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A LINEAR MIXED FINITE ELEMENT SCHEME FOR A NEMATIC
ERICKSEN–LESLIE LIQUID CRYSTAL MODEL ∗

F.M. Guillén-González1 and J.V. Gutiérrez-Santacreu2

Abstract. In this work we study a fully discrete mixed scheme, based on continuous finite elements
in space and a linear semi-implicit first-order integration in time, approximating an Ericksen–Leslie
nematic liquid crystal model by means of a Ginzburg–Landau penalized problem. Conditional stability
of this scheme is proved via a discrete version of the energy law satisfied by the continuous problem,
and conditional convergence towards generalized Young measure-valued solutions to the Ericksen–
Leslie problem is showed when the discrete parameters (in time and space) and the penalty parameter
go to zero at the same time. Finally, we will show some numerical experiences for a phenomenon of
annihilation of singularities.
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1. Introduction

1.1. Statement of the problem

Let Ω be a bounded open subset of R
d (d = 2 or 3) with boundary ∂Ω, and T > 0 the final time of

observation. We will use the notation Q = Ω× (0, T ), Σ = ∂Ω× (0, T ), and n the unit outwards normal vector
on ∂Ω. Boldfaced letters will be used to denote matrix and vector spaces and their elements. The unknowns are
u : Q→ IRd, the incompressible velocity field, p : Q→ IR, the pressure, and d : Q→ IRd, the orientation vector
of liquid crystal molecules. These variables satisfy the following Ericksen–Leslie system:⎧⎪⎨⎪⎩

|d| = 1, ∂td+ u · ∇d+ γ(−Δd− |∇d|2d) = 0 in Q,

∂tu+ u · ∇u− νΔu + ∇p+ λ∇ · ((∇d)t∇d) = 0 in Q,

∇·u = 0 in Q,

(1.1)

where ν > 0 is a constant depending on the fluid viscosity, λ > 0 is an elasticity constant, and γ > 0 is a
relaxation time constant. (∇d)t denotes the transposed matrix of ∇d = (∂jdi)i,j , and |d| = |d(x, t)| is the
Euclidean norm in IRd (and |∇d| = |∇d(x, t)| is the Euclidean norm in IRd×d).
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To these equations we will add homogeneous and non-homogeneous boundary conditions for the velocity and
orientation vector fields, respectively:

u(x, t) = 0, d(x, t) = l(x) on (x, t) ∈ Σ, (1.2)

and the initial conditions
d(x, 0) = d0(x), u(x, 0) = u0(x), x ∈ Ω. (1.3)

Here l : ∂Ω → IRd, u0 : Ω → IRd, and d0 : Ω → IRd are given functions. Throughout this work, we fix d = 3 (the
results for two-dimensional domains are easier) and the boundary datum l is assumed to be time-independent. In
fact, the compatibility condition l = d0|∂Ω must be satisfied. The case of time-dependent boundary conditions
is more technical (see [8]).

Model (1.1) was introduced by Lin [13] as a simplification of an Ericksen–Leslie-type model related to the
dynamic behavior of nematic liquid crystal flows.

To construct approximations of (1.1), it is usual to use the penalty Ginzburg–Landau model⎧⎪⎨⎪⎩
|d| ≤ 1, ∂td+ u · ∇d+ γ(−Δd+ fε(d)) = 0 in Q,

∂tu+ u · ∇u− νΔu + ∇p+ λ∇ · ((∇d)t∇d) = 0 in Q,

∇·u = 0 in Q,

(1.4)

where
f ε(d) =

1
ε2

(|d|2 − 1)d

is the penalty function related to the constraint |d| = 1, and ε > 0 is the penalty parameter. It is important to
observe that f ε is the gradient of the Ginzburg–Landau potential

Fε(d) =
1

4ε2
(|d|2 − 1)2,

that is, fε(d) = ∇dFε(d) for all d ∈ IRd.
Problem (1.4) has two important properties for sufficiently regular solutions [14]:

1. The following energy law holds:

d
dt
E(u(t),d(t)) +D(u(t),w(t)) = 0, ∀ t ∈ [0, T ], (1.5)

depending on the free energy

E(u,d) :=
1
2

∫
Ω

|u|2 +
λ

2

∫
Ω

|∇d|2 + λ

∫
Ω

Fε(d), (1.6)

and the physical dissipation

D(u,w) := ν

∫
Ω

|∇u|2dx+ λγ

∫
Ω

|w|2dx, (1.7)

where
w := −Δd+ fε(d) (1.8)

is the Euler–Lagrange equation associated with the elastic energy functional
∫

Ω

(
1
2 |∇d|2 + Fε(d)

)
.

Energy equality (1.5) is obtained by testing (1.4)a, (1.4)b and (1.4)c by λw, u and p, respectively, and using
the fact that the elastic tensor λ∇ · ((∇d)t∇d) of (1.4)b can be written in terms of w = −Δd+ fε(d) as:

λ∇ · ((∇d)t∇d) = λ∇
(

1
2
|∇d|2 + Fε(d)

)
− λ(∇d)t(−Δd+ f ε(d)). (1.9)
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2. The following maximum principle holds:

“If |d0| ≤ 1 in Ω then |d(t)| ≤ 1 in Ω for each t ∈ [0, T ]”.

This result is based on the following time-differential inequality satisfied by |d|2 [4]:

1
2
∂t|d|2 + u · ∇|d|2 −Δ|d|2 + fε(d) · d ≤ 0 in Q

(which is obtained by making the scalar product of (1.4)a by d) jointly with the property

fε(d) · d ≥ 0 if |d| ≥ 1. (1.10)

Remark 1.1. As a consequence of this maximum principle, problem (1.4) can be equivalently written with
Fε(d) and fε(d) = ∇dFε(d) replaced by F̃ε(d) and f̃ε(d) = ∇dF̃ε(d) such that

F̃ε(d) = Fε(d) if |d| ≤ 1 and f̃ ε(d) · d ≥ 0 if |d| ≥ 1, (1.11)

where F̃ε(d) is a regular extension outside the unit sphere |d| ≤ 1 of Fε(d). It is remarkable that the energy
law (1.5) holds as well, where the following free energy which appears is

Ẽ(u,d) :=
1
2

∫
Ω

|u|2 +
λ

2

∫
Ω

|∇d|2 + λ

∫
Ω

F̃ε(d),

and the equilibrium variable turns out to be w = −Δd+ f̃ε(d).

From (1.9) and using the fact that w = −Δd+ fε(d), model (1.4) can then be reformulated as [3]:⎧⎪⎪⎪⎨⎪⎪⎪⎩
|d| ≤ 1, ∂td+ u · ∇d+ γw = 0 in Q,

−Δd+ fε(d) −w = 0 in Q,

∂tu+ u · ∇u− νΔu + ∇p− λ(∇d)tw = 0 in Q,

∇·u = 0 in Q,

(1.12)

where the pressure p in (1.4) is replaced by the potential function p+ λ
2 |∇d|2 +λFε(d) in (1.12) (which is called

again p for simplicity). This differential reformulation will lead us to a finite-element time-stepping scheme which
will be stable in the sense that it reproduces a discrete version of the continuous energy law (1.5) (see (2.2)
below).

This type of reformulation is also possible for the Ericksen–Leslie problem (1.1). Indeed, the stress tensor
of (1.1) reads

λ∇ · ((∇d)t∇d) = λ∇
(

1
2
|∇d|2

)
− λ(∇d)t(−Δd− |∇d|2d), (1.13)

from λ(∇d)t(|∇d|2d) = 1
2 |∇d|2∇(|d|2) = 0 (because of |d| = 1). Therefore, system (1.1) can be rewritten

as (1.12) but w is now replaced by −Δd− |∇d|2d (the Euler–Lagrange equation related to the elastic energy
functional

∫
Ω

1
2 |∇d|2 subject to |d| = 1) and the potential function p is replaced by p+ λ

2 |∇d|2.

1.2. Notations and definition of solutions

We will assume the following notation throughout this paper. As usual Lp(Ω) denotes the space of functions
defined and pth-summable in Ω, and ‖ · ‖Lp(Ω) its norm. If p = 2 we denote the inner-product in L2(Ω) by(
·, ·
)
, and the L2(Ω)-norm by ‖ · ‖. By W p,s(Ω) with s ≥ 0 and p ≥ 1 (or Hs(Ω) for p = 2), we denote the

classical Sobolev spaces. Let C∞
c (Ω) be the space of infinitely differentiable functions with compact support in
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Ω. Then Wm,p
0 (Ω) is introduced as the closure of C∞

c (Ω) in Wm,p(Ω) (and Hm
0 (Ω) = Wm,p

0 (Ω)). The dual
spaces of Hs(Ω) and Hs

0 (Ω) will be represented by (Hs(Ω))′ and H−s(Ω), respectively. For a real Banach space
X , Lp(0, T ;X) denotes the space of Bochner-measurable, X-valued functions f defined on (0, T ) such that
‖f‖Lp(0,T ;X) := (

∫ T

0
‖f(t)‖p

X dt)1/p < ∞. Moreover, C∞
c ([0, T );X) is the space of infinitely differentiable, X-

valued functions with compact support in [0, T ). Boldfaced letters will be related to vectro spaces, for instance
Lp denotes a vectorial Lp space.

On the other hand, let C0(A) with A ⊂ IRM be the closure of C∞
c (A) in the ‖ · ‖L∞(A)-norm and let M(A)

be the space of real-valued Radon measures with finite total variation, i.e.,

‖μ‖M(A) = sup
φ∈C0(A)\{0}

|
∫

A φdμ|
‖φ‖L∞(A)

·

One version of the Riesz representation theorem states that the dual space of C0(A) can be identified with M(A)
via the duality

〈μ, φ〉 =
∫

A

φdμ, ∀μ ∈ M(A), ∀φ ∈ C0(A).

Let Prob(IRd×d) be the space of probability measures, i.e. μ ∈ M(IRd×d) such that μ > 0 and μ(IRd×d) = 1.
We will now introduce the function spaces in the context of the Navier–Stokes equations. Firstly, we define

L2
0(Ω) =

{
p : p ∈ L2(Ω),

∫
Ω

p(x)dx = 0
}
,

V =
{
v ∈ C∞

c (Ω);∇ · v = 0
}
.

Then, let H and V be the closure of V in L2(Ω) and H1
0(Ω), respectively, characterized by

H =
{
u ∈ L2(Ω);∇ · u = 0,u · n = 0 on ∂Ω

}
,

V =
{
u ∈H1(Ω);∇ · u = 0,u = 0 on ∂Ω

}
.

Next, let us introduce the concept of generalized Young measure-valued solutions of (1.1) (as in [20]) and the
concept of weak solutions for the penalized problem (1.4).

Definition 1.2. A 4-tuple (u,d, μ,M) is called a generalized Young measure-valued solution of (1.1)–(1.3) in
(0, T ) if:

a) u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), d ∈ L∞(0, T ;H1(Ω)),
|d(x, t)| = 1 for a.e. (x, t) ∈ Q, d(x, t) = l(x) for a.e. (x, t) ∈ Σ,
μ ∈ M(Q), (x, t) ∈ Q→Mx,t ∈ Prob(IRd×d) is a weak-� μ-measurable map.

b) For all φ ∈ C∞
c ([0, T ); V),∫ T

0

{
−
(
u, ∂tφ

)
+
(
(u · ∇)u,φ

)
+ν

(
∇u,∇φ

)}
dt−λ

∫
Q

(∫
IRd×d

yty

|y|2 dMx,t(y)
)

:∇φ dμ(x, t)=
(
u0,φ(0)

)
.

c) For all ψ ∈ C∞
c ([0, T ); C∞

c (Ω)),∫ T

0

{
−
(
d, ∂tψ

)
+
(
u · ∇d,ψ

)
+ γ

(
∇d,∇ψ

)
− γ

(
|∇d|2d,ψ

)}
dt =

(
d0,ψ(0)

)
.

Definition 1.3. A pair (d,u) is called a weak solution of (1.4) and (1.2)–(1.3) in (0, T ) if:

a) u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), d ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),
|d(x, t)| ≤ 1 a.e. (x, t) ∈ Q, d(x, t) = l(x) a.e. (x, t) ∈ Σ.
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b) For all φ ∈ C∞
c ([0, T ); V),∫ T

0

{
−
(
u, ∂tφ

)
+
(
(u · ∇)u,φ

)
+
(
ν∇u− λ(∇d)t∇d,∇φ

)}
dt =

(
u0,φ(0)

)
.

c) ∂td+ u · ∇d+ γ(−Δd+ fε(d)) = 0 a.e. in Q, d(0) = d0 a.e. in Ω.

1.3. Known results for systems (1.1) and (1.4)

Considering the boundary condition for the director vector d to be time-independent and for any fixed ε,
Lin and Liu proved [14] the local existence of classical solutions and the global existence of weak solutions to
problem (1.4) by means of a semi-Galerkin method (where the d-system is not discretized in space in order to
preserve the energy equality (1.5) and the maximum principle).

In [4], the existence of weak time-periodic solutions was proved by using a (fully) Galerkin method for which
the maximum principle does not hold; therefore, a truncated potential had to be used.

The first finite element schemes for problem (1.4) were proposed by Liu and Walkington [18, 19], obtaining
error estimates. In the first work [18], they proposed a scheme requiring globally C1-finite elements for approx-
imating the director vector d. Later, in the second work [19], a C0-approximation is only used by introducing
the auxiliary variable ∇d. In both works the resulting schemes are totally coupled and nonlinear. In order to
avoid the large degrees of freedom and the nonlinearity of these schemes, Girault and Guillén–González [8]
considered the auxiliary variable −Δd constructing a fully discrete mixed scheme for (1.4) (that is, for ε > 0
fixed) which is coupled but linear, unconditionally stable and convergent towards weak solutions to (1.4). Also,
optimal error estimates for (u,d) and convergence of iterative methods (decoupling the fluids variables (u, p)
from the elastic one d) were obtained. In [16], Lin and Liu presented two linear numerical algorithms by using
C0-finite elements. The first of them uses an explicit-implicit backward Euler approximation in time and the
second one uses a characteristic method. Although stability properties of these schemes are not provided, some
numerical experiments show that both schemes recover the numerical results obtained in [18].

In [3], Becker, Feng and Prohl considered two nonlinear fully discrete methods based on C0-finite elements.
The first scheme is defined by considering the auxiliary variable w = −Δd + f ε(d) and it is unconditionally
stable and convergent to problem (1.1). This convergence is attained in two steps; firstly when the time and
space discretization parameters go to zero (i.e. (k, h) → 0), the convergence towards a weak solution to the
penalized problem (1.12) is proved, and afterwards when the penalty parameter ε goes to zero, one obtains a
measure-valued solution to problem (1.1), where the elastic tensor (∇d)t∇d tends to a certain measure (see [15]).
It should be noted that the proof of the compactness for the discrete velocity in L2(0, T ;L2(Ω)) done in [3]
does not seem to be clear because the discrete velocity is bounded in L∞(0, T ;L2(Ω)) ∩L2(0, T ;H1

0(Ω)) while
the time derivative is bounded in the dual space of V ∩H2(Ω). However, in order to apply an Aubin–Lions
compactness argument, one would need the continuous embeddings H1

0(Ω) ↪→ L2(Ω) ↪→ (V ∩H2(Ω))′ (with
the former being compact), but the embedding from L2(Ω) into (V ∩H2(Ω))′ is not injective.

The second algorithm in [3] discretizes directly problem (1.1) being conditionally stable, but the convergence
when the discrete parameters go to zero remains as an open problem.

Approximating model (1.1) directly could be much more adequate for regular initial data without defects
(that is, with a unit vector in the whole domain), since we would avoid the problem of balancing the penalty
parameter with the discretization parameters. Otherwise, we have to face the problem of dealing with the sphere
constraint. One way to solve such a difficulty numerically is to use Alouges’ technique [1] for imposing the sphere
constraint at every nodes.

In [17], Lin et al. introduced an unconditionally stable, nonlinear scheme for the penalized Ginzburg–Landau
associated to a nematic liquid crystal model which is a slightly modified version of (1.4), where stretching
terms appear in the d-system. In this scheme, a mid-point approximation of the Ginzburg–Landau potential is
considered preserving the energy law at the discrete level, and the use of an auxiliary variable like w is avoided.
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In the light of the previous works, our task in this paper is to design a linear and C0-finite element scheme
based on reformulation (1.12), i.e., using the auxiliary variable w = −Δd + f ε(d)) as in [3]. For this scheme,
the following two properties will be discussed:

1. Conditional a priori energy estimates independent of (h, k, ε) provided that an explicit constraint with
respect to the numerical parameters (k, h) and ε (see (S) below). Moreover, such a constraint will be to able
to be weakened (see (S′) below) when F̃ε(d) is considered instead of Fε(d).

2. Convergence (as (h, k, ε) → 0) towards a measure-valued solution of (1.1). For this, the compactness for the
velocity in L2(0, T ;L2(Ω)) will be proved. The elastic tensor (∇d)tw is responsible for not obtaining the
convergence towards weak solutions of (1.1). Thus the concept of measure-valued solutions is introduced to
identify the limit of such an elastic tensor. It will be only possible when the truncating potential F̃ε(d) is
considered instead of Fε(d).

The idea of using a truncated potential in Nematic Liquid crystals was introduced in [14] in order to deduce
analytical results. Recently, it has been used for numerical purposes in the context of Allen–Cahn and Cahn–
Hilliard phase-field models in [22].

Note that, for the unconditional stable nonlinear schemes given in [3, 17], an iterative process has to be
implemented to approach the nonlinear scheme, where some constraints on the numerical parameters will appear
to assure its convergence. For instance, in [17], a Picard linearization is considered, where following the proof
of the conditional stability given in our paper (see Lem. 2.1 below), a constraint like (S) appears in order to
assure convergence.

Finally, it is not clear how to extend the convergence result (as (h, k, ε) → 0) obtained in this paper to other
types of stable approximations such as [3,17], where there is not truncation of the potential term. On the other
hand, from a numerical point of view it is not possible to take a truncated potential in an implicit manner (since
f̃ ε(d

n+1
h ) is defined by parts when |dn+1

h | ≤ 1 or |dn+1
h | ≥ 1, but dn+1

h is an unknown).

1.4. Numerical scheme

The numerical scheme will be based on the following mixed weak formulation of problem (1.12). Find
(u(t), p(t),d(t),w(t)) ∈H1

0(Ω) × L2
0(Ω) ×H1(Ω) ×L2(Ω) with d(t) = l on ∂Ω such that(

∂tu, ū
)

+ ν
(
∇u,∇ū

)
+
(
(u · ∇)u, ū

)
−λ

(
(∇d)tw, ū

)
−
(
p,∇ · ū

)
= 0 ∀ ū ∈H1

0(Ω),(
∇ · u, p̄

)
= 0 ∀ p̄ ∈ L2

0(Ω),(
∂td, w̄

)
+
(
(u · ∇)d, w̄

)
+ γ

(
w, w̄

)
= 0 ∀ w̄ ∈ L2(Ω),(

∇d,∇d̄
)

+
(
fε(d), d̄

)
−
(
w, d̄

)
= 0 ∀ d̄ ∈H1

0(Ω).

(1.14)

Roughly speaking, velocity, pressure, orientation vector, and the Euler–Lagrange equation w = −Δd+ fε(d)
will be approximated in the finite element spaces

(Xh, Qh,Dh,W h) ⊂ (H1
0(Ω), L2

0(Ω),H1(Ω),L2(Ω)), D0h ⊂H1
0(Ω).

The algorithm that we present consists of:

Initialization: Let (u0
h,d

0
h) ∈ (Xh,Dh) be a suitable approximation of (u0,d0).
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Step (n+1): Given (un
h,d

n
h) ∈ (Xh,Dh), find (un+1

h , pn+1
h ,dn+1

h ,wn+1
h ) ∈ Xh×Qh×Dh×W h with dn+1

h = lh
on ∂Ω, where lh is an approximation of l, solving the algebraic linear system:(

un+1
h − un

h

k
, ūh

)
+ c

(
un

h,u
n+1
h , ūh

)
+ ν

(
∇un+1

h ,∇ūh

)
−λ

(
(∇dn

h)twn+1
h , ūh

)
−
(
pn+1

h ,∇ · ūh

)
= 0,

(1.15)

(
∇ · un+1

h , p̄h

)
= 0, (1.16)

(
dn+1

h − dn
h

k
, w̄h

)
+
(
(un+1

h · ∇)dn
h, w̄h

)
+ γ

(
wn+1

h , w̄h

)
= 0, (1.17)

(
∇dn+1

h ,∇d̄h

)
−
(
wn+1

h , d̄h

)
= −

(
fε(d

n
h), d̄h

)
, (1.18)

for all (ūh, p̄h, d̄h, w̄h) ∈Xh ×Qh ×D0h ×W h, where we have considered the trilinear form c(·, ·, ·) defined by

c
(
u,v,w

)
=
(
(u · ∇)v,w

)
+

1
2

(
(∇ · u)v,w

)
∀u,v,w ∈H1

0(Ω),

which displays the skew-symmetry c(u,v,v) = 0, although u does not satisfy the incompressibility condition
pointwisely. The scheme introduced in [3] is very similar, except for the approximation of the potential function
f ε(d(tn+1)). Here this approximation is explicit (resulting in a linear scheme) and in [3] is semi-implicit (and
nonlinear with respect to dn+1

h )
Throughtout this paper, C > 0 will denote different constants always independent of k, h and ε.

1.5. Hypotheses

Hereafter, we will assume that Ω ⊂ IR3 is a bounded domain with polyhedral boundary, and there exists a
family of regular triangulations {Th}h>0 of Ω made up of tetrahedrons, where h is the maximum diameter of
the elements of {Th}h>0.

The following hypotheses will be required:

(H0) Hypotheses for the data:

u0 ∈H, d0 ∈H1(Ω) with |d0| = 1 in Ω, l ∈H3/2(∂Ω) with |l| = 1 on ∂Ω × (0, T ).

(H1) The boundary of Ω is assumed to be such that the H2(Ω) × H1(Ω)-regularity property of the Stokes
problem and the H2(Ω)-regularity property of the Poisson problem hold.

(H2) The triangulation of Ω and the discrete spaces satisfy:
(a) The inverse inequalities:

(i) ‖d̄h‖L∞(Ω) ≤ C h−1/2‖d̄h‖H1(Ω) ∀ d̄h ∈ Dh,

(ii) ‖d̄h‖ ≤ C h−1/2‖d̄h‖L3/2(Ω) ∀ d̄h ∈ Dh.
(b) The approximation properties:

(i) ‖d− Ihd‖ ≤ C h‖d‖H1(Ω) ∀d ∈H1(Ω),
(ii) ‖p−Khp‖ ≤ C h‖p‖H1(Ω) ∀ p ∈ H1(Ω) ∩ L2

0(Ω),
(iii) ‖u− Jhu‖H1(Ω) ≤ C h‖u‖H2(Ω) ∀u ∈H2(Ω) ∩H1

0(Ω),
(iv) ‖d− Ihd‖H1(Ω) ≤ C h‖d‖H2(Ω) ∀d ∈H2(Ω),
(v) ‖d− Ihd‖W 1,3 ≤ C h‖d‖W 2,3(Ω) ∀d ∈W 2,3(Ω),
(vi) ‖d− Ihd‖L∞ ≤ C h‖d‖W 1,∞(Ω) ∀d ∈W 1,∞(Ω),
where Ih, Jh and Kh are interpolation operators into Dh, Xh and Qh, respectively.
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(c) The stability properties:
(i) ‖Jhu‖ ≤ C‖u‖ ∀u ∈ L2(Ω),
(ii) ‖Ihd‖H1(Ω) ≤ C‖d‖H1(Ω) ∀d ∈H1(Ω),
(iii) ‖Ihd‖L∞(Ω) ≤ C‖d‖L∞(Ω) ∀d ∈ L∞(Ω),
(iv) ‖Ihd‖W 1,3(Ω) ≤ C‖d‖W 1,3(Ω) ∀d ∈W 1,3(Ω).

(H3) Inf-Sup condition (Compatibility condition between Xh and Qh): there exists β > 0 (independent of h)
such that

‖qh‖L2
0(Ω) ≤ β sup

v∈Xh\{0}

(
qh,∇ · v

)
‖v‖H1(Ω)

, ∀ qh ∈ Qh.

(H4) Compatibility condition between W h and Dh: Dh ⊂W h.

Now, we are going to set up a concrete finite element spaces and interpolation operators satisfying the foregoing
hypotheses:

Xh =
{
ūh ∈ C0(Ω)3 ∩H1

0(Ω) : ∀T ∈ Th, ūh|T ∈ (IP1 + bubble)3
}
,

Ph =
{
p̄h ∈ C0(Ω) ∩ L2

0(Ω) : ∀T ∈ Th, p̄h|T ∈ IP1

}
,

W h =
{
w̄h ∈ C0(Ω)3 : ∀T ∈ Th, w̄h|T ∈ IP3

1

}
,

Dh =
{
d̄h ∈ C0(Ω)3 : ∀T ∈ Th, d̄h|T ∈ IP3

1

}
, D0h = Dh ∩H1

0(Ω).

Another possibility is to construct Xh and/or W h and Dh by using IP2 approximation.
To define Ih, Jh and Kh, we may choice average interpolators of Scott–Zhang type [21]. For instance, we can

choose the interpolator defined in [10] (see also [8]), in order to get stability properties in L2 and L∞ imposed
in (H2).(c).(i) and (H2).(c).(iii). Finally, the discrete lifting lh of the boundary datum l can also be constructed
with a Scott–Zhang interpolator (that we denote SZh) as follows. Let d̃ ∈H2(Ω) the solution of

−Δd̃ = 0 in Ω, d̃|∂Ω = l, (1.19)

and define lh = SZh(d̃)|∂Ω.

1.6. Main results of the paper

Although in general the maximum principle |d| ≤ 1 is not assured for the numerical approximations, we will
get the following stability and convergence results.

Theorem 1.4 (Stability for non-truncated potential). Assume that hypotheses (H0)–(H4) hold. Further suppose
that (h, k, ε) are chosen to satisfy the “initial estimate” constraint

(IE)
h

ε
≤ C

and the “stability” constraint

(S) lim
(h,k,ε)→0

k

h2ε2
= 0.

Then the solution of scheme (1.15)-(1.18) satisfies the “global energy inequality”:⎧⎪⎪⎪⎨⎪⎪⎪⎩
E(ur+1

h ,dr+1
h ) +

k

2

r∑
n=0

D(un+1
h ,wn+1

h )

+
1
2

r∑
n=0

(
‖un+1

h − un
h‖2 + ‖∇(dn+1

h − dn
h)‖2

)
≤ E(u0

h,d
0
h),

(1.20)
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for each r = 0, · · · , N − 1. In particular, one has the estimates (independent of (h, k, ε)):

i) max
0≤n≤N

‖un
h‖ ≤ C, ii) k

N−1∑
n=0

‖∇un+1
h ‖2 ≤ C, iii)

N−1∑
n=0

‖un+1
h − un

h‖2 ≤ C,

iv) max
0≤n≤N

‖dn
h‖H1(Ω) ≤ C, v) k

N−1∑
n=0

‖wn+1
h ‖2 ≤ C vi)

N−1∑
n=0

‖dn+1
h − dn

h‖2
H1(Ω) ≤ C,

vii) max
0≤n≤N

∫
Ω

Fε(dn
h) ≤ C.

Remark 1.5. Hypothesis (IE) will be applied to get the initial estimate E(u0
h,d

0
h) ≤ C.

Corollary 1.6 (Stability for truncated potential). Assume that hypotheses (H0)–(H4) hold. Consider
scheme (1.15)–(1.18) with F̃ε(d) a truncated potential, as in Remark 1.1, satisfying (1.11) and such that

F̃ε(d) ∈ C2(IR3; IR) and max
d∈IR3

|D2F̃ε(d)| ≤ C

ε2
(1.21)

(here | · | denotes the Euclidean norm of the Hessian matrix D2F̃ε). Further suppose (IE) and

(S′) lim
(h,k,ε)→0

k

h ε2
= 0.

Then the statements of Theorem 1.4 remain true.

Note that (S′) is weakener than (S).

Theorem 1.7 (Convergence for truncated potential). Assume hypotheses (H0)–(H4) together with (S′) and the
“convergence” constraint

(C) lim
(h,ε)→0

h

ε2
= 0,

(which implies in particular that (IE) holds). Consider scheme (1.15)–(1.18) with F̃ε(d) as in Corollary 1.6
such that, for any d ∈ IR3,

f̃ε(d) ∧ d = 0, (1.22)

where the symbol ∧ denotes the vectorial product, and

‖f̃ε(d)‖2 ≤ C

ε2

∫
Ω

F̃ε(d). (1.23)

Then there exists a subsequence of solutions given by scheme (1.15)–(1.18) convergent, as (h, k, ε) → 0, towards
a generalized Young measure-valued solution of the Ericksen–Leslie problem (1.1)–(1.3).

Remark 1.8. An example of a truncated potential F̃ε, which satisfies all the previous hypotheses, is:

F̃ε(d) :=

⎧⎪⎨⎪⎩
1

4ε2
(|d|2 − 1)2 = Fε(d) if |d| ≤ 1,

1
ε2

(|d| − 1)2 if |d| > 1,

whose gradient is

f̃ε(d) := ∇dF̃ (d) =

⎧⎪⎪⎨⎪⎪⎩
1
ε2

(|d|2 − 1)d = fε(d) if |d| ≤ 1,

2
ε2

(|d| − 1)
d

|d| if |d| > 1.
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Then (1.11), (1.22) and (1.23) hold. Moreover, using the relations

∇|d| =
d

|d| , ∇(
d

|d| ) =
1
|d|Id−

1
|d|3d⊗ d,

one has

∇2
dF̃ (d) =

⎧⎪⎨⎪⎩
1
ε2

[
(|d|2 − 1)Id+ 2d⊗ d

]
if |d| ≤ 1,

2
ε2

(
1 − 1

|d|
)
Id+

2
ε2

1
|d|3d⊗ d if |d| > 1,

hence (1.21) is deduced.

The rest of this work is organized as follows. In Section 2, we derive a priori energy estimates for
scheme (1.15)–(1.18) from a discrete version of the energy law (1.5) by means of a recursive process with
respect to the time step. Section 3 is devoted to the compactness results in L2(Q) for the director vector and for
the velocity (the latter result will be based on an estimate by perturbation of a fractional-time derivative). In
Section 4 we guarantee that the limit orientation vector satisfies the pointwise constraint |d| = 1 and we pass to
the limit in an adequate reformulation of the d-system. Then, we establish the convergence for the momentum
equation in Section 5, obtaining a generalized Young measure related to the elastic tensor. Finally, in Section 6,
some numerical computations are shown, demonstrating its stability at least numerically.

2. A priori estimates and weak convergence

2.1. Existence and uniqueness of the scheme

Since scheme (1.15)–(1.18) is an algebraic linear system, existence and uniqueness are equivalent. The unique-
ness of a solution to scheme (1.15)–(1.18) follows along the same line of arguments as in obtaining a priori energy
estimates. It is worth mentioning that we need not impose any additional constraint to prove the well-posedness
of scheme (1.15)–(1.18). This is due to the fact that the potential term, which is explicitly treated, vanishes
when comparing to different solutions.

2.2. A local discrete energy inequality

Now, we are going to obtain a “discrete local energy inequality”, that will be essential for the a priori
estimates of scheme (1.15)–(1.18). Recall the notation of the free energy

E(u,d) =
1
2
‖u‖2 +

λ

2
‖∇d‖2 + λ

∫
Ω

Fε(d),

and the physcial dissipation
D(u,w) = ν‖∇u‖2 + λγ ‖w‖2.

Lemma 2.1. Assume that hypotheses (H0)-(H4) and constraint (S) hold. Suppose that there exists a constant
C0 > 0, independent of h, k and ε, such that

E(un
h,d

n
h) ≤ C0. (2.1)

Then, there exists δ0 > 0 small enough (depending only on C0, but otherwise independent of (h, k, ε) and n)
such that for all (h, k, ε) satisfying k/(h2ε2) ≤ δ0 (that is possible owing to constraint (S)), the corresponding
solution (un+1

h ,dn+1
h ,wn+1

h ) of scheme (1.15)–(1.18) satisfies the following inequality:⎧⎪⎨⎪⎩
E
(
un+1

h ,dn+1
h

)
− E (un

h,d
n
h) +

k

2
D
(
un+1

h ,wn+1
h

)
+

1
2
(
‖un+1

h − un
h‖2 + λ‖∇

(
dn+1

h − dn
h

)
‖2
)
≤ 0.

(2.2)
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Corollary 2.2. Assume that hypotheses (H0)–(H4) and constraint (S′) hold. Consider scheme (1.15)–(1.18)
with F̃ε(d) satisfying (1.11) and (1.21). Then the statements of Lemma 2.1 remain true if one assumes that
Ẽ(un

h ,d
n
h) ≤ C0 and k/(hε2) ≤ δ0 are satisfied.

Proof of Lemma 2.1. Take ūh = kun+1
h in (1.15) and p̄h = pn+1

h in (1.16). Then the term
(
pn+1

h ,∇ · un+1
h

)
vanishes, and the identity (a− b, 2a) = |a|2 − |b|2 + |a− b|2 leads to

1
2

(
‖un+1

h ‖2 − ‖un
h‖2 + ‖un+1

h − un
h‖2

)
+ ν k‖∇un+1

h ‖2 − λk
(
(∇dn

h)twn+1
h ,un+1

h

)
= 0. (2.3)

Next, consider w̄h = λkwn+1
h in (1.17) jointly with d̄h = dn+1

h − dn
h ∈ D0h in (1.18) to get

λ

2

(
‖∇dn+1

h ‖2 − ‖∇dn
h‖2 + ‖∇(dn+1

h − dn
h)‖2

)
+ λ

(
dn+1

h − dn
h,f ε(d

n
h)
)

+λk
(
un+1

h · ∇dn
h ,w

n+1
h

)
+ λγ k‖wn+1

h ‖2 = 0.
(2.4)

Now, we add (2.3) and (2.4) and use the identity

−
(
(∇dn

h)twn+1
h ,un+1

h

)
+
(
un+1

h · ∇dn
h,w

n+1
h

)
= 0

to get

1
2

(
‖un+1

h ‖2 + λ‖∇dn+1
h ‖2

)
− 1

2

(
‖un

h‖2 + λ‖∇dn
h‖2

)
+

1
2

(
‖un+1

h − un
h‖2 + λ‖∇(dn+1

h − dn
h)‖2

)
+ kD(un+1

h ,wn+1
h ) + λ

(
dn+1

h − dn
h,fε(d

n
h)
)

= 0. (2.5)

Next, we decompose the last term of (2.5) as follows:

λ
(
dn+1

h − dn
h,fε(d

n
h)
)

=
λ

ε2

(
dn+1

h − dn
h, (|dn+1

h |2 − 1)dn
h

)
+
λ

ε2

(
dn+1

h − dn
h , (|dn

h |2 − |dn+1
h |2)dn

h

)
:= I1 − I2.

Rewriting I1 as

I1 =
λ

2ε2

∫
Ω

(|dn+1
h |2 − 1)(|dn+1

h |2 − |dn
h|2 − |dn+1

h − dn
h|2)

=
λ

4ε2

∫
Ω

(
(|dn+1

h |2 − 1)2 − (|dn
h|2 − 1)2 + (|dn+1

h |2 − |dn
h|2)2

) λ

2ε2

∫
Ω

(1 − |dn+1
h |2)|dn+1

h − dn
h|2

and bounding I2 as

I2 ≤ C

ε2
‖dn

h‖2
L∞(Ω)‖d

n+1
h − dn

h‖2 +
λ

8ε2

∫
Ω

(|dn+1
h |2 − |dn

h|2)2,

we arrive at the inequality

λ
(
dn+1

h − dn
h,f ε(d

n
h)
)
≥ λ

∫
Ω

Fε(dn+1
h ) − λ

∫
Ω

Fε(dn
h)

+
λ

2ε2

∫
Ω

(
1
4
(|dn+1

h |2 − |dn
h|2)2 + |dn+1

h − dn
h|2

)
− C

ε2

(
‖dn

h‖2
L∞(Ω) + ‖dn+1

h ‖2
L∞(Ω)

)
‖dn+1

h − dn
h‖2. (2.6)
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Therefore, (2.5) and (2.6) yield⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E(un+1
h ,dn+1

h ) − E(un
h,d

n
h) + kD(un+1

h ,wn+1
h )

+
1
2

(
‖un+1

h − un
h‖2 + λ‖∇(dn+1

h − dn
h)‖2

)
≤ C

ε2

(
‖dn

h‖2
L∞(Ω) + ‖dn+1

h ‖2
L∞(Ω)

)
‖dn+1

h − dn
h‖2 := I3.

(2.7)

The main idea now is to absorb the term I3 with the physical dissipation kD(un+1
h ,wn+1

h ), with the help of (S).
In order to bound the term ‖dn+1

h − dn
h‖2 of I3, we take w̄h = P 0

h (w̄), for any w̄ ∈ L3(Ω), as test functions
into (1.17), where P 0

h is the L2-projector onto W h, to obtain(
dn+1

h − dn
h

k
, w̄

)
= −

(
(un+1

h · ∇)dn
h, P

0
h (w̄)

)
− γ

(
wn+1

h , w̄
)
,

where hypothesis (H4) allows us to neglect P 0
h in the discrete time derivative term. Then, a standard duality

argument using the fact that L3/2(Ω) = L3(Ω)′ jointly to the stability property ‖P 0
h w̄‖L3 ≤ C ‖w̄‖L3 [7])

and (2.1) (which in particular implies that λ‖∇dn
h‖2 ≤ 2C0) yields

∥∥∥∥dn+1
h − dn

h

k

∥∥∥∥2

L3/2(Ω)

≤ C
(
‖un+1

h ‖2
L6‖∇dn

h‖2 + ‖wn+1
h ‖2

)
≤ C D(un+1

h ,wn+1
h ). (2.8)

Next, the term I3 can be handled, using inverse inequalities (H2).(a).(i) and (H2).(a).(ii), as

I3 = C
k2

ε2

(
‖dn

h‖2
L∞(Ω) + ‖dn+1

h ‖2
L∞(Ω)

) ∥∥∥∥dn+1
h − dn

h

k

∥∥∥∥2

≤ C
k2

h2ε2

(
‖dn

h‖2
H1(Ω) + ‖dn+1

h ‖2
H1(Ω)

) ∥∥∥∥dn+1
h − dn

h

k

∥∥∥∥2

L3/2(Ω)

.

Therefore, by using (2.8) the bound of I3 remains as

I3 ≤ C
k

h2ε2

(
‖dn+1

h ‖2
H1(Ω) + ‖dn

h‖2
H1(Ω)

)
kD(un+1

h ,wn+1
h ). (2.9)

Our next goal is to bound ‖dn+1
h ‖H1(Ω) in terms of E(dn

h,u
n
h). Recall that ‖dn

h‖H1(Ω) ≤ C, because of (2.1).
Consider (2.5) rewritten as

1
2

(
‖un+1

h ‖2 + λ‖∇dn+1
h ‖2

)
+

1
2

(
‖un+1

h − un
h‖2 + λ‖∇(dn+1

h − dn
h)‖2

)
+ kD(un+1

h ,wn+1
h ) =

1
2

(
‖un

h‖2 + λ‖∇dn
h‖2

)
− λ

(
dn+1

h − dn
h,f ε(d

n
h)
)

(2.10)

and bound the last term, using (2.8), the inequality

‖fε(d)‖2 ≤ 4
ε2

‖d‖2
L∞

∫
Ω

Fε(d) (2.11)
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and the estimates
∫
Ω Fε(dn

h) ≤ C and ‖dn
h‖2

H1(Ω) ≤ C, from (2.1), as follows:

λ
(
dn+1

h − dn
h,f ε(d

n
h)
)
≤ C k

∥∥∥∥dn+1
h − dn

h

k

∥∥∥∥ ‖fε(d
n
h)‖

≤ δ k

∥∥∥∥dn+1
h − dn

h

k

∥∥∥∥2

L3/2(Ω)

+ Cδ
k

hε2
‖dn

h‖2
L∞(Ω)

∫
Ω

Fε(dn
h)

≤ C δ kD(un+1
h ,wn+1

h ) + Cδ
k

h2ε2
‖dn

h‖2
H1(Ω),

≤ C δ kD(un+1
h ,wn+1

h ) + Cδ
k

h2ε2
·

Here, δ > 0 is arbitrary, and thus Cδ = C/δ. Then, from (2.10), we can get, for δ > 0 small enough,

1
2

(
‖un+1

h ‖2 + λ‖∇dn+1
h ‖2

)
+

1
2

(
‖un+1

h − un
h‖2 + λ‖∇(dn+1

h − dn
h)‖2

)
+
k

2
D(un+1

h ,wn+1
h ) ≤ 1

2

(
‖un

h‖2 + λ‖∇dn
h‖2

)
+ C

k

h2ε2
·

In particular, one obtains
λ

2
‖∇dn+1

h ‖2 ≤ E(un
h ,d

n
h) + C

k

h2ε2
·

Consequently, from (2.1) and (S), for each (k, h, ε) such that k/(h2ε2) ≤ δ0, with δ0 small enough, we get the
bound

‖∇dn+1
h ‖2 ≤ 2

λ

(
C0 + C

k

h2ε2
,

)
≤ 4C0

λ
·

Next, the discrete lifting SZh(d̃) of the boundary datum lh (which is stable in the H1-norm) allows us to
complete up to the H1(Ω)-norm and hence

‖dn
h‖2

H1(Ω) ≤ C, ‖dn+1
h ‖2

H1(Ω) ≤ C, (2.12)

with C depending on C0. Finally, using (2.12) in (2.9), I3 remains bounded as

I3 ≤ C
k

h2ε2
kD(un+1

h ,wn+1
h ).

By hypothesis (S), we may choice δ0 such that

C
k

h2 ε2
≤ 1

2

arriving at

I3 ≤ k

2
D(un+1

h ,wn+1
h ).

Finally, we obtain inequality (2.2) by absorbing the above estimate of I3 is absorbed by the physical dissipation
kD(un+1

h ,wn+1
h ) in (2.7). �

Remark 2.3. Following the proof of Lemma 2.1 for two-dimensional (2D) domains, the stability constraint
(S) could be weakened to

lim
(h,k,ε)→0

k

hαε2
= 0
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for any α > 0 small enough. This is possible because the inverse inequality ‖d̄h‖L∞(Ω) ≤ C h−α‖d̄h‖H1(Ω) can be
used instead of (H2).(a).(i) and estimate (2.8) in L2−α(Ω) instead of L3/2(Ω) owing to the Sobolev embedding
H1(Ω) ↪→ Lβ(Ω) for all β > 0 (valid only in 2D domains). It means that the dependence of constraint (S) on
h is very weak. In fact, for the numerical simulations in Section 6, we will take k = O(ε2), showing (at least
numerically), that scheme (1.15)–(1.18) is stable in the sense that a decreasing energy is obtained.

Proof of Corollary 2.2. Recall that we are now considering the truncated potential function F̃ε(d). Thus we
have the following inequality (instead of (2.6))

λ
(
dn+1

h − dn
h, f̃ε(d

n
h)
)
≥ λ

∫
Ω

F̃ε(dn+1
h ) − λ

∫
Ω

F̃ε(dn
h)

− C

ε2
‖dn+1

h − dn
h‖2,

which can be deduced from the Taylor expansion up to order 2 of F̃ε(dn+1
h ) with center at dn

h. Moreover, one
must use (1.21) to bound the second-order remainder term.

Then (2.7) is now changed by:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ẽ
(
un+1

h ,dn+1
h

)
− Ẽ (un

h,d
n
h) + kD

(
un+1

h ,wn+1
h

)
+

1
2

(
‖un+1

h − un
h‖2 + λ‖∇

(
dn+1

h − dn
h

)
‖2
)

≤ C

ε2
‖dn+1

h − dn
h‖2 := Ĩ3 ≤ C

k

hε2
kD

(
un+1

h ,wn+1
h

)
,

(2.13)

where the right hand-side of (2.13) can be absorbed by the physical dissipation kD(un+1
h ,wn+1

h ) provided that
Ck/(hε2) ≤ 1/2 holds (which is possible owing to (S′)). Again, as in Remark 2.3, the term h in (S′) can be
changed by hα (α > 0) in 2D domains. �

Remark 2.4. Following in the case of using F̃ε(d) instead of Fε(d), if hypothesis (H4) is not imposed, then
we can only control the projection part C

ε2 ‖P 0
h (dn+1

h − dn
h)‖2 of Ĩ3 from the arguments shown in the proof of

Lemma 2.1. Instead, the orthogonal part is estimated as

C

ε2
‖(I − P 0

h )(dn+1
h − dn

h)‖2 ≤ C
h2

ε2
‖∇(dn+1

h − dn
h)‖2.

This bound can be absorbed by the numerical dissipation term λ‖∇(dn+1
h − dn

h)‖2/2 of (2.13), imposing h/ε
small enough. Therefore, the a priori energy estimates proved in Corollary 2.2 also holds by replacing hypothesis
(H4) by h/ε small enough. This fact will be noted in the numerical computations of Section 6.

2.3. Initial estimates

In order to get global stability estimates for scheme (1.15)–(1.18), we will need an initial estimate.

Lemma 2.5. Assume that hypotheses (H0) and (H2) together with (IE) hold. Then there exists a constant
C0 > 0 independent of h k, and ε such that

E(u0
h,d

0
h) ≤ C0 and Ẽ(u0

h,d
0
h) ≤ C0. (2.14)

Proof. For instance, (2.14) can be guaranteed defining d0
h = Ihd0 and u0

h = Jhu0. Indeed, in view of the
stability of the interpolation operators Jh and Ih given in (H2).(c).(i)–(ii), there exist K1 > 0 and K2 > 0 such
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that λ‖∇d0
h‖2/2 ≤ K1 and ‖u0

h‖2/2 ≤ K2. Then, it suffices to bound λ
∫
Ω Fε(d0

h) ≤ K3 and λ
∫
Ω F̃ε(d0

h) ≤ K3,
because then (2.14) holds defining C0 = K1 +K2 +K3. Since |d0| = 1 in Ω, we have∫

Ω

Fε(d0
h) =

1
4ε2

∫
Ω

(
|d0

h|2 − |d0|2
)2

=
1

4ε2

∫
Ω

(
(d0 + d0

h) · (d0 − d0
h)
)2

≤ 1
4ε2

‖d0 + d0
h‖2

L∞(Ω)‖d0 − d0
h‖2.

Now, using the approximation property (H2).(b).(i), the stability condition (H2).(c).(iii) and the constraint
(IE), we can find a positive constant K3 such that

λ

∫
Ω

Fε(d0
h) ≤ C

h2

ε2
‖d0‖2

H1 ≤ K3.

The bound for λ
∫
Ω F̃ε(d0

h) is similar. �

Remark 2.6. Notice that the initial estimate for the energy (2.14) has been possible because the vector d has
a vector with two or three components, hence there exists non-constant initial conditions d0 ∈ H1(Ω) such
that |d0| = 1 in Ω. For instance, in 2D domains, it suffices to define d0(x) = (sin(θ(x)), cos(θ(x))) with θ(x) a
regular function.

2.4. Conditional stability (Proofs of Thm. 1.4 and Cor. 1.6)

It suffices to prove the local energy inequality (2.2) for all n = 0, . . . , N − 1 because in this case the global
energy inequality (1.20) and estimates (i)–(vii) can be deduced by adding (2.2) with respect to n and using the
bound for the initial data (2.14).

To prove (2.2) we argue by induction on n. Clearly, (u0
h,d

0
h) satisfies the hypotheses of Lemma 2.1 (or

Cor. 2.2) for n = 0: E(u0
h,d

0
h) ≤ C0 (or Ẽ(u0

h,d
0
h) ≤ C0), then (2.2) holds for n = 0. In particular,

E
(
u1

h,d
1
h

)
≤ E

(
u0

h,d
0
h

)
≤ C0

(
or Ẽ

(
u1

h,d
1
h

)
≤ Ẽ

(
u0

h,d
0
h

)
≤ C0

)
.

Now, we assume that (us
h,d

s
h) satisfies (2.2) for s = 1, ..., n− 1. Adding (2.2) for s = 1, ..., n− 1,

E (un
h,d

n
h) ≤ E

(
u0

h,d
0
h

)
≤ C0

(
or Ẽ (un

h,d
n
h) ≤ Ẽ

(
u0

h,d
0
h

)
≤ C0

)
,

which implies from Lemma 2.1 (or Cor. 2.2) that (2.2) holds for n.

2.5. Global estimates and weak convergence

Definition 2.7. Let uh,k,ε (respectively u0
h,k,ε) be the piecewise constant function taking the value un+1

h on
(tn, tn+1] (respectively un

h). Analogously, we define ph,k,ε, wh,k,ε, dh,k,ε and d0
h,k,ε. Moreover, let ul

h,k,ε ∈
C0([0, T ];V h) and dl

h,k,ε ∈ C0([0, T ];Dh) be the piecewise linear functions such that ul
h,k,ε(tn) = un

h and
dl

h,k,ε(tn) = dn
h, respectively.

With the previous notations, Theorem 1.4 (or Cor. 1.6) yields to the following stability estimates (independent
of (h, k, ε)):

uh,k,ε is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T,H1
0(Ω)),

ul
h,k,ε,u

0
h,k,ε, are bounded in L∞(0, T ;L2(Ω)),

dl
h,k,ε,d

0
h,k,ε,dh,k,ε are bounded in L∞(0, T ;H1(Ω)), (2.15)

wh,k,ε is bounded in L2(0, T ;L2(Ω)). (2.16)
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Moreover, from estimates (iii) and (vi) of Theorem 1.4,

u0
h,k,ε − uh,k,ε → 0 and ul

h,k,ε − uh,k,ε → 0 in L2(0, T ;L2(Ω)),

with the same convergences for dl
h,k,ε,d

0
h,k,ε,dh,k,ε in L2(0, T ;H1(Ω)).

By weak compactness results, there exist subsequences (denoted in the same way) of {ul
h,k,ε}h,k,ε,

{uh,k,ε}h,k,ε, {u0
h,k,ε}h,k,ε, {dl

h,k,ε}h,k,ε, {d0
h,k,ε}h,k,ε, {dh,k,ε}h,k,ε, and {wh,k,ε}h,k,ε, and limit functions u,

d, and w satisfying the following weak convergences as (h, k, ε) → 0:

uh,k,ε → u in L2
(
0, T ;H1

0(Ω)
)
-weak and L∞ (

0, T ;L2(Ω)
)
-weak∗,

ul
h,k,ε → u, u0

h,k,ε → u, in L∞ (
0, T ;L2(Ω)

)
-weak∗,

dl
h,k,ε → d, d0

h,k,ε → d, dh,k,ε → d in L∞ (
0, T ;H1(Ω)

)
-weak∗, (2.17)

wh,k,ε → w in L2(0, T ;L2(Ω))-weak. (2.18)

3. Compactness for d and u

3.1. Strong convergence for the director vector

By using the dual estimate (2.8) for the time discrete derivative of the director, we arrive at the following

Lemma 3.1. Under the assumptions of Theorem 1.4 (or Cor. 1.6), there exists C > 0 independent of (h, k, ε)
such that

k

N−1∑
n=0

∥∥∥∥dn+1
h − dn

h

k

∥∥∥∥2

L3/2(Ω)

≤ C. (3.1)

Note that (3.1) can be expressed as

∂td
l
h,k,ε is bounded in L2

(
0, T ;L3/2(Ω)

)
.

Therefore, from (2.15) and (3.1), a compactness result of Aubin–Lions type implies that there exists a subse-
quence of dl

h,k,ε (denoted in the same way) such that

dl
h,k,ε → d in C([0, T ];Lr(Ω)) as (k, h, ε) → 0 for any r : 1 ≤ r < 6.

As a consequence of estimate (vi) in Theorem 1.4 and (2.15), one obtains

d0
h,k,ε, dh,k,ε → d in Lq (0, T ;Lr(Ω)) as (h, k, ε) → 0, (3.2)

with 1 ≤ r < 6 and 1 ≤ q <∞.

3.2. Strong convergence for the velocity

This section is devoted to obtaining the following compactness result for the discrete velocity

uh,k,ε → u in L2
(
0, T ;L2(Ω)

)
-strong as (k, h, ε) → 0. (3.3)

Let
V h =

{
vh ∈Xh :

(
∇ · vh, qh

)
= 0 ∀ qh ∈ Qh

}
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and consider A−1
h : V h → V h the discrete inverse Stokes operator defined as(

∇A−1
h uh,∇vh

)
=

(
uh,vh

)
∀vh ∈ V h. (3.4)

Notice that (3.4) is well-defined thanks to the Inf-Sup condition (H3).
Observe that ‖∇A−1

h uh‖ and ‖uh‖V ′
h

are equivalent norms in V ′
h (the dual space of V h). Indeed, we take

vh = A−1
h uh in (3.4), then

‖∇A−1
h uh‖2 =

(
uh, A

−1
h uh

)
≤ C‖uh‖V ′

h
‖∇A−1

h uh‖,

whence

‖∇A−1
h uh‖ ≤ C‖uh‖V ′

h
.

Conversely, we take any vh ∈ V h in (3.4), then(
uh,vh

)
=

(
∇A−1

h uh,∇vh

)
≤ ‖∇A−1

h uh‖ ‖∇vh‖ ∀vh ∈ V h.

The dual definition of V ′
h provides ‖uh‖V ′

h
≤ ‖∇A−1

h uh‖.

Lemma 3.2. Under the conditions of Theorem 1.4 or Corollary 1.6, it follows that

∫ T−δ

0

‖uh,k,ε(t+ δ) − uh,k,ε(t)‖2
V ′

h
dt ≤ C δ1/2 ∀ δ : 0 < δ < T, (3.5)

where C > 0 is independent of (h, k, ε).

Proof. Since uh,k,ε is a piecewise constant function, it suffices to suppose that δ is proportional to the time step
k, i.e., δ = r k for any r = 0, ..., N . Then, to obtain (3.5) it suffices to prove

k

N−r∑
m=0

‖um+r
h − um

h ‖2
V ′

h
≤ C (r k)1/2, ∀ r : 0 < r < N. (3.6)

Multiplying (1.15) by k and summing for n = m, . . . ,m− 1 + r, we have

(
um+r

h − um
h , ūh

)
= −k

m−1+r∑
n=m

c
(
un

h,u
n+1
h , ūh

)
− ν k

m−1+r∑
n=m

(
∇un+1,∇ūh

)
+ λk

m−1+r∑
n=m

(
(∇dn

h)t
wn+1

h , ūh

)
+ k

m−1+r∑
n=m

(
pn+1

h ,∇ · ūh

)
. (3.7)

Setting ūh = A−1
h (um+r

h − um
h ) as a test function in (3.7), observing that(
um+r

h − um
h , A

−1
h (um+r

h − um
h )

)
= ‖∇A−1

h (um+r
h − um

h )‖2
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(which is easily seen by taking uh = um+r
h − um

h and ūh = A−1
h (um+r

h − um
h ) in (3.4)), multiplying by k, and

summing for m = 0, ..., N − r, we get

k

N−r∑
m=0

‖∇A−1
h (um+r

h − um
h )‖2 = − k2

N−r∑
m=0

m−1+r∑
n=m

c
(
un

h,u
n+1
h , A−1

h

(
um+r

h − um
h

) )

+ ν k2
N−r∑
m=0

m−1+r∑
n=m

(
∇un+1,∇A−1

h (um+r
h − um

h )
)

+λk2
N−r∑
m=0

m−1+r∑
n=m

(
(∇dn

h)t
wn+1

h , A−1
h

(
um+r

h − um
h

) )
:= J1 + J2 + J3.

(3.8)

The right-hand side of (3.8) can be estimated as follows:

J1 ≤ C k2
N−r∑
m=0

m−1+r∑
n=m

‖un
h‖H1‖un+1

h ‖H1‖A−1
h

(
um+r

h − um
h

)
‖H1 .

Applying Fubini’s discrete rule, we infer that

J1 ≤ C k2
N−1∑
n=0

‖un
h‖H1‖un+1

h ‖H1

n∑
m=n−r+1

‖A−1
h

(
um+r

h − um
h

)
‖H1 ,

where

n =

⎧⎪⎪⎨⎪⎪⎩
0 if n < 0,

n if 0 ≤ n ≤ N − r,

N − r if n > N − r.

Finally, using the fact that ‖A−1
h (um+r

h −um
h )‖H1 ≤ ‖um+r

h −um
h ‖, Theorem 1.4, Hölder’s inequality, and that

|n− n− r + 1| ≤ r, we bound

k

n∑
m=n−r+1

‖A−1
h (um+r

h − um
h )‖H1 ≤ C

⎛⎝k n∑
m=n−r+1

‖A−1
h (um+r

h − um
h )‖2

H1

⎞⎠1/2 ⎛⎝k n∑
m=n−r+1

12

⎞⎠1/2

≤ C (r k)1/2;

hence

J1 ≤ C(r k)1/2k

N−1∑
n=0

‖un
h‖H1‖un+1

h ‖H1 ≤ C(r k)1/2.

Once J1 has been bounded, there are no additional difficulties in checking that J2 ≤ C (r k)1/2.
From estimate (iv) of Theorem 1.4, J3 can be estimated as

J3 ≤ C k2
N−r∑
m=0

m−1+r∑
n=m

‖∇dn
h‖ ‖wn+1

h ‖ ‖A−1
h (um+r

h − um
h )‖L∞(Ω)

≤ C k2
N−r∑
m=0

m−1+r∑
n=m

‖wn+1
h ‖ ‖A−1

h (um+r
h − um

h )‖L∞(Ω).
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Sobolev’s inequality shows that

‖A−1
h (um+r

h − um
h )‖L∞(Ω) ≤ C ‖A−1(um+r

h − um
h )‖W 1,r(Ω)

with r > d, d being the dimension of Ω. It is proven in [9], the following bound

‖A−1
h (um+r

h − um
h )‖W 1,r(Ω) ≤ C ‖A−1(um+r

h − um
h )‖W 1,r(Ω),

where A−1 is the continuous Stokes resolvent. Thus, Sobolev’s inequality, H2(Ω) ↪→ W 1,r(Ω), with r ≤ 6, and
hypothesis (H1) guarantee

‖A−1(um+r
h − um

h )‖L∞(Ω) ≤ C‖A−1(um+r
h − um

h )‖H2(Ω) ≤ C‖um+r
h − um

h ‖. (3.9)

Therefore,

J3 ≤ C k2
N−r∑
m=0

m−1+r∑
n=m

‖wn+1
h ‖ ‖um+r

h − um
h ‖

≤ k

N−r∑
m=0

‖um+r
h − um

h ‖
(
k

m−1+r∑
n=m

‖wn+1
h ‖2

)1/2

(r k)1/2 ≤ C(r k)1/2.

Finally, we conclude that

k

N−r∑
m=0

‖∇A−1
h (um+r

h − um
h )‖2 ≤ C (r k)1/2,

which is equivalent to (3.6), due to the fact that ‖∇A−1
h uh‖ and ‖uh‖V ′

h
are equivalent norms. Then, the proof

of Lemma 3.2 is finished. �

The first idea to obtain compactness of the discrete velocities {uh,k,ε}h,k,ε is to use the following compactness
result (due to Simon [23]):

Lemma 3.3. Let X �→ B ↪→ Y be three Banach spaces with continuous imbeddings, with the imbedding X �→ B
compact. Then the following imbedding is compact

Lq(0, T ;X)∩
{
φ ∈ Lq(0, T ;Y ) : ‖φ(t+ δ) − φ(t)‖Lq(0,T−δ;Y ) ≤ C δα

}
�−→ Lq(0, T ;B), (3.10)

for 1 ≤ q ≤ ∞ and 0 < α < 1.

But one observes that the fractional time derivative estimate for the discrete velocities (3.5) has been done in
the norm V ′

h which moves with respect to the space parameter h. In these conditions, the previous result does
not work.

The following idea is to find a fixed norm where the fractional time derivative can be bounded. For this, we
consider the orthogonal Stokes projector Rh : V h → V defined as(

∇(Rhuh − uh),∇v
)

= 0, ∀v ∈ V .

We will use here the following properties of Rh:

• H1(Ω)-stability : ‖Rhuh‖H1(Ω) ≤ ‖uh‖H1(Ω).
• L2(Ω)-error estimate : ‖Rhuh − uh‖L2(Ω) ≤ C h‖∇ · uh‖L2(Ω).
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Indeed, setting v = Rhuh as a test function, the estimate ‖Rhuh‖H1(Ω) ≤ ‖uh‖H1(Ω) is easily obtained. To prove
the L2(Ω)-error estimate, we consider the following Stokes problem: find (ϕ, χ) ∈ (V ∩H2(Ω))×(L2

0(Ω)∩H1(Ω))
such that {

−Δϕ+ ∇χ = Rhuh − uh in Ω,
∇ · ϕ = 0 in Ω, ϕ = 0 on ∂Ω. (3.11)

Multiplying (3.11) by Rhuh − uh and making use of the definition of Rh gives

‖Rhuh − uh‖2 =
(
χ,∇ · (Rhuh − uh)

)
.

In view of uh ∈ V h and Rhuh ∈ V , the previous equality becames

‖Rhuh − uh‖2 = −
(
χ−Khχ,∇ · uh

)
,

where Khχ ∈ Qh is the interpolation operator defined in hypothesis (H2). Thus, using the approximation
property (H2).(b).(ii) and the H2-continuity of the Stokes problem (3.11) given in (H1), ‖ϕ‖H2(Ω) +‖χ‖H1(Ω) ≤
C‖Rhuh − uh‖, one has

‖Rhuh − uh‖2 ≤ ‖χ−Khχ‖ ‖∇ · uh‖ ≤ C h ‖χ‖H1(Ω)‖∇ · uh‖ ≤ C h ‖Rhuh − uh‖ ‖∇ · uh‖;

hence the error estimate ‖Rhuh − uh‖ ≤ C h ‖∇ · uh‖ holds.

Next, we will prove that ‖Rhuh‖V ′ ≤ C
(
‖uh‖V ′

h
+h ‖∇·uh‖

)
. For this, we define the orthogonal L2 projector

P̃ 0
h : V → V h defined as

(
P̃ 0

hv − v,vh

)
= 0 for all vh ∈ V h. Indeed, for any v ∈ V :(

Rhuh,v
)

=
(
Rhuh − uh,v

)
+
(
uh, P̃

0
hv

)
≤ C h ‖∇ · uh‖ ‖v‖ +

(
uh, P̃

0
hv

)
.

The definition of dual norms in V ′ and V ′
h, jointly to the stability property ‖P̃ 0

hv‖ ≤ ‖v‖, gives

‖Rhuh‖V ′ ≤ C h ‖∇ · uh‖ + sup
v∈V

(
uh, P̃

0
hv

)
‖v‖H1

≤ C h ‖∇ · uh‖ + C sup
vh∈V h

(
uh,vh

)
‖vh‖

;

hence,
‖Rhuh‖V ′ ≤ C

(
h‖∇ · uh‖ + ‖uh‖V ′

h

)
.

Taking uh = um+r
h − um

h and using (3.6), it follows that

k

N−r∑
m=0

‖Rh(um+r
h − um

h )‖2
V ′ ≤ C k

N−r∑
m=0

‖um+r
h − um

h ‖2
V ′

h
+ C h2k

N−r∑
m=0

‖∇ · (um+r
h − um

h )‖2

≤ C (r k)1/2 + C h2.

This inequality can be written as∫ T−δ

0

‖Rhuh,k,ε(t+ δ) −Rhuh,k,ε(t)‖2
V ′ dt ≤ C δ1/2 + C h2.

We observe that the previous fractional time derivative does not satisfy the hypotheses of compactness of
Lemma 3.3, because of the additional term C h2 on the right-hand side of the previous bound. For this reason,



A LINEAR MIXED FINITE ELEMENT SCHEME FOR A NEMATIC ERICKSEN–LESLIE LIQUID CRYSTAL MODEL 1453

we use the following “compactness by perturbation” result due to Azérad and Guillén [2]:

Lemma 3.4. Let X ↪→ B ↪→ Y be three Banach spaces with continuous imbeddings, with the imbedding from
X to B being compact. Let {fε}ε>0 be a family of functions of Lp(0, T ;X), 1 ≤ p ≤ ∞, with the extra condition
{fε}ε>0 ⊂ C(0, T ;Y ) if p = ∞ such that

(C1) {fε}ε>0 is bounded in Lp(0, T ;X),
(C2) ‖fε(· + δ) − fε(·)‖Lp(0,T ;Y ) ≤ ϕ(δ) + ψ(ε) with

lim
δ→0

ϕ(δ) = 0, lim
ε→0

ψ(ε) = 0.

Then, the family {fε}ε>0 possesses a cluster point in Lp(0, T ;B) as ε→ 0.

Therefore, if we select X = V , B = H and Y = V ′, then there exists u ∈ V such that Rhuk,h,ε → u in
L2(0, T ;L2(Ω))-strong as (k, h, ε) → 0. To conclude, we prove (3.3). Indeed,

‖uh,k,ε − u‖L2(0,T ;L2(Ω)) ≤ ‖uh,k,ε −Rhuh,k,ε‖L2(0,T ;L2(Ω)) + ‖Rhuh,k,ε − u‖L2(0,T ;L2(Ω))

≤ C h+ ‖Rhuh,k,ε − u‖L2(0,T ;L2(Ω)) → 0 as (h, k, ε) → 0.

Remark 3.5 (Convergence to the Ginzburg–Landau model). Fixed ε > 0, the convergence of
scheme (1.15)–(1.18) to weak solutions of the penalized problem (1.4) (as in Def. 1.3) could be proved by
using the compactness of {dh,k}h,k in L2(0, T ;H1(Ω)) (see [3, 8] for the convergence as (h, k) → 0 for other
semi-implicit schemes). To prove this compactness, we observe that

‖Δhd
n+1
h ‖2 ≤ ‖wn+1

h ‖2 +
C

ε4

(
‖dn

h‖6
H1(Ω) + ‖dn

h‖2
)
,

where Δh is the discrete Laplacian operator. Multiplying by k and summing up over n, using estimates (2.15)
and (2.16), it yields

k

N−1∑
n=0

‖Δhd
n+1‖2 ≤ C

ε4
·

Finally, we can use a compactness result established in [3], Lemma 2.4 in order to deduce

dh,k,ε → dε in L2(0, T ;H1(Ω)) as (h, k) → 0,

where dε will be, jointly to uε (a limit of {uh,k}h,k as (h, k) → 0), a weak solution of the penalized problem (1.4).
It is clear that this argument is not useful to pass to the limit as (h, k, ε) go to zero.

4. Convergence towards the director system (1.1)a

From now on, we will consider the truncated potential F̃ε and its corresponding functional f̃ε defined in
Remark 1.8 instead of Fε and fε, respectively. The reason for this modification will be explained later on, see
Remark 5.3.

The convergence for (1.17)–(1.18) is based on the following result, whose proof can be found in [5], Lemma 2.2
without the convective term (see also [15], Lem. 7.1).

Lemma 4.1. The next two systems are equivalent at least in a weak sense:

∂td+ (u · ∇)d− γΔd− γ|∇d|2d = 0 in Q, (4.1)

and
|d| = 1, ∂td ∧ d+ (u · ∇)d ∧ d− γ∇ · (∇d ∧ d) = 0 in Q, (4.2)

where (∇d ∧ d)ij = (∂id ∧ d)j.
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4.1. Checking (4.2)a: |d| = 1

Since
min

{
(|d|2 − 1)2, (|d| − 1)2

}
= (|d| − 1)2, ∀d ∈ IRd,

then
max

t∈[0,T ]

∫
Ω

(|dh,k,ε(t)| − 1)2dx ≤ 4ε2 max
n

∫
Ω

F̃ε(dn+1
h ) ≤ Cε2 → 0,

as (h, k, ε) → 0, i.e.
|dh,k,ε(t,x)| → 1 in L∞(0, T ;L2(Ω)).

On the other hand, from (3.2) for q = r = 2,

|dh,k,ε| → |d| in L2(Q).

From these last two convergences, |d| = 1 is deduced.

4.2. Checking (4.2)b

Next, we would like to write the discrete weak formulation of equation (4.2)b starting from (1.17) and (1.18).
Indeed, we consider w̄h = P 0

hw̄ into (1.17) for any w̄ ∈ L2(Ω), with P 0
h being the L2(Ω)-projector onto W h,

and use that dn+1
h − dn

h ∈ Dh ⊂W h (due to hypothesis (H4)) to obtain

dn+1
h − dn

h

k
+ P 0

h ((un+1
h · ∇)dn

h) + γwn+1
h = 0 in Ω. (4.3)

Taking the vectorial product of (4.3) by dn+1
h ,

dn+1
h − dn

h

k
∧ dn+1

h + P 0
h ((un+1

h · ∇)dn
h) ∧ dn+1

h + γwn+1
h ∧ dn+1

h = 0 in Ω.

Next, multiplying by any test function d̄h ∈ D0h, we infer the discrete weak formulation(
dn+1

h − dn
h

k
∧ dn+1

h , d̄h

)
+
(
P 0

h ((un+1
h · ∇)dn

h) ∧ dn+1
h , d̄h

)
+ γ

(
wn+1

h ∧ dn+1
h , d̄h

)
= 0, (4.4)

on which we will pass to the limit once the last two terms have been rewritten. For this, let us consider the
equality (

w ∧ d, d̄
)

=
(
w,d ∧ d̄

)
∀w,d, d̄ ∈ IRd.

To start with, we treat the last term in (4.4). To fix ideas, we want to obtain a discrete version of the continuous
identity (

w ∧ d, d̄
)

= −(Δd ∧ d, d̄) = −(Δd,d ∧ d̄) = (∇d,∇(d ∧ d̄)) = (∇d ∧ d,∇d̄), (4.5)

where the hypothesis f̃ε(d) ∧ d = 0 given in (1.22) has been used.
Taking Q1

h(dn+1
h ∧ d̄h) ∈ D0h as a test function in (1.18), with Q1

h being the orthogonal H1
0(Ω)-projector

onto D0h, one has(
∇dn+1

h ,∇Q1
h(dn+1

h ∧ d̄h)
)

+
(
f̃ε(d

n
h), Q1

h(dn+1
h ∧ d̄h)

)
=
(
wn+1

h , Q1
h(dn+1

h ∧ d̄h)
)
. (4.6)

Using the discrete lifting function d̃h ∈Dh with d̃h|∂Ω = lh defined as(
∇d̃h,∇d̄h

)
= 0 ∀ d̄h ∈D0h
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and the equality
(
∇dn+1

h ,∇(dn+1
h ∧ d̄h)

)
=
(
∇dn+1

h ∧dn+1
h ,∇d̄h

)
, the first term on the right-hand side of (4.6)

is written as(
∇dn+1

h ,∇Q1
h(dn+1

h ∧ d̄h)
)

=
(
∇(dn+1

h − d̃h),∇Q1
h(dn+1

h ∧ d̄h)
)

+
(
∇d̃h,∇Q1

h(dn+1
h ∧ d̄h)

)
=

(
∇(dn+1

h − d̃h),∇(dn+1
h ∧ d̄h)

)
=

(
∇dn+1

h ∧ dn+1
h ,∇d̄h

)
−Rn+1

0 (4.7)

where
Rn+1

0 =
(
∇d̃h,∇

(
dn+1

h ∧ d̄h

) )
=

(
∇
(
d̃h − d̃

)
,∇

(
dn+1

h ∧ d̄h

) )
with d̃ the (continuous) lifting function defined in (1.19).

From (4.6) and (4.7), we obtain the following discrete version of (4.5):(
∇dn+1

h ∧ dn+1
h ,∇d̄h

)
=
(
wn+1

h ∧ dn+1
h , d̄h

)
+Rn+1

0 +Rn+1
1 +Rn+1

2 +Rn+1
3 , (4.8)

where

Rn+1
1 =

(
wn+1

h , Q1
h

(
dn+1

h ∧ d̄h

)
−
(
dn+1

h ∧ d̄h

))
,

Rn+1
2 = −

(
f̃ε(d

n
h), Q1

h

(
dn+1

h ∧ d̄h

)
− dn+1

h ∧ d̄h

)
and

Rn+1
3 = −

(
f̃ ε(d

n
h),dn+1

h ∧ d̄h

)
= −

(
f̃ε(d

n
h), (dn+1

h − dn
h) ∧ d̄h

)
owing to f̃ ε(d

n
h) ∧ dn

h = 0. Now, we write(
P 0

h

((
un+1

h · ∇
)
dn

h

)
∧ dn+1

h ,
((
un+1

h · ∇
)
dn

h

)
∧ dn+1

h , d̄h

)
−Rn+1

4 (4.9)

where

Rn+1
4 =

(
((un+1

h · ∇)dn
h − P 0

h ((un+1
h · ∇)dn

h)) ∧ dn+1
h , d̄h

)
=

(
(un+1

h · ∇)dn
h,d

n+1
h ∧ d̄h − P 0

h (dn+1
h ∧ d̄h)

)
.

Then, applying (4.8) and (4.9) in (4.4), we have

k

N−1∑
n=0

{([
dn+1

h − dn
h

k
+
(
un+1

h · ∇
)
dn

h

]
∧ dn+1

h , d̄h

)
+ γ

(
∇dn+1

h ∧ dn+1
h ,∇d̄h

)}

= k
N−1∑
n=0

γ
(
Rn+1

0 +Rn+1
1 +Rn+1

2 +Rn+1
3

)
+Rn+1

4 := Rh,k,ε (4.10)

which is a discrete weak formulation of (4.2)b.
As mentioned, our intention is to pass to the limit in (4.10) to obtain (4.2)b. For this, we are going to

rewrite (4.10) with global time-space functions. Let d̄ ∈ C0([0, T ];H1
0(Ω) ∩W 2,3(Ω) ∩W 1,∞(Ω)) and consider

d̄
n
h = Ih(d̄(tn)). Then, by (H2).(b).(v) and (H2).(b).(vi), we define d̄h,k(t) = d̄

n+1
h for all t ∈ (tn, tn+1] to obtain

d̄h,k → d̄ in L∞(0, T ;W 1,3(Ω) ∩L∞(Ω)) strongly.

This test function d̄h,k and Definition 2.7 allow to rewrite (4.10) as:∫ T

0

( [
∂tdh,k,ε + (uh,k,ε · ∇)d0

h,k,ε

]
∧ dh,k,ε, d̄h,k

)
+ γ

(
∇dh,k,ε ∧ dh,k,ε,∇d̄h,k

)
= Rh,k,ε
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where the reminder terms are collected in the term Rh,k,ε. Since the left hand-side passes to the limit as
(h, k, ε) → 0 in a standard manner from the weak and strong convergences already obtained, we just analyze
that the residual term Rh,k,ε goes to zero as (h, k, ε) go to zero.

In order to bound Rn+1
0 , we consider the following error estimate [6]:

‖∇(d̃− d̃h)‖ ≤ C‖∇(d̃− SZh(d̃))‖ ≤ C h‖d̃‖H2(Ω);

hence Rn+1
0 ≤ C h. On the other hand, we can bound Rn+1

4 as

Rn+1
4 ≤ C ‖un+1

h ‖L∞‖∇dn
h‖ h ‖dn+1

h ∧ d̄h‖H1 ≤ C h1/2‖un+1
h ‖H1 .

From the approximation inequality ‖d̄ − Q1
hd̄‖ ≤ C h ‖d̄‖H1 for all d̄ ∈ H1

0(Ω) (which can be obtained by a
duality argument by using the approximation inequality (H2).(b).(iv) and the stability property (H2).(c).(ii)),
one has

‖dn+1
h ∧ d̄h −Q1

h[dn+1
h ∧ d̄h]‖ ≤ C h ‖dn+1

h ‖H1(Ω)‖d̄h‖W 1,3(Ω)∩L∞(Ω) ≤ C h.

Then, from ‖f̃ε(d
n
h)‖ ≤ C ε−1(

∫
Ω Fε(dn

h))1/2 ≤ C ε−1 in Rn+1
2 +Rn+1

3 , it is easy to prove the bounds

Rn+1
1 ≤ C h ‖wn+1

h ‖, Rn+1
2 ≤ C

h

ε
and Rn+1

3 ≤ C
‖dn+1

h − dn
h‖

ε
·

Therefore, from the above bounds jointly with the energy estimates k
∑N−1

n=0

(
‖un+1

h ‖2
H1 + ‖wn+1

h ‖2
)
≤ C and

the numerical dissipation estimate
∑N−1

n=0 ‖dn+1
h − dn

h‖2 ≤ C, one has

Rh,k,ε ≤ C h+ C
h+ k1/2

ε
+ C h1/2 → 0 as (h, k, ε) → 0,

due to hypothesis (S) and (C).
In conclusion, we get that the limit function (u,d) satisfy (4.2)b. Therefore, (4.1) holds.

5. On the convergence of the momentum system

Since we do not have any estimate for the discrete pressure pn+1
h , we must choose a discrete test function

which eliminates the pressure term.

Lemma 5.1. Let v ∈ C∞
c (Ω). Then there exists vh ∈ Xh such that

vh → v in W 1,∞
0 (Ω) and

(
∇ · vh, qh

)
=
(
∇ · v, qh

)
∀ qh ∈ Qh.

A proof of this lemma can be seen in [8] when the IP1-bubble approximation for the velocity is considered. In [12]
the same type of result is proved for a generic “inf-sup” stable approximation but for a convergence in theH1(Ω)-
norm. Some minor changes can be introduced in order to get the convergence in the W 1,∞(Ω)-norm when the
IP2 approximation is considered, by using the inverse inequality ‖∇ūh‖L∞(Ω) ≤ C h−3/2‖∇ūh‖ for all ūh ∈Xh,

and the approximation properties ‖ū − Jhū‖W 1,∞(Ω) ≤ C h1/2‖ū‖H3(Ω) and ‖ū − Jhū‖H1(Ω) ≤ C h2‖ū‖H3(Ω)

for all ∀ ū ∈H3(Ω).

We consider v ∈ C∞
c ([0, T ); V). Let vn

h be the projection of v(tn) furnished by Lemma 5.1. We define vh,k ∈
L∞(0, T ;V h) as the piecewise constant functions taking values vn+1

h on (tn, tn+1] and vl
h,k ∈ C0([0, T ];V h) as

the piecewise linear, globally continuous functions such that vl
h,k(tn) = vn

h. It is known that, as (h, k) → 0,

vh,k → v in L∞(0, T ;W 1,∞
0 (Ω)), vl

h,k → v in W 1,∞(0, T ;W 1,∞
0 (Ω)).
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Taking ūh = vn+1
h as a test function in (1.15), multiplying by k, summing over n and using the equality (which

is a discrete integration by parts in time)

N−1∑
n=0

(
un+1

h − un
h,v

n+1
h

)
=

(
uN

h ,v
N
h

)
−

N−1∑
n=0

(
un

h,v
n+1
h − vn

h

)
−
(
u0

h,v
0
h

)
and the fact that vN

h = 0 (since v(T ) = 0), the following formulation holds:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−k

N−1∑
n=0

(
un

h ,
vn+1

h − vn
h

k

)
+ ν k

N−1∑
n=0

(
∇un+1

h ,∇vn+1
h

)

+k
N−1∑
n=0

{
c
(
un

h ,u
n+1
h ,vn+1

h

)
− λ

(
(∇dn

h)t
wn+1

h ,vn+1
h

)}
=

(
u0

h,v
0
h

)
.

Next, taking into account Definition 2.7, the above equality reads⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−
∫ T

0

(
u0

h,k,ε(t), ∂tv
l
h,k(t)

)
dt+ ν

∫ T

0

(
∇uh,k,ε(t),∇vh,k(t)

)
dt

+
∫ T

0

{
c
(
u0

h,k,ε(t),uh,k,ε(t),vh,k(t)
)
− λ

(
(∇d0

h,k,ε(t))
twh,k,ε(t),vh,k(t)

)}
dt =

(
u0

h,v
0
h

)
.

At this point, we will only pass to the limit in the more conflictive term

−
∫ T

0

(
(∇d0

h,k,ε(t))
twh,k,ε(t),vh,k(t)

)
dt = −k

N−1∑
n=0

(
(∇dn

h)twn+1
h , ūh

)
, (5.1)

where, for simplicity, we denote ūh = vn+1
h . The treatment of the rest of the terms are rather standard in the

Navier–Stokes framework.
Let zn+1

h = wn+1
h − f̃ ε(d

n
h). Then, scheme (1.18) is rewritten as

(
∇dn+1

h ,∇d̄h

)
=

(
zn+1

h , d̄h

)
for each

d̄h ∈ D0h. That is, dn+1
h ∈Dh is the solution of the problem

−Δhd
n+1
h = Q0

h(zn+1
h ) in Ω, dn+1

h = lh on ∂Ω, (5.2)

where Δh is the discrete Laplacian operator and Q0
h is the L2-projector onto D0h. This problem induces to

define dn+1(h) ∈H2(Ω) as the solution of the non-homogeneous Dirichlet problem

−Δdn+1(h) = zn+1
h in Ω, dn+1(h) = l on ∂Ω. (5.3)

Comparing problems (5.2) and (5.3), the following error estimate holds [6]:

‖∇dn+1(h) −∇dn+1
h ‖ ≤ C h

(
‖zn+1

h ‖ + ‖l‖H3/2(∂Ω)

)
. (5.4)

Recall that we have that ‖f̃ε(d
n
h)‖ ≤ C

ε
‖F̃ε(dn

h)‖1/2
L1(Ω) holds from (1.23). Then, by the definition of zn+1

h =

wn+1
h − f̃ε(d

n
h) and from estimate (vii) of Theorem 1.4, we obtain

‖zn+1
h ‖ ≤ ‖wn+1

h ‖ + C
1
ε
· (5.5)
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From inequalities (5.4) and (5.5), we see that

‖∇dn+1(h) −∇dn+1
h ‖ ≤ C h ‖wn+1

h ‖ + C
h

ε
+ C h· (5.6)

On the other hand, each term on the right hand-side of (5.1) may be rewritten as:

−
(

(∇dn
h)t
wn+1

h , ūh

)
=

(
(∇dn

h)t
Δdn+1(h), ūh

)
−
(

(∇dn
h)t
f̃ε(d

n
h), ūh

)
=

( (
∇dn+1(h)

)t
Δdn+1(h), ūh

)
−
( (

∇dn+1(h) −∇dn+1
h

)t
zn+1

h , ūh

)
−
( (

∇dn+1
h −∇dn

h

)t
zn+1

h , ūh

)
−
(

(∇dn
h)t
f̃ ε(d

n
h), ūh

)
:=

4∑
i=1

In
i . (5.7)

Using the fact that

(∇dn+1(h))tΔdn+1(h) = ∇ · ((∇dn+1(h))t∇dn+1(h)) − 1
2
∇(|∇dn+1(h)|2)

and integrating by parts, the term In
1 of (5.7) may be rewritten as:

In
1 = −

(
(∇dn+1(h))t∇dn+1(h),∇ūh

)
+

1
2

(
|∇dn+1(h)|2,∇ · ūh

)
:= Jn

1 + Jn
2 .

Next, we handle Jn
1 until finding the discrete term −

(
(∇dn+1

h )t∇dn+1
h ,∇ūh

)
as follows:

Jn
1 = −

(
(∇dn+1

h )t∇dn+1
h ,∇ūh

)
+
(
(∇dn+1

h )t(∇dn+1
h −∇dn+1(h)),∇ūh

)
+
(
(∇dn+1(h) −∇dn+1

h )t(∇dn+1
h −∇dn+1(h)),∇ūh

)
+
(
(∇dn+1

h −∇dn+1(h))t∇dn+1
h ,∇ūh

)
:= −

(
(∇dn+1

h )t∇dn+1
h ,∇ūh

)
+

3∑
i=1

Kn
i .

Finally, the term In
4 of (5.7) takes the form (see (1.9))

−
(
(∇dn

h)tf̃ε(d
n
h), ūh

)
= −

(
∇F̃ε(dn

h), ūh

)
=
(
F̃ε(dn

h),∇ · ūh

)
.

The above information allows us to obtain the following discrete integration by parts in (5.7):

−
(
(∇dn

h)twn+1
h , ūh

)
= −

(
(∇dn+1

h )t∇dn+1
h ,∇ūh

)
+

3∑
i=2

In
i +

3∑
i=1

Kn
i + Jn

2 +
(
F̃ε(dn

h),∇ · ūh

)
.

Then, (5.1) is expressed as

−
∫ T

0

(
(∇dh,k,ε(t))t∇dh,k,ε(t),vh,k(t)

)
dt+ k

N−1∑
n=0

(
3∑

i=1

Kn
i +

3∑
i=2

In
i + Jn

2

)

+k
N−1∑
n=0

(1
2
|∇dn+1(h)|2 + F̃ε(dn

h),∇ · vn+1
h

)
.

(5.8)

Notice that the more singular term is (∇dh,k,ε(t))t∇dh,k,ε(t) which is only bounded in L∞(0, T ;L1(Ω)). The
following result help us to determine its limit (see [20], Chap. 12).
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Lemma 5.2. Let Am : Q → IRd×d be a uniformly bounded sequence in L2(Q). Then there exist a measure
μ ∈ M(Q) and a subsequence of Am (relabed of the same manner) such that

|Am|2 → μ weak-� in M(Q).

Moreover, there exists a weak-� μ-measurable mapping (x, t) ∈ Q → Mx,t ∈ Prob(IRd×d)) such that, for a
equally relabed subsequence of Am,∫

Q

((Am)tAm)(x, t) : ϕ(x, t) dxdt→
∫

Q

ϕ(x, t) :
(∫

IRd×d

yty

|y|2 dMx,t(y)
)

dμ(x, t)

for all ϕ ∈ C∞
c ([0, T ); C∞

c (Ω))d×d.

In our case, we can apply Lemma 5.2 for m = (h, k, ε) and Am = {∇dh,k,ε} bounded in L2(Q).
Thus, we can find μ ∈ M(Q) and Mx,t ∈ Prob(IRd×d) such that∫

Q

((∇dh,k,ε)t∇dh,k,ε) : ∇vh,k dxdt→
∫

Q

∇v :
(∫

IRd×d

yty

|y|2 dMx,t(y)
)

dμ(x, t)

as (h, k, ε) → 0. Indeed,∫
Q

((∇dh,k,ε)t∇dh,k,ε) : ∇vh,k dxdt =
∫

Q

((∇dh,k,ε)t∇dh,k,ε) : ∇(vh,k − v) dxdt

+
∫

Q

((∇dh,k,ε)t∇dh,k,ε) : ∇v dxdt.

The first term on the right-hand side tends to zero (because ∇vh,k → ∇v in L∞(Q)) and the second term

converges, by Lemma 5.2, to
∫

Q

∇v :
( ∫

IRd×d

yty

|y|2 dMx,t(y)
)

dμ(x, t).

Then, all that remains to prove is that the rest of the residual terms of (5.8) go to zero. First, the last term

k

N−1∑
n=0

(
1
2
|∇dn+1(h)|2 + F̃ε(dn

h),∇ · vn+1
h

)
→ 0

because of ∇·vn+1
h → 0 in L∞(0, T ;L∞(Ω)), and |∇dn+1(h)|2 and F̃ε(dn

h) are bounded in L1(0, T ;L1(Ω)) (from
(5.6) and estimate (vii) of Thm. 1.4, respectively).

Now, we consider the term Kn
1 :

k

N−1∑
n=0

Kn
1 = k

N−1∑
n=0

( (
∇dn+1

h

)t (∇dn+1
h −∇dn+1(h)

)
,∇vn+1

h

)
:= G1.

In virtue of estimate (v) of Theorem 1.4 and (5.6), we bound it as:

G1 ≤ C k
N−1∑
n=0

(
h‖wn+1

h ‖ +
h

ε
+ h

)
‖∇vn+1

h ‖L∞(Ω) ≤ C h+ C
h

ε

and hence G1 → 0 as (h, k, ε) → 0 owing to (C). The convergence for the term Kn
3 is to verify since it is similar

and simpler than that of the term Kn
2 .

Now, we treat the terms In
2 and In

3 as follows:

k

N−1∑
n=0

In
2 = λk

N−1∑
n=0

( (
∇dn+1(h) −∇dn

h

)t
zn+1

h ,vn+1
h

)
:= G2
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and

k

N−1∑
n=0

In
3 = λk

N−1∑
n=0

( (
∇dn+1

h −∇dn
h

)t
zn+1

h ,vn+1
h

)
:= G3.

Thus G2 and G3 can be bounded by applying (5.5) and estimates (v) and (vi) of Theorem 1.4, as

G2 ≤ C k

N−1∑
n=0

‖∇dn+1(h) −∇dn
h‖ ‖zn+1

h ‖ ‖vn+1
h ‖L∞(Ω)

≤ C hk
N−1∑
n=0

‖zn+1
h ‖2 ≤ C hk

N−1∑
n=0

‖wn+1
h ‖2 + C

h

ε2
≤ C h+ C

h

ε2

and

G3 ≤ C k

N−1∑
n=0

‖∇dn+1
h −∇dn

h‖ ‖zn+1
h ‖ ‖vn+1

h ‖L∞(Ω)

≤ C k1/2

(
N−1∑
n=0

‖∇dn+1
h −∇dn

h‖2

)1/2 (
k

N−1∑
n=0

(
‖wn+1

h ‖2 +
1
ε2

))1/2

≤ C k1/2 + C
k1/2

ε
,

and hence G2 → 0 and G3 → 0 as (h, k, ε) → 0, owing to (C) and (S′), respectively.
Then, the proof of the convergence result, Theorem 1.7, is finished.

Remark 5.3. In order to control the term G2, we have had to consider the penalty potential F̃ε for which
the inequality ‖f̃ε(d)‖ ≤ C ε−1‖F̃ε(d)‖1/2

L1(Ω) holds. This estimate is the key to controlling zn+1
h in term of

wn+1
h and dn

h depending on a reasonable power of ε, and therefore to making the term G2 to go to zero. In the
non-truncated case this convergence of G2 to zero is not clear.

Remark 5.4. In two-dimensional domains, the likely existence of defect points implies that the director has
infinite energy in the limiting Ericksen–Leslie equations, hence the definition of weak solutions does not make
a sense. On the other hand, in three-dimensional domains, defect points have finite energy, and weak solutions
may be well defined.

6. Numerical simulations

The numerical experiences that we will study in this section were extracted from [18] which are also performed
in many other works as in [3,16]. These tests show the behavior of the two defects (or singularities) of the director
vector field.

We have used the penalty function Fε(d) (without truncating) and computed all the numerical simulations on
the two-dimensional square Ω = (−1, 1)×(−1, 1). As used in [18], physical parameters are set as λ = ν = γ = 1,
the penalty parameter is set to ε = 0.05, and the initial velocity is zero and the director vector is taken to be

d0 = d̂/

√
|d̂|2 + 0.052, where d̂ = (x2 + y2 − 0.25, y).

As shown Figure 1, this director vector has initially two defects at (±1/2, 0) (points in which d̂ = (0, 0)). The
boundary condition for the director vector are take to be time-independent and equal to d0/|d0| on ∂Ω.

In order to avoid to compute the pressure in a zero-average finite space, we introduce a penalty term into
the discrete free-divergence term, i.e., (1.16) is replaced by(

∇ · un+1
h , p̄h

)
+ δ

(
pn+1

h , p̄h

)
= 0 ∀ p̄h ∈ Qh,
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Figure 1. Snapshots of dh,k,ε(t) at times t = 0, 0.2, 0.3, 0.4.

Figure 2. Snapshots of uh,k,ε(t) at times t = 0.2, 0.3, 0.4, 0.5.

where δ is chosen to be 10−6. To solve the resulting algebraic linear system from our mixed formula-
tion (1.15)–(1.18), we use the LU direct solver.

For the first simulations, the velocity and pressure (u, p) are approximated by using a pair of finite element
spaces known as the mini-element (IP1 + bubble, IP1) (which satisfies the Babuska–Brezzi condition (H3)). The
director vector and the auxiliary variable (d,w) are computed by using the pair of finite element spaces (P1,P1)
agrees with condition (H4). We use a uniform triangular mesh on a 32 × 32 grid (h = 1/16), and the time
interval [0, 1] is divided into 400-time steps (k = 1/400). Note that k = ε2 which is agreed with hypothesis (S)
(see Rem. 2.3 for 2D domains) but h = 0.0625 is bigger than ε2, hence convergence constraint (C) does not
hold.

We show the evolution of the two defects at times t = 0.2, 0.3, and 0.4, in Figure 1, and the evolution of the
velocity field at times t = 0.2, 0.3, 0.4 and 0.5, in Figure 2 (note that the elastic tensor λ∇ · ((∇d)t∇d) causes
a velocity moving the defects along the axis x = 0).

We observe that the annihilation time is around t = 0.33. This time is bigger than those obtained in [18]
(t ≈ 0.25) and [16] (t ≈ 0.26), see Figure 1, where the penalty term is treated in an implicit or semi-implicit
manner, respectively. The dependence of this annihilation time with respect to the elasticity constant λ > 0 can
be seen in [17], varying this annihilation time approximately between 0.19 for λ = 10 and 0.28 for λ = 0.1.

The annihilation time obtained with our scheme can be improved by considering a smaller time step; for
instance, the annihilation time is between t = 0.27 and t = 0.28 by taking k = 5 × 10−5 (and the same occurs
for the scheme given in [16]). It seems to be that this fact is related to the bigger approximation error of the
explicit time integration of the penalty term as against the other implicit or semi-implicit treatments.

On the other hand, all the previous annihilation times are smaller than the ones obtained in [3] (t ≈ 0.5),
where a different (Neumann instead of Dirichlet) boundary conditions for the director vector field is considered.

We can observe that our linear coupled scheme is stable (with decreasing discrete energy). Snapshot 1 in
Figure 3 shows the behavior of the kinetic energy, Ekin = 1

2

∫
Ω
|un+1

h (x)|2 dx, and Snapshopt 2 in Figure 3
shows the elastic energy, Eelas = λ

2

∫
Ω |∇dn+1

h (x)|2 dx, the penalty energy, Epen = λ
2

∫
Ω Fε(dn+1

h (x)) dx, and
the total energy E = Ekin + Eelas + Epen.
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Figure 3. Kinetic, elastic, penalty, and total energies.
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Figure 4. Kinetic, elastic, penalty, and total energies in [16].

We now compare the energy decay between scheme (1.15)–(1.18) and the scheme given in [16], which uses the
standard piecewise quadratic element, IP2, for both the velocity and the director vector, and piecewise linear
elements, IP1, for the pressure. At the beginning of the simulation, we observe (see Snapshots 1 and 2 in Fig. 4)
an oscillatory behavior of kinetic, elastic, and penalty energies which could point out that the scheme presented
in [16] is less robust with respect to the stability than our approximations.

Concerning the numerical results in [3], we observe that the behavior of the different energies is quite similar
despite the authors in [3] took Neumann boundary conditions for the director vector field. The only different is
with respect to the size of the kinetic energy.

Figure 5 shows the behavior of the L2-norm of wn+1
h , which represents how far our numerical director is from

an equilibrium solution, because wn+1
h is a numerical approximation of the critical point equation for the elastic

energy. We can also observe that the dynamic of the annihilation produces an instantaneous increasing of this
measure.

In order to be more precise regarding stability constraints, we have changed the finite element approximation,
considering now on a uniform 16 × 16 mesh, (IP2, IP1) for the velocity and pressure (which again satisfies the
Babuska–Brezzi condition (H3)), and either (IP2, IP2) or (IP2, IP0) for the director vector and the auxiliary
variable (d,w) (the first case satisfies (H4) and the second one does not). Both choices are numerically stable
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Figure 5. L2-norm of wn+1
h vs. time.

(with a decreasing energy) for k = 0.003, which is agreed with Remark 2.4, although small oscillations in the
kinetic energy are observed. But, for this same k = 0.003 and for (d,w) being approximated by (IP2, IP1), the
scheme becomes unstable.
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