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NUMERICAL ANALYSIS OF PARALLEL REPLICA DYNAMICS
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Abstract. Parallel replica dynamics is a method for accelerating the computation of processes charac-
terized by a sequence of infrequent events. In this work, the processes are governed by the overdamped
Langevin equation. Such processes spend much of their time about the minima of the underlying poten-
tial, occasionally transitioning into different basins of attraction. The essential idea of parallel replica
dynamics is that the exit distribution from a given well for a single process can be approximated by the
distribution of the first exit of N independent identical processes, each run for only 1/N-th the amount
of time. While promising, this leads to a series of numerical analysis questions about the accuracy
of the exit distributions. Building upon the recent work in [C. Le Bris, T. Lelièvre, M. Luskin and
D. Perez, Monte Carlo Methods Appl. 18 (2012) 119–146], we prove a unified error estimate on the exit
distributions of the algorithm against an unaccelerated process. Furthermore, we study a dephasing
mechanism, and prove that it will successfully complete.
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1. Introduction

Parallel replica dynamics (ParRep) is a numerical tool first introduced by Voter in [26] (see also [22, 27])
for accelerating the simulation of stochastic processes characterized by a sequence of infrequent, but rapid,
transitions from one state to another. A standard and important problem in which such a separation of scales
is present is the migration of defects through a crystalline lattice; see [22] and references therein for examples.

Roughly, the idea behind parallel replica dynamics is as follows. Suppose a trajectory spends time t in a
particular state, before transitioning into another. Furthermore, assume t is large, relative to the scale of the
time step discretization. We wish to avoid directly simulating a single realization for time t. We approximate the
simulation of a single trajectory for time t with N independent copies, each simulated for time t/N , and follow
the particular trajectory that escapes first. This holds out the promise for a linear speedup with the number of
independent realizations we are able to simulate.

Of course, this is not exact, and error is introduced. A particular concern is error in the exit distributions of
the system as it migrates from one state to another – does ParRep disrupt the state to state dynamics? Inspired
by the tools proposed in [4], we prove an error estimate on the exit distributions over a single “cycle” of ParRep
(the transition from one state to the next).
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1.1. The algorithm

We assume the system we wish to accelerate evolves according to the overdamped Langevin equation,

dXt = −∇V (Xt)dt +
√

2β−1dBt, Xt ∈ R
n, (1.1)

where Bt is a Wiener process and β is proportional to inverse temperature. Though ParRep was originally
developed for the Langevin equations, it is readily adapted to this problem.

We next assume that our system is such that V has a denumerable set of local minima, xj , j = 1, 2, . . . For
each minima, we associate a set Wj ⊂ R

n, the “well.” Wj could be the basin of attraction of xj ; if y(t) solves
the ODE

ẏ = −∇V (y), y(0) = y0 ∈ R
n,

then

Wj =
{

y0 : lim
t→+∞ y(t) = xj

}
.

However, this definition is not essential; for the sake of our analysis, Wj need only be a bounded set in R
n with

sufficiently regular boundary.
This motivates defining the well selection function,

S : R
n → N, (1.2)

which identifies the basin associated with a given position. Associated with this is the “coarse grained” trajectory,

St ≡ S(Xt) (1.3)

which only identifies the present well.
If the wells are “deep” with well-defined minima, then Xt will infrequently transition from one to another.

Such a well corresponds to a metastable state. Much of the simulation time will be spent waiting for a jump to
occur. The goal of ParRep is to reduce this computational expense by providing a satisfactory approximation
of the form

St ≈ SParRep
t . (1.4)

In other words, we are willing to sacrifice information about where the trajectory is within each well, for the
sake of rapidly computing the sequence of wells the trajectory visits.

We now describe the ParRep algorithm in the following steps: the decorrelation step; the dephasing step; and
the parallel step. These steps are diagrammed in Figures 1 and 2. We assume that the reference process Xref

t

enters well Wj at time tsim.

A. Decorrelation Step: Let Xref
t evolve under (1.1) for tsim ≤ t ≤ tsim + tcorr.

• If
S(Xref

t ) = S(Xref
tsim)

for all tsim ≤ t ≤ tsim + tcorr, then time advances to tsim + tcorr and proceed.
• Otherwise, denote the first exit time from the well,

T = inf
{
t | S(Xref

tsim+t) 	= S(Xref
tsim)

}
and time advances to tsim + T . Return to the beginning of the decorrelation step in the new well.

B. Dephasing Step: In conjunction with the decorrelation step, we launch N replicas with starting positions
drawn from distribution μ0

phase. These are run for tphase amount of time, the dephasing time. If at any time
before tphase a replica leaves the well, it is restarted. A replica has successfully dephased if it remains in the
well for all of tphase.
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Figure 1. An illustration of the decorrelation and parallel steps of the ParRep algorithm in
the case that the reference walker never leaves well Wj . Xk�

t is the first process to exit the well,
doing so at the computer time tcorr + T �. This is then translated into the lab, or physical, time
tsim + tcorr + NT �. See Figure 2 for an illustration of a dephasing step.
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Figure 2. An illustration of a dephasing step for the ParRep algorithm. In this implementation,
the replicas all start from the same position; μ0

phase = δx1 . When X2
t leaves before tphase, it is

relaunched from the same position.
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At the completion of the decorrelation and dephasing steps, assuming the reference walker has not exited,
we have N independent walkers with the same distribution. We discard the reference process. If at any time
during the dephasing process the reference walker leaves the well, the dephasing process terminates and the
replicas are discarded.

C. Parallel Step: We now let the N replicas evolve independently and define

k� = argmin
k

T k, (1.5a)

X�
t = Xk�

t , (1.5b)

T � = T k� . (1.5c)

The system advances to the next well:

tsim 
→ tsim + tcorr + NT � (1.6a)

Xref
tsim+tcorr+NT � = X�

T � . (1.6b)

Finally, we return to the decorrelation step.

This is a different dephasing algorithm than described in [4]. There, after the decorrelation step, the replicas
are initiated at the the position of the reference process and run for tphase. The simulation clock is not advanced,
and replicas are replaced as need be should they exit the well. Our implementation has the advantage that no
processor sits idle.

The reader may wonder why we would want to have a distinguished reference process – why not relaunch the
reference process, as we would a replica, should it exit? We retain this feature to allow for realizations where
the process is in a well for a very short period, far less than the decorrelation time. These correlated events,
such as recrossings, appear in serial simulations and should be preserved. One may also ask why we discard the
reference process. This is to simplify the analysis, as it permits us to declare that the N replicas are drawn from
the same distribution when the parallel step begins.

In addition to the choice of tcorr and tphase, there is also the question of what μ0
phase should be. Again, there

is significant flexibility. One possibility is to allow the reference process to evolve for some amount of time,
and then the replicas could be launched from its position. A method used in practice is to find a local minima
associated with the well, and initiate the replicas from that position, [21]. We emphasize that the dephasing
mechanism need not depend on any information associated with the reference process.

In principle, ParRep offers a nearly linear speedup with the number of independent replicas, provided tcorr is
short relative to the typical exit time. With the explosion in the availability of distributed computing clusters,
parallel replica dynamics is an attractive tool for studying infrequent event processes.

1.2. Main results

The essential aspects of a process undergoing infrequent transitions are

• How often does it transition from one state to another?
• What state does it transition to?

These properties are captured in St. To assess how well SParRep
t approximates it, we are motivated to first

consider the exit distribution of a process, and how well it is preserved. In [4], the authors proposed a rigorous
framework in which to study ParRep. The purpose of this study is to unify those ideas and assess the total
error, over a single cycle of ParRep, as a function of the parameters.

Note. For brevity, we shall now take tsim = 0 and Wj = W . Throughout our paper, we shall assume:

• W ⊂ R
n is bounded;

• ∂W is sufficiently smooth;
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• V is sufficiently smooth on W .

Though W need not correspond to a basin of attraction, we shall continue to call it a well.
To motivate our results, we introduce some important objects. Let μt denote the law of Xt, conditioned on

having not left the well:

μt(A) = P
μ0 [Xt ∈ A | T > t] =

P
μ0 [Xt ∈ A, T > t]

Pμ0 [T > t]
· (1.7)

The above expression is the probability of finding the processes, Xt, in the set A ⊂ W , at time t, conditioned
on the exit time from the well, T , being beyond t, and X0 being initially distributed by μ0. Additional details
on our notation are given below, in Section 1.4. Under certain assumptions, the limit

lim
t→∞ μt = ν, (1.8)

exists. ν is the quasistationary distribution (QSD) and characterizes the long term survivors of (1.1) in well W .
The properties of ν are reviewed for the reader in Section 2.

In the following theorems, we shall refer to “admissible distributions.” This class is quite broad and includes
the Dirac distribution. It is defined and explored in subsequent sections. First, we have the following result on
the convergence of the exit distribution of Xt.

Theorem 1.1 (Convergence to the QSD). Assume μ0 is admissible. There exist positive constants λ2 > λ1, C
and t, such that for all t ≥ t and bounded and measurable f(τ, ξ) : R

+ × ∂W → R we have

|Eμt [f(T, XT )] − E
ν [f(T, XT )]| ≤ C‖f‖L∞e−(λ2−λ1)t.

The constant C is independent of t and f .

Taking t sufficiently large so as to make this small corresponds to the satisfactory completion of the decorrelation
step; this reflects (1.8). We give a more precise statement of this theorem at the beginning of Section 3, after
introducing some additional notation in Section 2. This result also plays a role in studying the dephasing step.
The constants C and t depend on μ0, V, and the geometry of the well. We will use the notation Cphase and
Ccorr, and tphase and tcorr to distinguish the constants induced by the dephasing and decorrelation steps.

The next result ensures that the dephasing step terminates successfully:

Theorem 1.2 (Dephasing process). For an admissible distribution μ0
phase and tphase ≥ tphase:

A. Dephasing produces N independent replicas with distributions μphase;
B. Given any ε > 0, by taking tphase ≥ tphase,∣∣Eμphase

[
f(T k, Xk

T k)
]− E

ν [f(T, XT )]
∣∣ ≤ Cphasee−(λ2−λ1)tphase ‖f‖L∞

C. The expected number of times a replica is relaunched is finite.

Next, the error in the parallel step cascading from the dephasing step can be controlled:

Theorem 1.3 (Parallel error). Given tphase ≥ tphase, let

εphase ≡ Cphasee−(λ2−λ1)tphase ,

and assume the dephasing step has produced N i.i.d. replicas drawn from distribution μphase.
Then the exit time converges to an exponential law, with parameter Nλ1,∣∣Pμphase [T � > t] − e−Nλ1t

∣∣ ≤ Nεphase(1 + εphase)N−1e−Nλ1t.
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If we additionally assume that Nεphase(1+εphase)N−1 < 1, then the hitting point distribution is asymptotically
independent of the exit time∣∣∣∣Pμphase [X�

T � ∈ A | T � > t] −
∫

A

dρ

∣∣∣∣ � N2εphase(1 + εphase)N−1

1 − Nεphase(1 + εphase)N−1
,

where ρ is the hitting point density and A ⊂ ∂W .

Thus, for tphase large enough, we achieve the ideal factor of N speedup and we do not disrupt the hitting point
distribution too much. The reader may find the N dependence in the error terms to be disconcerting, but it
can easily be controlled by taking tphase � log N/(λ2 − λ1). We will return to this in the discussion. We also
note that there is a slight abuse of notation in the above expressions. The superscripts, ν and μphase, should be
interpreted as N -tensor products, with a distinct realization drawn for each replica.

A more detailed statement of this theorem, with explicit constants, is given at the beginning of Section 5.
The hitting point density ρ is defined by (2.14).

However, Theorem 1.3 is only a comparison between the parallel step and the QSD. Our final result is
a comparison between the ParRep algorithm, including decorrelation, dephasing and parallel steps, with an
unaccelerated, serial process:

Theorem 1.4 (ParRep error). Let Xs
t denote the unaccelerated (serial) process and Xp

t denote the ParRep
process, and let both the serial process and the reference process be initially distributed under μ0, an admissible
distribution. Furthermore, assume the replicas are initialized from μ0

phase, also an admissible distribution.
Given tcorr ≥ tcorr and tphase ≥ tphase, let

εcorr = Ccorre−(λ2−λ1)tcorr ,

εphase = Cphasee−(λ2−λ1)tphase .

Letting T s and T p denote the physical exit times, we have

|Pμ0 [T s > t] − P
μ0 [T p > t]|

�
[
εcorr + Nεphase(1 + εphase)N−1

]
e−λ1(t−tcorr)+ .

If, in addition, tcorr is sufficiently large such that εcorr < 1, then for A ⊂ ∂W ,

|Pμ0 [Xs
T s ∈ A | T s > t] − P

μ0 [Xp
Tp ∈ A | T p > t]|

� εcorr + N2εphase(1 + εphase)N−1

1 − εcorr

Thus, over a single cycle, the error in ParRep can be approximately decomposed as

Error = Decorrelation error + Parallel error(Dephasing error), (1.9)

where we view the parellel error as a function of the dephasing error. The speedup can be seen when T p is given
further consideration. When T p > tcorr, T p = NT � + tcorr where T � is the exit time of the particular replica
which escapes first. There will be no speedup if the exit is before tcorr.

1.3. Outline of the Paper

In Section 2, we review some important results for (1.1). Our main Theorems are proven in Sections 3, 4,
and 5. We then discuss our results in Section 6. Some additional calculations appear in the appendix.
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1.4. Notation

Random variables, such as the position, Xt, and the exit time from the well, T , will appear in capital letters.
Deterministic values, such as x, t, tcorr, etc. will be lower case. We will frequently use indicator functions in our
analysis, which we write as 1A, with A indicating the set on which the value is one.

We are often interested in probabilities and expectations of solutions of Xt solving (1.1), and its exit time T
from some region W . When we write

E
x [f(T, XT )] or P

x [T ≥ t] = E
x [1T≥t]

the superscript x indicates that x is the initial condition of Xt; X0 = x, and the expectation and probability
are then taken with respect to the underlying Wiener measure of Bt.

When X0 is given by some distribution μ0 over W , we write

E
μ0 [f(T, XT )] ≡

∫
W

E
x [f(T, XT )] dμ0(x).

When we write a conditional expectation with respect to distribution μ0, we mean

E
μ0 [f(T, XT ) | T > t] ≡ E

μ0 [f(T, XT )1T>t]
Pμ0 [T > t]

·

For the reader more accustomed to the computational physics literature,

E
μ0 [O(Xt)] = 〈O(t)〉 .

It is helpful to explicitly include the starting distribution, μ0 associated with the process Xt, to avoid any
ambiguity.

When we write f � g, we mean that there exists a constant C > 0 such that f ≤ Cg, but that the constant
is not noteworthy.

2. Preliminary results

Before proceeding to our main results on ParRep, we review some important results on the overdamped
Langevin equation. These results are where our regularity assumptions on V , W, and ∂W are needed.

Two essential tools in our study of (1.1) are the Feynman–Kac formula and the quasistationary distribution,
which we briefly review here; see [4] for additional details. First, let us recall the Feynman–Kac formula which
relates solutions of a parabolic equation with corresponding elliptic operator

L ≡ −∇V · ∇ + β−1Δ (2.1)

to solutions of (1.1).

Proposition 2.1 (Prop. 1 of [4]). On the parabolic domain W × R
+, let v solve

∂tv = Lv, (2.2a)
v |∂W = φ : ∂W → R, (2.2b)

v(t = 0) = v0 : W → R. (2.2c)

Then,
v(t, x) = E

x [1T≤tφ(XT )] + E
x [1T>tv0(Xt)] . (2.3)
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To say a bit more about the elliptic operator L, recall the invariant measure of (1.1):

dμ ≡ Z−1 exp (−βV (x)) dx, (2.4)

where Z is the appropriate normalization. We introduce the Hilbert space L2
μ, with inner product

〈f, g〉μ ≡
∫

fgdμ. (2.5)

An elementary calculation shows that L is self adjoint and negative definite with respect to this inner product
when supplemented with homogeneous Dirichlet boundary conditions on ∂W . Standard functional analysis and
elliptic theory tell us that L has infinitely many eigenvalue/eigenfunction pairs (λk, uk); the eigenvalues can be
ordered

0 > −λ1 > −λ2 ≥ −λ3 ≥ . . . ;

and the eigenfunctions form a complete orthonormal basis for L2
μ(W ). In addition, the ground state, u1, is

unique and positive. For details, see, for example, [13, 14, 16]. The λ1 and λ2 appearing in our theorems are
precisely the first two eigenvalues.

When solving (2.2) with φ = 0, the solution can be expressed as

v(x, t) =
∞∑

k=1

e−λkt 〈v0, uk〉μ uk. (2.6)

Out of this spectral problem, we build the norm

‖f‖2
Hs

μ
≡

∞∑
k=1

λs
k

∣∣∣〈f, uk〉μ
∣∣∣2 . (2.7)

This generalizes to measures

‖μ0‖2
Hs

μ
≡

∞∑
k=1

λs
k

∣∣∣∣
∫

ukdμ0

∣∣∣∣
2

, (2.8)

and to sequences, a = (a1, a2, . . .)

‖a‖2
Hs

μ
≡

∞∑
k=1

λs
k |ak|2 . (2.9)

If μ0 has an Radon–Nikodym derivative with respect to μ, (2.7) and (2.8) agree. We then define the function
spaces,

Hs
μ =

{
v ∈ S (W )′ | ‖v‖Hs

μ
< ∞

}
, (2.10)

where S is the set of smooth functions with support in W , and S ′ is its dual. We also define the projection
operator, PI , where I ⊂ N,

PIf =
∑
k∈I

〈f, uk〉μ uk. (2.11)

Having introduced these spaces and norms, we can now clarify what was meant by the term admissible distribu-
tion used in the introduction. In this work, a distribution will be admissible with respect to W if supp μ0 ⊂ W ,
and for some s ≥ 0, ‖μ0‖H−s

μ
< ∞.

The aforementioned quasistationary distribution of (1.1) associated with the set W is closely related to the
spectral structure of L. The QSD, ν, is a time independent probability measure satisfying, for all measurable
A ⊂ W and t > 0:

ν(A) =

∫
W

P
x [Xt ∈ A, t < T ] dν∫
W Px [t < T ] dν

= P
ν [Xt ∈ A | t < T ] . (2.12)

The QSD measure ν exists and
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Proposition 2.2 (Prop. 2 of [4]).

dν =
u1dμ∫

W
u1dμ

=
u1e−βV dx∫

W
u1e−βV dx

· (2.13)

We refer the reader to, amongst others, [5–7, 19, 20, 25] for additional details on the QSD. The utility of the
QSD stems from the property that if X0 is distributed according to ν, then:

Proposition 2.3 (Prop. 3 of [4]). Let φ : ∂W → R be smooth. Then for t > 0

E
ν [1T<tφ(XT )] = P

ν [T < t] Eν [φ(XT )] = (1 − e−λ1t)
∫

∂W

φdρ

where the exit density is given by

dρ = − 1
λ1β

∇dν

dx
· n dSx = − ∇(u1e−βV ) · n

λ1β
∫

W
u1e−βV dx

dSx, (2.14)

with n the outward pointing normal and dSx the surface measure.

In words, T is exponentially distributed with parameter λ1, and the first hitting point is independent of the
first hitting time. Being initially distributed according to ν is, in a sense, ideal. As shown by Proposition 5
of [4], were this the case for the replicas, the parallel step of ParRep would be exact. In practice, X0 is never
distributed by ν, and it is the propagation of this error that we explore.

Many of these quantities can be reformulated in terms of the Fokker–Planck equation for density px(t, y),
x ∈ W ,

∂tp
x = L∗px = ∇y · (px∇V + β−1∇px

)
,

px|∂W = 0, px
0 = δx(y).

Though we will not make use of this, the reader more accustomed to Fokker–Planck may find it helpful to
re-express various quantities in terms of px. With regard to exit distributions,

E
x [φ(XT )1T<t] =

∫ t

0

∫
∂W

−φ(y)β−1∇px · n dSy,

P
x [t < T ] =

∫ ∞

t

∫
∂W

−β−1∇px · ndSy =
∫

W

px(t, y) dy.

These can be integrated against the density of the QSD, dν
dy , which solves L∗ dν

dx = −λ1
dν
dy , to obtain

pν(y, t) = e−λ1t dν

dy

as a particular solution of the Fokker–Planck equation. This directly shows the independence of exit time and
hitting point. Substituting into the above integrals reproduces Proposition 2.3.
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3. Convergence to the QSD – Proof of Theorem 1.1

In this section we prove Theorem 1.1, which we first restate with more detail:

Theorem 3.1 (Convergence to the QSD). Given s ≥ 0, let μ0 be a distribution with supp μ0 ⊂ W and
‖μ0‖H−s

μ
< ∞. There exists

t �
{∥∥P[2,∞)μ0

∥∥
H−s

μ
/

∫
u1dμ0

}4/(n+2s)

(3.1)

such that for all t ≥ t and for all bounded and measurable f(τ, ξ) : R
+ × ∂W → R

|Eμt [f(T, XT )] − E
ν [f(T, XT )]|

� ‖f‖L∞

(∫
u1dμ0

)−1

t−n/4−s/2e−(λ2−λ1)(t−t)
∥∥P[2,∞)μ0

∥∥
H−s

μ
. (3.2)

This is a refinement of Proposition 6 from [4], which now admits initial distributions which lack an L2 Radon–
Nikodym derivative. Indeed, for appropriate s, μ0 can be a Dirac distribution. Though this is a parabolic flow
which will instantaneously regularize such rough data, it is essential to an analysis of ParRep as one often wants
to use Dirac mass initial conditions.

In addition to this result, we present an extension which is essential to obtaining the results in Section 5 on
the parallel step.

3.1. Proof of Theorem 3.1

Proof. We first write

E
μt [f(T, XT )] =

∫
W

E
x [f(T, XT )] dμt =

∫
W

F (x)dμt

where we have defined F (x) ≡ E
x [f(T, XT )]. Thus,

E
μt [f(T, XT )] =

∫
W E

x [F (Xt)1T>t] dμ0∫
W Ex [1T>t] dμ0

· (3.3)

Applying Feynman–Kac, (2.3), to this,

E
μt [f(T, XT )] =

∫
W

v(t, x)dμ0∫
W v̄(t, x)dμ0

(3.4)

where v solves (2.2) with v0 = F and φ = 0, while v̄ solves it with v0 = 1 and φ = 0. For brevity, let

F̂k =
∫

Fukdμ, 1̂k =
∫

ukdμ, μ̂0,k =
∫

ukdμ0. (3.5)

Expressing v and v̄ as series solutions using (2.6), we have

v(t, x) =
∞∑

k=1

e−λktF̂kuk(x), v̄(t, x) =
∞∑

k=1

e−λkt1̂kuk(x). (3.6)

After a bit of rearrangement, the error can be expressed as

e(t) ≡ |Eμt [f(T, XT )] − E
ν [f(T, XT )]|

=

∣∣∣∣∣∣
∑

k e−(λk−λ1)t
(
F̂k − 1̂k

∫
Fdν

)
μ̂0,k

1̂1μ̂0,1 +
∑

k e−(λk−λ1)t1̂kμ̂0,k

∣∣∣∣∣∣ (3.7)
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where the sums are from k = 2 to ∞ since F̂1 = 1̂1

∫
W Fdν. Noting that∣∣∣∣F̂k − 1̂k

∫
Fdν

∣∣∣∣ ≤
∫

|Fuk| dμ +
∫

|F |dν

∫
|uk| dμ

≤ 2 ‖f‖L∞

∫
|uk| dμ ≤ 2 ‖f‖L∞

√
μ(W ),

we can rewrite the numerator as∣∣∣∣∣
∞∑

k=2

e−(λk−λ1)t

(
F̂k − 1̂k

∫
Fdν

)
μ̂0,k

∣∣∣∣∣ ≤ 2
√

μ(W ) ‖f‖L∞

∞∑
k=2

e−(λk−λ1)t |μ̂0,k|

≤ 2
√

μ(W ) ‖f‖L∞ e−(λ2−λ1)(t−t1)
∞∑

k=2

e−(λk−λ1)t1 |μ̂0,k|

≤ 2
√

μ(W ) ‖f‖L∞ e−(λ2−λ1)(t−t1)
∞∑

k=2

e−κλkt1 |μ̂0,k|

where κ = 1 − λ1/λ2 and t ≥ t1 > 0. Applying Proposition A.2 from the appendix to this, the numerator is
bounded by ∣∣∣∣∣

∞∑
k=2

e−(λk−λ1)t

(
F̂k − 1̂k

∫
Fdν

)
μ̂0,k

∣∣∣∣∣
�
∥∥P[2,∞)μ0

∥∥
H−s

μ
‖f‖L∞ e−(λ2−λ1)(t−t1)t

−n/4−s/2
1 . (3.8)

The constant that has been absorbed into the � symbol is independent of t, f and μ0.
To ensure the denominator is uniformly bounded away from zero, we use a similar treatment,

∞∑
k=2

e−(λk−λ1)t1̂kμ̂0,k ≤
√

μ(W )e−(λ2−λ1)(t−t2)
∞∑

k=2

e−κλkt2 |μ̂0,k|

�
∥∥P[2,∞)μ0

∥∥
H−s

μ
e−(λ2−λ1)tt

−n/4−s/2
2

for t ≥ t2 > 0, which may differ from t1. Therefore,

1̂1μ̂0,1 +
∞∑

k=2

e−(λk−λ1)t1̂kμ̂0,k

� 1̂1μ̂0,1 − e−(λ2−λ1)(t−t2)t
−n/4−s/2
2

∥∥P[2,∞)μ0

∥∥
H−s

μ
.

For a sufficiently large t ≥ t ≥ t2 > 0, the denominator is bounded from below by

1̂1μ̂0,1 +
∞∑

k=2

e−(λk−λ1)t1̂kμ̂0,k ≥ 1
2
1̂1μ̂0,1 =

1
2

∫
u1dμ

∫
u1dμ0 > 0. (3.9)

Roughly,

t �
{∥∥P[2,∞)μ0

∥∥
H−s

μ
/

∫
u1dμ0

}4/(n+2s)

. (3.10)

Taking t1 = t2 = t in (3.8) and (3.9) we have that for t ≥ t

e(t) �
(∫

u1dμ0

)−1

e−(λ2−λ1)(t−t)(t)−n/4−s/2

× ‖f‖L∞
∥∥P[2,∞)μ0

∥∥
H−s

μ
.
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Finally, for this estimate to hold for general bounded and measurable f , we apply a density argument with
respect to the L∞ norm. �

The inclusion of
∫

u1dμ0 in the preceding result is deliberate as μ0 is, to a degree, a user specified parameter.
Moreover,

∫
u1dμ0 could be quite small. Indeed, when a Xt first enters W , it is near ∂W and the support of μ0

is in a neighborhood of ∂W ; we may have μ0 = δx where x is close to ∂W . As u1 is continuous and vanishes
on ∂W , ∫

W

u1δx = O (dist(x, ∂W )) .

We also see that as μ0 → ν,
∥∥P[2,∞)μ0

∥∥
H−s

μ
→ 0, and the error vanishes.

It remains to identify distributions and values of s for which ‖μ0‖H−s
μ

< ∞. In the case that μ0 has an L2
μ

Radon–Nikodym derivative, one readily sees that ‖μ0‖H−s
μ

< ∞ for s ≤ 0. Indeed, when s = 0, this results
collapses onto the L2

μ estimate of [4]. This extends to μ0 possessing Lp
μ densities for any p ≥ 2.

For the case μ0 = δx, a Dirac mass, we shall have that μ0 ∈ H−s
μ when s is large enough to embed Hs

μ into L∞.
If the ∂W is sufficiently smooth, then by standard elliptic theory, Hs

μ and Hs will be equivalent for s ≥ 0, and
we have the embedding for s > n/2, [1, 13, 14]. Refined elliptic estimates may weaken such assumptions on the
boundary.

3.2. Exit times

In the case that we are interested in exit times, we have a result closely related to Theorem 3.1.

Theorem 3.2. Assume μ0 satisfies the assumptions of Theorem 3.1 and t0 ≥ t. Then for t ≥ 0,∣∣Pμt0 [T > t] − e−λ1t
∣∣ ≤ Ce−λ1te−(λ2−λ1)t0 (3.11)

where C is the pre-exponential factor in (3.2) and is independent of t and t0.

Proof. As before, we rely on (2.3) and the series expansions (2.6) to write

P
μt1 [T > t] =

P
μ0 [T > t1 + t]
Pμ0 [T > t1]

=
∑∞

k=1 e−λk(t+t1)1̂kμ̂0,k∑∞
k=1 e−λkt1 1̂kμ̂0,k

.

Comparing against the QSD,

∣∣Pμt1 [T > t] − e−λ1t
∣∣ =

∣∣∣∣∣
∑∞

k=1 e−λk(t+t1)1̂kμ̂0,k∑∞
k=1 e−λkt1 1̂kμ̂0,k

− e−λ1t

∣∣∣∣∣
=

∣∣∣∣∣
∑∞

k=1

(
e−λk(t+t1) − e−λkt1−λ1t

)
1̂kμ̂0,k∑∞

k=1 e−λkt1 1̂kμ̂0,k

∣∣∣∣∣
In the numerator, the k = 1 term vanishes, leaving

e−λ1t

∣∣∣∣∣
∑∞

k=2

(
1 − e−(λk−λ1)t

)
e−λkt1 1̂kμ̂0,k∑∞

k=1 e−λkt1 1̂kμ̂0,k

∣∣∣∣∣ ≤ e−λ1t

∑∞
k=2 e−λkt0

∣∣1̂kμ̂0,k

∣∣∣∣∑∞
k=1 e−λkt0 1̂kμ̂0,k

∣∣
Using the same methods as in the Proof of Theorem 3.1,

∑∞
k=2 e−λkt1 |μ̂0,k|∣∣∑∞
k=1 e−λkt1 1̂kμ̂0,k

∣∣ �
(∫

u1dμ0

)−1

t−n/4−s/2e−(λ2−λ1)(t0−t)
∥∥P[2,∞)μ0

∥∥
H−s

μ
�
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This estimate plays an important role in our analysis of ParRep. Indeed, we will frequently confront terms of the
form E

μt0 [f(X, T )1T>t], and we will want to compare against the corresponding term for the QSD. One could
naively apply Theorem 3.1 to estimate such a term, with observable gt(ξ, τ) = f(ξ, τ)1τ>t. However, this is
wasteful, as the observable is going to be taken over realizations which not only have not left the well before t0,
but remain in the well for at least an additional t. We thus have the following identity.

Lemma 3.3. Given t, t0 ≥ 0,

E
μt0 [f(XT , T )1T>t] = E

μt0+t [f(XT , T + t)] Pμt0 [T > t] . (3.12)

Proof. This reflects the Markovian nature of the process. Writing out the lefthand side,

E
μt0 [f(XT , T )1T>t] =

∫
W

E
x [f(XT , T )1T>t]μt0(dx)

=

∫
W E

x [f(XT , T )1T>t] Pμ0 [Xt ∈ dx, T > t0]
Pμ0 [T > t0]

The numerator is∫
W

E
x [f(XT , T )1T>t] Pμ0 [Xt ∈ dx, T > t0] = E

μ0 [f(XT , T − t0)1T−t0>t1T>t0 ]

= E
μ0 [f(XT , T − t0)1T>t0+t] ,

where t0 is subtracted off to make the observable consistent. The same argument shows

E
μt0+t [f(XT , T + t)] =

E
μ0 [f(XT , T − t0)1T>t+t0 ]

Pμ0 [T > t + t0]
.

Combining these three expressions completes the proof. �

In principle, we can use this lemma and Theorem 3.2 to obtain refinements on Theorem 3.1 for observables
that include 1T>t terms.

4. The dephasing step – Proof of Theorem 1.2

We now examine our dephasing step,

Theorem 4.1. Given s ≥ 0, assume supp μ0
phase ⊂ W and

∥∥∥μ0
phase

∥∥∥
H−s

μ

< ∞. Then

A. The dephasing step produces N independent replicas with distributions μphase,

μphase(A) = P
μ0

phase
[
Xtphase ∈ A | T > tphase

]
;

B. There exists tphase and Cphase such that for tphase ≥ tphase,∣∣Eμphase
[
f(T k, Xk

T k)
]− E

ν [f(T, XT )]
∣∣ ≤ ‖f‖L∞ Cphasee−(λ2−λ1)tphase ;

for any bounded measurable f : R
+ × ∂W → R and all k = 1, . . . , N .

C. The expected number of times a replica is relaunched is finite.

To prove Theorem 4.1, we must establish:

A. The replicas are independent and have law μphase;
B. The error of μphase can be made small;
C. The expected number of relaunches is finite.
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The first property is obvious as each of the replicas is driven by an independent Brownian motion, and we
only retain realizations for which T > tphase. The second property follows from Theorem 3.1.

To prove the third property, we must establish that replicas initiated from μ0
phase have a nonzero chance of

surviving till tphase:

Lemma 4.2. Assume that μ0
phase satisfies the hypotheses of Theorem 4.1,

P
μ0

phase
[
T k ≥ tphase

] ≡ p > 0.

Proof. Observe that we have the following monotonicity property for t2 > t1,

0 ≤ P
μ0

phase [T ≥ t2] ≤ P
μ0

phase [T ≥ t1] .

We now argue by contradiction. Assume that at some t1 > 0, P
μ0

phase [T ≥ t1] = 0. By the above monotonicity,
P

μ0
phase [T ≥ t2] = 0 for all t2 ≥ t1. Using a similar approach as in the Proof of Theorem 3.1, we write

P
μ0

phase [T ≥ t] = v̄(x, t) =
∞∑

k=1

e−λkt

∫
ukdμ0

phase

∫
ukdμ

where v̄ solves (2.2) with v0 = 1 and φ = 0. Therefore,

v̄(x, t2) =
∞∑

k=1

e−λkt2 μ̂0
phase,k

∫
ukdμ =

∞∑
k=1

e−λkt2 μ̂0
phase,k1̂k

≥ e−λ1t2

{
μ̂0

phase,11̂1 − e−(λ2−λ1)t2

∞∑
k=2

e−κλkt2
∣∣1̂k

∣∣ ∣∣μ̂0
phase,k

∣∣}

� e−λ1t2
{

μ̂0
phase,11̂1 − e−(λ2−λ1)t2t

−n/4−s/2
2

∥∥P[2,∞)μ
0
phase

∥∥
H−s

μ

}
Then taking t2 sufficiently large,

μ̂0
phase,11̂1 − e−(λ2−λ1)t2t

−n/4−s/2
2

∥∥P[2,∞)δx

∥∥
H−s

μ

≥ 1
2
μ̂0

phase,11̂1 =
1
2

∫
u1dμ0

phase

∫
u1dμ > 0,

since
∫

u1dμ0
phase > 0. Thus, we have a contradiction. �

This calculation reveals a role played by the choice of μ0
phase. If concentrated near the well boundary,

P
μ0

phase
[
T k ≥ tphase

]
= p could be quite small. This will induce the replicas to relaunch many times, as the

next result shows. Thus, for computational efficiency, a distribution concentrated deep in the well’s interior is
desirable.

Lemma 4.3. Assume that μ0
phase satisfies the hypotheses of Theorem 4.1, and that P

μ0
phase

[
T k ≥ tphase

]
= p >

0. Then
E

μ0
phase [Number of relaunches] = (1 − p)/p < ∞

Proof. The probability of relaunching m times is the probability of exiting m times and surviving on the m+1–th
time. Interpreting this in terms of T k and using the assumption, P

μ0
phase [m relaunches] = (1 − p)mp. Thus,

E
μ0

phase [Number of relaunches] =
∞∑

m=0

m · P
μ0

phase [m relaunches]

=
∞∑

m=0

m(1 − p)mp =
1 − p

p
< ∞. �
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5. The parallel step – Proofs of Theorems 1.3 and 1.4

First, we restate Theorem 1.3 with additional detail:

Theorem 5.1 (Parallel error). Given tphase ≥ tphase, let

εphase ≡ Cphasee−(λ2−λ1)tphase ,

and assume the dephasing step has produced N i.i.d. replicas drawn from distribution μphase. Then the exit time
distribution of the parallel step converges to an exponential,∣∣Pμphase [T � > t] − e−Nλ1t

∣∣ ≤ εphaseN(1 + εphase)N−1e−Nλ1t. (5.1)

If φ : ∂W → R is bounded and measurable, the exit distribution converges to one that is independent of exit
time, ∣∣∣∣Eμphase [1T �>tφ(X�

T �)] − e−Nλ1t

∫
∂W

φdρ

∣∣∣∣
� N2(1 + εphase)N−1εphase ‖φ‖L∞ e−Nλ1t. (5.2)

If, in addition, Nεphase(1 + εphase)N−1 < 1, then∣∣∣∣Eμphase [φ(X�
T �) | T � > t] −

∫
∂W

φdρ

∣∣∣∣
� N2 ‖φ‖L∞ εphase(1 + εphase)N−1

1 − Nεphase(1 + εphase)N−1
. (5.3)

Proof. To prove (5.1), we begin by writing,∣∣Pμphase [T � > t] − e−Nλ1t
∣∣ =

∣∣ΠN
k=1P

μphase
[
T k > t

]− ΠN
k=1P

ν
[
T k > t

]∣∣
=
∣∣∣Pμphase

[
T 1 > t

]N − e−Nλ1t
∣∣∣

=
∣∣Pμphase

[
T 1 > t

]− e−λ1t
∣∣
∣∣∣∣∣
N−1∑
k=0

P
μphase

[
T 1 > t

]k
e−(N−1−k)λ1t

∣∣∣∣∣ .
From Theorem 3.2, we know ∣∣Pμphase [T > t] − e−λ1t

∣∣ ≤ εphasee−λ1t.

Therefore, ∣∣Pμphase [T � ≥ t] − e−Nλ1t
∣∣ ≤ εphasee−λ1tN(1 + εphase)N−1e−(N−1)λ1t.

To prove (5.2), we begin by writing the expectation as

E
μphase [1T �>tφ(X�

T �)] = E
μphase

[
1T k� >tφ(Xk�

T k�
)
]

=
N∑

k=1

E
μphase

[
1T k>tφ(Xk

T k)1k=k�

]

=
N∑

k=1

E
μphase

[
1T k>tφ(Xk

T k)Πl 	=k1T l>T k1T l>t

]
.
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In the above expression, we have used that since T � > t, T l > t for each l. Then, using Lemma 3.3 on each of
the processes,

E
μphase

[
1T k>tφ(Xk

T k )Πl 	=k1T l>T k1T l>t

]
= E

μtphase+t
[
φ(Xk

T k)Πl 	=k1T l>T k

]
ΠN

l=1P
μphase [T l > t]

= E
μtphase+t

[
φ(Xk

T k)1k=k�

]
P

μphase [T > t]N .

This leads to the expression

E
μphase [1T �>tφ(X�

T �)] = E
μtphase+t [φ(X�

T �)] Pμphase [T � > t]. (5.4)

Comparing against the QSD,

|Eμphase [1T �>tφ(X�
T �)] − E

ν [1T �>tφ(X�
T �)]| ≤ |Eμtphase+t [φ(X�

T �)]| ∣∣Pμphase [T � > t] − e−Nλ1t
∣∣

+ e−Nλ1t |Eμtphase+t [φ(X�
T �)] − E

ν [φ(X�
T �)]| . (5.5)

The first difference can be treated by (5.1), but the second difference requires more care.
Given an arbitrary admissible distribution η for X0, we define

Pη(t) ≡ P
η[T > t] = P

η[T k > t], k = 1 . . .N. (5.6)

Consequently, Pν(t) = e−λ1t and

E
μtphase+t [φ(X�

T �)] =
N∑

k=1

E
μtphase+t

[
φ(Xk

T )Πl 	=k1Tl>Tk

]

=
N∑

k=1

E
μtphase+t

[
φ(Xk

T )Pμtphase+t(T k)N−1
]
. (5.7)

An analogous expansion can be made with ν in place of μtphase+t. Taking the difference of the two sums, and
comparing term by term,∣∣Eμtphase+t

[
φ(Xk

T )Pμtphase+t(T k)N−1
]− E

ν
[
φ(Xk

T )Pν(T k)N−1
]∣∣

≤ ∣∣Eμtphase+t
[
φ(Xk

T )Pμtphase+t(T k)N−1
]− E

ν
[
φ(Xk

T )Pμtphase+t(T k)N−1
]∣∣

+
∣∣Eν

[
φ(Xk

T )Pμtphase+t(T k)N−1
]− E

ν
[
φ(Xk

T )Pν(T k)N−1
]∣∣ . (5.8)

By Theorem 3.1 the first difference in (5.8) is bounded by∣∣Eμtphase+t
[
φ(Xk

T )Pμtphase+t(T k)N−1
]− E

ν
[
φ(Xk

T )Pμtphase+t(T k)N−1
]∣∣

≤ εphasee−(λ2−λ1)t ‖φ‖L∞ ,

since P ≤ 1.
For the other difference in (5.8), we can replicate the proof of (5.1) to obtain, for any τ ≥ 0,∣∣Pμtphase+t(τ)N−1 − Pν(τ)N−1

∣∣
≤ (N − 1)εphasee−(λ2−λ1)t(1 + εphasee−(λ2−λ1)t)N−2e−(N−1)λ1τ

≤ (N − 1)εphase(1 + εphase)N−2.

Therefore, ∣∣Eν
[
φ(Xk

T )Pμtphase+t(T k)N−1
]− E

ν
[
φ(Xk

T )Pν(T k)N−1
]∣∣

≤ ‖φ‖L∞ εphase(N − 1)(1 + εphase)N−2.
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So (5.8) can be bounded by∣∣Eμtphase+t
[
φ(Xk

T )Pμtphase+t(T k)N−1
]− E

ν
[
φ(Xk

T )Pν(T k)N−1
]∣∣

≤ ‖φ‖L∞ εphase

[
1 + (N − 1)(1 + εphase)N−2

]
.

Returning to (5.5), using (5.1) to treat the first difference and the preceding calculation to treat the second, we
have:

|Eμphase [1T �>tφ(X�
T �)] − E

ν [1T �>tφ(X�
T �)]| ≤ N ‖φ‖L∞ εphasee−Nλ1t(1 + εphase)N−1

+ N ‖φ‖L∞ εphasee−Nλ1t
[
1 + (N − 1)(1 + εphase)N−2

]
� N2 ‖φ‖L∞ εphasee−Nλ1t(1 + εphase)N−1. (5.9)

Finally, to prove (5.3),

|Eμphase [φ(X�
T �) | T � > t] − E

ν [φ(X�
T �) | T � > t]|

=
∣∣∣∣Eμphase [φ(X�

T �)1T �>t]
Pμphase [T � > t]

− E
ν [φ(X�

T �)1T �>t]
Pν [T � > t]

∣∣∣∣
≤ |Eμphase [φ(X�

T �)1T �>t] − E
ν [φ(X�

T �)1T �>t]| 1
Pμphase [T � > t]

+ |Eν [φ(X�
T �)1T �>t]| |P

μphase [T � > t] − P
ν [T � > t]|

Pμphase [T � > t] Pν [T � > t]
.

For the first difference,

|Eμphase [φ(X�
T �)1T �>t] − E

ν [φ(X�
T �)1T �>t]| 1

Pμphase [T � > t]

� N2 ‖φ‖L∞ εphase(1 + εphase)N−1

1 − Nεphase(1 + εphase)N−1
.

For the second difference,

|Eν [φ(X�
T �)1T �>t]| |P

μphase [T � > t] − P
ν [T � > t]|

Pμphase [T � > t] Pν [T � > t]

≤ N ‖φ‖L∞ εphase(1 + εphase)N−1

1 − Nεphase(1 + εphase)N−1
.

Combining these estimates, we have our result. �

Lastly, we prove Theorem 1.4, which we first restate with additional detail:

Theorem 5.2 (ParRep error). Let Xs
t denote the unaccelerated (serial) process and Xp

t denote the ParRep
process, and assume that both Xref

t and Xs
t are initially distributed under μ0, an admissible distribution. Also

assume that μ0
phase is admissible.

Given tcorr ≥ tcorr and tphase ≥ tphase, let

εcorr = Ccorre−(λ2−λ1)tcorr ,

εphase = Cphasee−(λ2−λ1)tphase .

Letting T s and T p denote the physical times, we have

|Pμ0 [T s > t] − P
μ0 [T p > t]|

≤ εcorre−λ1t + εphaseN(1 + εphase)N−1e−λ1(t−tcorr)+ , (5.10)
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|Eμ0 [φ(Xs
T s)1T s>t] − E

μ0 [φ(Xp
Tp)1Tp>t]|

�
[
εcorr + εphaseN

2(1 + εphase)N−1
] ‖φ‖L∞ e−λ1(t−tcorr)+ . (5.11)

If, in addition, εcorr < 1, then

|Eμ0 [φ(Xs
T s) | T s > t] − E

μ0 [φ(Xp
Tp) | T p > t]|

� εcorr + εphaseN
2(1 + εphase)N−1

1 − εcorr
‖φ‖L∞ , (5.12)

Proof. We begin by decomposing

P
μ0 [T s > t] = P

μ0 [T s > t | T s ≤ tcorr] Pμ0 [T s ≤ tcorr]
+ P

μ0 [T s > t | T s > tcorr] Pμ0 [T s > tcorr] .

We analogously decompose P
μ0 [T p > t]. For t ≤ tcorr, the serial algorithm and the reference process of ParRep

have the same law. Hence,

P
μ0 [T s ≤ tcorr] = P

μ0 [T p ≤ tcorr] ,
P

μ0 [T s > t | T s ≤ tcorr] = P
μ0 [T p > t | T p ≤ tcorr] .

Consequently, error only manifests itself if the parallel step is engaged,

|Pμ0 [T s > t] − P
μ0 [T p > t]|

= P
μ0 [T s > tcorr] |Pμ0 [T s > t | T s > tcorr] − P

μ0 [T p > t | T p > tcorr]| .
Comparing against the QSD,

|Pμ0 [T s > t] − P
μ0 [T p > t]|

≤ P
μ0 [T s > tcorr] |Pμ0 [T s > t | T s > tcorr] − P

ν [T > (t − tcorr)+]|
+ P

μ0 [T s > tcorr] |Pμ0 [T p > t | T p > tcorr] − P
ν [T > (t − tcorr)+]| . (5.13)

Examining the first term,

P
μ0 [T s > t | T s > tcorr] = P

μcorr [T s > (t − tcorr)+] .

By assumption and Theorem 3.2

|Pμcorr [T s > (t − tcorr)+] − P
ν [T > (t − tcorr)+]| ≤ εcorre−λ1(t−tcorr)+ . (5.14)

For the other term, since the exit time is beyond tcorr the parallel step engages. The single reference process is
replaced by the ensemble of N replicas drawn from μphase, and T p = NT � + tcorr. Hence,

P
μ0 [T p > t | T p > tcorr] = P

μphase
[
T � > 1

N (t − tcorr)+
]
.

Therefore, by Theorem 5.1 ∣∣Pμphase
[
T � > 1

N (t − tcorr)+
]− P

ν [T > (t − tcorr)+]
∣∣

≤ εphaseN(1 + εphase)N−1e−λ1(t−tcorr)+ (5.15)

Substituting (5.14) and (5.15) into (5.13), we obtain (5.10).
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To obtain (5.11), we again decompose as

E
μ0 [φ(Xs

T s)1T s>t] = E
μ0 [φ(Xs

T s)1T s>t | T s ≤ tcorr] Pμ0 [T s ≤ tcorr]
+ E

μ0 [φ(Xs
T s)1T s>t | T s > tcorr] Pμ0 [T s > tcorr] .

and analogously decompose the ParRep expectation. Again, for t ≤ tcorr, the serial algorithm and the reference
process of ParRep have the same law. Thus

E
μ0 [φ(Xs

T s)1T s>t | T s ≤ tcorr] = E
μ0 [φ(Xp

Tp)1Tp>t | T p ≤ tcorr] .

Consequently,

|Eμ0 [φ(Xs
T s)1T s>t] − E

μ0 [φ(Xp
Tp)1Tp>t]|

= P
μ0 [T s > tcorr] |Eμ0 [φ(Xs

T s)1T s>t | T s > tcorr] − E
μ0 [φ(Xp

Tp)1Tp>t | T p > tcorr]| .
Using the QSD as an intermediary,

|Eμ0 [φ(Xs
T s)1T s>t | T s > tcorr] − E

μ0 [φ(Xp
Tp)1Tp>t | T p > tcorr]|

≤ ∣∣Eμ0 [φ(Xs
T s)1T s>t | T s > tcorr] − E

ν
[
φ(XT )1T>(t−tcorr)+

]∣∣
+
∣∣Eν

[
φ(XT )1T>(t−tcorr)+

]− E
μ0 [φ(Xp

Tp)1Tp>t | T p > tcorr]
∣∣ . (5.16)

For the first term,

E
μ0 [φ(Xs

T s)1T s>t | T s > tcorr] = E
μcorr

[
φ(Xs

T s)1T s>(t−tcorr)+

]
= E

μtcorr+(t−tcorr)+ [φ(Xs
T s)] Pμcorr [T s > (t − tcorr)+] .

Hence, ∣∣Eμ0 [φ(Xs
T s)1T s>t | T s > tcorr] − E

ν
[
φ(XT )1T>(t−tcorr)+

]∣∣
� εcorr ‖φ‖L∞ e−λ1(t−tcorr)+ . (5.17)

For the other term, since the parallel step has engaged,

E
μ0 [φ(Xp

Tp)1Tp>t | T p > tcorr] = E
μphase

[
φ(X�

T �)1T �> 1
N (t−tcorr)+

]
. (5.18)

By Theorem 5.1, ∣∣Eν
[
φ(XT )1T>(t−tcorr)+

]− E
μ0 [φ(Xp

Tp)1Tp>t | T p > tcorr]
∣∣

=
∣∣∣Eν

[
φ(XT )1T>(t−tcorr)+

]− E
μphase

[
φ(X�

T �)1T �> 1
N (t−tcorr)+

]∣∣∣
≤ εphaseN

2 ‖φ‖L∞ (1 + εphase)N−1e−λ1(t−tcorr)+ . (5.19)

Using (5.17) and (5.19) in (5.16) gives (5.11).
(5.12) is proved using the preceding estimates,

|Eμ0 [φ(Xs
T s) | T s > t] − E

μ0 [φ(Xp
Tp) | T p > t]|

≤
∣∣∣∣Eμ0 [φ(Xs

T s)1T s>t] − E
μ0 [φ(Xp

Tp)1Tp>t]
Pμ0 [T s > t]

∣∣∣∣
+ |Eμ0 [φ(Xp

Tp)1Tp>t]|
∣∣∣∣Pμ0 [T s > t] − P

μ0 [T p > t]
Pμ0 [T s > t] Pμ0 [T p > t]

∣∣∣∣
�
[
εcorr + εphaseN

2(1 + εphase)N−1
] ‖φ‖L∞

e−λ1(t−tcorr)+P
μ0 [T s > tcorr]

Pμ0 [T s > t]

+
[
εcorr + εphaseN(1 + εphase)N−1

] ‖φ‖L∞
e−λ1(t−tcorr)+P

μ0 [T s > tcorr]
Pμ0 [T s > t]

�
[
εcorr + εphaseN

2(1 + εphase)N−1
] ‖φ‖L∞

e−λ1(t−tcorr)+P
μ0 [T s > tcorr]

Pμ0 [T s > t]
· (5.20)
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Since (t − tcorr)+ + tcorr ≥ t,
P

μ0 [T s > (t − tcorr)+ + tcorr] ≤ P
μ0 [T s > t] .

Therefore,
P

μ0 [T s > tcorr]
Pμ0 [T s > t]

≤ P
μ0 [T s > tcorr]

Pμ0 [T s > (t − tcorr)+ + tcorr]
=

1
Pμcorr [T s > (t − tcorr)+]

and
e−λ1(t−tcorr)+P

μ0 [T s > tcorr]
Pμ0 [T s > t]

≤ 1
1 − εcorr

.

Substituting this estimate into (5.20) yields (5.12). �

6. Discussion

We have proven several theorems on the convergence of the exit distributions of parallel replica dynamics to
the underlying unaccelerated problem. We have also demonstrated the effectiveness of a dephasing algorithm
done in conjunction with the decorrelation step. However, there remain several problems associated with ParRep,
both in fully justifying it as an algorithm, and implementing it in practice.

6.1. Error estimates

As we pointed out in the introduction, the error estimates in Theorem 1.3 and Theorem 1.4 include terms
which grow as N → ∞. If we take

tphase � kphase
log N

λ2 − λ1

for some multiplier, kphase, then the most egregious term in the estimates is bounded by

lim
N→∞

N2εphase(1 + εphase)N−1 ≤ lim
N→∞

Cphasee−kphase/2
(
1 + e−kphaseCphase/N

)N−1

= e−kphase/2eCphasee
−kphase

.

Hence, taking kphase large enough, the error can be made arbitrarily small. In contrast, the decorrelation error
is independent of N , and reducing the decorrelation error will not correct for the error due to more replicas.

The error estimate on the exit time in Theorem 1.3 is a bit deceiving and merits additional comment. It
would appear that when we consider this cumulative distribution function at any t > 0, then, sending N → ∞,
the error vanishes. This is a reflection on the estimate being an absolute error. Dividing out by e−Nλ1t lets us
evaluate the relative error, which we see is uniformly bounded in t.

We also remark that since

E[T ] =
∫ ∞

0

P[T > t]dt,

we can obtain error estimates on the expected exit time. Using the estimates in Theorem 1.3, we see that
provided Nεphase(1 + εphase)N−1 < 1, we have∣∣∣∣Eμphase [T �] − 1

Nλ1

∣∣∣∣ ≤ Nεphase(1 + εphase)N−1. (6.1)

Similarly, using the estimates in Theorem 1.4,

|Eμ0 [T s] − E
μ0 [T p]| � εcorr + Nεphase(1 + εphase)N−1. (6.2)
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It remains to be determined whether our estimates are sharp – is the growth in N real or an artifact of our
analysis? While we cannot yet address the sharpness, a simple numerical experiment indicates that there is
growth in the error as N increases. Consider the problem

dXt = −4Xtdt +
√

2dBt (6.3)

for the well W = [−1, 1], and suppose we launch N replicas from the Dirac distribution X0 = .1. By symmetry,
we know that if we had perfect dephasing, then during the parallel step

P
ν [X�

T � = 1] = P
ν [X�

T � = −1] = 1
2 .

But if we incompletely dephase, then, because of our asymmetric initial condition, we expect a higher probability
of escaping at 1 than −1. For this problem, we can compute by spectral methods that λ1 ≈ 0.971972 and
λ2 ≈ 8.98262.

To test our conjecture, that the error increases with N , we ran 10000 realizations of the dephasing and parallel
steps with values of N = 100, 200, . . . , 1000. We employed Euler–Maruyama time stepping with Δt = 10−4. We
then ran this with with tphase = .05, .1 and .2. The results appear in Figure 3.

As we predicted, the errors decrease as tphase increases. For the smallest dephasing time, we also see the
error increase with N . At tphase = .1, there is still some increase in the error as N increases, though it is less
dramatic. When tphase = .2, the trend appears to have been lost to numerical error and sampling variability.

6.2. Numerical parameters and eigenvalues

An essential question is how to choose of the dephasing and decorrelation time parameters. Based on the
arguments in the preceding section, roughly, if we desire the errors from decorrelation and dephasing to be of
the same order, then,

2 log(N)tcorr ∼ tphase.

So, while they should not be the same, if we can estimate one, we can infer the other. There will also be some
mismatch due to different starting distributions for the reference process and the dephasing replicas.

tcorr must be large enough so as to be representative of the QSD while remaining computationally efficient.
Taking too large a value of tcorr will just replicate the serial implementation with no acceleration. Theorem 3.1
provides some insight, already discussed in [4]. The error of μcorr is controlled by the following quantities:

• The μ0 initial distribution,
• ∥∥P[2,∞)μ0

∥∥
H−s

μ
, the mismatch between the initial distribution of the reference process and the quasistationary

distribution, ν;
• The value of t;
• ∫

u1dμ0;
• λ2 − λ1 , the spectral gap between the first two eigenvalues.

Based on these quantities, and how they relate to tcorr, to make the decorrelation error small, we would certainly
need

tcorr �
ln
[(∫

u1dμ0

)−1 ∥∥P[2,∞)μ0

∥∥
H−s

μ

]
λ2 − λ1

+ t. (6.4)

The eigenvalues also play an important role in determining which problems would benefit from ParRep is an
outstanding problem, which is an outstanding issue. For ParRep to be efficient, we need

tcorr � E
μcorr [T ] ∼ E

ν [T ] =
1
λ1

· (6.5)
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Figure 3. Three experiments on the impact of imperfect dephasing for (6.3). With perfect
dephasing, the probability of exiting at x = 1 would be 1/2, but because the initial condition
is .1 and the dephasing time is finite, there is a persistent bias and growth in the error as N
increases. 95% confidence intervals are plotted for 10000 realizations of each value of N .

This is desirable because, in the event Xt does not leave the well during the decorrelation step, it is will now
take a comparatively long time to exit. In [4], the authors suggested

tcorr ≤ E
μ0 [T ].

However, this can be problematic, depending on μ0. As previously discussed, if the replicas launch from a
position too close to the boundary, E

μ0 [T ] might be rather small. This is mitigated as tcorr becomes larger,
leading to E

μcorr [T ] approaching the escape time of the QSD, λ−1
1 .

We can see from (6.4) and constraint (6.5) that ParRep will be most effective when

1
λ2 − λ1

� 1
λ1

, (6.6)

or, alternatively, when λ1 � λ2 − λ1. Under these conditions, μcorr converges to ν much more rapidly than we
expect Xt to exit W . (6.6) can also be viewed as a characterization of when W corresponds to a metastable
state for (1.1).

Computing λ1 and λ2 directly from a discretization of the elliptic operator L is intractable for all but the
lowest dimensional systems. Instead, one must use Monte Carlo methods, such as those found in [11,12,17,18,23].
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However, these studies, some of which use branching particles processes like Fleming–Viot (discussed below),
only yield λ1.

In a forthcoming work, we explore a mechanism for computing λ2 − λ1 using observables. The idea stems
from calculations in Theorem 1.1, that, for an observable O(x), as t → ∞,

E
μ0 [O(Xt) | T > t] =

∫
W

O(x)dν(x) + C(μ0,O)e−(λ2−λ1)t + . . . . (6.7)

In principle, λ2 − λ1 could be extracted from a time series of E
μ0 [O(Xt) | T > t]. This introduces a variety of

questions, such as what observables to use and how to perform such a fitting. Thus, we will have a method for
dynamically estimating tcorr and tphase.

6.3. Dephasing mechanism

The efficiency of our dephasing algorithm can be improved by the availability of multiple processors. For
instance, assume we have N processors available for the replicas and that k replicas have successfully been run
until tcorr. We are still waiting for N − k replicas to successfully dephase. Rather than let k processors sit idle,
they could record the successful replicas, and run independent realizations. As more replicas finish dephasing,
more processors can be brought to bear on the outstanding replicas.

In practice, as replicas are deemed to have been successfully dephased, they are promoted to the parallel
step, [21]. Thus, there is no bottleneck at the dephasing step from waiting to get N realizations dephased.

There are other approaches to dephasing too, such as Fleming–Viot or Moran branching interacting particle
processes, [2,3,9,15]. These merit consideration for ParRep. These approaches, which randomly split a surviving
process every time another process exits the well, can provide additional information, such as an estimate of λ1.
Moreover, no processor sits idle at anytime. However, two challenges are introduced. On a practical level, one
needs to implement additional communication routines and synchronization across the processors to request and
send configurations as trajectories are killed. The second challenge is analytical, as the dephased processes will
now be only approximately independent. This complicates the analysis of the how the error in the dephasing
step cascades through the parallel step.

6.4. Other challenges

Another task is to assess the cumulative error over many ParRep cycles. The hitting point distribution
will be perturbed by the algorithm, meaning that the sequence in which the states are visited would also be
perturbed. Quantifying the error across many steps, and showing that it may be made small, would complete
the justification of ParRep over the lifetime of a simulation. But to begin such a study, one must decide how to
measure

dist(St,SParRep
t ).

The challenge is that St is not a Markovian process. A particle that sits near the edge of the well is likely to exit
much sooner than one which is near the minima of the well. But that information is lost in the coarse graining.
Knowing how long Xt has been in the well provides some amount of information; it tells us the proximity to
the QSD, from which we can get an exponential exit time.

Despite the challenge of studying the coarse grained flow, we can report that ParRep appears to work as
predicted over multiple wells. Consider the flow

dXt = −2π sin(πXt)dt +
√

2dBt. (6.8)

For this equation, with initial condition X0 = 0, we examined the time it would take to reach the wells centered
at x = ±10. In other words, we sought to compute

T±10 = inf {t | |Xt| ≥ 9} .
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Figure 4. The cumulative distribution for the time for it takes trajectory (6.8) to reach the
wells centered at ±10. 10 000 realizations of each case were run with time step Δt = 10−4. tcorr
and tphase relate to kcorr and kphase via (6.9). As expected, larger values of tcorr and tphase give
better agreement with an unaccelerated process.

For this problem, we ran the full ParRep algorithm (decorrelation, dephasing and parallel steps) within each
well. During dephasing, the replicas were initiated from the minima of the present well, 0,±2π,±4π, . . . We ran
10 000 realizations of this experiment, varying kcorr and kphase, where

tcorr =
kcorr

λ2 − λ1
, tphase =

kphase

λ2 − λ1
· (6.9)

Since the wells are periodic, we can use spectral methods to compute λ1 ≈ .202280 and λ2 ≈ 16.2588 once,
and we then have these values for all the wells. The results, with Δt = 10−4 and N = 100 replicas, appear in
Figure 4

As we expect, for sufficiently large values of tcorr and tphase, the distributions agree with the serial process.
Indeed, in the cases kcorr = kphase = 5 and kcorr = 1, kphase = 5, the exit times agree with the serial realization
at 5% significance level under a Kolmogorov–Smirnov test. In addition, this experiment also supports our
calculations that, through the dephasing error, the total error should be magnified by N since increasing the
dephasing time improves the fit much more than increasing the decorrelation time does.

Finally, we remark that we have only analyzed the continuous in time problem, though we are ultimately
interested in the associated discrete in time algorithm. Much of the analysis carries over to the discrete in time
case. A discrete in time quasistationary distribution exists, and there are extensive results on using interacting
particle algorithms for dephasing, [9, 10]. As in the continuous in time case, there remains the subtlety of how
to analyze the parallel step when the dephased ensemble is only approximately independent.

However, the discrete time step introduces other subtleties. Assume one uses Euler–Maruyama time dis-
cretization with time step Δt, and define the exit time as

T Δt = inf {tn | Xtn /∈ W} . (6.10)

For a uniform time step, we see that with no acceleration of the dynamics, the exit times are integer multiples
of Δt. For ParRep, this remains true for exits that take place during the decorrelation step. But for exit times
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taking place during the parallel step, the exit times will be determined by multiples of NΔt. With a large
number of processors, this effective time step could be quite large. When comparing against the continuous in
time problem, the error of discretization could be magnified in ParRep. In the preceding experiment, NΔt = .01,
which is small relative to the exit time scale (1/λ1 ≈ 4.9) and the decorrelation time scale (1/(λ2 −λ1) ≈ .062).
Clearly, the discrete in time case warrants a thorough investigation.

Appendix A. Summation bounds

Much of our analysis relies on bounding series solutions, (2.6), of (2.2), to obtain information about Xt

through the Feynman–Kac equation, (2.3). The key estimates needed in our work stem from Weyl’s Law for L:

Proposition A.1 (Weyl’s law for L). There exist positive constants c1 and c2, independent of k, such that the
eigenvalues of (2.1) satisfy

c1k
2/n ≤ λk ≤ c2k

2/n. (A.1)

Recall that n denotes the dimension of the underlying problem; Xt ∈ R
n.

Proof. We will not reproduce the proof here, which is accomplished by rewriting the eigenvalue problem as

−β−1∇ · (e−βV ∇u
)

= λe−βV u. (A.2)

This is justified because V is smooth and W is bounded; thus e−βV is smooth and nondegenerate. This is now
in the form of Theorem 6.3.1 of [8] on Weyl’s Law, yielding the result. �

Using Weyl’s Law, we have our main summation result,

Proposition A.2. Given s ≥ 0, let a = (a1, a2, . . .) satisfy

{ ∞∑
k=1

λ−s
k |ak|2

}1/2

= ‖a‖H−s
μ

< ∞.

Let f be defined as

f(τ) ≡
∞∑

k=1

akλα
k e−τλk . (A.3)

For a > 0, we have:

A.
sup
τ≥a

|f(τ)| � a−n/4−max{s/2+α,0} ‖a‖H−s
μ

< ∞; (A.4)

B. The convergence of the series is uniform in τ ≥ a;
C. f is continuous.

To prove Proposition A.2, we first have the following lemma.

Lemma A.3. Let λk be the eigenvalues and eigenfunctions of L, (2.1). There exists a constant C > 0, inde-
pendent of τ , such that for all τ > 0,

∞∑
k=1

λα
k e−τλk ≤ Cτ−n/2−max{α,0}. (A.5)

The reader should rightfully expect the lefthand side of (A.5) to grow as α → ∞. Indeed, the constant C
depends on α and will grow. However, as α is fixed, and we are interested in an estimate in τ , this is suppressed.
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Proof. For α ≤ 0,

∞∑
k=1

e−τλkλα
k ≤

∞∑
k=1

e−τλkλα
1 ≤

∞∑
k=1

e−c1τk2/n

λα
1

≤ λα
1

∫ ∞

0

e−c1τk2/n

dk = λα
1 (c1τ)−n/2Γ

[
1 +

n

2

]
.

In the above computation, we approximated the sum as the lower Riemann sum of the integral.
For α > 0, we begin by estimating

∞∑
k=1

e−τλkλα
k ≤

∞∑
k=1

e−c1τk2/n

cα
2 k2α/n.

For sufficiently large k,

k ≥ k1 ≡
⌈(

α

c1τ

)n/2
⌉

,

the summand is monotonically decreasing, while for k < k1, it is monotonically increasing. Splitting the sum
up,

∞∑
k=1

e−c1τk2/n

k2α/n =
k1∑

k=1

e−c1τk2/n

k2α/n+1 +
∞∑

k=k1+1

e−c1τk2/n

k2α/n

≤ e−c1τ
k1∑

k=1

k2α/n +
∞∑

k=k1+1

e−c1τk2/n

k2α/n.

Crudely bounding the first sum in terms of a max, and treating the latter sum as a lower Riemann approximations
of an integral,

∞∑
k=1

e−c1τk2/n

k2α/n ≤ e−c1τk1 · k2α/n
1 +

∫ ∞

k1

e−c1τk2/n

k2α/ndk

≤ e−c1τ

[(
α

c1τ

)n/2

+ 1

]2α/n+1

+
∫ ∞

0

e−c1τk2/n

k2α/ndk

≤
(c1τ

α

)−n/2−α

e−c1τ

[
1 +

(c1τ

α

)n/2
]2α/n+1

+
n

2
(c1τ)−n/2−αΓ

[n

2
+ α

]
� τ−n/2−α. �

The integrals were computed using Mathematica, with the commands

Integrate[Exp[-c*t*k^(2/n)],{k,0,Infinity}]

Integrate[Exp[-c*t*k^(2/n)]*k^(2*a/n+1),{k,0,Infinity}]

Now we prove Proposition A.2.

Proof. We first observe that f is well defined and bounded:

|f(τ)| ≤
∞∑

k=1

|ak|λα
k e−τλk ≤

{ ∞∑
k=1

λs+2αe−2λkτ

}1/2

‖a‖H−s
μ

.
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Applying Lemma A.3 with α 
→ s + 2α and τ 
→ 2a,

∞∑
k=1

λs+2αe−2λka � (2a)−n/2−max{s+2α,0}.

To prove uniform convergence, let

fm(τ) ≡
m∑

k=1

akλα
k e−τλk

denote the partial sum. Obviously, each partial sum is continuous in τ . Then

|f(τ) − fm(τ)| ≤
∞∑

k=m+1

|ak|λα
k e−τλk

≤
{ ∞∑

k=m+1

λs+2α
k e−2λka

}1/2 ∥∥P[m+1,∞)a
∥∥

H−s
μ

≤ ‖a‖H−s
μ

{ ∞∑
k=m+1

λs+2α
k e−2λka

}1/2

.

Examining the sum,

∞∑
k=m+1

λs+2α
k e−2λka �

∞∑
k=m+1

k2s/n+4α/ne−2c1ak2/n

.

Taking m sufficiently large, the summand will be strictly decreasing in k, so we can treat it as a lower Riemann
sum for the integral ∫ ∞

m

k2s/n+4α/ne−2c1ak2/n

dk.

Changing variables by letting k2/n = l,

∞∑
k=m+1

λs+2α
k e−2λka �

∫ ∞

m2/n

ls+2α+n/2−1e−2c1aldl.

If s + 2α + n/2 − 1 ≤ 0, then

∞∑
k=m+1

λs+2α
k e−2λka �

∫ ∞

m2/n

e−2c1aldl =
1

2c1a
e−2m2/nc1a.

On the other hand, if s + 2α + n/2 − 1 > 0, we can trade some of the exponential decay to eliminate the
algebraic term,

∞∑
k=m+1

λs+2α
k e−2λka �

∫ ∞

m2/n

e−c1aldl =
1

c1a
e−m2/nc1a.

In either case, we see that for any a > 0,

lim
m→∞ sup

τ≥a
|f(τ) − fm(τ)| = 0.

Since the partial sums converge uniformly to f , it is now a classical result to conclude that f is continuous for
τ ≥ a > 0, [24]. �
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