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A PRIORI ERROR ESTIMATES FOR FINITE ELEMENT DISCRETIZATIONS
OF A SHAPE OPTIMIZATION PROBLEM

Bernhard Kiniger1 and Boris Vexler1

Abstract. In this paper we consider a model shape optimization problem. The state variable solves
an elliptic equation on a domain with one part of the boundary described as the graph of a control
function. We prove higher regularity of the control and develop a priori error analysis for the finite
element discretization of the shape optimization problem under consideration. The derived a priori
error estimates are illustrated on two numerical examples.
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Introduction

In this paper we consider the following shape optimization problem governed by a linear elliptic equation:

min J(q, u) =
1
2
‖u − uq

d‖
2

L2(Ωq) +
α

2
‖q′′‖2

L2((0,1)) ,

subject to {−Δu + u = f q in Ωq,

u = 0 on Γq = ∂Ωq,

where the domain Ωq is basically the unit square with one “moving” side given as the graph of the control
function q, see Figure 1. The data functions uq

d and f q are restrictions of functions ud and f defined on a
sufficiently large (holding-all) domain Ω̂. The precise formulation of the problem including a functional analytic
setting is presented in Section 1.

Similar shape optimization problems, where the unknown part of the boundary is parameterized as a graph
of a function, are considered in various publications, see, e.g., [13, 14, 19, 25]. The problem formulation in these
publications involves a bound on an appropriate norm of q. Our formulation utilizes a Tikhonov-type term
‖q′′‖2

L2((0,1)) instead.
The main contribution of this paper is an a priori error analysis for a finite element discretization of the shape

optimization problem under consideration. The control variable is discretized by Hermite finite elements allowing
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Figure 1. Domain Ωq.

for conforming discretization of the control space H2((0, 1)) ∩ H1
0((0, 1)). The corresponding discretization pa-

rameter is called σ. The state variable is discretized using usual (bi)linear finite elements with the discretization
parameter h. The main result (see Thm. 3.2) is the estimate

‖q̄ − q̄σ,h‖H2((0,1)) ≤ c (σ2 + h2),

where q̄ is a local solution of the optimization problem fulfilling a second order sufficient optimality condition
and (q̄σ,h) ((σ, h) → 0) is a sequence of local solutions of the discretized problem converging to q̄. The existence
of such a sequence is also shown.

There are some published results on discretization of shape optimizations problems. In [13, 14] and in [8, 9]
convergence of discrete solutions to a continuous one is investigated. To our best knowledge only the paper [11]
provides convergence results including the rate of convergence for a discretized shape optimization problem
using a fast wavelet boundary element method for the state equation, where the discretization of the state is
treated as a consistency error and is not restricted to boundary integral equation methods.

The paper is organized as follows: In the next section we discuss a precise formulation of the shape optimization
problem under consideration, show the existence of at least one globally optimal solution applying the techniques
similar to [13], reformulate the problem using a transformation to a reference domain Ω0 and present optimality
conditions. Section 2 is devoted to the discretization. The control variable is discretized by Hermite finite
elements of third order on (0, 1), leading to the semidiscrete problem. Then the state variable is discretized
by (bi)linear finite elements on the reference domain Ω0 resulting in a full discretization of the problem. We
show that both the semidiscrete and the discrete problems possess solutions and discuss their convergence for
(σ, h) → 0. In Section 3 we prove that any optimal solution q̄ possesses higher regularity, i.e. q̄ ∈ H4((0, 1)).
This result is essential for deriving a priori error estimates. Due to the fact that the considered optimization
problem is not convex in general, we have to deal with second order sufficient optimality conditions and adapt
the technique from [6]. We first provide error estimates for the discretization error between a solution of the
continuous problem and the corresponding solution of the semidiscrete one and then for the error between a
semidiscrete and a fully discrete solution. In Section 4 we present numerical examples illustrating our results.

Throughout the paper, c and ci shall always denote generic constants which are – if not stated otherwise –
independent of σ and h, but may depend on α, and have different values on different appearances. With Lp(Ω)
and Wk,p(Ω) we will denote the Lebesgue and the Sobolev spaces on the domain Ω, respectively. For p = 2 we
use the standard notation Hk(Ω) = Wk,2(Ω). For an arbitrary Hilbert space X we will denote its scalar product
with (·, ·)X and the corresponding norm with ‖·‖X , whereas for X = L2(Ω0) we omit the subindex. The set of
all m-times continuously differentiable functions whose mth derivative is Hölder-continuous with index α will
be denoted by Cm,α(Ω). For functions q defined on an interval I ⊂ R, q′ and q′′ shall denote the first and second
order weak derivative, respectively.
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1. Optimization problem

1.1. Problem formulation and existence result

In this section we first describe the shape optimization problem under consideration. The control variable q
from the control space Q = H2(I) ∩ H1

0(I) with I = (0, 1) characterizes the domain Ωq through:

Ωq = { (x, y) ∈ R
2 | x ∈ I, y ∈ (q(x), 1) } .

To exclude a possible degeneracy of the domain Ωq we fix 0 < ε < 1 and define the set

Q̄ad = { q ∈ Q | q(x) ≤ 1 − ε for all x ∈ I } . (1.1)

For each q ∈ Q̄ad the domain Ωq is a Lipschitz domain, which allows for the definition of the state variable
u ∈ H1

0(Ωq) being the weak solution of the state equation{−Δu + u = f q in Ωq,

u = 0 on Γq = ∂Ωq.
(1.2)

The shape optimization problem is then given as:

Minimize J(q, u) =
1
2
‖u − uq

d‖
2

L2(Ωq) +
α

2
‖q′′‖2

L2(I) , q ∈ Q̄ad, u ∈ H1
0(Ωq), (1.3)

subject to (1.2).
We define the solution operator S̃, which assigns to each q ∈ Q̄ad the unique solution ũ(q) = S̃(q) of (1.2).

This allows to introduce the reduced cost functional j : Q̄ad �→ R by

j(q) = J(q, S̃(q)).

In order to prove the existence of an optimal solution to (1.3), we need bounds in the full H2(I)-norm.

Lemma 1.1. On Q, the H2(I)-seminorm is equivalent to the full H2(I)-norm.

Proof. Let q ∈ Q be arbitrary. As Q ⊂ H1
0(I) we know that there exists cp > 0 such that ‖q‖L2(I) ≤ cp ·‖q′‖L2(I).

Furthermore,

‖q′‖2
L2(I) =

∫ 1

0

q′(x)2 dx = −
∫ 1

0

q(x)q′′(x) dx ≤ ‖q‖L2(I) · ‖q′′‖L2(I) ≤ cp · ‖q′‖L2(I) · ‖q′′‖L2(I) ,

which leads to

‖q′‖L2(I) ≤ cp · ‖q′′‖L2(I) .

As a result,

‖q‖2
H2(I) = ‖q‖2

L2(I) + ‖q′‖2
L2(I) + ‖q′′‖2

L2(I) ≤ (c4
p + c2

p + 1) · ‖q′′‖2
L2(I) . �

In order to bound Q
ad

in H2(I), we set q0 = 0 ∈ Q̄ad. A necessary condition for q ∈ Q̄ad to be a solution
to (1.3) is

j(q) ≤ j(q0),
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which is

1
2
‖S(q) − uq

d‖
2

L2(Ωq) +
α

2
‖q′′‖2

L2(I) ≤ j(q0).

This implies

‖q′′‖2
L2(I) ≤

2
α

(
j(q0) −

1
2
‖S(q) − uq

d‖
2

L2(Ωq)

)
≤ 2

α
j(q0).

Together with Lemma 1.1 this shows that there exists a constant C̃ = C̃(α) > 0, such that the search for a
minima can be restricted to the set

Qad = { q ∈ Q̄ad | ‖q‖H2(I) ≤ C̃ } , (1.4)

which is also bounded in C1(I).
Throughout we assume for the data

uq
d = ud|Ωq

, f q = f |Ωq
, with ud, f ∈ C2,1(Ω̂),

where Ω̂ is the all-holding domain with Ωq ⊂ Ω̂ for all q ∈ Qad. We will therefore just write f and ud instead
of f q and uq

d.
For q ∈ Qad and v ∈ H1

0(Ωq) we define an extension ṽ ∈ H1
0(Ω̂) by

ṽ(x) =

{
v(x) if x ∈ Ωq,

0 else.

If vn ∈ H1
0(Ωqn) for qn ∈ Qad, then the sequence (vn)n∈N

is said to (weakly) converge to an element v ∈ H1
0(Ωq)

if the extended functions ṽn (weakly) converge to ṽ in H1
0(Ω̂).

The following proposition states the continuity of the solution operator S̃, see [13] for the proof.

Proposition 1.2. Let qn, q ∈ Qad, qn → q in L∞(I) and un = S̃(qn). Then there exists ũ ∈ H1
0(Ω̂) with

ũn → ũ in H1
0(Ω̂) for n → ∞,

such that u = ũ|Ωq
holds with u = S̃(q).

A direct consequence is the following existence theorem.

Theorem 1.3. Problem (1.3) has a global solution.

Proof. We have Qad 
= ∅ and J(q, u) ≥ 0. So there exists a minimizing sequence
(
qn, un = S̃(qn)

)
n∈N

with

j = inf
q∈Qad

j(q) = lim
n→∞

J(qn, un).

The boundedness of Qad in H2(I) implies the existence of a subsequence (qnk
)k∈N

⊂ (qn)n∈N
and q̄ ∈ Qad with

qnk
⇀ q̄ in H2(I),

qnk
→ q̄ in C0(Ī) for k → ∞,
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due to the compact embedding of H2(I) into C0(Ī). With Proposition 1.2 it follows that there exists ū ∈ H1
0(Ωq̄)

with ũnk
→ ˜̄u in H1

0(Ω̂) and ū = S̃(q̄). Now let

J1 : (q, u) �→ ‖u − ud‖2
L2(Ωq) = ‖ũ − ũd‖2

L2(Ω̂) ,

J2 : q �→ ‖q′′‖2
L2(I) .

The functional J2 is continuous and convex in H2(I) and therefore weakly lower semi-continuous. By the
definition of j it follows that

lim
k→∞

J1 (qnk
, unk

) = J1(q̄, ū),

lim inf
k→∞

J2 (qnk
) ≥ J2(q̄).

By adding these two inequalities we get

J(q̄, ū) ≤ lim inf
k→∞

J (qnk
, unk

) = j,

and conclude that J(q̄, ū) = j. Hence, (q̄, ū) is a solution of the initial problem (1.3). �

Remark 1.4. Although the state equation (1.2) is linear, the solution operator S̃ is nonlinear and one cannot
expect the reduced cost functional j to be convex. Therefore uniqueness of an optimal solution cannot be shown
in general.

1.2. Optimality conditions

In order to find the optimal solution q̄ and to formulate optimality conditions, one usually needs some sort of
derivative of the reduced cost functional j. In general, the derivative j′(q)(δq) can be represented via a domain
integral. This is done later, see (3.8). Given sufficient regularity of q, it can also be represented via a boundary
integral over the moving part of the boundary. This general principle is known as the Hadamard Formula and
can be found in [26], Theorem 2.27. If q is sufficiently smooth (q ∈ C2(I)), then it can be shown that j is Fréchet
differentiable with

j′(q)(δq) =
∫

Γq

(
1
2

(u − ud)
2 + ∂nu ∂nz

)
〈Vq,δq , n〉dΓq(x) + α

∫ 1

0

q′′ δq′′ dx. (1.5)

Within (1.5), the so-called adjoint variable z ∈ H1
0(Ωq) is the weak solution of{−Δz + z = u − ud in Ωq,

z = 0 on Γq,
(1.6)

and the vector field Vq,δq , describing a transformation from Ωq to Ωq+δq , is given by

Vq,δq(x, y) =
(

0
(1 − y) δq(x)

1−q(x)

)
.

For an overview on how to derive such a representation we refer to [15, 26]. Within Subsection 3.1 we will first
present the domain integral representation of j′(q)(δq) which holds for all q ∈ Qad. Second, we will use that
representation to show that the optimal solution q̄ is sufficiently regular, such that (1.5) actually holds in the
optimal solution q̄.

Throughout we make the following assumption.

Assumption 1.5. We assume that for the optimal solution q̄ under consideration the restriction q̄ ≤ 1 − ε
from (1.1) is not active, i.e. there exists δ > 0 with q̄(x) ≤ 1 − ε − δ for all x ∈ I.
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1.3. Transformation of the problem

In what follows we provide an equivalent formulation of (1.3) by the transformation onto the reference domain
Ω0 = (0, 1)2. To this end we introduce

Vq(x, y) =
(

0
(1 − y)q(x)

)
, (1.7)

a velocity field, and let

Tq(x, y) = (Id + Vq)(x, y) =
(

x
y + (1 − y)q(x)

)

be a transformation with Ωq = Tq(Ω0). The following functions derived from this transformation will be used
in the sequel:

DTq(x, y) =
(

1 0
(1 − y)q′(x) 1 − q(x)

)
, (1.8)

γq(x, y) = det (DTq(x, y)) = 1 − q(x), (1.9)

Aq(x, y) =
(
γq · DT−1

q · DT−T
q

)
(x, y) =

(
1 − q(x) −(1 − y)q′(x)

−(1 − y)q′(x) (1−y)2q′(x)2+1
1−q(x)

)
, (1.10)

A′
q,δq(x, y) =

d
dt

Aq+t·δq(x, y)
∣∣∣∣
t=0

=

(
−δq(x) −(1 − y)δq′(x)

−(1 − y)δq′(x) δq(x)+2(1−y)2q′(x)δq′(x)(1−q(x))+(1−y)2q′(x)2δq(x)
(1−q(x))2

)
, (1.11)

A′′
q,δq,τq(x, y) =

d
dt

A′
q+t·τq,δq(x, y)

∣∣∣∣
t=0

. (1.12)

With these explicit definitions at hand, one can easily derive some stability results which follow by a direct
calculation and the boundedness of Qad in H2(I), as well as the fact that ud, f ∈ C2,1(Ω̂).

Lemma 1.6. For q, p ∈ Qad we have

• ‖γq − γp‖L∞(Ω0) ≤ c · ‖q − p‖H2(I),
• ‖Tq − Tp‖L∞(Ω0) ≤ c · ‖q − p‖H2(I),
•
∥∥T−1

q − T−1
p

∥∥
L∞(Ω0)

≤ c · ‖q − p‖H2(I) ,

• ‖Vq − Vp‖L∞(Ω0) ≤ c · ‖q − p‖H2(I),
• ‖f ◦ Tq − f ◦ Tp‖L∞(Ω0) ≤ c · ‖q − p‖H2(I),
• ‖∇f ◦ Tq −∇f ◦ Tp‖L∞(Ω0)

≤ c · ‖q − p‖H2(I),
•
∥∥∇2f ◦ Tq −∇2f ◦ Tp

∥∥
L∞(Ω0)

≤ c · ‖q − p‖H2(I),
• ‖ud ◦ Tq − ud ◦ Tp‖L∞(Ω0)

≤ c · ‖q − p‖H2(I),
• ‖∇ud ◦ Tq −∇ud ◦ Tp‖L∞(Ω0)

≤ c · ‖q − p‖H2(I),
•
∥∥∇2ud ◦ Tq −∇2ud ◦ Tp

∥∥
L∞(Ω0)

≤ c · ‖q − p‖H2(I),
• ‖div(Vq)‖L∞(Ω0)

≤ c · ‖q‖H1(I).

Furthermore, the expressions γq, Tq, T−1
q , Vq, f ◦Tq, ∇f ◦Tq. ∇2f ◦Tq, ud ◦Tq, ∇ud ◦Tq, ∇2ud ◦Tq and div(Vq)

are bounded in L∞(Ω0).
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Lemma 1.7. For q, p ∈ Qad, δq ∈ Q, it holds that:

• ‖Aq‖L∞(Ω0)
≤ c,

• ‖Aq − Ap‖L∞(Ω0)
≤ c · ‖q − p‖H2(I),

•
∥∥∥A′

q,δq

∥∥∥
L∞(Ω0)

≤ c · ‖δq‖H2(I),

•
∥∥∥A′′

q,δq,δq

∥∥∥
L∞(Ω0)

≤ c · ‖δq‖2
H2(I).

Using transformation of integrals we obtain the following equivalence of the weak formulations on Ωq and Ω0:

Lemma 1.8. Let q ∈ Qad, u ∈ H1
0(Ωq) and uq = u ◦ Tq ∈ H1

0(Ω0). Then the following variational formulations
are equivalent ∫

Ωq

(∇u∇z + uz) dx =
∫

Ωq

fz dx ∀z ∈ H1
0(Ωq), (1.13)∫

Ω0

(∇uqAq∇zq + uqzqγq) dx =
∫

Ω0

(f ◦ Tq)zqγq dx ∀zq ∈ H1
0(Ω0). (1.14)

The advantage of (1.14) over (1.13) is its independence of the domain, instead the coefficients of the matrix
Aq are changeable. To shorten notation, we will also from now on make use of the following forms

a(q)(u, z) =
∫

Ω0

(∇uAq∇z + uzγq) dx, (1.15)

l(q)(z) =
∫

Ω0

(f ◦ Tq)zγq dx. (1.16)

Then (1.14) can be written as
a(q) (uq, zq) = l(q) (zq) ∀zq ∈ H1

0(Ω0).

Lemma 1.8 motivates the introduction of another solution operator S which assigns to each control q the
“transported” solution, i.e. let S(q) = S̃(q) ◦ Tq ∈ H1

0(Ω0).
In the following lemmata we summarize some properties of the bilinear form a(q)(·, ·) and the linear functional

l(q)(·), which are direct consequences of the definitions, Lemma 1.6 and Lemma 1.7.

Lemma 1.9. The bilinear form a(q)(·, ·) is continuous and coercive in H1
0(Ω0), i.e. there exist c1, c2 > 0,

independent of q, such that for all q ∈ Qad and u, z ∈ H1
0(Ω0) it holds that

|a(q)(u, z)| ≤ c1 · ‖∇u‖L2(Ω0)
· ‖∇z‖L2(Ω0) ,

a(q)(u, u) ≥ c2 · ‖∇u‖2
L2(Ω0)

.

Furthermore, there exists c3 > 0, independent of q, such that for u ∈ W1,p(Ω0), p ∈ [1,∞] and z ∈ W1,p′
(Ω0)

with p−1 + p′−1 = 1 the following Hölder-like inequality holds

|a(q)(u, z)| ≤ c3 · ‖u‖W1,p(Ω0)
· ‖z‖W1,p′ (Ω0)

.

Lemma 1.10. For q, p ∈ Qad and u, z ∈ H1(Ω0) it holds that

|a(q)(u, z) − a(p)(u, z)| ≤ c · ‖q − p‖H2(I) · ‖u‖H1(Ω0) · ‖z‖H1(Ω0)
.

Lemma 1.11. For q, p ∈ Qad and z ∈ H1(Ω0) it holds that

|l(q)(z) − l(p)(z)| ≤ c · ‖q − p‖H2(I) · ‖z‖L2(Ω0) .
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In the following sections we will make heavy use of various regularity results for elliptic partial differential
equations. Here we state them all at once.

Theorem 1.12. Let Ω ⊂ R
2 be bounded with Lipschitz boundary Γ , f ∈ H−1(Ω), and let the matrix A be

symmetric and uniformly elliptic with coefficients ai,j ∈ L∞(Ω0). Furthermore, let u ∈ H1
0(Ω) be the weak

solution of {− div (A∇u) = f in Ω,

u = 0 on Γ.

1. If 1/2 ≥ t > s > 0 and the coefficients of A belong to C0,t(Ω), then for all f ∈ H−1+s(Ω) it holds u ∈ H1+s
0 (Ω)

and there exists cs > 0 with ‖u‖H1+s(Ω) ≤ cs · ‖f‖H−1+s(Ω).
2. If the coefficients of A are Lipschitz and there exists ε > 0 with f ∈ H−1/2+ε(Ω), then u ∈ H3/2(Ω). In

addition, if f ∈ L2(Ω), then there exists c > 0 with ‖u‖H3/2(Ω) ≤ c · ‖f‖L2(Ω).
3. If Ω is polygonal and convex, the coefficients of A are Lipschitz and f ∈ L2(Ω), then u ∈ H2(Ω) and there

exists c > 0, depending only on the diameter of Ω, with ‖u‖H2(Ω) ≤ c · ‖f‖L2(Ω).
4. If Ω is polygonal and convex, and the coefficients of A are Lipschitz then there exists pΩ > 2 such that for all

p < pΩ and f ∈ Lp(Ω) it holds that u ∈ W2,p(Ω) and there exists c > 0, depending on the Lipschitz-constant
of A, such that ‖u‖W2,p(Ω) ≤ c · ‖f‖Lp(Ω).

Proof. Part (1) can be found in [22], (2) can be found in [16,17,24], part (3) is proven in [12,18] and the proof
for the last part (4) can be found in [12]. �

Remark 1.13. All the statements of Theorem 1.12 remain true if a zero order term pops up. Let b ∈ C1(Ω)
with b ≥ c > 0 in Ω. Let now u ∈ H1

0(Ω) be the weak solution of{− div (A∇u) + bu = f in Ω,

u = 0 on Γ.

Which can equivalently be rewritten as{− div (A∇u) = f − bu in Ω,

u = 0 on Γ.
(1.17)

Now we can apply Theorem 1.12 to (1.17) and use the common H1-regularity results to show that Theorem 1.12
still holds.

Corollary 1.14. For q ∈ Qad it holds that the corresponding state u as well as the corresponding adjoint state z,
defined via (1.2) and (1.6), respectively, possess the higher regularity u, z ∈ H3/2(Ωq).

Proof. This corollary follows from Theorem 1.12, part (2), together with Remark 1.13. �

2. Discretization

In order to solve (1.3) numerically we discretize the problem using (bi)linear finite elements. To this end, we
first discretize the control q, afterwards the state u is being discretized. For the discretization of the control
we split the interval (0, 1) into N pairwise disjoint nonempty subintervals, i.e. we choose 0 = x0 < x1 < . . . <
xN−1 < xN = 1 and set Ii = (xi−1, xi) for i ∈ {1, . . . , N}. Furthermore, let |Ii| ≤ σ for a given discretization
parameter σ > 0 and all i ∈ {1, . . . , N}. We use Hermite elements to define the set of the discretized controls by

Qσ =
{

q ∈ Q| q|Ii
∈ P3 (Ii) ∀i ∈ {1, . . . , N}

}
, (2.1)

Qad
σ = Qad ∩ Qσ, (2.2)
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where Pn(J) shall denote the set of all polynomials of degree less than or equal to n over the set J . It can
be seen immediately that for qσ ∈ Qad

σ we have qσ ∈ W2,∞(I) ↪→ C1,1(I). As polynomials of degree 3 have 4
degrees of freedom, any qσ ∈ Qad

σ is uniquely determined by the values of qσ(xi) and q′σ(xi). As Qad
σ ⊂ H1

0(I),
the function values at x0 and xN are set to 0.

Corollary 2.1. For qσ ∈ Qad
σ we have S(qσ) ∈ H2(Ω0) and there exists c > 0 independent of σ with

‖S(qσ)‖H2(Ω0)
≤ c · ‖f ◦ Tqσγqσ‖L2(Ω0).

Proof. Because of qσ ∈ C1,1(I) the matrix Aqσ is Lipschitz, and the proof follows with Theorem 1.12,
part (3). �

The problem with discretized control now reads as

Minimize j(qσ), qσ ∈ Qad
σ . (2.3)

Now we discretize the state u. As later on all computations are carried out on the reference domain Ω0, we
just discretize the “transported” solution uq. Let (Th)h>0 be a family of partitions of Ω0 into either triangles
or quadrilaterals which should also fulfill the usual regularity assumptions like shape-regularity etc. hK shall
denote the diameter of the element K and h = maxK∈Th

hK is a discretization parameter for the state. The
space of discrete test functions is now defined as

Vh =
{

vh ∈ H1
0(Ω0)

∣∣ vh|K ∈ P1(K)∀K ∈ Th

}
for triangles, and

Vh =
{

vh ∈ H1
0(Ω0)

∣∣ vh|K ∈ Q1(K)∀K ∈ Th

}
for quadrilaterals.

Here Qn(K) shall denote the set of all polynomials over K whose exponents in x and y are less than or equal
to n. We are now able to formulate the fully discretized problem

Minimize J
(
qσ, uh ◦ T−1

qσ

)
=

1
2

∥∥uh ◦ T−1
qσ

− ud

∥∥2

L2(Ωqσ )
+

α

2
‖q′′σ‖

2
L2(I) , qσ ∈ Qad

σ , uh ∈ Vh, (2.4)

where qσ and uh fulfill the following variational equality

a(qσ)
(
uh, zh

)
= l(qσ)

(
zh
)

∀zh ∈ Vh, (2.5)

which is just the discrete counterpart of (1.14).
Again, for each q ∈ Qad there exists a unique uh(q) ∈ Vh which solves (2.5). Therefore we can define a discrete

analogue to the operator S and the functional j.

Definition 2.2. Let Sh : Qad �→ Vh be the operator which assigns to each q ∈ Qad the unique solution uh

of (2.5), and let jh : Qad �→ R, jh(q) = J(q, Sh(q) ◦ T−1
q ) be the reduced discrete cost functional.

Next, one is interested whether the problems (2.3) and (2.4) also have a solution, and what happens if we
take the limit for (σ, h) → 0. Again, most of the proofs are similar to [13] and can easily be transformed to our
problem. We will just list two of the most important theorems which answer the questions from above.

Theorem 2.3. The (partially) discretized problems (2.3) and (2.4) have a solution.

Theorem 2.4. Let
(
q̄σn,hn , ūσn,hn = Sh(q̄σn,hn)

)
n∈N

be a sequence of optimal pairs for (2.4) with (σn, hn) →
0 for n → ∞. Then there exists q̄ ∈ Qad and ū ∈ H1

0(Ωq̄) with ū = S̃(q̄) and a subsequence(
q̄σnk

,hnk
, ūσnk

,hnk

)
k∈N

⊂
(
q̄σn,hn , ūσn,hn

)
n∈N

with

q̄σnk
,hnk

→ q̄ in H2(I),

ūσnk
,hnk → ū ◦ Tq̄ in H1

0(Ω0) for k → ∞,

and the pair (q̄, ū) is a solution of (1.3).

Remark 2.5. Theorem 2.4 also holds if a sequence (q̄σ,h, ūσ,h)σ,h>0 of local optimal pairs for (2.4) is considered.
In that case, the limit (q̄, ū) is of course just a local solution of (1.3).
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3. A priori error estimates

Within this section we are going to prove some a priori bounds for the error between the optimal control q̄
in the continuous case and its fully discretized counterpart q̄σ,h. As the optimal control may not be unique, it
is not guaranteed that one can find converging sequences of globally optimal discretized solutions for each q̄.
However, we will show that for each q̄ one can find converging subsequences of at least local optimal solutions
of (2.4).

Let q̄ be a local solution of (1.3) which satisfies Assumption 1.5. The optimality conditions of first and second
order, respectively, are

j′(q̄)(δq) = 0 ∀δq ∈ Q, (3.1)
j′′(q̄)(δq, δq) ≥ 0 ∀δq ∈ Q. (3.2)

The differentiability of the reduced cost functional j will be shown within this section.
In order to proof our main result later on, we have to make the following assumption, which is just slightly

stronger than (3.2).

Assumption 3.1. Let q̄ be a local minimum of (1.3). We assume that

j′′(q̄)(δq, δq) > 0 ∀δq ∈ Q\ {0} .

Now we are able to state our main result:

Theorem 3.2. Let q̄ be a local solution of (1.3) which fulfills the Assumptions 1.5 and 3.1. Then, for (σ, h)
sufficiently small, there exist c1, c2 > 0, independent of σ and h, with

‖q̄ − q̄σ,h‖H2(I) ≤ c1 · σ2 + c2 · h2,

where (q̄σ,h)σ,h>0 is a converging sequence of local optimal solutions of (2.4).

In order to prove Theorem 3.2, the error will be split,

‖q̄ − q̄σ,h‖H2(I) ≤ ‖q̄ − q̄σ‖H2(I) + ‖q̄σ − q̄σ,h‖H2(I) , (3.3)

where (q̄σ)σ>0 and (q̄σ,h)σ,h>0 are sequences of local optimal solutions of (2.3) and (2.4), respectively, which
converge to q̄ in H2(I). The existence of such sequences will be shown in the sequel.

The first part on the right hand side of (3.3) refers to the discretization of the control, whereas the latter
part refers to the discretization of the state. These two parts will be estimated separately.

In addition, from now on let q̄ be a fixed local solution of (1.3) which fulfills Assumption 1.5 and 3.1.
First of all, we have to show that the operator S is at least twice Fréchet differentiable. This can be done by

using the Implicit Function Theorem for Banach spaces. The following version can be found in [4], Theorem 2.3.

Theorem 3.3. Let F ∈ Ck(Xad × Y, Z), k ≥ 1, where Y and Z are Banach spaces and Xad is an open subset
of Banach space X. Suppose that F (x∗, y∗) = 0 and that F ′

y(x∗, y∗) is continuously invertible. Then there exist
neighbourhoods Θ of x∗ in X, Φ of y∗ in Y and a map g ∈ Ck(Θ, Y ) such that F (x, g(y)) = 0 for all x ∈ Θ.
Furthermore, F (x, y) = 0 for (x, y) ∈ Θ × Φ implies y = g(x).

Corollary 3.4. The Operator S is at least twice continuously Fréchet differentiable.

Proof. We set Xad = int
(
Qad

)
, X = Q, Y = H1

0(Ω0) and Z = H−1(Ω0). Furthermore, define F : Qad ×
H1

0(Ω0) �→ H−1(Ω0), F (q, u) = a(q)(u, ·) − l(q)(·). Then F is affine in u and twice continuously differentiable
with respect to q, as can be shown by a direct computation using the definitions (1.8)−(1.12). The result then
follows with Theorem 3.3. �
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We now recall the definition of the operator S and its derivatives, which follow by a direct calculation.

1. u = S(q) ∈ H1
0(Ω0) is the solution of

a(q)(u, z) = (f ◦ Tq, zγq) ∀z ∈ H1
0(Ω0). (3.4)

2. δu = S′(q)(δq) ∈ H1
0(Ω0) is the solution of

a(q)(δu, z) =
(
(∇f ◦ Tq)T · Vδq , zγq

)
+ (f ◦ Tq, z div(Vδq)) −

(
∇u, A′

q,δq∇z
)

− (u, z div(Vδq)) ∀z ∈ H1
0(Ω0). (3.5)

3. δτu = S′′(q)(δq, τq) ∈ H1
0(Ω0) is the solution of

a(q)(δτu, z) =
(
V T

τq · ∇2f ◦ Tq · Vδq, zγq

)
−
(
∇u, A′′

q,δq,τq∇z
)

+
(
(∇f ◦ Tq)T · Vτq, z div(Vδq)

)
+
(
(∇f ◦ Tq)T · Vδq, z div(Vτq)

)
−
(
∇τu, A′

q,δq∇z
)
−
(
∇δu, A′

q,τq∇z
)

− (τu, z div(Vδq)) − (δu, z div(Vτq)) ∀z ∈ H1
0(Ω0), (3.6)

where τu = S′(q)(τq).

Remark 3.5. The representations (3.6) as well as (3.9) show that the second derivatives are symmetric with
respect to the directions.

Lemma 3.6. For q ∈ Qad, δq ∈ Q it holds with q-independent constants that

1. ‖S(q)‖H1(Ω0)
≤ c,

2. ‖S′(q)(δq)‖H1(Ω0)
≤ c · ‖δq‖H2(I),

3. ‖S′′(q)(δq, δq)‖H1(Ω0)
≤ c · ‖δq‖2

H2(I).

Proof. (1) By the uniform coercivity of a(q)(·, ·) we have

c · ‖S(q)‖2
H1(Ω0)

≤ a(q)(S(q), S(q)) = l(q) (S(q))

≤ ‖γq‖L∞(Ω0)
· ‖f ◦ Tq‖L2(Ω0)

· ‖S(q)‖H1(Ω0)
≤ c · ‖S(q)‖H1(Ω0)

.

(2) and (3) are also proven using the uniform coercivity of a(q)(·, ·) as well as the Lemmata 1.6 and 1.7. �

Lemma 3.7. For q, p ∈ Qad, δq ∈ Q it holds that

1. ‖S(q) − S(p)‖H1(Ω0) ≤ c · ‖q − p‖H2(I),
2. ‖S′(q)(δq) − S′(p)(δq)‖H1(Ω0) ≤ c · ‖q − p‖H2(I) · ‖δq‖H2(I),
3. ‖S′′(q)(δq, δq) − S′′(p)(δq, δq)‖H1(Ω0) ≤ c · ‖q − p‖H2((0,1)) · ‖δq‖

2
H2(I).

Proof. (1) Let e = S(q) − S(p). With Lemma 1.10 we have

c · ‖e‖2
H1(Ω0)

≤ a(q)(e, e) = a(q)(S(q), e) − a(q)(S(p), e)

≤ a(q)(S(q), e) − a(p)(S(p), e) + c · ‖S(p)‖H1(Ω0)
· ‖e‖H1(Ω0)

· ‖q − p‖H2(I) .

Due to the definition of S(q), S(p) and Lemma 1.11 we get

a(q)(S(q), e) − a(p)(S(p), e) = l(q)(e) − l(p)(e) ≤ c · ‖q − p‖H2(I) · ‖e‖H1(Ω0) .

As ‖S(p)‖H1(Ω0)
is bounded, the proof for this part is finished.

(2) and (3) are proven similarly to the first part, one additionally has to make use of the Lemmata 1.6, 1.10,
1.11 and 3.6. �
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In what follows we will also need some stability results concerning the reduced cost functional j and its
derivatives. The fact that j is at least twice differentiable follows from Corollary 3.4. A direct calculation yields

j(q) =
1
2

(S(q) − ud ◦ Tq, (S(q) − ud ◦ Tq)γq) +
α

2
(q′′, q′′)L2(I) , (3.7)

j′(q)(δq) =
1
2

(S(q) − ud ◦ Tq, (S(q) − ud ◦ Tq) div(Vδq))

+
(
S′(q)(δq) − (∇ud ◦ Tq)

T · Vδq , (S(q) − ud ◦ Tq)γq

)
+ α(q′′, δq′′)L2(I), (3.8)

j′′(q)(δq, τq) =
(
S′(q)(δq) − (∇ud ◦ Tq)

T · Vδq, (S′(q)(τq) − (∇ud ◦ Tq)
T · Vτq)γq

)
+
(
S(q) − ud ◦ Tq, (S′(q)(δq) − (∇ud ◦ Tq)

T · Vδq) div(Vτq)
)

+
(
S(q) − ud ◦ Tq, (S′(q)(τq) − (∇ud ◦ Tq)

T · Vτq) div(Vδq)
)

+
(
S(q) − ud ◦ Tq, (S′′(q)(δq, τq) − V T

τq · ∇2ud ◦ Tq · Vδq)γq

)
+ α(δq′′, τq′′)L2(I). (3.9)

Lemma 3.8. For q, p ∈ Qad, δq ∈ Q it holds that

1. |j(q) − j(p)| ≤ c · ‖q − p‖H2(I),
2. |j′(q)(δq) − j′(p)(δq)| ≤ c · ‖q − p‖H2(I) · ‖δq‖H2(I),

3. |j′′(q)(δq, δq) − j′′(p)(δq, δq)| ≤ c · ‖q − p‖H2(I) · ‖δq‖
2
H2(I).

Proof. (1) With the inequality of Cauchy-Schwarz and the definition of Qad we get

(q′′, q′′)L2(I) − (p′′, p′′)L2(I) = (q′′ − p′′, q′′ + p′′)L2(I) ≤ c · ‖q − p‖H2(I) .

Applying the Lemmata 1.6, 3.6, 3.7 and again Cauchy-Schwarz’s inequality one gets

(S(q) − ud ◦ Tq, (S(q) − ud ◦ Tq)γq) − (S(p) − ud ◦ Tp, (S(p) − ud ◦ Tp)γp)
= (S(q) − ud ◦ Tq − S(p) + ud ◦ Tp, (S(q) − ud ◦ Tq + S(p) − ud ◦ Tp)γq) +

(
(S(p) − ud ◦ Tp)2, γq − γp

)
≤ c ·

(
‖S(q) − S(p)‖L2(Ω0)

+ ‖ud ◦ Tq − ud ◦ Tp‖L2(Ω0)

)
+ c · ‖γq − γp‖L2(Ω0)

≤ c · ‖q − p‖H2(I) .

(2) First of all, we have

(q′′, δq′′)L2(I) − (p′′, δq′′)L2(I) = (q′′ − p′′, δq′′)L2(I) ≤ ‖q − p‖H2(I) · ‖δq‖H2(I)

Furthermore

(S(q) − ud ◦ Tq, (S(q) − ud ◦ Tq) div(Vδq)) − (S(p) − ud ◦ Tp, (S(p) − ud ◦ Tp) div(Vδq)) ≤ c · ‖q − p‖H2(I) · ‖δq‖H2(I)

as we can apply the same steps as in the proof of the first part and also use Lemma 1.6. At last(
S′(q)(δq) − (∇ud ◦ Tq)

T · Vδq, (S(q) − ud ◦ Tq) γq

)
−
(
S′(p)(δq) − (∇ud ◦ Tp)

T · Vδq, (S(p) − ud ◦ Tp) γp

)
=
(
S′(q)(δq) − (∇ud ◦ Tq)T · Vδq − S′(p)(δq) + (∇ud ◦ Tp)T · Vδq , (S(q) − ud ◦ Tq) γq

)
+
(
S′(p)(δq) − (∇ud ◦ Tp)T · Vδq , (S(q) − ud ◦ Tq − S(p) + ud ◦ Tp) γq

)
+
(
S′(p)(δq) − (∇ud ◦ Tp)T · Vδq , (S(p) − ud ◦ Tp) · (γq − γp)

)
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again we use the Lemmas 1.6, 3.6, 3.7 and get

≤ c · ‖q − p‖H2(I) · ‖δq‖H2(I)

(3) All the terms which do not contain a second derivative can be estimated in the same way as done in the
first two parts, thus we only have to have a look at(

S(q) − ud ◦ Tq,
(
S′′(q)(δq, δq) − V T

δq · ∇2ud ◦ Tq · Vδq

)
γq

)
−
(
S(p) − ud ◦ Tp,

(
S′′(p)(δq, δq) − V T

δq · ∇2ud ◦ Tp · Vδq

)
γp

)
=
(
S(q) − ud ◦ Tq − S(p) + ud ◦ Tp,

(
S′′(q)(δq, δq) − V T

δq · ∇2ud ◦ Tq · Vδq

)
γq

)
+
(
S(p) − ud ◦ Tp,

(
S′′(q)(δq, δq) − V T

δq · ∇2ud ◦ Tq · Vδq − S′′(p)(δq, δq) + V T
δq · ∇2ud ◦ Tp · Vδq

)
γq

)
+
(
S(p) − ud ◦ Tp,

(
S′′(p)(δq, δq) − V T

δq · ∇2ud ◦ Tp · Vδq

)
(γq − γp)

)
≤ c · ‖q − p‖H2(I) · ‖δq‖

2
H2(I)

Where in the last step we again made use of the Lemmata 1.6, 3.6 and 3.7. �

In what follows we adapt some lemmata and theorems from [7] to get equivalent formulations for Assump-
tion 3.1, as stated in Theorem 3.13.

Lemma 3.9. Let q ∈ Qad, δq ∈ Q and (δqn)n∈N
⊂ Q. If δqn → δq in C1(I) then it holds that

1. S′(q)(δqn) → S′(q)(δq) in H1(Ω0),
2. S′′(q)(δqn, δqn) → S′′(q)(δq, δq) in H1(Ω0).

Proof. (1) For δqn → δq in C1(I) it immediately follows from (1.7) and (1.11) that the right hand side in (3.5)
converges in L2(Ω0). Hence, this part of the lemma follows with the standard H1-stability result.
(2) The second part is proven analogously to the first part. In order to show that the right hand side in (3.6)
converges in L2(Ω0), one has to make use of part (1) and the equations (1.7), (1.11) and (1.12). �

Lemma 3.10. Let q ∈ Qad, δq ∈ Q and (δqn)n∈N
⊂ Q and δqn → δq in C1(I). Let m : Qad × Q �→ R and n :

Qad×Q �→ R be defined by m(q)(δq) = j′(q)(δq)−α (q′′, δq′′)L2(I) and n(q)(δq) = j′′(q)(δq, δq)−α (δq′′, δq′′)L2(I),
respectively. Then it holds that

1. m(q)(δqn) → m(q)(δq) for n → ∞,
2. n(q)(δqn) → n(q)(δq) for n → ∞.

Proof. This Lemma follows directly from the representations (3.8) and (3.9) in combination with Lemma 3.9
and (1.7). �

Lemma 3.11. Let q ∈ Qad, δq ∈ Q and (δqn)n∈N
⊂ Q. If δqn ⇀ δq in H2(I), then

1. j′(q)(δqn) → j′(q)(δq),
2. j′′(q)(δq, δq) ≤ lim infn→∞ j′′(q)(δqn, δqn).

Proof. As H2(I) is compactly embedded in C1(I), we get δqn → δq in C1(I).
(1) This part follows from the fact that (q′′, δq′′n)L2(I) → (q′′, δq′′)L2(I) and the first part of Lemma 3.10.
(2) As the squared H2(I)-seminorm is a continuous and convex functional on H2(I), it is also weakly lower
semi-continuous, hence (δq′′, δq′′)L2(I) ≤ lim infn→∞ (δq′′n, δq′′n)L2(I), and the second part follows with the second
part of Lemma 3.10. �

Lemma 3.12. Let q ∈ Qad, δqn, δq ∈ Q and δqn ⇀ δq in H2(I). If limn→∞ j′′(q)(δqn, δqn) = j′′(q)(δq, δq),
then δqn → δq in H2(I).
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Proof. At first we notice that δqn → δq in C1(I). With Lemma 3.10, (2), it follows that ‖δq′′n‖L2(I) → ‖δq′′‖L2(I),
hence we have convergence of the full H2(I)-norm. Strong convergence now follows from the convergence of the
norm plus weak convergence. �
Theorem 3.13. Let q̄ ∈ Qad fulfill Assumption 3.1. Then there exists β > 0 such that

j′′(q̄)(δq, δq) ≥ β · ‖δq‖2
H2(I) ∀δq ∈ Q. (3.10)

Proof. Assume that (3.10) does not hold. Then there exists a sequence (δqn)n∈N
⊂ Q with ‖δqn‖H2(I) = 1 and

j′′(q̄)(δqn, δqn) <
1
n
·

Possibly after extracting a subsequence we get the existence of an element δq ∈ Q with δqn ⇀ δq in H2(I). We
get

0 ≤ j′′(q̄)(δq, δq) ≤ lim inf
n→∞

j′′(q̄)(δqn, δqn) ≤ lim sup
n→∞

j′′(q̄)(δqn, δqn) ≤ lim sup
n→∞

1
n

= 0, (3.11)

where the first inequality is just the necessary optimality condition of second order (3.2) and the second inequality
is due to Lemma 3.11. Now, (3.11) leads to j′′(q̄)(δqn, δqn) → j′′(q̄)(δq, δq) = 0. With Assumption 3.1 we
get δq = 0, whereas Lemma 3.12 implies that δqn → δq in H2(I). This is a contradiction to the fact that
‖δqn‖H2(I) = 1. �

Due to the stability of j′′ it is now possible to show coercivity also in a neighborhood of q̄, as well as a
quadratic growth condition.

Lemma 3.14. If q̄ is a local solution of (1.3) fulfilling Assumption 3.1, then there exists δ1 > 0 such that, if
‖q̄ − p‖H2(I) ≤ δ1 for p ∈ Qad, then it holds that

j′′(p)(δq, δq) ≥ β

2
· ‖δq‖2

H2(I) ∀δq ∈ Q.

Proof. With Theorem 3.13 and Lemma 3.8 one gets

j′′(p)(δq, δq) = j′′(q̄)(δq, δq) + j′′(p)(δq, δq) − j′′(q̄)(δq, δq)
≥ j′′(q̄)(δq, δq) − |j′′(p)(δq, δq) − j′′(q̄)(δq, δq)|
≥ β · ‖δq‖2

H2(I) − c · ‖q̄ − p‖H2(I) · ‖δq‖
2
H2(I)

=
(
β − c · ‖q̄ − p‖H2(I)

)
· ‖δq‖2

H2(I) ,

and the result follows for δ1 ≤ β
2c . �

Lemma 3.15. Let q̄ be a local minimum of (1.3) in which the Assumptions 1.5 and 3.1 hold. Then there exists
δ2 > 0 such that for all p ∈ Qad with ‖q̄ − p‖H2(I) ≤ δ2 it holds that

j(p) ≥ j(q̄) +
β

2
· ‖q̄ − p‖2

H2(I) .

Proof. With Taylor we have for some t ∈ [0, 1]:

j(p) = j(q̄) + j′(q̄)(p − q̄) + j′′ (q̄ + t · (p − q̄)) (p − q̄, p − q̄)
= j(q̄) + j′′ (q̄ + t · (p − q̄)) (p − q̄, p − q̄)

≥ j(q̄) +
β

2
· ‖q̄ − p‖2

H2(I) ,

whereas in the second step we used the first order optimality condition (3.1) in q̄, in the third step we used
Lemma 3.14. �

Before a priori error estimates can be established, we need some higher regularity of the optimal control q̄.
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3.1. Higher regularity of the optimal solution

In this subsection we investigate the regularity of the optimal solutions (q̄, ū) ∈ H2(I) × H3/2(Ωq̄) of (1.3).
The main result of this subsection will be the following.

Theorem 3.16. Every solution (q̄, ū) of (1.3) in which Assumption 1.5 holds possesses the higher regularity
(q̄, ū) ∈ H4(I) × H2(Ωq̄).

In order to prove this theorem, we first have a look at the regularity of the transported solution S(q) and its
derivatives.

Lemma 3.17. For q ∈ Qad it holds that S(q) is uniformly bounded in H5/4(Ω0).

Proof. As H2(I) ↪→ C1,1/2(I), the coefficients of the matrix Aq are elements of C0,1/2(Ω0). Hence we can apply
Theorem 1.12, (1), which leads to S(q) ∈ H5/4(Ω0). The uniform boundedness follows from the boundedness of
the right hand side in (3.4) in L2(Ω0), which is due to Lemma 1.6. �

Lemma 3.18. For q ∈ Qad, δq ∈ Q it holds with q-independent constants

‖S′(q)(δq)‖
W

1,8/7
0 (Ω0)

≤ c · ‖δq‖H1(I) .

Proof. For q ∈ Qad and δq ∈ Q let g(q, δq)(·) ∈ W−1,8/7(Ω0) be defined via

g(q, δq)(z) =
(
(∇f ◦ Tq)T · Vδq, zγq

)
+ (f ◦ Tq, z div(Vδq)) −

(
∇S(q), A′

q,δq∇z
)
− (S(q), z div(Vδq)) .

Now we use the Lemmata 1.6, 1.7 as well as the definitions (1.7) and (1.11) to estimate the norm

‖g(q, δq)(·)‖W−1,8/7(Ω0) = sup
‖z‖

W1,8
0 (Ω0)

=1

g(q, δq)(z)

= sup
‖z‖

W1,8
0 (Ω0)

=1

(
(∇f ◦ Tq)T · Vδq , zγq

)
+ (f ◦ Tq, z div(Vδq)) −

(
∇S(q), A′

q,δq∇z
)
− (S(q), z div(Vδq))

≤ sup
‖z‖

W1,8
0 (Ω0)

=1

c · ‖δq‖H1
0(I) + ‖∇S(q)‖L8/3(Ω0)

·
∥∥A′

q,δq

∥∥
L2(Ω0)

· ‖∇z‖L8(Ω0) + ‖S(q)‖L2(Ω0)
· ‖z‖L2(Ω0) · ‖δq‖H1(I)

≤ sup
‖z‖

W1,8
0 (Ω0)

=1

c · ‖δq‖H1(I) ·
(
1 + ‖z‖W1,8

0 (Ω0)

)
= c · ‖δq‖H1(I) ,

where in the last steps we used Lemma 3.17 in combination with the continuous embedding H5/4(Ω0) ↪→
W1,8/3(Ω0) as well as the generalized Hölder’s inequality.

Because of W1,8
0 (Ω0) ↪→ H1

0(Ω0) and (3.5) it follows that S′(q)(δq) uniquely solves

a(q)(S′(q)(δq), z) = g(q, δq)(z) ∀z ∈ W1,8
0 (Ω0).

With [3], Theorem 1, it follows that

‖S′(q)(δq)‖
W

1,8/7
0 (Ω0)

≤ c · ‖g(q, δq)(·)‖W−1,8/7(Ω0)
≤ c · ‖δq‖H1(I). �
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Lemma 3.19. The optimal solution q̄ has the higher regularity q̄ ∈ H3(I) ↪→ C2,1/2(I).

Proof. In (3.8) we have already shown that

j′(q)(δq) =
1
2

(S(q) − ud ◦ Tq, (S(q) − ud ◦ Tq) div(Vδq)) +
(
S′(q)(δq) − (∇ud ◦ Tq)

T · Vδq , (S(q) − ud ◦ Tq)γq

)
︸ ︷︷ ︸

=j1(δq)

(3.12)

+ α(q′′, δq′′)L2(I).

The functional j1 as defined in (3.12) is linear in δq. Then, by using (1.7), Lemmas 1.6 and 3.17 with the
embedding H5/4(Ω0) ↪→ L∞(Ω0) as well as Lemma 3.18 we conclude that

j1(δq) ≤ c · ‖δq‖H1
0(I) ,

where c = c(q, ud, f). The Riesz Representation Theorem now yields the existence of r ∈ H1
0(I) such that

j′(q)(δq) =
∫ 1

0

r′δq′ dx + α

∫ 1

0

q′′δq′′ dx ∀δq ∈ Q.

Now we recall the first order optimality conditions in q̄,

j′(q̄)(δq) = 0 ∀δq ∈ Q,

and because of C∞
0 (I) ⊂ Q we a fortiori get

j′(q̄)(δq) = 0 ∀δq ∈ C∞
0 (I),

and therefore

∫ 1

0

(αq̄′′ − r)δq′′ dx = 0 ∀δq ∈ C∞
0 (I).

Hence, αq̄′′ − r = 0 in H2
0(I) ⊂ H1

0(I). Because of r ∈ H1
0(I) we get αq̄′′ ∈ H1

0(I) and hence q̄ ∈ H3(I). �

With the previous Lemma it now follows that the coefficients of the matrix Aq̄ are Lipschitz continuous. The
following corollary thus follows with Theorem 1.12, (3).

Corollary 3.20. It holds that ūq̄ = S(q̄) ∈ H2(Ω0), z̄q̄ ∈ H2(Ω0), where z̄q̄ is the transported adjoint state as
defined in (1.6), associated to ūq̄.

In order to prove that the “original” state ū also possesses this higher regularity we need the following lemma.

Lemma 3.21. If v ◦ Tq̄ = vq̄ ∈ H2(Ω0), then it holds that v ∈ H2(Ωq̄).

Proof. Because of q̄ ∈ H3(I) ↪→ C2,1/2(I) we also have

T−1
q̄ =

(
x

y − (1 − y) q̄(x)
1−q̄(x)

)
=
(

T1

T2

)
∈
(
C2(Ωq̄)

)2
. (3.13)
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A formal calculation yields

v = vq̄ ◦ T−1
q̄ , (3.14)

∇v =
(
D(T−1

q̄ )
)T · ∇vq̄ ◦ T−1

q̄ , (3.15)

∇2v =
(

∂

∂x
vq̄

)
◦ T−1

q̄ · ∇2T1 +
(

∂

∂y
vq̄

)
◦ T−1

q̄ · ∇2T2 +
(
D(T−1

q̄ )
)T · ∇2vq̄ ◦ T−1

q̄ · D(T−1
q̄ ). (3.16)

From H2(Ω0) ↪→ C0,1−ε(Ω0), (3.13) and (3.14) it follows that v ∈ L2(Ωq̄). Furthermore, with (3.15) it holds
that ∫

Ωq̄

|∇v|2 dx =
∫

Ωq̄

∣∣∣D (T−1
q̄

)T · ∇vq̄ ◦ T−1
q̄

∣∣∣2 dx

=
∫

Ω0

∣∣∣D(Tq̄)
−1 · ∇vq̄

∣∣∣2 γq̄ dx ≤ c ·
∫

Ω0

∣∣∇vq̄
∣∣2 dx < ∞,

and hence ∇v ∈ L2(Ωq̄). It remains to bound the second derivatives.∫
Ωq̄

∣∣∣∣
(

∂

∂x
vq̄

)
◦ T−1

q̄ · ∇2T1

∣∣∣∣2 dx =
∫

Ω0

∣∣∣∣
(

∂

∂x
vq̄

)
· ∇2T1 ◦ Tq̄

∣∣∣∣2 γq̄ dx ≤ c ·
∫

Ω0

(
∂

∂x
vq̄

)2

dx < ∞,

where we used the fact that ∇2T1 and Tq̄ are continuous and ∂
∂xvq̄ ∈ L2(Ω0). The proof that the second part of

the sum in (3.16) is finite is done analogously. Finally we have∫
Ωq̄

∣∣∣(D(T−1
q̄ )

)T · ∇2vq̄ ◦ T−1
q̄ · D(T−1

q̄ )
∣∣∣2 dx =

∫
Ω0

∣∣∣(D(T−1
q̄ )

)T ◦ Tq̄ · ∇2vq̄ · D(T−1
q̄ ) ◦ Tq̄

∣∣∣2 γq̄ dx

≤ c ·
∫

Ω0

∣∣∇2vq̄
∣∣2 dx < ∞,

where we again used (3.13) and ∇2vq̄ ∈ L2(Ω0). �

Corollary 3.22. It holds that ū, z̄ ∈ H2(Ωq̄).

With this improved regularity of q̄, ū and z̄ it now follows that the moving part of the boundary Γq̄ is
C2, hence the boundary integral representation (1.5) actually holds in q̄. Next we have a closer look at that
representation of j′. Again, we exploit the first order optimality conditions restricted to the set C∞

0 (I) ⊂ Q.

j′(q̄)(δq) = 0 ∀δq ∈ C∞
0 (I). (3.17)

Now we analyze (3.17). First of all, we have

n(x) =
1√

q̄′(x)2 + 1

(
q̄′(x)
−1

)

for the normalized outer normal on that part of the boundary Γq̄ which is described by q̄. If x ∈ {0, 1} or y = 1
we have Vq̄,δq = (0, 0)T , so the derivative (1.5) just consists of an integral over the “moving” part q̄ of the
boundary. This part of Γq̄ is parametrized by the curve

γ : [0, 1] �→ R
2, t �→

(
t

q̄(t)

)
,

γ′(t) =
(

1
q̄′(t)

)
, ‖γ′(t)‖ =

√
q̄′(t)2 + 1.
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Therefore

j′(q̄)(δq) =
∫

Γq̄

(
1
2
(ū − ud)2 + ∂nz̄ ∂nū

)
1√

q̄′2 + 1
(q̄ − 1)

δq

1 − q̄
dΓq̄(x) + α

∫ 1

0

q̄′′ δq′′ dx

= −
∫ 1

0

1
2

(ū(x, q̄(x)) − ud(x, q̄(x)))2︸ ︷︷ ︸
=h1(x)

δq(x) dx

−
∫ 1

0

1
q̄′(x)2 + 1

((
q̄′(x)
−1

)
· ∇z̄(x, q̄(x))

)
·
((

q̄′(x)
−1

)
· ∇ū(x, q̄(x))

)
︸ ︷︷ ︸

=h2(x)

δq(x) dx + α

∫ 1

0

q̄′′ δq′′ dx.

As ū, z̄ ∈ H2(Ωq) we have ū,∇ū,∇z̄ ∈ H1/2(Γq) ↪→ L4(Γq̄) as follows from the Trace Theorem [27] and hence
h1, h2 ∈ L2(I). By setting h = h1 + h2 we now get that (3.17) is equivalent to∫ 1

0

q̄′′δq′′ dx =
∫ 1

0

1
α

hδq dx ∀δq ∈ C∞
0 (I). (3.18)

Equation (3.18) is just the definition of the fourth weak derivative of q̄, and from 1
αh ∈ L2(I) we deduce

q̄ ∈ H4(I). This completes the proof of Theorem 3.16. �
Remark 3.23. Due to this improved regularity of q̄ it is possible to use partial integration within (3.18) with
test functions δq ∈ Q to show that q̄ is a solution of the following fourth order boundary value problem.

q̄(iv) =
1
α

h, in (0, 1),

q̄(0) = q̄(1) = 0,

q̄′′(0) = q̄′′(1) = 0. (3.19)

Remark 3.24. The embedding H1/2(Γq̄) ↪→ Lp(Γq̄), ∀p < ∞, implies that h ∈ Lp(I) for arbitrary p < ∞,
which leads to the even higher regularity q̄ ∈ W4,p(I) ↪→ C3,1−ε(I) for ε > 0.

Remark 3.25. The proof of Theorem 3.16 just relied on an exploitation of the first order optimality condi-
tion (3.1), therefore it holds not only for global solutions of (1.3) but also for local ones which fulfill Assumption
1.5.

3.2. Estimation of the error due to the discretization of the control

In order to proof the existence of a sequence (q̄)σ>0 as predicted in (3.3), one first needs to show that there
exist functions from the discretized control space near q̄. We therefore construct an interpolation operator iσ
for the optimal solution q̄.

Definition 3.26. Let iσ : Q �→ Qσ, f �→ iσf be a Hermite interpolation operator with the following properties.

• (iσf)(xi) = f(xi), (iσf)′(xi) = f ′(xi), ∀i ∈ {0, . . . , N},
• iσf |Ii

∈ P3(Ii) ∀i ∈ {1, . . . , N}.
As every polynomial of degree 3 over an interval is uniquely defined by its functional values and the values

of its derivative at the endpoints of that interval, the operator iσ is well-defined for each f ∈ C1(I). With the
help of the Bramble-Hilbert Lemma [5] and Theorem 3.16 it can be shown that

Corollary 3.27. The interpolation error for the optimal control q̄ can be estimated by

‖q̄ − iσ q̄‖H2(I) ≤ c · σ2 · |q̄|H4(I) ,

where the constant c is independent of σ and q̄.
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As already mentioned, it is necessary to show that for σ sufficiently small, there exists a sequence (q̄σ)σ>0 of
local optimal solutions of (2.3) with

‖q̄ − q̄σ‖H2(I) → 0 for σ → 0. (3.20)

We call q̄σ local optimal for (2.3) if there exists ε > 0 with

j(q̄σ) ≤ j(qσ) ∀qσ ∈ Qad
σ , ‖qσ − q̄σ‖H2(I) ≤ ε.

In what follows we adapt the steps undertaken in [6]. First of all, for a given ε > 0, let

Qad
σ,ε =

{
qσ ∈ Qad

σ

∣∣ ‖qσ − q̄‖H2(I) ≤ ε
}

,

and introduce an auxiliary problem as follows.

Minimize j(qσ,ε), qσ,ε ∈ Qad
σ,ε. (3.21)

Let ε > 0 be fixed such that Lemma 3.15 is applicable for all p ∈ Qad
σ,ε, and choose σ > 0 sufficiently small such

that iσ q̄ ∈ Qad
σ,ε 
= ∅. Similar to Theorem 2.3 one can show that (3.21) has at least one global solution q̄σ,ε.

The next steps are undertaken in order to show that q̄σ,ε is also a local solution of (2.3).

Lemma 3.28. For σ → 0 it holds that j(q̄σ,ε) → j(q̄).

Proof. We have

j(q̄σ,ε) ≥ j(q̄),

by the definition of q̄. But due to the definition of q̄σ,ε we also have

j(q̄σ,ε) − j(q̄) ≤ j(iσ q̄) − j(q̄) ≤ c · ‖iσ q̄ − q̄‖H2(I) → 0 for σ → 0,

where we also used the Lemmata 3.8 and Corollary 3.27. �

Lemma 3.29. For σ → 0 it holds that ‖q̄σ,ε − q̄‖H2(I) → 0.

Proof. With Lemma 3.15 we get

j(q̄σ,ε) − j(q̄)︸ ︷︷ ︸
→0

≥ β

2
· ‖q̄σ,ε − q̄‖2

H2(I) . �

Lemma 3.30. For σ sufficiently small, q̄σ,ε is a local solution of (2.3).

Proof. We have to show that for σ small enough all qσ ∈ Qad
σ which are sufficiently close to q̄σ,ε are also elements

of Qad
σ,ε. Hence choose σ such that ‖q̄σ,ε − q̄‖H2(I) ≤

ε
2 . Now it holds for all qσ ∈ Qad

σ with ‖q̄σ,ε − qσ‖H2(I) ≤
ε
2

that

‖q̄ − qσ‖H2(I) ≤ ‖q̄ − q̄σ,ε‖H2(I) + ‖q̄σ,ε − qσ‖H2(I) ≤ ε,

and this yields

qσ ∈ Qad
σ,ε. �
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Corollary 3.31. Let q̄σ be a solution of (3.21). Then, for all sufficiently small σ it holds that

j′(q̄σ)(δqσ) = 0 ∀δqσ ∈ Qσ. (3.22)

Proof. Due to Lemma 3.29, Assumption 1.5 holds for q̄σ and (3.22) follows with Lemma 3.30. �

Now we can proof the first part of Theorem 3.2. We have

‖q̄ − q̄σ‖H2(I) ≤ ‖q̄ − iσ q̄‖H2(I) + ‖iσ q̄ − q̄σ‖H2(I) . (3.23)

With Corollary 3.27 it follows that
‖q̄ − iσq̄‖H2(I) ≤ c · σ2, (3.24)

hence it remains to estimate the latter part on the right hand side in (3.23). With the Mean Value Theorem
and Lemma 3.14 we have for some t ∈ [0, 1] and ξ = t · iσq̄ + (1 − t) · q̄σ:

β

2
· ‖iσ q̄ − q̄σ‖2

H2(I) ≤ j′′(ξ)(iσ q̄ − q̄σ, iσ q̄ − q̄σ)

= j′(iσq̄)(iσ q̄ − q̄σ) − j′(q̄σ)(iσq̄ − q̄σ)
= j′(iσq̄)(iσ q̄ − q̄σ) − j′(q̄)(iσ q̄ − q̄σ),

where we used the fact that j′(q̄)(iσ q̄ − q̄σ) = j′(q̄σ)(iσ q̄ − q̄σ) = 0, due to Assumption 1.5 and Corollary 3.31.
With Corollary 3.27 and Lemma 3.8 we continue with

j′(iσq̄)(iσ q̄ − q̄σ) − j′(q̄)(iσ q̄ − q̄σ) ≤ c · ‖q̄ − iσq̄‖H2(I) · ‖iσq̄ − q̄σ‖H2(I)

≤ c · σ2 · ‖iσq̄ − q̄σ‖H2(I) ,

and so we arrive at

‖iσq̄ − q̄σ‖H2(I) ≤ c · σ2. (3.25)

3.3. Estimation of the error due to the discretization of the state

In this subsection, some effort is put into deriving error estimates between the operator S and its discrete
analogue Sh. First of all recall the definition of the operator Sh and its derivatives, the existence follows
analogously to S (cf. Cor. 3.4).

1. uh = Sh(q) ∈ Vh is the solution of

a(q)(uh, vh) = (f ◦ Tq, vhγq) ∀vh ∈ Vh. (3.26)

2. δuh = S′
h(q)(δq) ∈ Vh is the solution of

a(q)(δuh, vh) =
(
(∇f ◦ Tq)T · Vδq , vhγq

)
+ (f ◦ Tq, vh div(Vδq))

−
(
∇uh, A′

q,δq∇vh

)
− (uh, vh div(Vδq)) ∀vh ∈ Vh. (3.27)

3. τuh = S′′
h(q)(δq, δq) ∈ Vh is the solution of

a(q)(τuh, vh) =
(
V T

δq · ∇2f ◦ Tq · Vδq, vhγq

)
+ 2

(
(∇f ◦ Tq)T · Vδq, vh div(Vδq)

)
−
(
∇uh, A′′

q,δq,δq∇vh

)
− 2

(
∇δuh, A′

q,δq∇vh

)
− (δuh, vh div(Vδq)) ∀vh ∈ Vh. (3.28)

Remark 3.32. We would like to point out that all constants in the following estimates are of course independent
of σ. This follows mainly from Theorem 1.12, part (3), Lemma 1.9 as well as Corollary 3.38.
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Lemma 3.33. For q ∈ Qad, δq ∈ Q it holds that

1. ‖Sh(q)‖H1(Ω0)
≤ c,

2. ‖S′
h(q)(δq)‖H1(Ω0)

≤ c · ‖δq‖H2(I).

Proof. To proof this lemma one has to proceed similar to the proof of Lemma 3.6. �

In what follows we will prove some error estimates for the error between the continuous state and its derivatives
and their discrete counterparts.

The following corollary, which follows by a direct computation, will be needed within the proof of the
Lemmata 3.35 and 3.39.

Corollary 3.34. For A ∈ R
n×n and b ∈ R

n it holds that

div(A · b) = AT • ∇b +
(
div(AT )

)T · b,

where for X, Y ∈ R
n×n we set

X • Y =
n∑

i,j=1

xi,jyi,j = trace
(
XT · Y

)
,

and the divergence of a matrix X is taken for each row separately.

Lemma 3.35. For qσ ∈ Qad
σ , δq ∈ Q and k ∈ {0, 1} it holds that

1. ‖S(qσ) − Sh(qσ)‖H1−k(Ω0) ≤ c · h1+k,
2. ‖S′(qσ)(δq) − S′

h(qσ)(δq)‖H1(Ω0)
≤ c · h1/4 · ‖δq‖H2(I),

3. ‖S′′(qσ)(δq, δq) − S′′
h(qσ)(δq, δq)‖L2(Ω0) ≤ c · h1/4 · ‖δq‖2

H2(I).

Proof. As qσ as well as δq are fixed throughout in this proof, we will use the following abbreviations.

u = S(qσ), uh = Sh(qσ),
δu = S′(qσ)(δq), δuh = S′

h(qσ)(δq),

τu = S′′(qσ)(δq, δq), τuh = S′′
h(qσ)(δq, δq).

(1) As uh is just the finite-element approximation of u ∈ H2(Ω0), i.e.

a(qσ) (u, v) = l(qσ)(v) ∀v ∈ H1
0(Ωq),

a(qσ) (uh, vh) = l(qσ)(vh) ∀vh ∈ Vh,

we can use standard estimation techniques to proof the first assertion.
(2) For v ∈ H1

0(Ω0), let the functional F ∈ H−1(Ω0) be defined as

F (v) = (∇f ◦ Tqσ · Vδq, vγqσ ) + (f ◦ Tqσ , v div (Vδq)) − (u, v div (Vδq)) +
(
div
(
A′

qσ ,δq · ∇u
)
, v
)
.

Then, by definition of δu, it holds that

a(qσ)(δu, v) = F (v) ∀v ∈ H1
0(Ω0).

We want to use Theorem 1.12, part (1), with s = 1/4, so we have to find bounds for ‖F‖H−3/4(Ω0). In the
next steps we make use of the continuous embeddings L2(Ω0), L3/2(Ω0) ↪→ H−3/4(Ω0), Corollary 3.34 and the
generalized Hölder’s inequality.

‖F‖H−3/4(Ω0)
≤ ‖∇f ◦ Tqσ‖L2(Ω0)

· ‖Vδq‖L∞(Ω0)
· ‖γqσ‖L∞(Ω0)

+ ‖f ◦ Tqσ‖L2(Ω0) · ‖div (Vδq)‖L∞(Ω0)

+ ‖u‖L2(Ω0) · ‖div (Vδq)‖L∞(Ω0) +
∥∥A′

qσ ,δq

∥∥
L∞(Ω0)

· ‖u‖H2(Ω0)

+
∥∥div

(
A′

qσ ,δq

)∥∥
L2(Ω0)

· ‖u‖W1,6(Ω0) .
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Now we use the Lemmata 1.6 and 1.7, Corollary 3.38 and the embedding H2(Ω0) ↪→ W1,6(Ω0) and arrive at

‖F‖H−3/4(Ω0) ≤ c · ‖δq‖H2(I) .

As a result we can now make use of Theorem 1.12, part (1). Together with Lemma 3.6 this implies δu ∈ H5/4(Ω0)
and

‖δu‖H5/4(Ω0)
≤ c · ‖δq‖H2(I) ,

where the constant c is independent of qσ and δq. As H5/4(Ω0) ↪→ C0(Ω0), the pointwise interpolation ihδu ∈ Vh

of δu is well defined. Now it holds that

c1 · ‖ihδu − δuh‖2
H1(Ω0) ≤ a(qσ)(ihδu − δuh, ihδu − δuh)

= a(qσ)(δu − δuh, ihδu − δuh) − a(qσ)(δu − ihδu, ihδu − δuh)
=
(
∇(u − uh), A′

qσ ,δq · ∇(ihδu − δuh)
)

+ (u − uh, (ihδu − δuh) div (Vδq))
− a(qσ)(δu − ihδu, ihδu − δuh)

≤ c2 · h · ‖ihδu − δuh‖H1(Ω0)
· ‖δq‖H2(I) + c3 · ‖δu − ihδu‖H1(Ω0) · ‖ihδu − δuh‖H1(Ω0),

where we made use of part (1) of this lemma. Using Young’s inequality, for ε > 0 we get

(c1 − ε) · ‖ihδu − δuh‖2
H1(Ω0)

≤ c2
2

2 · ε · h2 · ‖δq‖2
H2(I) +

c2
3

2 · ε · ‖δu − ihδu‖2
H1(Ω0)

, (3.29)

where we now choose ε = c1/2. Using interpolation estimates as shown in [10] it now holds that

‖δu − ihδu‖H1(Ω0)
≤ c · h1/4 · ‖δu‖H5/4(Ω0)

≤ c · h1/4 · ‖δq‖H2(I) . (3.30)

Combining (3.29) and (3.30) we end up with

‖δu − δuh‖2
H1(Ω0) ≤ 2 ·

(
‖δu − ihδu‖2

H1(Ω0) + ‖ihδu − δuh‖2
H1(Ω0)

)
≤ c · h1/2 · ‖δq‖2

H2(I) ,

and finish the proof by taking the square root on both sides.
(3) First of all we introduce kind of an “intermediate” derivative τũh.

Definition 3.36. Let τũh ∈ Vh be the solution of

a(qσ)(τũh, vh) =
(
V T

δq · ∇2f ◦ Tqσ · Vδq, vhγqσ

)
+ 2 × ((∇f ◦ Tqσ) · Vδq, vh div (Vδq))

−
(
∇u, A′′

qσ ,δq,δq∇vh

)
− 2 ×

(
∇δu, A′

qσ ,δq∇vh

)
− (δu, vh div (Vδq)) ∀vh ∈ Vh.

Next we split

‖τu − τuh‖L2(Ω0) ≤ ‖ τu − τũh︸ ︷︷ ︸
=e1

‖L2(Ω0) + ‖ τũh − τuh︸ ︷︷ ︸
=e2

‖L2(Ω0), (3.31)

and estimate both parts on the right hand side separately.
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Estimation of e2

We start with the estimation of the second part. As e2 ∈ Vh, we get from Definition 3.36

c · ‖e2‖2
H1(Ω0) ≤ a(qσ)(e2, e2)

= −
(
∇(u − uh), A′′

qσ ,δq,δq · ∇e2

)
− 2 ·

(
∇(δu − δuh), A′

qσ ,δq · ∇e2

)
− (δu − δuh, e2 div (Vδq))

≤ ‖u − uh‖H1(Ω0)
·
∥∥A′′

qσ ,δq,δq

∥∥
L∞(Ω0)

· ‖e2‖H1(Ω0)

+ 2 · ‖δu − δuh‖H1(Ω0)
·
∥∥A′

qσ ,δq

∥∥
L∞(Ω0)

· ‖e2‖H1(Ω0)

+ ‖δu − δuh‖L2(Ω0)
· ‖div (Vδq)‖L∞(Ω0)

· ‖e2‖L2(Ω0)
,

and by using the first two parts of this lemma, as well as the Lemmata 1.6 and 1.7 we get

‖e2‖H1(Ω0)
≤ c · h1/4 · ‖δq‖2

H2(I) . (3.32)

Estimation of e1

As τũh is just the Ritz-projection of τu, we have

a(qσ)(e1, vh) = 0 ∀vh ∈ Vh.

With a duality argument one deduces

‖e1‖L2(Ω0)
≤ c · h · ‖e1‖H1(Ω0) . (3.33)

We continue with

‖e1‖H1(Ω0)
≤ ‖τu‖H1(Ω0)

+ ‖τũh‖H1(Ω0)
.

The first part can be estimated using Lemma 3.6, a similar bound for the second part can be proven in the
same way, which leads to

‖e1‖H1(Ω0)
≤ c · ‖δq‖2

H2(I) . (3.34)

Collecting the Estimates (3.32), (3.33) and (3.34) finishes this proof. �

In what follows we will also need estimates for the W2,p(Ω0) norm of the states corresponding to controls
from the discretized control space for a p > 2. Due to Theorem 1.12, (4), we therefore have to ensure that the
W2,∞(I) norm of the associated controls is bounded.

Definition 3.37. For a given d > 0 let

Qad
σ,d =

{
qσ ∈ Qad

σ

∣∣ ‖qσ‖W2,∞(I) ≤ d
}

.

Corollary 3.38. Let for a given d > 0 be {qσ}σ>0 an arbitrary sequence of controls with qσ ∈ Qad
σ,d for σ > 0.

Then there exists pΩ0 > 2 and it holds that S(qσ) ∈ W2,p(Ω0) for p < pΩ0 and ‖S(qσ)‖W2,p(Ω0) is bounded
independent of σ.

Proof. Due to Theorem 1.12, (4), we know that there exists pΩ0 > 2 such that for all p < pΩ0 it holds that

‖S(qσ)‖W2,p(Ω0)
≤ c · ‖f ◦ Tqγq‖Lp(Ω0)

.

The constant c can be bounded from above due to the boundedness of qσ in W2,∞(I). As f was assumed to
be sufficiently regular, γq is bounded in L∞ and Ω̂ ⊃ Ωq is bounded. It follows that the right hand side can be
bounded from above. �

Using boundedness of qσ in W2,∞(I) one obtains better estimates for the error between S′(qσ) and S′
h(qσ).
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Lemma 3.39. For qσ ∈ Qad
σ,d, δq ∈ Q and k ∈ {0, 1} it holds that

‖S′(qσ)(δq) − S′
h(qσ)(δq)‖H1−k(Ω0) ≤ c · h1+k · ‖δq‖H2(I) . (3.35)

Proof. As qσ as well as δq are fixed throughout in this part, we will use the following abbreviations.

u = S(qσ), uh = Sh(qσ),
δu = S′(qσ)(δq), δuh = S′

h(qσ)(δq).

Additionally we introduce kind of an “intermediate” derivative δũh.

Definition 3.40. Let δũh ∈ Vh be the solution of

a(qσ) (δũh, vh) = (∇f ◦ Tqσ · Vδq, vhγqσ ) + (f ◦ Tqσ , vh div(Vδq))
−
(
∇u · A′

qσ ,δq,∇vh

)
− (u, vh div(Vδq)) ∀vh ∈ Vh.

Now we split
‖δu − δuh‖H1−k(Ω0)

≤ ‖ δu − δũh︸ ︷︷ ︸
=e1

‖H1−k(Ω0) + ‖ δũh − δuh︸ ︷︷ ︸
=e2

‖H1−k(Ω0), (3.36)

and estimate both parts on the right hand side separately.

Estimation of e2

We start with the estimation for the latter part. From the definition of e2 we get

a(qσ) (e2, vh) =
(
∇(uh − u) · A′

qσ ,δq,∇vh

)
+ (uh − u, v div(Vδq)) ∀vh ∈ Vh,

and by choosing vh = e2,

a(qσ) (e2, e2) =
(
∇(uh − u) · A′

qσ ,δq,∇e2)
)

+ (uh − u, e2 div(Vδq))

≤ ‖∇(uh − u)‖L2(Ω0)
·
∥∥A′

qσ ,δq

∥∥
L∞(Ω0)

· ‖∇e2‖L2(Ω0)

+ ‖uh − u‖L2(Ω0) · ‖div(Vδq)‖L∞(Ω0)
· ‖e2‖L2(Ω0)

.

This finally leads to

‖e2‖H1(Ω0)
≤ c · h · ‖δq‖H2(I), (3.37)

where we used the fact that
∥∥∥A′

qσ ,δq

∥∥∥
L∞(Ω0)

and ‖div(Vδq)‖L∞(Ω0) are bounded by c · ‖δq‖H2(I), with c being

independent of qσ and σ.
Now we define z, y ∈ H1

0(Ω0) and zh ∈ Vh as the solutions of

a(qσ) (v, z) = (e2, v) ∀v ∈ H1
0(Ω0),

a(qσ) (vh, zh) = (e2, vh) ∀vh ∈ Vh,

a(qσ) (v, y) =
(
∇z · A′

qσ ,δq,∇v
)

= −
(
div(A′

qσ ,δq · ∇z), v
)

∀v ∈ H1
0(Ω0).

Theorem 1.12, (3), tells us that z ∈ H2(Ω0) and ‖z‖H2(Ω0) ≤ c · ‖e2‖L2(Ω0). It now holds that

‖e2‖2
L2(Ω0) = a(qσ) (e2, zh)

= −
(
∇(u − uh) · A′

qσ ,δq,∇zh

)
− (u − uh, zh div(Vδq))

= −
(
∇(u − uh) · A′

qσ ,δq,∇z
)

+
(
∇(u − uh) · A′

qσ ,δq,∇(z − zh)
)

− (u − uh, z div(Vδq)) + (u − uh, (z − zh) div(Vδq)) .
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With the Lemmata 1.6, 1.7, 3.35 and standard finite-element error estimates we now have(
∇(u − uh) · A′

qσ ,δq,∇(z − zh)
)
≤ c · h2 · ‖δq‖H2(I) · ‖e2‖L2(Ω0)

,

(u − uh, z div(Vδq)) ≤ c · h2 · ‖δq‖H2(I) · ‖e2‖L2(Ω0)
, (3.38)

(u − uh, (z − zh) div(Vδq)) ≤ c · h4 · ‖δq‖H2(I) · ‖e2‖L2(Ω0)
.

Hence it remains to find some bounds for(
∇(u − uh) · A′

qσ ,δq,∇z
)

= a(qσ) (u − uh, y)
= a(qσ) (u − uh, y − ihy) + a(qσ) (u − uh, ihy)︸ ︷︷ ︸

=0

≤ c · ‖y − ihy‖W1,p′ (Ω0)
· ‖u − uh‖W1,p(Ω0)

,

where we chose p ∈ (2, pΩ0) with pΩ0 > 2 as the constant from Theorem 1.12, part (4), and p + p′−1 = 1.
Here, ihy ∈ Vh shall denote the pointwise interpolation of y which is well-defined according to (3.40). With
Corollary 3.38 and a stability result for the W1,p(Ω0)-error for the Ritz projection from [23] we get

‖u − uh‖W1,p(Ω0)
≤ c · h · ‖u‖W2,p(Ω0) ≤ c · h. (3.39)

To continue, we need some information about the regularity of y. From the symmetry of A′
qσ ,δq it now follows,

together with Corollary 3.34,

div
(
A′

qσ ,δq · ∇z
)

= A′
qσ ,δq • ∇2z + div(A′

qσ ,δq)
T · ∇z ∈ Lp′

(Ω0),

where we also used p > 2 > p′, H2(Ω0) ↪→ W1,p(Ω0) for p < ∞ as well as div(A′
qσ ,δq) ∈ L2(Ω0), which can

be obtained by plugging in the corresponding definition and the generalized Hölder’s inequality. We can also
estimate the norm∥∥div(A′

qσ ,δq · ∇z)
∥∥

Lp′ (Ω0)
≤ c ·

(∥∥A′
qσ ,δq • ∇2z

∥∥
Lp′ (Ω0)

+
∥∥div(A′

qσ ,δq) · ∇z
∥∥

Lp′(Ω0)

)
≤ c ·

(∥∥A′
qσ ,δq

∥∥
L∞(Ω0)

·
∥∥∇2z

∥∥
Lp′(Ω0)

+
∥∥div(A′

qσ ,δq)
∥∥

L2(Ω0)
· ‖∇z‖

L
2p′

2−p′ (Ω0)

)
≤ c ·

(∥∥A′
qσ ,δq

∥∥
L∞(Ω0)

+
∥∥div(A′

qσ ,δq)
∥∥

L2(Ω0)

)
· ‖z‖H2(Ω0)

≤ c · ‖δq‖H2(I) · ‖e2‖L2(Ω0) ,

where the constant c just depends on p, for Ω0 is fixed. Now we can again apply Corollary 3.38 to obtain

y ∈ W2,p′
(Ω0) ↪→ C0(Ω0) for p′ > 1, (3.40)

which results in

‖y‖W2,p′(Ω0) ≤ c ·
∥∥div(A′

qσ ,δq · ∇z)
∥∥

Lp′ (Ω0)
≤ c · ‖δq‖H2(I) · ‖e2‖L2(Ω0)

. (3.41)

Now we can apply standard interpolation results [23] and get

‖y − ihy‖W1,p′ (Ω0) ≤ c · h · ‖y‖W2,p′(Ω0) ≤ c · h · ‖δq‖H2(I) · ‖e2‖L2(Ω0)
. (3.42)

Collecting the Estimates (3.38), (3.39) and (3.42) finally leads to

‖e2‖L2(Ω0) ≤ c · h2 · ‖δq‖H2(I) . (3.43)
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Estimation of e1

To estimate the first part we proceed similar to the latter one. Because of

−
(
∇u · A′

qσ ,δq,∇v
)

=
(
div(A′

qσ ,δq · ∇u), v
)

∀v ∈ H1
0(Ω0),

and u ∈ W2,p(Ω0) ↪→ W1,∞(Ω0), we again derive, similar to (3.41), that δu ∈ H2(Ω0), ‖δu‖H2(Ω0)
≤ c·‖δq‖H2(I),

where we also used the fact that ‖f ◦ Tqσ‖Lp(Ω0) is bounded independently of p ∈ [1,∞]. As e1 is just the error
of the Ritz-projection for δu, we immediately get

‖e1‖H1(Ω0) ≤ c · h · ‖δq‖H2(I), (3.44)

and with a duality argument it follows that

‖e1‖L2(Ω0) ≤ c · h · ‖e1‖H1(Ω0). (3.45)

Combining the estimates (3.44) and (3.45) leads to

‖e1‖L2(Ω0) ≤ c · h2 · ‖δq‖H2(I). (3.46)

Adding (3.37) and (3.44) gives the estimation for the H1-error, by adding (3.43) and (3.46) it is possible to
estimate the L2-error. �

Lemma 3.41. For qσ ∈ Qad
σ , δq ∈ Q it holds that

1. |j(qσ) − jh(qσ)| ≤ c · h2,
2. |j′′(qσ)(δq, δq) − j′′h(qσ)(δq, δq)| ≤ c · h1/4 · ‖δq‖2

H2(I).

Proof. (1) We have

|j(qσ) − jh(qσ)| =
1
2
|(S(qσ) − ud ◦ Tqσ , (S(qσ) − ud ◦ Tqσ) γqσ ) − (Sh(qσ) − ud ◦ Tqσ , (Sh(qσ) − ud ◦ Tqσ) γqσ )|

=
1
2
|(S(qσ) − Sh(qσ), (S(qσ) + Sh(qσ) − 2 · ud ◦ Tqσ) γqσ )| .

With Cauchy-Schwarz and the Lemmata 1.6, 3.6, 3.33 and 3.35 we arrive at

|j(qσ) − jh(qσ)| ≤ c · h2.

(2) All the terms that do not contain a second derivative of S can be estimated just in the same way as done
in the first part of this proof and in the proof of Lemma 3.42, we only have to find some bounds for∣∣(S(qσ) − ud ◦ Tqσ ,

(
S′′(qσ)(δq, δq) − V T

δq · ∇2ud ◦ Tqσ · Vδq

)
γqσ

)
−
(
Sh(qσ) − ud ◦ Tqσ ,

(
S′′

h(qσ)(δq, δq) − V T
δq · ∇2ud ◦ Tqσ · Vδq

)
γqσ

)∣∣
≤
∣∣(S(qσ) − Sh(qσ),

(
S′′(qσ)(δq, δq) − V T

δq · ∇2ud ◦ Tqσ · Vδq

)
γqσ

)∣∣
+ |(Sh(qσ) − ud ◦ Tqσ , (S′′(qσ)(δq, δq) − S′′

h(qσ)(δq, δq)) γqσ )|

≤ ‖S(qσ) − Sh(qσ)‖L2(Ω0) ·
(
‖S′′(qσ)(δq, δq)‖L2(Ω0)

+
∥∥V T

δq · ∇2ud ◦ Tqσ · Vδq

∥∥
L2(Ω0)

)
· ‖γqσ‖L∞(Ω0)

+
(
‖Sh(qσ)‖L2(Ω0)

+ ‖ud ◦ Tqσ‖L2(Ω0)

)
· ‖S′′(qσ)(δq, δq) − S′′

h(qσ)(δq, δq)‖L2(Ω0)
· ‖γqσ‖L∞(Ω0)

,

≤ c · h1/4 · ‖δq‖2
H2(I) .

In the last step we made use of Lemmata 1.6 and 3.39. �
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Lemma 3.42. For qσ ∈ Qad
σ,d, δq ∈ Q it holds that

|j′(qσ)(δq) − j′h(qσ)(δq)| ≤ c · h2 · ‖δq‖H2(I) .

Proof. With (3.8) we get

j′(qσ)(δq) − j′h(qσ)(δq) =
1
2

(S(qσ) − ud ◦ Tqσ , (S(qσ) − ud ◦ Tqσ) div(Vδq))

− 1
2

(Sh(qσ) − ud ◦ Tqσ , (Sh(qσ) − ud ◦ Tqσ) div(Vδq))

+
(
S′(qσ)(δq) − (∇ud ◦ Tqσ )T · Vδq , (S(qσ) − ud ◦ Tqσ)γqσ

)
−
(
S′

h(qσ)(δq) − (∇ud ◦ Tqσ )T · Vδq, (Sh(qσ) − ud ◦ Tqσ )γqσ

)
.

Using the Lemmata 1.6, 3.6, 3.33, 3.35 and 3.39 we can estimate both the corresponding parts

|(S(qσ) − ud ◦ Tqσ , (S(qσ) − ud ◦ Tqσ ) div(Vδq)) − (Sh(qσ) − ud ◦ Tqσ , (Sh(qσ) − ud ◦ Tqσ) div(Vδq))|
= |(S(qσ) − Sh(qσ), (S(qσ) + Sh(qσ) − 2 · ud ◦ Tqσ) div(Vδq))| ,
≤ c · h2 · ‖δq‖H2(I) ,

and ∣∣(S′(qσ)(δq) − (∇ud ◦ Tqσ )T · Vδq , (S(qσ) − ud ◦ Tqσ )γqσ

)
−
(
S′

h(qσ)(δq) − (∇ud ◦ Tqσ)T · Vδq, (Sh(qσ) − ud ◦ Tqσ )γqσ

)∣∣
≤ |(S′(qσ)(δq) − S′

h(qσ)(δq), (S(qσ) − ud ◦ Tqσ )γqσ )|
+
∣∣(S′

h(qσ)(δq) − (∇ud ◦ Tqσ)T · Vδq, (S(qσ) − Sh(qσ))γqσ

)∣∣
≤ c · ‖S′(qσ)(δq) − S′

h(qσ)(δq)‖L2(Ω0)

+ c ·
(
‖S′

h(qσ)(δq)‖L2(Ω0) +
∥∥(∇ud ◦ Tqσ)T · Vδq

∥∥
L2(Ω0)

)
· ‖S(qσ) − Sh(qσ)‖L2(Ω0)

≤ c · h2 · ‖δq‖H2(I) + c · ‖δq‖H2(I) · h2

≤ c · h2 · ‖δq‖H2(I) .

Adding these two inequalities finishes this proof. �

As mentioned in (3.3), we now have to prove the following lemma.

Lemma 3.43. There exists a sequence (q̄σ,h)σ,h>0 of local optimal solutions of (2.4) with

‖q̄ − q̄σ,h‖H2(I) → 0 for (σ, h) → 0.

Again, we call q̄σ,h local optimal for (2.4) if there exists ε > 0 with

jh(q̄σ,h) ≤ jh(qσ,h) ∀qσ,h ∈ Qad
σ , ‖qσ,h − q̄σ,h‖H2(I) ≤ ε.

The detailed proof of Lemma 3.43 is omitted for it is again based on the ideas presented in [6] and similar to
the existence proof of the sequence (q̄σ)σ>0 from the previous subsection. The first part is to show that for q̄σ

being a fixed local optimal solution of (2.3) with ‖q̄ − q̄σ‖H2(I) and σ sufficiently small there exists a sequence
(q̃σ,h)h>0 of local optimal solutions of (2.4) with ‖q̄σ − q̃σ,h‖H2(I) → 0 for h → 0. The existence of (q̄σ,h)σ,h>0

then follows by a diagonal argument.
Now we have to make sure that we can apply some of the previous lemmata to the sequence (q̄σ)σ>0.
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Lemma 3.44. Let (q̄σ)σ>0 be a sequence as defined in (3.20). Then there exists d > 0 such that for all σ > 0
it holds that q̄σ ∈ Qad

σ,d.

Proof. Let iσ be the interpolation operator according to Definition 3.26. We have to find a bound for

‖q̄σ‖W2,∞(I) ≤ ‖q̄σ − iσq̄‖W2,∞(I) + ‖iσ q̄‖W2,∞(I) .

The latter part is bounded, as iσ q̄ is piecewise a polynomial whose coefficients depend continuously on ‖q̄‖C1,1(I),
which is bounded due to Theorem 3.16. For the first part we use an inverse estimate: there exists a constant c,
independent of σ, with

‖q̄σ − iσ q̄‖W2,∞(I) ≤ c · σ−1/2 · ‖q̄σ − iσq̄‖H2(I) → 0,

for σ → 0 as shown in (3.25). �

Now we are able to finish the proof of Theorem 3.2 by estimating the state error. Again with the Mean Value
Theorem and Lemma 3.14 we get for some t ∈ [0, 1] and ξ = (1 − t) · q̄σ + t · q̄σ,h,

β

2
· ‖q̄σ − q̄σ,h‖2

H2(I) ≤ j′′(ξ)(q̄σ − q̄σ,h, q̄σ − q̄σ,h)

≤ j′′h(ξ)(q̄σ − q̄σ,h, q̄σ − q̄σ,h) + |j′′(ξ)(q̄σ − q̄σ,h, q̄σ − q̄σ,h) − j′′h(ξ)(q̄σ − q̄σ,h, q̄σ − q̄σ,h)| .

Now we apply Lemma 3.41 and get

β

2
· ‖q̄σ − q̄σ,h‖2

H2(I) ≤ |j′h(q̄σ)(q̄σ − q̄σ,h) − j′h(q̄σ,h)(q̄σ − q̄σ,h)| + c1 · h1/4 · ‖q̄σ − q̄σ,h‖2
H2(I)

= |j′h(q̄σ)(q̄σ − q̄σ,h) − j′(q̄σ)(q̄σ − q̄σ,h)| + c1 · h1/4 · ‖q̄σ − q̄σ,h‖2
H2(I) ,

where we again used the fact that j′(q̄σ)(q̄σ − q̄σ,h) = j′h(q̄σ,h)(q̄σ − q̄σ,h) = 0 due to Corollary 3.31 and the first
order optimality conditions for q̄σ,h. Now we apply Lemma 3.42 and exploit the boundedness of Qad to finally
obtain (

β

2
− c1 · h1/4

)
· ‖q̄σ − q̄σ,h‖2

H2(I) ≤ c2 · h2 · ‖q̄σ − q̄σ,h‖H2(I) .

So, for h sufficiently small, i.e.

h ≤
(

β

4c1

)4

,

we finally arrive at

‖q̄σ − q̄σ,h‖H2(I) ≤
4c2

β
· h2. (3.47)

Collecting the estimates (3.24), (3.25) and (3.47) finishes the proof of the main result, Theorem 3.2. �
Having proved this theorem, one can also estimate the error between the optimal continuous state and its

discrete counterpart.

Corollary 3.45. It holds that

1. ‖S (q̄) − Sh (q̄σ,h)‖L2(Ω0) = O
(
σ2 + h2

)
,

2.
∥∥∥S̃ (q̄) ◦ T−1

q̄ − S̃h (q̄σ,h) ◦ T−1
q̄σ,h

∥∥∥
L2(Ω̂)

= O
(
σ2 + h2

)
,

where S̃ and S̃h shall denote the extension by zero.
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Proof. (1) Applying the Lemmata 3.7 and 3.39 as well as Theorem 3.2 immediately yields

‖S (q̄) − Sh (q̄σ,h)‖L2(Ω0)
≤ ‖S (q̄) − S (q̄σ,h)‖L2(Ω0) + ‖S (q̄σ,h) − Sh (q̄σ,h)‖L2(Ω0)

≤ c · ‖q̄ − q̄σ,h‖H2(I) + c · h2

= O
(
σ2 + h2

)
.

(2) Again we split∥∥∥S̃ (q̄) ◦ T−1
q̄ − S̃h (q̄σ,h) ◦ T−1

q̄σ,h

∥∥∥
L2(Ω̂)

≤‖ S̃ (q̄) ◦ T−1
q̄ − S̃ (q̄) ◦ T−1

q̄σ,h︸ ︷︷ ︸
=e1

‖L2(Ω̂)

+ ‖S (q̄) ◦ T−1
q̄σ,h

− S (q̄σ,h) ◦ T−1
q̄σ,h︸ ︷︷ ︸

=e2

‖L2(Ωq̄σ,h
)

+ ‖S (q̄σ,h) ◦ T−1
q̄σ,h

− Sh (q̄σ,h) ◦ T−1
q̄σ,h︸ ︷︷ ︸

=e3

‖L2(Ωq̄σ,h
).

and estimate each term separately. Because of the higher regularity of q̄ (Thm. 3.16), Corollary 3.38 is also
applicable to this continuous solution, hence for some p > 2 it holds that S (q̄) ∈ W2,p(Ω0) ↪→ C1,ε

(
Ω0

)
, i.e.

S(q̄) is Lipschitz continuous, and because of S(q̄) ∈ H1
0(Ω0) this is also true for S̃(q̄). With Lemma 1.6 this now

leads to

‖e1‖2
L2(Ω̂) ≤ c · ‖e1‖L∞(Ω̂) ≤ c ·

∥∥∥T−1
q̄ − T−1

q̄σ,h

∥∥∥
L∞(I)

≤ c · ‖q̄ − q̄σ,h‖H2(I) = O
(
σ2 + h2

)
.

For the second part we additionally use a transformation argument and get

‖e2‖2
L2(Ωq̄σ,h

) =
∫

Ωq̄σ,h

(
S (q̄) ◦ T−1

q̄σ,h
− S (q̄σ,h) ◦ T−1

q̄σ,h

)2

dx

=
∫

Ω0

(S(q̄) − S(q̄σ,h))2 γq̄σ,h
dx

≤ c · ‖S(q̄) − S(q̄σ,h)‖2
L2(Ω0)

≤ c · ‖q̄ − q̄σ,h‖2
H2(I) ≤ c ·

(
σ2 + h2

)2
.

For the last part, e3, we can proceed as in the previous step and also make use of Lemma 3.39. �

4. Numerical results

In this section the a priori error estimate from the previous section shall be verified by a numerical example.
We therefore implemented the forms a(·)(·, ·) and l(·)(·) as well as the functional J(·, ·) in the optimization
toolkit RoDoBo [2] and the finite element toolkit Gascoigne [1]. The derivatives of jh have been computed
via a domain integral representation, and the optimal control problem (2.4) has been solved via a Newton
method. For more details on Newton’s method in the context of shape optimization we refer the reader to [21].
In [20] a general overview on numerical methods in shape optimization is given.

In the first example we chose

ud = sin(πx) · (1 − y) · (y + 0.5 sin(2πx)) ,

f = −Δud + ud, (4.1)

which means that the exact solution would have been q̄ = −0.5 sin(2πx) in case of α = 0.
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Figure 2. Discretization error ‖q̄σ − q̄σ,h‖H2(I) for example (4.1) (left) and example (4.2) (right).
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Figure 3. Discretization error ‖q̄ − q̄σ‖H2(I) for example (4.1) (left) and example (4.2) (right).

In the second example we chose

ud = sin(πxy) · sin
(
y2
)
,

f = 26 exp
(
−14

(
(x − 0.8)2 + (y − 1)2

))
, (4.2)

with unknown exact solution.
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All the computations have been carried out with α = 10−3. In order to illustrate the result of Theorem 3.2
numerically, we split the error: for the error in h we computed, for a fixed σ = 60−1, a reference solution on
a fine grid with h = 512−1. For the error in σ we computed, for fixed h = 256−1, a reference solution with
σ = 128−1. It can be seen that the error in h as well as the error in σ behave as predictet by Theorem 3.2. Due
to the smoothing effect of the regularization term, ‖q̄‖H2(I) is very small in both examples. Hence, the optimal
domains Ωq̄ both look approximately like the unit square.
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