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LOWER AND UPPER BOUNDS FOR THE RAYLEIGH CONDUCTIVITY
OF A PERFORATED PLATE
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Abstract. Lower and upper bounds for the Rayleigh conductivity of a perforation in a thick plate
are usually derived from intuitive approximations and by physical reasoning. This paper addresses a
mathematical justification of these approaches. As a byproduct of the rigorous handling of these issues,
some improvements to previous bounds for axisymmetric holes are given as well as new estimates
for tilted perforations. The main techniques are a proper use of the Dirichlet and Kelvin variational
principles in the context of Beppo-Levi spaces. The derivations are validated by numerical experiments
in 2D for the axisymmetric case as well as for the full three-dimensional problem.
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1. Introduction

1.1. Effective impedance boundary conditions

The Rayleigh conductivity is a key ingredient in the construction of effective conditions making it possible
to easily account for the transmission and the reflection of an acoustic wave by a plate with small perforations.
Actually, this parameter is involved when matching the far field, i.e., the overall behavior of the acoustic field
near the plate in the context of the method of matched asymptotic expansions, and the near field which consists
of a model for the fluid at the level of each perforation. This role has been mentioned in Rayleigh’s seminal
work [26] and remarkably worked out by Howe [10,12]. The parameter dealt with in this work is that introduced
by Rayleigh [26]. It corresponds to assuming that the incompressible Euler equations is the model governing
the fluid at the level of each perforation. As a result, it can be used as such when assuming that the acoustic
equations remain valid even at the scale of the perforation [30] or incorporated in some other more elaborated
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expression for the Rayleigh conductivity as in Howe [10–12] or Melling models [19, 21]. An attempt carried out
in [18] to define the Rayleigh conductivity when the small scale model is set in terms of the linearized Navier-
Stokes equations has also to be noted. It is worth mentioning that the model consisting in assuming that the
acoustic equations remain valid everywhere is among all the others the only one where absorption of acoustic
energy by the perforations is completely neglected.

However, numerically computing the Rayleigh conductivity is generally a non trivial task. This problem is
three-dimensional in general. Its numerical solution thus may become rapidly hard to carry out due to the large
size of the problem to be solved. Another difficulty concerns the fact that this problem is set on an unbounded
domain with moreover a unbounded boundary so that its numerical solution should be tackled either by a
boundary element method [28] or by deriving a truncating condition incorporating the behavior of the solution
at infinity in an accurate way (see, e.g., [8, 15]).

To overcome these difficulties, many authors proposed to approximate the Rayleigh conductivity by ap-
proximate formulas [1, 10, 14, 24], derived either analytically or by intuitive approaches. In these papers, it is
hard to clearly distinguish among the approximations that are heuristic and the ones that can be rigorously
established. The objective of this paper is first to provide a rigorous background for the derivation of such
approximations. Furthermore, many studies were devoted to the comparison of these models with acoustic ex-
periments [4, 14, 16, 22, 23, 25]. However, due to the various approximations carried out to derive the models, it
is almost impossible to distinguish the modeling errors coming from the approximate estimates of the Rayleigh
conductivity from those induced by the choice of a specific model. Another objective of this paper is to make
this point as clear as possible.

1.2. Definition of the Rayleigh conductivity

Let P be a straight infinite plate of finite thickness h > 0 with one isolated perforation Ω as depicted in
Figure 1. Thus, the plate coincides with

P =
{
x ∈ R

2 × [s−, s+] and x /∈ Ω
}

, (1.1)

with s+ − s− = h, Ω ⊂ R2 × [s−, s+] a simply connected bounded domain and x3 varying in [s−, s+]. The
domain filled by the fluid is D = R

3\P, and can hence be seen as the domain admitting Ω and the following
two half-spaces

D+ = {x ∈ D | x3 > s+} and D− = {x ∈ D | x3 < s−} , (1.2)

as a non overlapping decomposition. We denote by Γ+ and Γ− the lower and upper apertures of the perforation Ω,
i.e.,

Γ± = {x ∈ ∂Ω | x3 = s±}.
The lateral part of the boundary of Ω is Σ = Ω ∩ P, hence ∂Ω can be expressed also in terms of its non
overlapping decomposition in Γ−, Γ+ and Σ. In most models, the difference of pressure P+(t) − P−(t) from
one to the other side of the perforation is proportional to the time derivative of the volume flux Q =

∫
Γ−

v3ds

through the aperture counted positively along the direction of the x3-axis. Here, P+(t) and P−(t) are the
limiting values for the pressure of the far field and are taken as values at infinite distance of the near field in
the matching procedure. It is therefore usual to characterize the corresponding ratio at the small scale level as
the Rayleigh conductivity KR of the aperture [12], p. 354

KR =
ρ0 ∂tQ(t)

P−(t) − P+(t)
, (1.3)

with ρ0 the density of the fluid at rest, v3 the component along x3-axis of the velocity v, P+(t) and P−(t) the
pressures on the upper and lower side of the perforated plate. The Rayleigh conductivity has the dimension of
length, and equation (1.3) is the analogue of Ohm’s law.
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Figure 1: Schematic representation of the plate P (hatched) and the open aperture Ω. The dashed lines
represent the fictitious boundaries Γ+ and Γ− of Ω, while the straight line is its interior boundary Σ.

For the case of incompressible Euler equations considered here as said above, the governing equations can
be expressed in terms of the following boundary-value problem set in the unbounded domain D (cf. [12]):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρ0∂tv(x, t) + ∇p(x, t) = 0, in D,

∇ · v(x, t) = 0, in D,

∂np(x, t) = 0, on ∂D,

lim
|x|→+∞

p(x, t) = P±(t),

(1.4)

yielding the Rayleigh conductivity as follows

KR =
1

P+(t) − P−(t)

∫
Γ−

∂3p(x, t) dsx. (1.5)

The incompressibility condition directly shows that the pressure satisfies the following boundary-value problem⎧⎪⎪⎨⎪⎪⎩
Δp(x, t) = 0, in D,

∂np(x, t) = 0, on ∂D,

lim
|x|→+∞

p(x, t) = P±(t)

and therefore that it does not depend on the initial conditions. Actually, setting

u(x) =
p(x, t) − (P+(t) + P−( t))/2

P+(t) − P−(t)

readily shows that KR is a constant depending only on the geometry of the perforation which can be defined
by

KR =
∫

Γ−
∂x3u ds. (1.6)

and ⎧⎪⎪⎨⎪⎪⎩
Δu(x) = 0 in D,

∂nu(x) = 0 on ∂D,

lim
|x|→+∞

u(x) = ±1/2 on D±.
(1.7)
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1.3. Contents of the paper

The present paper is organized as follows. In Section 2, some links between Beppo Levi function spaces and
the space of functions with square integrable gradients are brought out and made clearer. In Section 3, we
introduce the Dirichlet and Kelvin dual principles which are the main tools for deriving bounds of the Rayleigh
conductivity. Section 4 is devoted to the derivation of analytical expressions for the bounds for cylindrical,
conical and tilted apertures. In Section 5, the obtained formulas are illustrated by numerical experiments. The
computations are carried out for an axi-symmetric perforation by solving a two-dimensional problem and by
means of the three-dimensional boundary element code CESC of CERFACS for a perforation of general shape.

2. Functions with square integrable gradient

The classical functional setting for solving Laplace problems posed on three-dimensional unbounded domains
is the Beppo-Levi space [2], the space of functions that “weakly tend to zero at infinity” whose gradient is
square integrable. Unfortunately, this space is not adapted for the solution of problem (1.7) whose solution has
to be sought in

H =
{
v ∈ H1

loc(D) | ∇v ∈ L2(D)
}
,

where H1
loc(D) is the space of functions v defined almost everywhere in D such that ϕv ∈ H1(D) for all

ϕ ∈ D(R3). In this section, we make clearer the relation between H and the Beppo-Levi space in dimension 3.
To prove that problem (1.7) is well-posed, we first derive a Green formula involving functions in H and vector
fields in

W =
{
q ∈ L2(D) | div q = 0 in D and q · n = 0 on ∂D

}
. (2.1)

Domain A refers either to D, D− or D+. The Beppo-Levi space BL(A) is defined as the closure of D(A) =
{u|A | u ∈ D(R3)} with respect to the H1 semi-norm, a norm when restricted to D(A) [7]

|v|BL(A) =
(∫

A

|∇v(x)|2 dx
) 1

2

.

It is shown in [9] that BL(A) can be characterized as a Hilbert space and coincides with the weighted Sobolev
space

BL(A) =
{

v ∈ H1
loc(A) | ∇v ∈ L2(A) and

v

(1 + |x|2) 1
2
∈ L2(A)

}
. (2.2)

The following proposition collects some useful properties of functions with square integrable gradients.

Proposition 2.1. Let v ∈ H.

(i) The mean values of v respectively on the hemisphere Γ R
+ = {x ∈ R3 | x3 > s+ and |x − c+| = R} and

Γ R
− = {x ∈ R3 | x3 < s− and |x − c−| = R}, with c± = (0, 0, s±), converge as R → +∞, i.e.,

v± := lim
R→+∞

1
2πR2

∫
Γ R
±

v(x)dsx.

(ii) The restrictions of v to D− and D+ satisfy v|D± − v± ∈ BL(D±).

(iii) The usual Beppo-Levi space BL(D) can be characterized as BL(D) =
{

v ∈ H | v− = 0 and v+ = 0
}
.

(iv) The space H is a Hilbert space when equipped with the inner product

(u, v)H =
∫

D

∇u(x) · ∇v(x)dx + u+ v+ + u− v−. (2.3)



LOWER AND UPPER BOUNDS FOR THE RAYLEIGH CONDUCTIVITY OF A PERFORATED PLATE 1695

Proof. To prove point (i), we start by denoting (r+, θ+, ϕ+) the spherical coordinates with origin at s+ = (0, 0, s+)

x1 = r+ sin θ+ cosϕ+, x2 = r+ sin θ+ sinϕ+ and x3 = s+ + r+ cos θ+,

and the associated metrics

dσx = sin θ+ dθ+dϕ+ and dvx = sin θ+ dθ+dϕ+dr+.

We denote by v(R) the mean value of v over the half-sphere Γ R
+

v(R) =
1
2π

∫
S+

v(x)dσx =
1
2π

∫ π/2

0

∫ 2π

0

v (R, θ+, ϕ+) sin θ+ dθ+dϕ+. (2.4)

Let us prove that v(R) satisfies the Cauchy criterion for convergence as R tends to infinity. We have∣∣∣v(R′) − v(R)
∣∣∣ =

1
2π

∣∣∣∣∣
∫

S+

(
v (R′, θ+, ϕ+) − v (R, θ+, ϕ+)

)
dσx

∣∣∣∣∣ ≤ 1
2π

∣∣∣∣∣
∫

S+×[R,R′]
∂r+v (r+, θ+, ϕ+) dvx

∣∣∣∣∣ ,
with S+ the part of the unit sphere S such that x3 > 0. Applying the Cauchy-Schwartz inequality, we get

|v(R′) − v(R)| ≤ 1
2π

(∫
S+×[R,R′]

∣∣∂r+v (r+, θ+, ϕ+)
∣∣2 r2

+dvx

)1/2(∫
S+×[R,R′]

1
r2
+

dvx

)1/2

.

This hence establishes the existence of v+ since

|v(R′) − v(R)| ≤ 1√
2π

|∇v|L2(D+)

∣∣∣∣ 1R − 1
R′

∣∣∣∣ 1/2 −→
R,R′→+∞

0. (2.5)

The convergence to v− is obtained in exactly the same way.
Now, we carry out the proof of point (ii). In view of Definition (2.2) of BL(D+), it is sufficient to show that(

v|D+ − v+

)
/
√

1 + r2
+ ∈ L2(D+) or equivalently

(
v|D+ − v+

)
/
√

1 + r2
+ ∈ L2(D+,1) with

D+,1 =
{
x ∈ D+ | r+ > 1

}
= S+ × [1, +∞).

This amounts to prove that
(
v|D+(x) − v(r+)

)
/
√

1 + r2
+ ∈ L2(D+,1) and (v(r+) − v+) /

√
1 + r2

+ ∈ L2(D+,1).

To prove that
(
v|D+ − v(r+)

)
/
√

1 + r2
+ ∈ L2(D+,1), we observe that

∣∣∣∣∣v|D+ − v(r+)

(1 + r2
+)

1
2

∣∣∣∣∣
2

L2(D+,1)

=
∫

D+,1

(
v|D+ − v(r+)

)2

1 + r2
+

r2
+ dvx ≤

∫ ∞

1

∫
S+

(
v (r+, θ+, ϕ+) − v(r+)

)2

dvx.

Using Poincaré inequality on the unit sphere, we get∣∣∣∣∣v|D+ − v(r+)

(1 + r2
+)

1
2

∣∣∣∣∣
2

L2(D+,1)

≤ C

∫ ∞

1

∫
S+

((
∂θ+v

)2 +
(

∂ϕ+v

sin θ+

)2
)

dvx.

Since |∇v|2 = (∂r+v)2 +
(

1
r+

∂θ+v

)2

+
(

1
r+ sin θ+

∂ϕ+v

)2

, we obtain

∣∣∣∣∣v|D+ − v(r+)

(1 + r2
+)

1
2

∣∣∣∣∣
2

L2(D+,1)

≤ C

∫ ∞

1

∫
S+

|∇v|2 r2
+ dvx ≤ C|∇v|2L2(D+,1)

< +∞.
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Then, we seek to prove that (v(r+) − v+) /
√

1 + r2
+ ∈ L2(S+). Since∣∣∣∣∣v(r+) − v+

(1 + r2
+)

1
2

∣∣∣∣∣
2

L2(D+,1)

≤
∫ ∞

1

∫
S+

(v(r+) − v+)2

1 + r2
+

r2
+ dvx,

taking R = r+ and letting R′ tend to infinity in equation (2.5), we get

|v(r+) − v+| ≤ 1√
2π

|∇v|L2(D+)
1
r+

,

and thus ∣∣∣∣∣v(r+) − v+

(1 + r2
+)

1
2

∣∣∣∣∣
2

L2(D+,1)

≤ 1
2π

|∇v|2L2(D+)

∫ ∞

1

∫
S+

1
1 + r2

+

dvx ≤ π

4
|∇v|2L2(D+) < +∞.

Similarly, we have v|D− − v− ∈ BL(D−).

To prove point (iii), we first establish that
{

v ∈ H | v− = 0 and v+ = 0
}

⊂ BL(D). Let v ∈ H such that
v− = v+ = 0. It follows from (ii) that v ∈ BL(D−) and v ∈ BL(D+). Characterization (2.2) of BL in terms of
weighted Sobolev space yields v ∈ BL(D).

Conversely, we prove that BL(D) ⊂
{
v ∈ H | v− = 0 and v+ = 0

}
. If u ∈ BL(D), it follows from (ii) that

u − u+ ∈ BL(D+) and that u − u− ∈ BL(D−). Therefore, u± belongs to BL(D±). This is impossible except if
u± = 0 since

∫
D±

1 /
(
1 + |x|2) dx = +∞.

This brings us to point (iv). Clearly, (u, v) 
→ (u, v)H is a scalar product on H. It first remains to establish
that it is an Hilbert space. Let (vn) be a Cauchy sequence in H. Denoting by ξ± two smooth cut-off functions
such as ξ±(x) = 1 in D± and ξ±(x) = 0 in D∓, we consider the function

wn = vn − (vn)+ξ+ − (vn)−ξ−,

that belongs to BL(D) as established in (ii). We first remark that (wn) is a Cauchy sequence of BL(D) equipped
with its natural norm |v|BL(D) = |∇v|L2(D) since ∇vn is a Cauchy sequence in L2(D) and (vn)+, (vn)− are
convergent

(vn)+ −→ v+ and (vn)− −→ v− with v+, v− ∈ C. (2.6)

It follows from the completeness of BL(D) that wn converges to w ∈ BL(D)

∇wn −→ ∇w in L2(D).

The function v = w + ξ+v+ + ξ−v− belongs to H and satisfies v+ = v+, v− = v−. To complete the proof, it just
remains to establish that vn converges to v in H⎧⎪⎪⎨⎪⎪⎩

|∇(vn − v)|L2(D) ≤ |∇(wn − w) +
(
(vn)+ − v+

)∇ξ+ +
(
(vn)− − v−

)∇ξ−|L2(D)

≤ |∇(wn − w)| + |((vn)+ − v+

)∇ξ+| + |((vn)− − v−
)∇ξ−| →

n→+∞ 0.

|(vn)± − v±| = |(vn)± − v±| → 0 when n → ±∞.

(2.7)

The following lemma establishes the above mentioned Green’s formula involving a function v in H and a vector
field q in W.

Lemma 2.2. For all v ∈ H and q ∈ W, the following Green’s formula holds true∫
D

∇v(x) · q(x)dx = (v+ − v−)
∫

Γ±
q3(x) dsx.
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Proof. Let A = D, D+ or D−. For w ∈ BL(A) and q ∈ W defined in equation (2.1), Green’s formula yields [9]∫
A

∇w(x) · q(x)dx =
∫

∂A

w(x) q(x) · n dsx,

where dsx is the elemental area on ∂A. The integral I =
∫

D

∇v(x) ·q(x)dx is decomposed into three parts which

are separately expressed by means of a Green’s formula because v|D± − v± ∈ BL(D±).⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

D±
∇v(x) · q(x)dx =

∫
D±

∇
(
v(x) − v±

)
· q(x)dx = ∓

∫
Γ±

(
v(x) − v±

)
q3(x)dsx,∫

Ω

∇v(x) · q(x)dx =
∫

Γ+

v(x)q3(x)dsx −
∫

Γ−
v(x)q3(x)dsx.

(2.8)

Since
∫

Γ−
q3(x) dsx =

∫
Γ+

q3(x) dsx, we sum the above relations to obtain I = (v+ − v−)
∫

Γ−
q3(x) dsx.

Lemma 2.3. There exists a unique solution u ∈ H to problem (1.7) characterized by u ∈ H1/2 and ∇u ∈ W,
where H1/2 is the affine space

H1/2 =
{

v ∈ H | v+ = 1/2 and v− = −1/2
}
.

Proof. Let us first recall a similar result in BL(D) [9]. For f ∈ D(D) and g ∈ D(∂D), there exists one and only
one u ∈ BL(D) such that

Δu = f in D and ∂nu = g on ∂D. (2.9)

We first start establishing the uniqueness of the solution. If u1 ∈ H1/2 and u2 ∈ H1/2 are two solutions to (1.7),
w = u1 − u2 belongs to BL(D) and satisfies Δw = 0 in D and ∂nw = 0 on ∂D. Property (2.9) directly yields
that w = 0.

We now move on to seeking a solution. Let us define w ∈ BL(D) by

Δw = −Δξ+

2
+

Δξ−
2

and ∂nw = −∂nξ+

2
+

∂nξ−
2

·

Function u = w + ξ+ / 2 − ξ− / 2 ∈ H1/2 and satisfies

Δu(x) = 0 in D and ∂nu(x) = 0 on ∂D.

It remains to prove that lim
|x|→+∞

u(x) = 1/2 on D+ and lim
|x|→+∞

u(x) = −1/2 on D−. This last point is easily

obtained by a separation of variables. �

3. The Dirichlet and Kelvin principles

The Dirichlet and Kelvin principles7 are two variational principles, dual each to the other. This theory, which
takes its roots in Lagrangian and Hamiltonian mechanics, is of great importance in several areas, particularly
in mathematical modeling [6], Chapter 4, Section 9 to obtain lower and upper bounds for potential energies,
in optimization [17] to derive the dual formulations, and in numerical analysis [27], Chapter 1 for assessing the
validity or the accuracy of a numerical solution.

In this paper, these dual variational principles offer an ad-hoc framework to derive lower and upper bounds
of the Rayleigh conductivity KR.

7In the context of electrostatics, the Kelvin principle is also called the Thompson principle. William Thompson is the name at
birth of Lord Kelvin.
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Proposition 3.1. The Rayleigh conductivity KR can be obtained equivalently in one of the following ways:⎧⎪⎪⎨⎪⎪⎩
Dirichlet principle: KR = min

v∈H1/2

J1(v) with J1(v) =
∫

D

∣∣∣∇v(x)
∣∣∣2 dx

Kelvin principle: KR = max
q∈W

J2(q) with J2(q) = 2
∫

Γ−
q3(x) dsx −

∫
D

|q(x)|2 dx.

(3.1)

Proof. Let J : H × L2(D) −→ R+ be the functional

J(v,q) =
∫

D

|q(x) −∇v(x)|2 dx.

We first prove that (u,∇u) is the unique element of H1/2 × W where J reachs its minimum. Lemma 2.3 gives
that the solution to problem (1.7) satisfies

J(u,∇u) = 0, u ∈ H1/2, ∇u ∈ W.

Thus (u,∇u) is a point where J reaches its minimum on H1/2 ×W. On the other hand, every (v,q) ∈ H1/2 ×W
satisfying J(v,q) = 0 is such that ∇v = q. Lemma 2.3 directly yields v = u and q = ∇u. Consequently, the
function u is solution of (1.7) due to the fact that ∇u ∈ W (cf. (2.1)). The above claim is thus proved.

We now show that J1 reaches its minimum at u and J2 its maximum at ∇u. Lemma 2.2 gives that, for all
v ∈ H1/2 and q ∈ W ∫

D

∇v(x) · q(x)dx = (v+ − v−)
∫

Γ−
q3(x) dsx =

∫
Γ−

q3(x) dsx. (3.2)

It follows that J(v,q) = J1(v)− J2(q) thus establishing that J1(u) ≤ J1(v) for all v ∈ H1/2 and J2(q) ≤ J2(∇u)
for all q ∈ W.

Finally we prove that KR = J1(u) = J2(∇u). Since J(u,∇u) = J1(u) − J2(∇u) = 0, we have J1(u) = J2(∇u).
To conclude, it remains to prove that J1(u) = KR. Substituting u for v and ∇u for q in (3.2), we readily get
J1(u) =

∫
D
|∇u(x)|2 dx =

∫
Γ−

∂x3u(x) dsx = KR. �

4. Bounds for the Rayleigh conductivity of some usual perforations

Proposition 3.1 is used to get upper and lower bounds of the Rayleigh conductivity for usual perforations. We
consider axi-symmetric geometries, related to cylindrical and conical apertures, as well as perforations which
give rise to a full three-dimensional problem.

4.1. Cylindrical apertures

Here, we consider a cylindrical perforation Ω =
{
(x1, x2, x3) ∈ R3 | (x1, x2) ∈ SR and x3 ∈ [s−, s+]

}
with

circular section SR =
{

(x1, x2) ∈ R2 | x2
1 + x2

2 < R2
}

(see Fig. 2 below).

Theorem 4.1. For a cylindrical perforation, we have the following bounds for its Rayleigh conductivity:

K−
R,cyl ≤ KR,cyl ≤ K+

R,cyl with K−
R,cyl =

πR2

h + 16R / 3π
and K+

R,cyl =
πR2

h + πR/2
· (4.1)

Proof. As established above, the Dirichlet principle allows us to obtain the upper bound

KR,cyl ≤ J1(v) for all v ∈ H1/2. (4.2)
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R

x3 = s+x3 = s−

x3

x1

x2

Figure 2: Cylindrical aperture of radius R.

We first consider the following problem⎧⎪⎪⎨⎪⎪⎩
ΔwR(x) = 0 for x3 �= 0,

∂x3wR(x1, x2, 0) = 0 for x2
1 + x2

2 > R2,

wR(x1, x2, 0) = 1/2 for x2
1 + x2

2 < R2,

(4.3)

whose solution wR ∈ BL(R3) can be expressed analytically [29] Section 3.4, p. 72 by

wR(x) =
1

2π2

∫
BR

1√
R2 − |y|2

dsy

|x − y| for x3 �= 0, (4.4)

with BR = {(y1, y2, y3) ∈ R
3 | y2

1 + y2
2 < R2 and y3 = 0}. For α = (α+, α−) ∈ R

2 a pair of real numbers, we
denote by vα : D −→ C the function defined by

vα(x) =

⎧⎪⎪⎨⎪⎪⎩
1/2 − (1 − 2α+)wR(x1, x2, x3 − s+) for x3 > s+,

α− + (α+ − α−) (x3 − s−) / h for s− < x3 < s+,

−1/2 + (1 + 2α−)wR(x1, x2, x3 − s−) for x3 < s−.

Proposition 2.1 gives that vα ∈ H1/2. Lemma A.1 in Appendix 5.3 then yields∫
D±

|∇wR(x1, x2, x3 − s±)|2dx = R.

Hence,

J1(vα) =
∫

D

|∇vα(x)|2 dx =
∫

D+

|∇vα(x)|2 dx +
∫

Σ

|∇vα(x)|2 dx +
∫

D−
|∇vα(x)|2 dx

= R
(
1 − 2α+

)2 + (α+ − α−)2 πR2/h + R (1 + 2α−)2 . (4.5)

Solving this elementary minimization problem, we get α+ = −α− = h/ (πR + 2h) and J1(vα) =
πR2 / (h + πR/2).

The lower bound is obtained from the Kelvin principle

KR,cyl ≥ J2(q) for all q in W. (4.6)

It is rather a classical matter that the following problems set respectively in {x3 > 0} and {x3 < 0}⎧⎪⎪⎪⎨⎪⎪⎪⎩
ΔzR(x) = 0 for x3 �= 0,

∂x3zR(x1, x2, 0) = 0 for x2
1 + x2

2 > R2,

∂x3zR(x1, x2, 0±) = ±1 for x2
1 + x2

2 < R2,

(4.7)
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admit one and only one solution in BL({x3 > 0}) and BL({x3 < 0}). This can be also obtained as a direct
consequence of the characterization of these spaces given above in (2.2). The change of variable x3 → −x3

directly yields that zR, piecewise defined from these solutions, is an even function of x3 and so satisfies the
transmission relations [zR]SR =

(
zR|z3=0− − zR|z3=0+

) |SR = 0 and [∂x3zR]SR = −2. It can hence be expressed
in terms of the following integral (see Sect. 3.4.1.3 of [28] p. 144)

zR(x) = − 1
2π

∫
BR

1
|x− y|dsy for x3 �= 0. (4.8)

This defines qβ ∈ W, up to a multiplicative constant β ∈ R, such that

qβ(x) =

⎧⎪⎪⎨⎪⎪⎩
β ∇zR(x1, x2, x3 − s+) / πR2 for x3 > s+,

β e3 / πR2 for s− < x3 < s+,

−β ∇zR(x1, x2, x3 − s−) / πR2 for x3 < s−.

Using the non overlapping decomposition of D in D+, D− and Ω, we can express J2(qβ) as follows

J2(qβ) = 2
∫

Γ−
qβ(x) · e3dsx −

∫
D

|qβ |2dx = 2β −
(∫

D+

|qβ |2dx +
∫

D−
|qβ |2dx +

∫
Σ

|qβ |2dx
)

= 2β − β2

π2 R4

(∫
x3>0

|∇zR|2dx +
∫

x3<0

|∇zR|2dx + πR2h

)
= 2β −

(
16R

3π
+ h

)
β2

πR2
·

Integrals
∫

x3>0

∣∣∇zR

∣∣2 dx =
∫

x3<0

∣∣∇zR

∣∣2 dx = 8R3/3 are calculated in Appendix 5.3 (Lem. A.1). Maximizing
this expression relatively to β, we obtain β = πR2 /(h + 16R/3π), hence J2(qβ) = πR2 /(h + 16R/3π). �

Remark 4.2. Estimate (4.1) was first stated by Rayleigh [26], then by Howe [12] Section 5.3 and was mostly
obtained by physical reasoning. Here, the actual new feature of this approach is to establish it by means of
rigorous arguments.

Remark 4.3. Since the two factors 16/3π � 1.6977 and π/2 � 1.5708 involved in (4.1) do not greatly differ each
from the other, this inequality leads to sharp bounds for the Rayleigh conductivity, as numerically illustrated
below in Section 4.4.

Remark 4.4. Based on the approaches adopted by Rayleigh and Howe, in the proof of Theorem 4.1, we choose
to use trial functions vα and qβ which depend on x3 only in the perforation. Estimate (4.1) can be improved
by choosing more general trial functions. This way to proceed is a good compromise between the sharpness of
the estimates and the simplicity of the calculations.

4.2. Conical apertures

We consider now a conical aperture of the following form

Ω =
{
x ∈ R

3 | (x1, x2) ∈ SR(x3) and x3 ∈ [s−, s+]
}

where the radius R(s) is linearly varying from R− to R+(see Fig. 3 below)

R(s) = R− +
s − s−

h
(R+ − R−) = R− + (s − s−) tan ϕ with R+ > R−. (4.9)
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R+R− R(x3)

x3 = s+x3 = s−

ϕ

x3

x1

x2

Figure 3: Conical aperture of radius R(x3).

Theorem 4.5. The following bounds for a conical aperture hold true

K−
R,con ≤ KR,con ≤ K+

R,con, (4.10)

with

K−
R,con =

πR−R+

h +
8
3π

(R− + R+) +
1
2h

(R− − R+)2
and K+

R,con =
πR−R+

h +
π

4
(R− + R+)

,

or equivalently

K−
R,con =

πR−(R− + h tan ϕ)
16R−
3π

+ h
(
1 +

8
3π

tanϕ +
1
2

tan2 ϕ
) and K+

R,con =
πR−(R− + h tan ϕ)

πR−
2

+ h
(
1 +

π

4
tan ϕ

) ·
Proof. We follow the same approach as in Theorem 4.1.
To establish the upper bound, we consider vα ∈ H1/2 depending on two real constants α− and α+:

vα(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/2 − (1 − 2α+)wR+(x1, x2, x3 − s+) for x3 > s+,

α− +
(
α+ − α−

)∫ x3

s−

ds

πR2(s)∫ s+

s−

ds

πR2(s)

for s− < x3 < s+,

−1/2 + (1 + 2α−)wR−(x1, x2, x3 − s−) for x3 < s−,

where wR± is the function wR defined in (4.3) with R = R±. Similarily as in the proof of Theorem 4.1, we get

J1(vα) =
∫

D−
|∇vα(x)|2 dx +

∫
D+

|∇vα(x)|2 dx +
∫

Σ

|∇vα(x)|2 dx

= R− (1 + 2α−)2 + R+ (1 − 2α+)2 + (α+ − α−)2 πR+R−/h.

As above, we minimize J1(vα) relatively to α± to get

α± = ±1
2
∓ R∓π

π(R+ + R−) + 4h
and so J1(vα) =

4πR+R−
π(R+ + R−) + 4h

·
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To obtain the lower bound, we consider the vector field qβ ∈ W, with β ∈ R, given by

qβ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β

π R2
+

∇zR+(x1, x2, x3 − s+) for x3 > s+,

β

π R2(x3)

(
e3 +

r

R(x3)
R+ − R−

h
er

)
for s− < x3 < s+,

− β

π R2−
∇zR−(x1, x2, x3 − s−) for x3 < s−,

with zR the function defined in (4.7). Proceeding as in the proof of Theorem 4.1, we get

J2(qβ) = 2
∫

Γ−
qβ(x) · e3dsx −

(∫
D+

|qβ |2dx +
∫

D−
|qβ |2dx +

∫
Σ

|qβ |2dx
)
.

As ∫
Σ

|qβ |2dx =
β2

π2

∫ s+

s−

∫ 2π

0

∫ R(s)

0

1
R4(s)

(
1 +

r2(s)
R2(s)

(
R+ − R−

h

)2
)

r dr dθ ds,

it comes that

J2(qβ) =2β − β2

π2R4−

∫
x3<0

|∇zR− |2dx − β2

π2R4
+

∫
x3>0

|∇zR+ |2dx − β2h

πR−R+

(
1 +

1
2

(
R+ − R−

h

)2
)

= 2β − β2

(
8

3π2

R+ + R−
R+ R−

+
h

πR−R+

(
1 +

1
2

(
R+ − R−

h

)2
))

.

It is then easy to maximize J2(qβ) relatively to β to get

J2(qβ) = πR−R+ /

(
h +

8
3π

(R+ + R−) +
1
2h

(R+ − R−)2
)

. �

Remark 4.6. Bounds (4.10) of Theorem 4.5 have to be compared with the following ones obtained by Howe [12],
p. 359, Section 5.3:

h

π R− R+
+

1
4

(
1

R−
+

1
R+

)
≤ 1

KR
≤ h

π R− R+
+

(R+ − R−)2

π R− R+ h
+

8
3π2

(
1

R−
+

1
R+

)
·

Putting them in the same form as (4.10), we get

K−
R,Howe =

πR−R+

h +
8
3π

(R− + R+) +
1
h

(R− − R+)2
and K+

R,Howe =
πR−R+

h +
π

4
(R− + R+)

·

There is a missed factor 2 in the last term in the denominator of the fraction expressing K−
R,Howe which seems

to be a mistyping.

4.3. Tilted cylinder

We are now investigating the case where the aperture is cylindrical and tilted with an angle θ :

Ω =
{
x ∈ R

3 | (x̂1(x), x2) ∈ SR and x3 ∈ [s−, s+] with x̂1(x) = x1 − (x3 − s−) tan θ
}
.

The perforation was chosen so that its apertures in both sides of the plate are circular with a radius R (see
Fig. 4 below).
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x3 = s+

R

x3 = s−

θ
x3

x1

x2

Figure 4: Cylindrical aperture tilted with angle θ with respect to the x3 axis.

Theorem 4.7. The following bounds hold true for a tilted perforation

K−
R,inc ≤ KR,inc ≤ K+

R,inc, (4.11)

with

K−
R,inc =

πR2

16R

3π
+

h

cos2 θ

and K+
R,inc =

πR2

πR

2
+

h

cos2 θ

(
1 +

16R

3πh
sin2 θ

)−1
·

Proof. As above, we start with the upper bound. We consider vα depending on a real constant α defined by:

vα(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/2 − (1 − 2α) wR(x1 − h tan θ, x2, x3 − s+)

+
μα sin θ

h
tR(x1 − h tan θ, x2, x3 − s+) for x3 > s+,

−α +
μα

h

(
(x3 − s−) cos θ + x1 sin θ

)
for s− < x3 < s+,

−1/2 + (1−2α) wR(x1, x2, x3 − s−) +
μα sin θ

h
tR(x1, x2, x3 − s−) for x3 < s−,

with μα = 2α cos θ, wR given in (4.4) and tR ∈ BL(R3) defined by⎧⎪⎨⎪⎩
ΔtR(x) = 0, for x3 �= 0,

∂x3tR(x1, x2, 0) = 0, for x2
1 + x2

2 > R2,

tR(x1, x2, 0) = x1, for x2
1 + x2

2 < R2.

(4.12)

To establish that vα is in H1/2, it is enough to remark that it is continuous in an obvious way at x3 = s− and
that its limits at x3 = s+ from the left and from the right are respectively −α + 2α cos2 θ + μαx1 sin θ and
α − 2α sin2 θ + μαx1 sin θ.

Using Copson’s method [29], Section 3.4, p. 72, an explicit integral expression can be given for tR:

tR(x) =
2
π2

∫
SR

y1√
R2 − |y|2

dsy

|x − y| for x3 �= 0. (4.13)

Similarly as in the Proof of Theorem 4.1

J1(vα) =
∫

D+

|∇vα(x)|2 dx +
∫

Σ

|∇vα(x)|2 dx +
∫

D−
|∇vα(x)|2 dx.
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Since wR is symmetric with respect to x1 whereas tR is antisymmetric, we have∫
x3<0

∇tR(x) · ∇wR(x) dx =
∫

x3>0

∇tR(x) · ∇wR(x) dx = 0.

From calculations carried out in Appendix 5.3, it follows that:

J1(vα) = 2
(

R
(
1 − 2α

)2 +
μ2

α sin2 θ

h2

8R3

3

)
+

μ2
α

h2
πR2h.

As above, we maximize J1(vα) relatively to α to obtain α = 4R/
(
8R + 4 cos2 θ/h2

(
16R3 sin2 θ/3 + πR2h

) )
,

J1(vα) =
πR2

(
1 +

16R

3πh
sin2 θ

)
h

cos2 θ
+

πR

2

(
1 +

16R

3πh
sin2 θ

) ·
We now establish the lower bound. Let us consider the vector field qβ ∈ W, with β ∈ R, given by

qβ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

β

π R2
∇zR(x1 − h tan θ, x2, x3 − s+) for x3 > s+,

β

π R2

(
e3 + tan θ e1

)
for s− < x3 < s+,

− β

π R2
∇zR(x1, x2, x3 − s−) for x3 < s−.

with zR the function defined in (4.7). We have

J2(qβ) = 2
∫

Γ−
qβ(x) · e3dsx −

∫
D+∪D−∪Σ

|qβ |2dx = 2β − β2

π2R4

(
16R3

3
+ πR2h

(
1 + tan2 θ

))
.

We maximize J2(qβ) relatively to β to get J2(qβ) = πR2 /
(

h/ cos2 θ + 16R / 3π
)
. �

Remark 4.8. Bounds (4.11) of Theorem 4.7 seem to be completely new. They have not been previously ob-
tained even heuristically by physical reasoning. This result is especially important in applications related to
combustion in turboengines. Indeed, in order to ensure the cooling of the combustion chamber, its wall is per-
forated by tilted holes. As seen above, the angle of the perforation axis with the plate has a great influence on
its Rayleigh conductivity, and therefore, on its acoustic properties.

4.4. Numerical validation of the previous bounds for the Rayleigh conductivity

This section is devoted to a numerical validation of the above theoretical bounds obtained for the Rayleigh
conductivity in Theorems 4.1, 4.5 and 4.7. A numerical approximation Knum

R,∗ of the Rayleigh conductivity
obtained by a direct numerical solution of problem (1.7) using the boundary element code CESC of CERFACS
is compared with K−

R,∗ and K+
R,∗ for h/R ∈ [0, 10]. The numerical procedure is detailled in Appendix 5.3 below.

We have considered two angles ϕ = 5◦ and ϕ = 10◦ for a conical perforation and θ = 15◦ and θ = 30◦ for
a tilted one. The results for straight cylindrical perforations, conical perforations, and tilted perforations are
collected in Figures 5, 6 and 7. It is worth mentioning that K−

R,∗ ≤ Knum
R,∗ ≤ K+

R,∗ in all cases.

5. Approximate Rayleigh conductivity and corresponding error

5.1. Approximate Rayleigh conductivity

It is quite natural to take the mean value of the above lower and upper bounds for approximating the Rayleigh
conductivity:

Kapp
R =

K+
R + K−

R

2
· (5.1)
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h/R

KR

R

Figure 5: Lower and upper bounds and numerical approximation of the Rayleigh conductivity for a cylindrical
perforation.

h/R

KR

R

h/R

KR

R

Figure 6: Lower and upper bounds and numerical approximation of the Rayleigh conductivity for a conical
perforation with ϕ = 5◦ and ϕ = 15◦.

The relative error induced by this approximation is defined as

ε =
∣∣∣∣KR − Kapp

R

KR

∣∣∣∣ ·
A subscript as in Kapp

R,inc or εcyl can be added for mentioning the case being considered.

5.2. Theoretical bound on the error

Since K−
R ≤ KR ≤ K+

R , the error can be bounded as follows:

ε ≤ 1
2

(
K+

R − K−
R

K−
R

)
· (5.2)
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h/R

KR

R

h/R

KR

R

Figure 7: Lower and upper bounds and numerical approximation of the Rayleigh conductivity for a tilted
perforation with θ = 15◦ and θ = 30◦.

Values of the angle ϕ in degrees

h

R

1.5%

1%

2%

Figure 8: Upper bound of εcon =
∣∣∣KR,con−Kapp

R,con
KR,con

∣∣∣.
Values of the angle θ in degrees

h

R

1%

1.5%

2%

Figure 9: Upper bound of εinc =
∣∣∣KR,inc−Kapp

R,inc
KR,inc

∣∣∣.
These inequalities are not optimal but give a good idea on the magnitude of the error. The right-hand sides
of (5.2) are depicted in Figure 8 for a conical perforation and in Figure 9 for a tilted perforation. The results for
a straight cylindrical perforation are reported in Figure 8 for ϕ = 0 or in Figure 9 for θ = 0. Errors for ϕ ≤ 10◦

and θ ≤ 10◦ are less than 5%. For small values of h the error is below 5%. For larger values of h, the bound for
the error is lower and mostly less than 2%.

5.3. Numerical study of the error

In this section, we compare a numerical approximation Knum
R of the Rayleigh conductivity to its analytical

approximation Kapp
R . For cylindrical and conical perforations, we have considered several configurations each of
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Values of the angle ϕ in degrees

h

R

0.25%

Figure 10: The error εcon =

∣∣∣∣∣Kapp
R,con−Knum

R,con

Knum
R,con

∣∣∣∣∣.
Values of the angle θ in degrees

h

R

0.25%

0.5% 1%

Figure 11: The error εinc =

∣∣∣∣∣K
app
R,inc−Knum

R,inc
Knum

R,inc

∣∣∣∣∣.
them corresponding to a set of values for h and ϕ given in the form of a grid of points with step-sizes δϕ and
δh (see Fig. 3)

ϕ ∈ [0, 10], h / R− ∈ [0, 10] with steps δϕ = 0.1 and δh / R− = 0.2.

The values of ϕ and δϕ are given in degrees. For these axi-symmetric cases, the discrete problem to be solved
is of small-size. It was hence possible to carry out the computations related to these configurations on a laptop.
The geometries for ϕ = 0 corresponds to the cylindrical case. The results for a conical perforation are collected
in Figure 10.

For tilted perforations, the various configurations are similarly described by means of a grid of points θ and
h given by

θ ∈ [0, 10], h / R ∈ [0, 10] with steps δθ = 0.1 and δh / R = 0.5.

Here too, the values of θ and δθ are given in degrees. The geometry is no more axi-symmetric. A three dimensional
solver was required to perform the computations. To lower the discretization error at a level where it has
no significant incidence on the result, we have used very refined meshes. The largest computations involved
Ndof := 1.5 × 105 degrees of freedom requiring to solve square dense linear systems of Ndof × Ndof unknowns.
Such large sizes for the numerical problems have been chosen to reduce the discretization error to a negligible
level. Tests on similar cases with an explicit analytical solution have shown that this error is less than 2‰ (see
Appendix 5.3). The computations were carried out on high performance platform with 400 cores. They took 12
hours of elapsed CPU time. The numerical results for a tilted perforation are collected in Figure 11.

Comparing these figures with Figures 8 and 9, we remark that, for large values of h, inequalities (5.2) predict
too large errors. More precisely, the error is below 1% for h/R > 1. This clearly shows that the proposed
approximation of the Rayleigh conductivity can advantageously be used instead of the direct computation.

In Figures 12 and 13 we compute the barycentric coefficients λ∗ ∈ [0, 1] of KR,∗ with respect to K±
R,∗

KR,con = (1 − λcon) K−
R,con + λcon K+

R,con and KR,inc = (1 − λinc) K−
R,inc + λinc K+

R,inc.

The best approximation of KR is K−
R for λ ∈ [0, 1/4], Kapp

R for λ ∈ [1/4, 3/4], and K+
R for λ ∈ [3/4, 1]. It can

be observed that for small ratio of h/R, the best approximation of KR is given by K+
R , whereas for larger h/R,
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Values of the angle ϕ in degrees

h

R

Figure 12: The barycentric coordinate λcon.

Values of the angle θ in degrees

h

R

Figure 13: The barycentric coordinate λcyl.

it is given by Kapp
R . These maps also indicate that the approximation defined in (5.1) is very accurate in most

configurations.
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Appendix A. explicit analytical expressions for some integrals

Let us recall that wR, tR, zR, defined in (4.3), (4.12) and (4.7), are given by

fR(x) =
1
2π

∫
BR

ρfR(y)
dsy

|x − y| for x3 �= 0,

with fR = wR, tR or zR and the single layer potential ρfR defined on BR = {(y1, y2, y3) ∈ R3 | y2
1 + y2

2 <
R2 and y3 = 0} by

ρwR(y) =
1
π

1√
R2 − |y|2 , ρtR(y) =

4
π

y1√
R2 − |y|2 , and ρzR(y) = −1.

The following lemma collects three of the integrals involved in the bounds of the Rayleigh conductivity.

Lemma A.1. The following formulas hold true

(i)
∫

x3>0

∣∣∇wR(x)
∣∣2dx =

∫
x3<0

∣∣∇wR(x)
∣∣2dx = R,

(ii)
∫

x3>0

∣∣∇tR(x)
∣∣2dx =

∫
x3<0

∣∣∇tR(x)
∣∣2dx = 8R3/3,

(iii)
∫

x3>0

∣∣∇zR(x)
∣∣2dx =

∫
x3<0

∣∣∇zR(x)
∣∣2dx = 8R3/3.
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Proof. For fR = wR, zR or tR, we have fR(x1, x2,−x3) = fR(x1, x2, x3), leading to

IfR =
∫

x3<0

∣∣∇fR(x)
∣∣2dx =

∫
x3>0

∣∣∇fR(x)
∣∣2dx.

Since fR ∈ BL({x3 > 0}) and ΔfR = 0, we get, from Green’s formula and the integral representations of the
solution to the related boundary value problems [28]

IfR =
∫

x3>0

∣∣∇fR(x)
∣∣2dx =

∫
x3=0

∂x3fR(x)fR(x)dsx =
∫

BR

ρfR(x)fR(x)dsx. (A.1)

(i) From (4.3), we set wR = 1/2 on BR. This leads to

IwR =
∫

BR

1
π
√

R2 − |y|2
1
2
dsy =

∫ R

0

ρdρ√
R2 − ρ2

=
[
−
√

R2 − ρ2
]R
0

= R.

(ii) Similarly, from (4.12), we have tR(x) = x1 on BR. In spherical coordinates, integral (A.1) takes the form,
with y1 = ρ cos θ̂, y2 = ρ sin θ̂ cos ϕ̂, and y3 = ρ sin θ̂ sin ϕ̂,

ItR =
∫

BR

4
π

y1√
R2 − |y|2 y1dsy =

4
π

∫ R

0

∫ 2π

0

ρ cos θ̂√
R2 − ρ2

ρ cos θ̂ ρ dρdθ̂ (A.2)

=
4
π

∫ R

0

ρ3√
R2 − ρ2

dρ

∫ 2π

0

cos2 θ̂dθ̂ = −4
[√

R2 − ρ2
(
ρ2+2R2

)
/3
]R
ρ=0

= 8R3/3. (A.3)

(iii) In this case, we do not know explicitly the value of zR on BR. However, IzR is given by

IzR =
1
2π

∫
BR

∫
BR

dsydsx

|y − x| =
R3

2π

∫
B1

∫
B1

dsydsx

|y − x| ·

To evaluate this integral, we use Copson’s formula [5]∫
B1

dsy

|x − y| = 4
∫ 1

ρ=0

∫ min(ρ,r)

t=0

ρ dρ dt√
(ρ2 − t2)(r2 − t2)

.

Separating the cases r < ρ and ρ < r, we are led to

IzR =
2R3

π

∫
B1

(∫ 1

ρ=0

∫ min(ρ,r)

t=0

ρ dρ dt√
(ρ2 − t2)(r2 − t2)

)
dsx

= 4R3

∫ 1

r=0

∫ 1

ρ=0

∫ min(ρ,r)

0

rρdrdρdt√
(ρ2 − t2)(r2 − t2)

(A.4)

= 4R3

∫ 1

r=0

∫ 1

ρ=r

∫ r

t=0

rρdrdρdt√
(ρ2 − t2)(r2 − t2)

+ 4R3

∫ 1

r=0

∫ r

ρ=0

∫ ρ

t=0

rρdrdρdt√
(ρ2 − t2)(r2 − t2)

.

Taking into account symmetry and commuting the integrals, we get

IzR = 8R3

∫ 1

r=0

∫ 1

ρ=0

∫ ρ

t=0

rρdrdρdt√
(ρ2 − t2)(r2 − t2)

= 8R3

∫ 1

t=0

∫ r

ρ=t

∫ 1

r=ρ

rρdrdρdt√
(ρ2 − t2)(r2 − t2)

.

Evaluating successively the integrals, we obtain

IzR = 8R3

∫ 1

t=0

∫ 1

ρ=t

[√
r2 − t2√
ρ2 − t2

]1

r=ρ

ρdρdt = 8R3

∫ 1

t=0

∫ r

ρ=t

( √
1 − t2√
ρ2 − t2

− 1

)
ρdρdt,

= 8R3

∫ 1

t=0

[√
1 − t2

√
ρ2 − t2 − ρ2/2

]1
ρ=t

dt = 8R3

∫ 1

t=0

(
1 − t2

)
/2 dt = 8R3/3. �
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Appendix B. Direct numerical determination of the Rayleigh conductivity

The numerical determination of the Rayleigh conductivity is carried out by a boundary integral method (cf.,
e.g., [13,20,28]). Here we adapt the so-called direct approach (see, e.g., [28]). The unknowns of the system to be
solved will be the two interior traces, respectively denoted by u and σ = ∂nu, of the solutions of problem (1.7)
on the boundary ∂Ω = Σ ∪ Γ+ ∪ Γ− of the perforation Ω. Recall that here n indicates the unit normal on ∂Ω
directed outwards Ω. The formulation relies upon the following representation formula

u(x) = V σ(x) + N u(x), x ∈ Ω, (B.1){
u(x) = 1/2 − 2V+ σ(x) for x3 > s+, (B.2)
u(x) = −1/2 − 2V− σ(x) for x3 < s−, (B.3)

where V, N, V± are the following integral operators:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V σ(x) =
∫

∂Ω

1
4π|x − y|σ(y)dsy, (B.4)

N u(x) = −
∫

∂Ω

∂ny

1
4π|x − y|u(y)dsy, (B.5)

V± σ(x) =
1
2

∫
Γ±

(
1

4π|x − y| +
1

4π|x∗± − y|
)

σ(y)dsy, (B.6)

where x∗± is the symmetrical point of x relatively to the plane {x3 = s±}. Formula (B.1) is the very classical
integral representation of harmonic functions in the interior of a bounded domain (cf., e.g., [13], Eq. (1.1.7), p. 3
and Rem. 1.5). Formula (B.2) and (B.3) is the usual expression of the solution u in the half-spaces {x3 > s+}
(resp. {x3 < s−}) based upon the corresponding Green function

G±
∞(x,y) =

1
4π|x − y| +

1
4π|x∗± − y| , (B.7)

(cf., e.g., [12], p. 355). Taking into account that |x∗± − y| = |x − y| for y ∈ Γ±, we get

V± σ(x) =
∫

Γ±

1
4π|x − y|σ(y)dsy . (B.8)

The direct method is based on the following trace formula{
u(x) = 1/2 u(x) + V σ(x) + N u(x) x ∈ ∂Ω, (B.9)
σ(x) = 1/2 σ(x) − NT σ(x) + D u(x) x ∈ ∂Ω, (B.10)

where NT is the adjoint of the integral operator N and D is the integral operator corresponding to a hyper-
singular kernel which can be expressed variationally as (cf., e.g., [13] p. 5)

〈D σ, σ′〉∂Ω =
∫

∂Ω×∂Ω

1
4π|x − y|

(
ny ×∇yσ(y)

)
·
(
nx ×∇xσ′(x)

)
dsxdsy, (B.11)

for sufficiently smooth σ and σ′, with 〈·, ·〉∂Ω the duality brackets between the trace space H1/2(∂Ω) and its
dual H−1/2(∂Ω). Clearly, the boundary condition on Σ yields

σ(x) = 0 on Σ. (B.12)

The adaptation of the direct method in the present context consists in considering the relations linking the two
traces on Γ+ and Γ− expressed by equations (B.2) and (B.3) and additional constraints on the remaining part
of ∂Ω

u(x) + 2V± σ(x) = ±1/2 for x ∈ Γ±. (B.13)
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Let f be a function in H1/2(∂Ω) equal to 1/4 on Γ+ and −1/4 on Γ−. Equation (B.13) can thus be rewritten
as

1/2 u(x) + V± σ(x) = f(x) for x ∈ Γ±. (B.14)

The constraint (B.12) is taken into account explicitely whereas constraints (B.14) are handled by means of a
Lagrange multiplier. More precisely, starting from (B.9) and (B.14), we can write

〈V σ, σ′〉∂Ω + 〈N u, σ′〉∂Ω = 〈1/2 u, σ′〉∂Ω = −〈V+ σ, σ′〉Γ+
− 〈V− σ, σ′〉Γ− + 〈f, σ′〉∂Ω , (B.15)

for all σ′ ∈ H−1/2(∂Ω) with σ′(x) = 0 on Σ. In the same way, we can write equation (B.10) in the form〈
u′, NT σ

〉
∂Ω

− 〈u′, D u〉∂Ω = −〈1/2 u′, σ〉∂Ω , (B.16)

for all u′ ∈ H1/2(∂Ω). Finally equation (B.14), can be written as

〈V+ σ, �′〉Γ+
+ 〈V− σ, �′〉Γ− + 〈1/2 u, �′〉∂Ω = 〈f, �′〉∂Ω , (B.17)

for all �′ ∈ H−1/2(∂Ω) with �′(x) = 0 on Σ. Noting that 〈V+ σ, σ′〉Γ+
+ 〈V− σ, σ′〉Γ− = 〈V σ, σ′〉∂Ω and substi-

tuting � for σ in the respective right-hand sides of equations (B.15) and (B.16), we readily arrive to the following
formulation in the form of a saddle-point problem

Find {(u, σ), �} ∈ W × L such that for all {(u′, σ′), �′} ∈ W × L{
a((u, σ), (u′, σ′)) + b(�, (u′, σ′)) = 〈f, σ′〉∂Ω ,

b(�′, (u, σ)) = 〈f, �′〉∂Ω ,
(B.18)

with {
a((u, σ), (u′, �′)) = 〈V σ, σ′〉∂Ω + 〈N u, σ′〉∂Ω + 〈N u′, σ〉∂Ω − 〈D u, u′〉∂Ω ,

b(�′, (u, σ)) = 〈V σ + 1/2 u, �′〉∂Ω,
(B.19)

and
L =

{
σ ∈ H−1/2(∂Ω); σ|Σ = 0

}
and W = H1/2(∂Ω) × L.

System (B.18) is discretized using a triangular mesh of ∂Ω and approximating any involved function by a P1-
continuous boundary element method (cf., e.g., [3] and the references therein). It is worth mentioning that L is
actually approximated by a finite element method built on respectively Γ+ and Γ− with the nodal values equal
to 0 on the respective boundary curves of Γ+ and Γ−. The accuracy of the approach has been validated from
the cases of circular and elliptical perforations in an infinitely thin plate for which the exact analytically value
of the corresponding Rayleigh conductivities are known. In this case, the relative errors were less than 2‰.
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