
∂q(x, t)

∂x
= f(x, t) in ΩT ,

q − aDβ−2
x p(x, t) = 0 in ΩT ,

p −
√

d
∂u(x, t)

∂x
= 0 in ΩT ,

u(x, 0) = u0(x) on Ω,

u(a, t) = 0, u(b, t) = g(t) on (0, T ).

(3.4)

Using standard notation, given the nodes a = x0 < x1 < . . . < xM−1 < xM = b, we define the mesh
T = {Ij = (xj−1, xj), j = 1, . . . , M} and set hj := |Ij | = xj − xj−1; and h := maxM

j=1 hj . Associated with the
mesh T , we define the broken Sobolev spaces

L2(Ω, T ) := {v : Ω → R | v|Ij ∈ L2(Ij), j = 1, . . . , M};



1852 W.H. DENG AND J.S. HESTHAVEN

and
H1(Ω, T ) := {v : Ω → R | v|Ij ∈ H1(Ij), j = 1, . . . , M}.

For a function v ∈ H1(Ω, T ), we denote the one-sided limits at the nodes {xj} by

v±(xj) = v(x±
j ) := lim

x→x±
j

v(x). (3.5)

We assume that the exact solution w = (u, p, q) of (3.4) belongs to

H1(0, T ; H1(Ω, T )) × L2(0, T ; L2(Ω, T )) × L2(0, T ; H1(Ω, T )). (3.6)

This assumption is reasonable since both H1(Ω) and L2(Ω) are embedded in the fractional integral spaces. We
require that w satisfies

(
∂u(x, t)

∂t
, v

)
Ij

+
√

d

(
q(x, t),

∂v

∂x

)
Ij

−
√

dq(x, t)v
∣∣∣x−

j

x+
j−1

= (f, v)Ij
, (3.7)

(q, w)Ij −
(
aDβ−2

x p(x, t), w
)

Ij
= 0, (3.8)

(p, z)Ij +
√

d

(
u(x, t),

∂z

∂x

)
Ij

−
√

du(x, t)z
∣∣∣x−

j

x+
j−1

= 0, (3.9)

(u(·, 0), v)Ij
= (u0(·), v)Ij , (3.10)

for all test functions w ∈ L2(Ω, T ), and v, z ∈ H1(Ω, T ), and for j = 1, . . . , M . Here the time derivative is
understood in the weak sense and (u, v)I =

∫
I
u(x)v(x)dx is the standard inner product over the element.

3.2. The numerical schemes

Let us in the following propose numerical schemes for (3.1)–(3.3) based on (3.7)–(3.10). The global nature of
the fractional derivative is reflected in (3.8) while (3.7) and (3.9) remain local as in a traditional discontinuous
Galerkin formulations.

We now restrict the trial and test functions v, w, and z to the finite dimensional subspaces V ⊂ H1(Ω, T ),
and choose V to be the space of discontinuous, piecewise polynomials

V = {v : Ω → R| v|Ij ∈ Pk(Ij), j = 1, . . . , M},

where Pk(Ij) denotes the set of all polynomials of degree less than or equal k (� 1) on Ij . Furthermore, we
define U , P , and Q as the approximations of u, p, and q, respectively, in the space V . We seek (U, P, Q) ∈
H1(0, T ; V )×L2(0, T ; V )×L2(0, T ; V ) such that for all (v, w, z) ∈ H1(0, T ; V )×L2(0, T ; V )×L2(0, T ; V ), and
for j = 1, . . . , M the following holds:

(
∂U(x, t)

∂t
, v

)
Ij

+
√

d

(
Q(x, t),

∂v

∂x

)
Ij

−
√

dQ̂(x, t)v
∣∣∣x−

j

x+
j−1

= (f, v)Ij
, (3.11)

(Q, w)Ij −
(

aDβ−2
x P (x, t), w

)
Ij

= 0, (3.12)

(P, z)Ij +
√

d

(
U(x, t),

∂z

∂x

)
Ij

−
√

dÛ(x, t)z
∣∣∣x−

j

x+
j−1

= 0, (3.13)

(U(·, 0), v)Ij
= (u0(·), v)Ij . (3.14)
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To complete the formulation of the numerical schemes, we need to define the numerical fluxes Q̂(x, t) and Û(x, t).
As with traditional local discontinuous Galerkin methods, this choice is the most delicate one as it determines
not only locality but also consistency, stability, and order of convergence of the scheme. Seeking inspiration in
the mixed formulation for the heat equation it is natural to consider the ‘alternating principle’ [24] in choosing
the numerical fluxes for (3.11) and (3.13), that is, we choose

Q̂(xj , t) = Q+(xj , t), Û(xj , t) = U−(xj , t); (3.15)

or
Q̂(xj , t) = Q−(xj , t), Û(xj , t) = U+(xj , t); (3.16)

at all interior boundaries. At the external boundaries we use

Q̂(a, t) = Q+(a, t) = Q−(a, t), Q̂(b, t) = Q−(b, t) = Q+(b, t); (3.17)

and

Û(a, t) = 0, Û(b, t) = g(t), (3.18)

reflecting a Dirichlet boundary.
This is a classic local discontinuous Galerkin method, leading to the results already shown in Table 1. As

we shall discuss in more detail shortly, this scheme, (3.11)–(3.14) with fluxes (3.15)–(3.18), is stable for any
β ∈ [1, 2]; and has the optimal convergent order k+1 for β ∈ (1, 2] and suboptimal convergent order k for β = 1
as already demonstrated.

To address this loss of optimality, we observe that when β = 1 the numerical dissipation term disappears.
We therefore introduce local dissipation to enhance the stability of the scheme at β = 1 by adding a penalty
term in (3.12).

This suggests a new scheme with

(Q, w)Ij −
(
aDβ−2

x P (x, t), w
)

Ij
+ L(h, β) ·

(
P̂ (x, t)w

)∣∣∣x−
j

x+
j−1

= 0, (3.19)

where
P̂ (x−

j , t) = [P (xj , t)] := P (x+
j , t) − P (x−

j , t);

P̂ (x+
j−1, t) = [P (xj−1, t)] := P (x+

j−1, t) − P (x−
j−1, t).

(3.20)

Here L(h, β) is a positive constant depending on β and h, the local cell size. As we shall discuss, this term
recovers the optimal k+1 order of convergence for any β ∈ [1, 2]. If the value of L(h, β) is at least of order h, the
order of convergence is k + 1 for β ∈ (1, 2] (see Thm. 4.3). In the computational examples we take L(h, β) = hβ

in agreement with the scaling of the global operator.

4. Stability and error estimates

In this section we will develop the main theoretical analysis. The general scheme is expressed as: Find
(U, P, Q) ∈ H1(0, T ; V ) × L2(0, T ; V ) × L2(0, T ; V ) such that for all (v, w, z) ∈ H1(0, T ; V ) × L2(0, T ; V ) ×
L2(0, T ; V ), the following holds

B(U, P, Q; v, w, z) = L(v, w, z). (4.1)
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Here (U(·, 0), v(·, 0)) = (u0(·), v(·, 0)) and the discrete bilinear form B and B̃ are defined as

B̃(U, P, Q; v, w, z) :=
∫ T

0

(
∂U(·, t)

∂t
, v(·, t)

)
dt −

∫ T

0

(
aDβ−2

x P (x, t), w(x, t)
)
dt

+
√

d

∫ T

0

[(
Q(x, t),

∂v(x, t)
∂x

)
+
(

U(x, t),
∂z(x, t)

∂x

)]
dt +

∫ T

0

[(Q(·, t), w(·, t)) + (P (·, t), z(·, t))] dt

+
√

d

∫ T

0

[
(Q+(a, t)v+(a, t) − Q−(b, t)v−(b, t)) +

M−1∑
j=1

(
Q̂(xj , t)[v](xj , t) + Û(xj , t)[z](xj , t)

) ]
dt

(4.2)
and

B(U, P, Q; v, w, z) := B̃(U, P, Q; v, w, z)

−L(h, β)
∫ T

0

M−1∑
j=1

[P ](xj , t)[w](xj , t)dt.
(4.3)

The discrete linear form L is given by

L(v, w, z) =
∫ T

0

(f(·, t), v(·, t))dt +
√

d

∫ T

0

g(t)z(b, t)dt. (4.4)

Since the scheme is consistent with (3.4), the exact solution (u, p, q) of (3.4) in the space (3.6) satisfies

B(u, p, q; v, w, z) = L(v, w, z) (4.5)

for all (v, w, z) ∈ H1(0, T ; V ) × L2(0, T ; V ) × L2(0, T ; V ).

4.1. Numerical stability

Let (Ũ , P̃ , Q̃) ∈ H1(0, T ; V )×L2(0, T ; V )×L2(0, T ; V ) be the perturbed solution of (U, P, Q); i.e., (Ũ , P̃ , Q̃)
and (U, P, Q) satisfy (4.1) with different initial condition. We denote eU := Ũ−U , eP := P̃ −P , and eQ := Q̃−Q
as the errors. Stability of the two schemes is established in the following theorem.

Theorem 4.1 (L2 stability). Scheme (4.1) is L2 stable, and for all t ∈ [0, T ] their solution satisfies

‖eU (·, t)‖2
L2(Ω) = ‖eU (·, 0)‖2

L2(Ω) − 2 cos ((β/2 − 1)π)
∫ t

0

‖eP (·, t)‖2

H−(1− β
2 )(Ω)

dt

−2 · L(h, β)
∫ t

0

M−1∑
j=1

[eP ]2(xj , t)dt.

(4.6)

Note. If the unstabilized scheme is considered in the limit of β = 1 then ‖eU (·, t)‖2
L2(Ω) = ‖eU (·, 0)‖2

L2(Ω),
indicating that the numerical dissipation disappears.
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Proof of Theorem 4.1. It suffices to prove the result for the case t = T . From (4.1) we recover the perturbation
equation

B(eU , eP , eQ; v, w, z) = 0, (4.7)

for all (v, w, z) ∈ H1(0, T ; V ) × L2(0, T ; V ) × L2(0, T ; V ). Taking v = eU , w = −eP , z = eQ, and using
Lemmas 2.1 and 2.6, we obtain,

0 = B(eU , eP , eQ; eU ,−eP , eQ)

=
1
2

∫ T

0

∂

∂t
‖eU (·, t)‖2

L2(Ω)dt + cos((β/2 − 1)π)
∫ T

0

‖eP‖2

H−(1− β
2 )(Ω)

dt

+L(h, β)
∫ T

0

M−1∑
j=1

[eP ]2(xj , t)dt +
√

d

∫ T

0

∫ b

a

∂(eU · eQ)
∂x

dxdt

+
√

d

∫ T

0

M−1∑
j=1

êQ(xj , t)[eU ](xj , t)dt +
√

d

∫ T

0

M−1∑
j=1

êU (xj , t)[eQ](xj , t)dt

+
√

d

∫ T

0

(
e+

Q(a, t)e+
U (a, t) − e−Q(b, t)e−U (b, t)

)
dt.

(4.8)

In (4.8), ∫ T

0

∫ b

a

∂(eU · eQ)
∂x

dxdt =
∫ T

0

(
−e+

Q(a, t)e+
U (a, t) + e−Q(b, t)e−U (b, t)

)
dt

−
∫ T

0

M−1∑
j=1

[eU · eQ](xj , t),

(4.9)

and when êQ = e+
Q and êU = e−U (or êQ = e−Q and êU = e+

U ),

∫ T

0

M−1∑
j=1

êQ(xj , t)[eU ](xj , t) +
M−1∑
j=1

êU (xj , t)[eQ](xj , t)dt

=
∫ T

0

M−1∑
j=1

[eU · eQ](xj , t)dt.

(4.10)

Combining (4.8) and (4.9)–(4.10), the result follows. �

4.2. Error estimates

For the error analysis, we define the projection operators P±, S, and S′ from H1(Ω, T ) to V . For intervals
Ij = (xj−1, xj), j = 1, 2, . . . , M , and any sufficiently regular function u, P± are defined to satisfy the k + 1
conditions:

(P±u − u, v)Ij = 0 ∀v ∈ Pk−1(Ij), if k > 0,

P−u(xj) = u−(xj) P+u(xj−1) = u+(xj−1).
(4.11)



1856 W.H. DENG AND J.S. HESTHAVEN

S and S′ are the standard L2-projections, which are defined, respectively, as

(Su − u, v)Ij = 0 ∀v ∈ Pk(Ij), (4.12)

(S′u − u, v)Ij = 0 ∀v ∈ Pk−1(Ij), if k > 0. (4.13)

We are now ready to state our results and then prove them. These results are obtained under the assumption
that the corresponding analytical solutions are sufficiently regular as functions of x.

Theorem 4.2 (Error estimate). The error for the scheme (3.11), (3.19), (3.13), and (3.14) with fluxes (3.15)
(or (3.16)), (3.20), applied to the model (3.1)−(3.3) satisfies

√∫ b

a

(u(x, t) − U(x, t))2dx �

⎧⎪⎪⎨⎪⎪⎩
(√

L(h,β)
h c + c(β) exp(T )

)
hk+1 for 1 < β � 2,

chk for β = 1,

(4.14)

where c(β) and c depend on ∂k+1u(x,t)
∂xk+1 , ∂k+β−1u(x,t)

∂xk+β−1 , ∂k+βu(x,t)
∂xk+β , and time t.

Note. For the current proof, the error bound derived for β ∈ (1, 2] is not uniform; but it may be uniform for
any β ∈ (β0, 2], where β0 > 1.

Proof of Theorem 4.2. We begin by proving the result for the unstabilized scheme and then outline the extension
needed for the stabilized result.

We denote
eu = u(x, t) − U(x, t), ep = p(x, t) − P (x, t), eq = q(x, t) − Q(x, t).

From (4.1) and (4.5), we recover the error equation

B̃(eu, ep, eq; v, w, z) = 0 (4.15)

for all (v, w, z) ∈ H1(0, T ; V ) × L2(0, T ; V ) × L2(0, T ; V ). Take

v = P±u − U, w = P − Sp, z = P∓q − Q

in (4.15). After rearranging terms, we obtain

B̃(v,−w, z; v, w, z) = B̃(ve,−we, ze; v, w, z), (4.16)

where ve, we, and ze are given as

ve = P±u − u, we = p − Sp, ze = P∓q − q.

Following the discussion in the Proof of Theorem 4.1 the left hand side of (4.16) becomes

B̃(v,−w, z; v, w, z) =
1
2

∫ T

0

∂

∂t
‖v(·, t)‖2

L2(Ω)dt + cos((β/2 − 1)π)
∫ T

0

‖w(·, t)‖2

H−(1− β
2 )(Ω)

dt. (4.17)
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Using the notation in [24], the right hand side of (4.16) can be expressed as

B̃(ve,−we, ze; v, w, z) = I + II + III + IV + V , (4.18)

where

I =
∫ T

0

(
∂ve(·, t)

∂t
, v(·, t)

)
dt, (4.19)

II =
√

d

∫ T

0

(
ze(x, t),

∂v(x, t)
∂x

)
dt +

√
d

∫ T

0

(
ve(x, t),

∂z(x, t)
∂x

)
dt −

∫ T

0

(we(·, t), z(·, t))dt, (4.20)

III =
√

d

∫ T

0

M−1∑
j=1

ẑe(xj , t)[v](xj , t)dt +
√

d

∫ T

0

M−1∑
j=1

v̂e(xj , t)[z](xj , t)dt, (4.21)

IV =
√

d

∫ T

0

((ze)+(a, t)v+(a, t) − (ze)−(b, t)v−(b, t))dt, (4.22)

and

V =
∫ T

0

(ze(·, t), w(·, t))dt +
∫ T

0

(
∂β−2we(x, t)

∂xβ−2
, w(x, t)

)
dt. (4.23)

Using standard approximation theory [8], we obtain

I � 1
2

∫ T

0

∫ b

a

(
∂ve(x, t)

∂t

)2

dxdt +
∫ T

0

∫ b

a

(
v2(x, t)

2

)
dxdt

� ch2k+2 +
1
2

∫ T

0

‖v(·, t)‖2
L2(Ω)dt,

(4.24)

where c is constant.
All the terms in II vanish due to Galerkin orthogonality, i.e., p − Sp is orthogonal to all polynomials of

degree up to k, and P±u − u and P±q − q to k − 1. For the terms in III, when taking ẑe = (ze)− and
v̂e = (ve)+, we use ze = P−q − q and ve = P+u − u; and when giving ẑe = (ze)+ and v̂e = (ve)−, we choose
ze = P+q − q and ve = P−u − u. Hence, both terms in III are zero and so is III. An application of the
inequality xy � 1

2 (x2 + y2), the standard approximation of point values of ze, and the equivalence of norms in
finite dimensional spaces imply

IV �
√

d

2

∫ T

0

(
((ze)+(a, t))2 + ((ze)−(b, t))2 + (v+(a, t))2 + (v−(b, t))2

)
dt

� ch2k+2 + c

∫ T

0

‖v(·, t)‖2
L∞(Ω)dt � ch2k+2 + c

∫ T

0

‖v(·, t)‖2
L2(Ω)dt.

(4.25)

One of the terms in IV is exactly zero. When ze = P+q − q, the first term is zero; and when ze = P−q − q, the
second term is zero. For V , we recover two different kinds of estimates corresponding to β = 1 and β ∈ (1, 2]
respectively. Both of them use Lemma 2.1.
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When β = 1, further applying the operators S and S′ defined in (4.12) and (4.13) yields

V =
∫ T

0

(ze(·, t), w(·, t) − S′w(·, t)) + (ze(·, t),S′w(·, t))dt

+
∫ T

0

(
we(·, t),

∫ b

x

w(ξ, t)dξ − S
∫ b

x

w(ξ, t)dξ

)
+

(
we(·, t),S

∫ b

x

w(ξ, t)dξ

)
dt

=
∫ T

0

(ze(·, t), w(·, t) − S′w(·, t)) +

(
we(·, t),

∫ b

x

w(ξ, t)dξ − S
∫ b

x

w(ξ, t)dξ

)
dt

�
∫ T

0

∫ b

a

(
(ze(x, t))2

2

)
dxdt +

∫ T

0

∫ b

a

(
(w(x, t) − S′w(x, t))2

2

)
dxdt

+
1
2

∫ T

0

∫ b

a

⎛⎝ (we(x, t))2

2
+

(∫ b

x

w(ξ, t)dx − S
∫ b

x

w(ξ, t)dξ

)2
⎞⎠ dxdt

� ch2k+2 + ch2k + ch2k+2 + ch2k+2 � ch2k.

(4.26)

When β ∈ (1, 2], the inequality xy � x2

2ε + εy2

2 and the norm-equivalence gives

V �
∫ T

0

∫ b

a

(ze(x, t))2

2ε
dxdt +

ε

2

∫ T

0

‖w(·, t)‖2
L2(Ω)dt

+
∫ T

0

∫ b

a

(we(x, t))2

2ε
dxdt +

ε

2

∫ T

0

‖w(·, t)‖2
H−(2−β)(Ω)dt

� (c/ε)h2k+2 + cε

∫ T

0

‖w(·, t)‖2

H−(1− β
2 )(Ω)

dt,

(4.27)

where ε is a small number, chosen such that the term in this equation can be controlled by the corresponding
term in (4.17), namely, choosing a sufficiently small ε such that cε < cos((β/2− 1)π); the fact that all norms in
finite dimensional spaces are equivalent is needed, since w(·, t) is a polynomial. Combining the above estimates
we have, for β ∈ (1, 2],

1
2

∫ T

0

∂

∂t
‖v(·, t)‖2

L2(Ω) + (cos((β/2 − 1)π) − cε)
∫ T

0

‖w(·, t)‖2

H−(1− β
2 )(Ω)

dt � (c/ε)h2k+2 + c

∫ T

0

‖v(·, t)‖2
L2(Ω)dt,

(4.28)
which we express as

1
2
‖v(·, T )‖2

L2(Ω) + (cos((β/2 − 1)π) − cε)
∫ T

0

‖w(·, t)‖2

H−(1− β
2 )(Ω)

dt

� 1
2
‖v(·, 0)‖2

L2(Ω) + (c/ε)h2k+2 + c

∫ T

0

‖v(·, t)‖2
L2(Ω)dt

� (c/ε)h2k+2 + c

∫ T

0

‖v(·, t)‖2
L2(Ω)dt.

(4.29)



LOCAL DISCONTINUOUS GALERKIN METHODS FOR FRACTIONAL DIFFUSION EQUATIONS 1859

For the case of β = 1,

1
2

∫ T

0

∂

∂t
‖v(·, t)‖2

L2(Ω) � ch2k + c

∫ T

0

‖v(·, t)‖2
L2(Ω)dt, (4.30)

such that

1
2
‖v(·, T )‖2

L2(Ω) � 1
2
‖v(·, 0)‖2

L2(Ω) + ch2k + c

∫ T

0

‖v(·, t)‖2
L2(Ω)dt � ch2k + c

∫ T

0

‖v(·, t)‖2
L2(Ω)dt. (4.31)

According to Grönwall’s lemma [8] and the standard approximation on ve = P±u − u the desired estimate is
recovered for the unstabilized scheme.

Let us now briefly consider the impact of the stabilization term. The error equation is

B(eu, ep, eq; v, w, z) = 0,

or

B̃(eu, ep, eq; v, w, z) − L(h, β)
∫ T

0

M−1∑
j=1

[ep](xj , t)[w](xj , t)dt = 0. (4.32)

After rearranging terms, we obtain

B(v,−w, z; v, w, z) = B(ve,−we, ze; v, w, z),

or
B̃(v,−w, z; v, w, z) + VI′ = B̃(ve,−we, ze; v, w, z) + VI, (4.33)

where

VI′ = L(h, β)
∫ T

0

M−1∑
j=1

[w]2(xj , t)dt (4.34)

and

VI = L(h, β)
∫ T

0

M−1∑
j=1

[we](xj , t)[w](xj , t)dt. (4.35)

The estimate of VI is

VI � L(h, β)
∫ T

0

1
2

M−1∑
j=1

(
[we]2(xj , t) + [w]2(xj , t)

)
dt � L(h, β)

(
ch2k+1 +

1
2
VI ′

)
. (4.36)

We now have the final estimate, for β ∈ (1, 2],

1
2
‖v(·, T )‖2

L2(Ω)+ (cos((β/2 − 1)π) − cε)
∫ T

0

‖w(·, t)‖2

H−(1− β
2 )(Ω)

dt +
L(h, β)

2

∫ T

0

M−1∑
j=1

[w]2(xj , t)dt

� L(h, β)ch2k+1 + (c/ε)h2k+2 + c

∫ T

0

‖v(·, t)‖2
L2(Ω)dt

�
(

L(h, β)
h

c + (c/ε)
)

h2k+2 + c

∫ T

0

‖v(·, t)‖2
L2(Ω)dt.

(4.37)



1860 W.H. DENG AND J.S. HESTHAVEN

For the special case of β = 1,

1
2
‖v(·, T )‖2

L2(Ω)+
L(h, β)

2

∫ T

0

M−1∑
j=1

[w]2(xj , t)dt

� L(h, β)ch2k+1 + ch2k + c

∫ T

0

‖v(·, t)‖2
L2(Ω)dt � ch2k + c

∫ T

0

‖v(·, t)‖2
L2(Ω)dt.

(4.38)

Again using Grönwall’s lemma recovers the desired estimate (4.14). �

Note. Since the control term for w in (4.17) disappears when β = 1, an attempt to overcome this in the first
term of V is to take ze = Sq − q instead of ze = P∓q − q, making this term vanish. However, in this case the
first term of III no longer vanishes and we have

III �
√

d

∫ T

0

M−1∑
j=1

(
(ẑe(xj , t))2

2
+

([v](xj , t))2

2

)
dt

�
∫ T

0

M−1∑
j=1

(
ch2k+2 + c‖v(·, t)‖2

L∞(Ij)

)
dt � ch2k+1 +

∫ T

0

c

h
‖v(·, t)‖2

L2(Ω)dt.

(4.39)

The result in the final estimate is

1
2
‖v(·, T )‖2

L2(Ω) � h2k+1 +
∫ T

0

c

h
‖v(·, t)‖2

L2(Ω)dt. (4.40)

This estimate appears not to be useful. From the proof of the estimates for β ∈ (1, 2] we observe that if β
decreases then the constant c/ε in front of the order term increases. This is because cos((β/2 − 1)π) decreases
when β decreases, i.e., we can expect that c(β) in the Theorem 4.2 increases as β decreases towards one.
The numerical results in the next section will confirm this.

The introduction of the terms VI′ and VI does not appear to add any additional freedom to improve on the
error estimates (VI′ can’t control ‖w‖2, so we can not improve the order of convergence when β = 1). On the
contrary, we have to estimate the trace errors of w. It seems hard to choose a special projection to eliminate
the traces errors, since at one point we have two traces of w. It is not clear whether the error estimate (4.14)
is sharp. However, the numerical computations below show that the order of convergence is k + 1 for any
β ∈ [1, 1+ε], where ε may be 0.01 or 0.001 and full convergence order is recovered for the entire interval with the
penalization.

5. Numerical results

Let us offer some numerical results to validate the analysis. We mainly focus on the accuracy and stability
of the spatial approximation although we also numerically study the CFL condition associated with the fully
discrete stability. We use a fourth order explicit Runge-Kutta method to solve the method-of-line fractional
PDE, i.e., the classical ODE system. To ensure the overall error is dominated by space error, small time steps
are used.

We consider the problem

∂u(x, t)
∂t

=
Γ (6 − β)

Γ (6)
∂βu(x, t)

∂xβ
− e−t(x5 + x5−β), (5.1)
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Table 2. The error and order of convergence for first order polynomial approximation (k = 1).
M denotes the number of elements. For β > 1.1 the results are independent of whether stabi-
lization with L(h, β) = hβ is included. Recovery of the optimal order of convergence is possible
only with the stabilization as illustrated in the last two rows which show results with the
stabilized scheme.

β M = 25 M = 26 M = 27 M = 28 M = 29

error error order error order error order error order

2.00 2.81e-04 7.82e-05 1.85 2.04e-05 1.94 5.20e-06 1.97 1.31e-06 1.99

1.80 3.37e-04 9.37e-05 1.85 2.44e-05 1.94 6.14e-06 1.99 1.52e-06 2.01

1.50 4.63e-04 1.27e-04 1.87 3.23e-05 1.98 7.93e-06 2.03 1.95e-06 2.02

1.20 9.82e-04 3.17e-04 1.63 8.32e-05 1.93 2.02e-05 2.05 5.09e-06 1.99

1.10 5.66e-04 1.90e-04 1.58 5.22e-05 1.86 1.32e-05 1.98 3.31e-06 2.00

1.09 5.98e-04 2.09e-04 1.51 5.96e-05 1.81 1.53e-05 1.96 3.86e-06 1.99

1.08 6.32e-04 2.31e-04 1.45 6.85e-05 1.76 1.78e-05 1.94 4.53e-06 1.98

1.07 6.66e-04 2.56e-04 1.38 7.94e-05 1.69 2.12e-05 1.90 5.40e-06 1.98

1.06 7.00e-04 2.82e-04 1.31 9.26e-05 1.61 2.57e-05 1.85 6.52e-06 1.98

1.05 7.35e-04 3.11e-04 1.24 1.09e-04 1.52 3.17e-05 1.78 8.11e-06 1.97

1.04 7.69e-04 3.43e-04 1.17 1.29e-04 1.41 4.01e-05 1.68 1.04e-05 1.95

1.03 8.03e-04 3.75e-04 1.10 1.52e-04 1.30 5.18e-05 1.55 1.45e-05 1.84

1.02 8.36e-04 4.10e-04 1.03 1.80e-04 1.19 6.89e-05 1.39 2.16e-05 1.67

1.01 8.69e-04 4.46e-04 0.96 2.12e-04 1.07 9.31e-05 1.19 3.44e-05 1.44

1.00 9.00e-04 4.83e-04 0.90 2.49e-04 0.95 1.27e-04 0.97 6.38e-05 0.99

1.01 1.70e-03 5.38e-04 1.66 1.43e-04 1.91 3.71e-05 1.95 9.45e-06 1.97

1.00 1.70e-03 5.38e-04 1.66 1.43e-04 1.91 3.71e-05 1.95 9.45e-06 1.97

on the computational domain x ∈ Ω = (0, 1). Here Γ (x) is the classic Gamma function. We consider the initial
condition

u(x, 0) = x5, (5.2)

and the Dirichlet boundary conditions

u(0, t) = 0, u(1, t) = e−t, (5.3)

where β ∈ [1, 2]. The exact solution is given by e−tx5.
We measure the errors corresponding to the exact solution u(x, t) in the discrete L2 norm at t = 1. Tables 2−4

for k = 1, 2, 3 demonstrate the errors and order of convergence both schemes. For the unstablized scheme, optimal
convergence is observed for β ∈ [1+ε, 2.0] with suboptimal convergence for β = 1.0 as predicted by Theorem 4.2.

However, the results also clearly demonstrate that the optimal asymptotic order of convergence is recovered
as β → 1, for the stabilized scheme recovers the optimal order of convergence uniformly for β ∈ [1, 2].

We finally consider the question of how the spectral radius scales with β and the spatial resolution. Illustrated
in Table 5, we observe a fully discrete scaling for solving equation (1.1) as

Δt ∼

(
h

k2

)β

, (5.4)

where Δt is the time step size and k still is the order of the approximate polynomial. Provided the stabilization
is taken as L(h, β) ∼ (k2/h)β−1, this does not impact the scaling. This is in agreement with expectations based
on the experience for integer values of β [13].
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Table 3. The error and order of convergence for second order polynomial approximation
(k = 2). M denotes the number of elements. For β > 1.1 the results are independent of whether
stabilization with L(h, β) = hβ is included. Recovery of the optimal order of convergence is
possible only with the stabilization as illustrated in the last two rows which show results with
the stabilized scheme.

β M = 23 M = 24 M = 25 M = 26

error error order error order error order

2.00 4.92e-04 6.62e-05 2.89 8.61e-06 2.94 1.09e-06 2.98

1.80 5.19e-04 6.76e-05 2.94 8.50e-06 2.99 1.07e-06 2.99

1.50 5.53e-04 7.27e-05 2.93 9.08e-06 3.00 1.12e-06 3.02

1.20 6.04e-04 7.02e-05 3.11 8.73e-06 3.01 1.10e-06 2.99

1.10 3.04e-04 8.28e-05 1.88 9.80e-06 3.08 9.74e-07 3.33

1.09 2.98e-04 8.20e-05 1.86 1.01e-05 3.01 8.97e-07 3.50

1.08 2.92e-04 8.10e-05 1.85 1.05e-05 2.95 7.99e-07 3.71

1.07 2.86e-04 7.99e-05 1.84 1.08e-05 2.88 6.80e-07 4.00

1.06 2.80e-04 7.87e-05 1.83 1.12e-05 2.82 5.51e-07 4.34

1.05 2.74e-04 7.75e-05 1.82 1.15e-05 2.75 4.36e-07 4.72

1.04 2.69e-04 7.62e-05 1.82 1.18e-05 2.69 3.63e-07 5.02

1.03 2.63e-04 7.48e-05 1.81 1.21e-05 2.63 3.69e-07 5.03

1.02 2.57e-04 7.34e-05 1.81 1.23e-05 2.58 4.28e-07 4.85

1.01 2.51e-04 7.19e-05 1.81 1.25e-05 2.53 5.08e-07 4.62

1.00 2.46e-04 7.04e-05 1.81 1.26e-05 2.48 5.79e-07 4.45

1.01 1.50e-05 1.43e-06 3.41 1.10e-07 3.70 1.07e-08 3.36

1.00 1.52e-05 1.43e-06 3.39 1.10e-07 3.71 1.06e-08 3.36

Table 4. The error and order of convergence for third order polynomial approximation (k = 3).
M denotes the number of elements. For β > 1.1 the results are independent of whether stabi-
lization with L(h, β) = hβ is included. Recovery of the optimal order of convergence is possible
only with the stabilization as illustrated in the last two rows which show results with the
stabilized scheme. For M = 14, the convergence rate of the stabilized scheme exceeds 4.

β M = 4 M = 8 M = 12

error error order error order

2.00 1.49e-04 1.12e-05 3.74 2.51e-06 3.69

1.80 1.56e-04 1.13e-05 3.79 2.48e-06 3.73

1.50 2.00e-04 1.37e-05 3.87 2.74e-06 3.97

1.20 3.89e-04 2.98e-05 3.71 5.16e-06 4.33

1.10 5.45e-04 5.37e-05 3.34 1.04e-05 4.06

1.09 5.65e-04 5.78e-05 3.29 1.14e-05 4.00

1.08 5.85e-04 6.22e-05 3.23 1.26e-05 3.94

1.07 6.05e-04 6.72e-05 3.17 1.40e-05 3.89

1.06 6.26e-04 7.28e-05 3.11 1.56e-05 3.80

1.05 6.48e-04 7.89e-05 3.04 1.74e-05 3.72

1.04 6.71e-04 8.57e-05 2.97 1.96e-05 3.64

1.03 6.94e-04 9.32e-05 2.90 2.22e-05 3.54

1.02 7.18e-04 1.01e-04 2.82 2.51e-05 3.45

1.01 7.43e-04 1.11e-04 2.75 2.86e-05 3.34

1.00 7.70e-04 1.21e-04 2.67 3.27e-05 3.22

1.01 3.25e-06 1.38e-06 3.84 6.79e-07 3.89

1.00 3.25e-06 1.38e-06 3.84 6.79e-07 3.89
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Table 5. The time step sizes required with a fixed space step length h = 0.01 for different
values of β first and second order polynomial approximations. Here ‘S’ denotes stable and ‘U’
unstable.

Δt (1st order) Δt(2nd order) β =1.0 β =1.2 β =1.5 β =1.8 β =2.0

2.0d − 2 1.0d − 2 S U U U U

1.0d − 2 5.0d − 3 S S U U U

1.0d − 3 1.0d − 3 S S S U U

5.0d − 4 1.0d − 4 S S S S U

1.0d − 4 1.0d − 5 S S S S S

We also note that in agreement with the theoretical analysis, both fluxes (3.15) and (3.16) work well for the
two schemes for any β ∈ [1, 2]. This may seem counterintuitive when β = 1 since in this case one of the flux
choices reflect down winding. This illustrates that when β = 1 the single equation is equivalent to the system
but in doing numerical computations a new mechanism (some kind of symmetry) is introduced when writing
the pure diffusion equation as a system due to the introduction of the fluxes.

6. Concluding remarks

We have proposed a new stabilized local discontinuous Galerkin method for the fractional diffusion equation,
containing both limits of pure convection equation and pure diffusion. In the framework of fractional derivatives,
the fractional diffusion equation ‘bridges’ the two classic equations and we have shown that a single scheme can
be used to accurately solve both types of problems.

We have discussed two schemes in this paper, the second one being a modified version of the first one, obtained
by adding a penalty term to the global term. Both schemes allow a theoretical and numerical optimal order
of convergent when β ∈ (1, 2], but only a suboptimal order of convergence can be established rigorously in the
extreme case β = 1. For the stabilized scheme we can show numerically that optimal order of convergence for
any β ∈ [1, 2] can be recovered. This is not, however, confirmed rigorously.

This paper is among the first to study and analyze the application of DG methods to spatial fractional
derivatives, illustrating that DG methods have significant potential for problems with fractional derivatives
due to their flexibility and ability to support high order accuracy while maintain a large degree of locality
in the formulation. With the smoothness associated with solutions to fractional problems [10], the high order
accuracy allows for a reduced number of degrees of freedom without impacting the accuracy. This is a substantial
advantage due to the global nature of the fractional operators, suggesting a reduced computational cost over
alternative methods, in particular for problems in higher dimensions. We hope to discuss this in more detail in
future work.
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