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ON THE CONVERGENCE OF THE STOCHASTIC GALERKIN METHOD
FOR RANDOM ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS ∗

Antje Mugler1 and Hans-Jörg Starkloff2

Abstract. In this article we consider elliptic partial differential equations with random coefficients
and/or random forcing terms. In the current treatment of such problems by stochastic Galerkin meth-
ods it is standard to assume that the random diffusion coefficient is bounded by positive deterministic
constants or modeled as lognormal random field. In contrast, we make the significantly weaker assump-
tion that the non-negative random coefficients can be bounded strictly away from zero and infinity by
random variables only and may have distributions different from a lognormal one. We show that in this
case the standard stochastic Galerkin approach does not necessarily produce a sequence of approximate
solutions that converges in the natural norm to the exact solution even in the case of a lognormal coef-
ficient. By using weighted test function spaces we develop an alternative stochastic Galerkin approach
and prove that the associated sequence of approximate solutions converges to the exact solution in
the natural norm. Hereby, ideas for the case of lognormal coefficient fields from earlier work of Galvis,
Sarkis and Gittelson are used and generalized to the case of positive random coefficient fields with
basically arbitrary distributions.
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1. Introduction

The stochastic Galerkin method developed by Ghanem and Spanos in [22] and refined by many researchers
(see e.g. the books of LeMâıtre and Knio [27] and Xiu [40], the Acta Numerica article of Schwab and Gittelson [35]
and the references therein) is a powerful tool for the numerical solution of different types of random equations.
In many applications like e.g. subsurface flows in porous media input parameters cannot be modeled as de-
terministic functions but depend also on a random component. In this setting, it is desirable to quantify the
uncertainty of the modeled system. To this end a variant of the stochastic Galerkin method, based on Wiener–
Hermite or generalized polynomial chaos expansions, is mainly used for computing the approximate solution of
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the underlying random equation. The concept of polynomial chaos was introduced by Wiener in [39] and the
concept of generalized polynomial chaos expansions was introduced by Xiu and Karniadakis in [38, 42]. Some
fundamental properties of such expansions have been investigated in [13, 14].

In this work we focus on elliptic partial differential equations of the form

−∇ · (κ∇u) = f

with random coefficient κ and random force term f together with appropriate boundary conditions. If the
random coefficient κ can be bounded strictly away from zero and infinity by deterministic constants, i.e., there
are constants κ, κ > 0, such that

0 < κ ≤ κ(x, ω) ≤ κ < ∞ a. e. and a. s.,

then using the Lax–Milgram theorem it can be shown, that there exists a unique solution of a corresponding
stochastic variational problem (see e.g. Babuška et al. [2–4, 11], Schwab et al. [5, 6, 10, 15, 36] or the work of
Matthies and Keese [31]). In addition, it can be shown that the standard stochastic Galerkin approach described
in these works yields approximate solutions which converge to the exact solution in the natural norm.

However, in some applications where the coefficient describes a physical property which has to be positive
(e.g. the permeability of a medium) the random coefficient is modeled for instance as a lognormal random field
(see e.g. [16, 20, 21, 34, 46]) which cannot be bounded by deterministic constants. In this case one cannot use
the Lax–Milgram theorem directly to prove the existence of a unique weak solution. Consequently, in recent
works Galvis and Sarkis [17] and Gittelson [23] prove the existence result using alternative techniques, provide
a stochastic Petrov–Galerkin formulation, i.e. weighted test functions, to produce a sequence of stochastic
Petrov–Galerkin approximations and establish also convergence results for this sequence of numerical solutions.
Thereby Gittelson investigate among others weak problems posed on the energy space or on spaces with modified
measures and proved their well-posedness. He shows that the error of his Galerkin solution can be estimated by a
best approximation error in a stronger norm and establish error bounds. Galvis and Sarkis pose a weak problem
on different spaces for solution and test functions and prove the existence of a unique weak solution via inf-sup-
techniques using a White noise framework. They introduce a stochastic Petrov–Galerkin approach by weighting
the test functions in order to obtain a well-posed finite-dimensional problem and deduce a priori error estimates
for the approximation error by using different sequences of weights. In a more recent work [18] they study also
spatial and stochastic regularity of the solution. However, the question of convergence (or non-convergence) of
corresponding standard stochastic Galerkin approximations, i.e. using non-weighted test functions, to the exact
solution is not addressed by Gittelson or Galvis and Sarkis.

In this work we extend the results of Galvis and Sarkis and Gittelson, respectively, and consider more general
random coefficients κ, for which we only assume some natural regularity for their realizations and that there
are random variables κmin, κmax > 0 a. s. satisfying

0 < κmin(ω) ≤ κ(x, ω) ≤ κmax(ω) < ∞ a. e. and a. s.

Thus, we are not limited only to lognormal random coefficients and allow coefficients with distributions different
from a lognormal one and do not use special properties of the normal distribution in the proofs. So, we provide
an abstract setting which hopefully make this model more applicable to problems in practice. We investigate
the existence of a unique weak solution for elliptic problems with random coefficients of this type as well as the
convergence of the standard stochastic Galerkin approximations. Furthermore we construct an example where
the standard stochastic Galerkin approximations do not converge in the natural norm to the exact solution. In
order to overcome this convergence problem we introduce an alternative stochastic Galerkin approach which uses
a modified (a weighted) finite-dimensional test function space corresponding to a stochastic Petrov–Galerkin
approach based mainly on the idea of the stochastic Petrov–Galerkin method published by Galvis and Sarkis
in [17]. We extend their results for the lognormal case to our more general setting and prove also the convergence
of the associated stochastic Petrov–Galerkin approximations to the exact solution in the natural norm.
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The paper is organized as follows. In Section 2, we describe our model problem and present two different
stochastic variational formulations with standard unweighted and weighted (bi)linear forms, respectively. We
discuss the existence of a unique solution for each case. In Section 3, we apply the stochastic Galerkin method
to both formulations. We arrive at two discrete stochastic variational problems which can be interpreted as
two different stochastic Galerkin approaches for the variational formulation with unweighted (bi)linear forms.
One approach corresponds to the standard stochastic Galerkin ansatz, and the other one corresponds to a
stochastic Petrov–Galerkin ansatz where the test function space is weighted by a suitable random variable. For
the stochastic Petrov–Galerkin method we establish also convergence results w. r. t. the natural norm. Examples,
demonstrating that the standard stochastic Galerkin method is not stable and their stochastic Galerkin solutions
may not converge in the natural norm, are given in Section 4. Here, the non-convergence is explicitly proved
and illustrated numerically. In contrast, we show that our new stochastic Petrov–Galerkin approach yields a
convergent sequence of approximate solutions.

2. Stochastic variational problem formulations

Let D ⊂ �d, d ∈ �, be a bounded Lipschitz domain and (Ω, A,P) a probability space consisting of a sample
space Ω, a σ-algebra A of subsets of Ω and a probability measure P defined on the σ-algebra A. We consider
the following boundary-value problem

−∇ · (κ(x, ω)∇u(x, ω)) = f(x, ω) x ∈ D, ω ∈ Ω, (2.1)
u(x, ω) = 0 x ∈ ∂D, ω ∈ Ω,

for a given random coefficient κ and a random forcing term f . In contrast to many articles (compare e.g. with
Babuška et al. [2–4,11] or Schwab et al. [5,6,10,15,36]) we do not assume that the coefficient κ can be uniformly
bounded by deterministic constants. We only assume that each realization of the coefficient κ can be strictly
bounded away from zero and infinity.

Assumption 2.1. The coefficient κ : D × Ω → � is a strongly measurable random variable with values
in L∞(D) and there exist real-valued random variables κmin and κmax on (Ω, A,P) such that

0 < κmin(ω) ≤ κ(x, ω) ≤ κmax(ω) < ∞ a. e. and a. s. (2.2)

W. l. o. g. we assume that κmin and κmax are measurable with respect to the σ-algebra σ(κ) which is generated
by the random variable κ.

Remark 2.2. A random variable η with values in a Banach space B is called strongly measurable iff there exists
a sequence of countably-valued random variables in B converging almost surely in B to η (see e.g. [25]). We
assume strongly measurable coefficients since the space L∞(D) is a non-separable Banach space which causes
some problems for probabilistic investigations. In most applications coefficients have additional regularity, for
example, coefficients are assumed to be continuous or to belong to another separable subspace of L∞(D).

Assumption 2.1 is satisfied for random coefficients with constant bounds as well as lognormal random fields under
weak conditions but other L∞(D)-valued random variables can be treated as well. Assumption 2.1 is not very
restrictive: For any non-negative strongly measurable random variable κ in L∞(D) where 1/κ belongs almost
surely to L∞(D), there exist random bounds 0 < κmin < κmax as in (2.2). Though Assumption 2.1 is fairly
general the pathwise weak problem, i.e. a variational formulation associated with the spatial variables, is a well-
posed problem. To see this, we define the corresponding pathwise bilinear form b(·, ·; ω) : H1(D)×H1(D) → �

by

b(u, v; ω) =
∫
D

κ(x, ω)∇u(x) · ∇v(x) dx
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for ω ∈ Ω and we denote by 〈g, v〉H−1,H̊1 the duality pairing between g ∈ H−1(D) and v ∈ H̊1(D). Now,
assuming that f is a random variable with values in H−1(D), we consider a pathwise weak formulation of the
boundary-value problem (2.1).

Problem 2.3 (Pathwise weak formulation). For a given random variable f with values in H−1(D) find a
random variable ũ with values in H̊1(D), such that

b(ũ(ω), v; ω) = 〈f(ω), v〉H−1,H̊1 for all v ∈ H̊1(D) (2.3)

holds almost surely.

Since almost every realization of the coefficient κ is bounded by Assumption 2.1 and f is a random variable
with values in H−1(D), the Lax–Milgram theorem (see e.g. [8], Thm. 2.7.7) tells us that there exists a mapping
ũ : Ω → H̊1(D), ω 
→ ũ(ω) which satisfies the variational equation (2.3) almost surely. Furthermore, the
Lax–Milgram theorem provides the estimate

‖ũ(ω)‖H1(D) ≤ C
‖f(ω)‖H−1(D)

κmin(ω)
a. s. (2.4)

where C > 0 is a suitable constant independent of ω ∈ Ω. Moreover, due to Assumption 2.1 this mapping
ũ can be chosen as a random variable which is measurable w. r. t. the σ-algebra σ(κ, f) generated by the
random variables κ and f . Thus, the mapping ũ is the unique solution of the pathwise weak formulation, i.e. of
Problem 2.3. For further details we refer to [32].

In analogy to purely deterministic boundary-value problems we wish to formulate a variational problem
in both spatial and random variables associated with (2.1). This requires a suitable Hilbert space of random
variables with values in the Sobolev space H̊1(D). Now, moments of random variables with values in appropriate
functional spaces come into play. As it turns out it is not sufficient to deal with expectations with respect to
the basic probability measure P, but suitable weightings are required. Given a real-valued measurable random
function � : D ×Ω → � with �(·, ·) > 0 a. e. and a. s. which satisfies Assumption 2.1 we introduce the weighted
space

Ů� :=
{

η : Ω → H̊1(D) measurable : ‖η‖Ů�
< ∞
}

with

‖η‖Ů�
:=

⎛⎝EP

⎛⎝∫
D

|∇η(x)|2�(x) dx

⎞⎠⎞⎠1/2

=

⎛⎝∫
Ω

∫
D

|∇η(x, ω)|2�(x, ω) dxdP(ω)

⎞⎠1/2

which is a Hilbert space together with the inner product

(η1, η2)Ů�
:= EP

⎛⎝∫
D

∇η1(x) · ∇η2(x)�(x) dx

⎞⎠ .

If the weight function � is independent of the spatial argument, i.e., if it is an almost surely positive real-valued
random variable � > 0, then the weighted spaces

Um
� := L2(Ω, A, �dP; Hm(D)) :=

{
η : Ω → Hm(D) measurable : EP

(
‖η‖2

Hm(D)�
)

< ∞
}

, m ∈ �,

and

Ům
� := L2(Ω, A, �dP; H̊m(D)) :=

{
η : Ω → H̊m(D) measurable : EP

(
‖η‖2

Hm(D)�
)

< ∞
}

, m ∈ �0
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equipped with the norm ‖η‖Um
�

:=
(
EP

(
‖η‖2

Hm(D)�
))1/2

=
(
EP

((∑
|α|≤m ‖∂αη‖2

L2(D)

)
�
))1/2

and the inner

product (η1, η2)Um
�

:= EP

(
(η1, η2)Hm(D)�

)
are also Hilbert spaces. Note that for η ∈ Ů1

� , i.e. for random
variables η with values in H̊1(D), the seminorm

|η|U1
�

:=
(
EP

(
|η|2H1(D)�

))1/2

=

⎛⎝EP

⎛⎝�

∫
D

|∇η(x)|2 dx

⎞⎠⎞⎠1/2

is equivalent to the norm ‖ · ‖U1
�
. If the space L2(Ω, A, �dP) := {η : Ω → � measurable:EP

(|η|2�) < ∞} is
separable, then there exist isomorphisms to the corresponding tensor product spaces, i.e.

Um
�

∼= Hm(D) ⊗ L2(Ω, A, �dP), m ∈ �,

and
Ům

�
∼= H̊m(D) ⊗ L2(Ω, A, �dP), m ∈ �0.

Furthermore, the dual space of Ům
� can be identified with the space U−m

�−1 . For convenience we denote the

unweighted spaces, i.e. � ≡ 1, by Um and Ům. On occasion we may replace the probability measure P in the
definition of Um and Ům by another probability measure Q and write Um

Q and Ům
Q , respectively, in this case.

We define the bilinear form

a(u, v) := EP

⎛⎝∫
D

κ(x)∇u(x) · ∇v(x) dx

⎞⎠ =
∫
Ω

∫
D

κ(x, ω)∇u(x, ω) · ∇v(x, ω) dxdP(ω),

and the linear form
	(v) := EP

(
〈f, v〉H−1,H̊1

)
=
∫
Ω

〈f(ω), v(ω)〉H−1,H̊1 dP(ω).

Given Assumption 2.1 the weak problem posed in unweighted spaces, i.e., for a given f ∈ U−1 find u ∈ Ů1 such
that there holds

a(u, v) = 	(v) for all v ∈ Ů1 (2.5)

is in general not well-posed. For example, it may happen that there does not even exist a solution in Ů1 for
a given f ∈ U−1 (see [32]). Note, that this stands in marked contrast to the case when the coefficient κ can
be strictly bounded away from zero and infinity. Thus, we have to use an alternative stochastic variational
formulation and arrive at a first weak problem posed on the associated energy space as in [2, 23].

Problem 2.4 (Unweighted weak formulation). For a given f find û ∈ Ůκ, such that

a(û, v) = 	(v) for all v ∈ Ůκ.

Thereby the term unweighted weak formulation refers to the fact that standard unweighted (bi)linear forms
are used although the solution and test function spaces are weighted spaces. Afterwards we introduce also a
weighted weak formulation, see Problem 2.6, where the (bi)linear forms are weighted.

To prove existence of a solution to Problem 2.4 we employ weighted spaces with the lower bound κmin in
Assumption 2.1. We note that such a lower bound is not uniquely defined and some freedom in its choice is
sometimes useful. Due to (2.2) there exist several real-valued random variables μ > 0 a. s. satisfying

0 < cμ(ω) ≤ κ(x, ω) a. e. and a. s. (2.6)

for a constant c > 0. The random variable κmin is only a special case satisfying (2.6) with constant c = 1.
W. l. o. g. we can assume that the random variable μ is also σ(κ)-measurable.
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Theorem 2.5. If Assumption 2.1 holds and μ satisfies (2.6), then for any f ∈ U−1
μ−1 there exists a unique

û ∈ Ůκ solving Problem 2.4.

Proof. Since for f ∈ U−1
μ−1 we have 	 ∈ U−1

μ−1 ⊂
(
Ůκ

)∗
, the result follows immediately from Riesz’ representation

theorem. �

Therefore Problem 2.4 is well-posed in the given weighted spaces. However, we are interested in a solution û in
the space Ů1 rather than the space Ůκ. For deterministic lower bounds the space Ůκ is continuously embedded
in Ů1. Unfortunately, this is in general not true if the coefficient κ can be bounded from below only by a
random variable, e.g. μ. Clearly, if we assume a forcing term f ∈ U−1

μ−2 , then our discussion of the pathwise
variational problem and the corresponding estimate (2.4) above tell us that the weak solution û belongs also
to the space Ů1, see also Corollary 2.8. In general, however, we cannot estimate the Ů1-norm in terms of the
Ůκ-norm.

A possible remedy is to recast Problem 2.4 above. By multiplying the pathwise variational equation (2.3)
with the reciprocal of the random variable μ we obtain a random coefficient κ/μ which can now be strictly
bounded away from zero by the constant c in inequality (2.6). The corresponding bilinear form aμ and linear
form 	μ are the weighted versions of the bilinear form a and linear form 	, respectively, i.e.

aμ(u, v) := EP

⎛⎝ 1
μ

∫
D

κ(x)∇u(x) · ∇v(x) dx

⎞⎠ =
∫
Ω

∫
D

κ(x, ω)
μ(ω)

∇u(x, ω) · ∇v(x, ω) dxdP(ω)

and

	μ(v) := EP

(
1
μ
〈f, v〉H−1,H̊1

)
=
∫
Ω

1
μ(ω)

〈f(ω), v(ω)〉H−1,H̊1 dP(ω).

Problem 2.6 (Weighted weak formulation). For a given f find ū ∈ Ůκ
μ
, such that there holds

aμ(ū, v) = 	μ(v) for all v ∈ Ů κ
μ
.

Theorem 2.7. If Assumption 2.1 holds and μ satisfies (2.6), then for any f ∈ U−1
μ−2 there exists a unique

ū ∈ Ůκ
μ

solving Problem 2.6.

Proof. Since for any f ∈ U−1
μ−2 there holds 	μ ∈ U−1 ⊂

(
Ůκ

μ

)∗
the result follows immediately from Riesz’

representation theorem. �

Now, the space Ůκ
μ

is continuously embedded in Ů1. Thus, there exists a constant C > 0 such that

‖u‖U1 ≤ C‖u‖Ů κ
μ

for all u ∈ Ůκ
μ
.

Corollary 2.8. Under Assumption 2.1 together with (2.6) for every f ∈ U−1
μ−1 ∩ U−1

μ−2 the weak formulations

Problems 2.4 and 2.6 have unique solutions û and ū in Ů1, respectively, which are almost surely equal to the
pathwise solution ũ of the pathwise weak formulation Problem 2.3, i.e.,

û = ū = ũ a. s.

as random variables in H̊1(D). Moreover, both weak solutions û and ū are σ(κ, f)-measurable.
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Proof. Analogously to Theorem 3.3 in [32], we can show that both weak solutions û and ū solve the pathwise
weak formulation Problem 2.3 almost surely, the solution ũ of which is unique and σ(κ, f)-measurable. �

Therefore, we assume throughout the rest of the paper that f ∈ U−1
μ−1 ∩ U−1

μ−2 and do not distinguish between
the three weak solutions, but refer to the weak solution denoted by û.

Remark 2.9. The results in this article hold also for other boundary conditions as long as the bilinear forms a
and aμ form inner products on the corresponding solution spaces.

3. Stochastic Galerkin method

The stochastic Galerkin method or stochastic finite element method (SFEM) is a very popular approach
for the numerical solution of random equations. It is based on a stochastic variational formulation and uses
sequences of finite-dimensional solution and test function spaces in order to obtain approximate solutions.
However, to get reliable results a rigorous convergence analysis must be carried out. In the next section we will
construct examples showing that the standard stochastic Galerkin approach applied to our model problem (2.1)
is not stable and may not lead to a sequence of approximate solutions which converge in the natural norm to
the exact solution. Therefore, we present in this section an alternative stochastic Galerkin approach and prove
its stability.

The definition of the finite-dimensional solution and test function spaces requires a discretization in the
spatial as well as in the stochastic dimension. Therefore, we parameterize the random input data by finitely
many or countably many real-valued random variables which are referred to as basic random variables. For
example, the popular Karhunen–Loève expansion of random fields (see e.g. [28]) yields such a representation.
As observed, for example, by Karniadakis, Xiu and their co-authors in [29,41–45] the choice/distribution of the
basic random variables affects the approximation quality of the stochastic Galerkin solution. We mention that
not only the distribution of the basic random variables is crucial here.

In the following we assume that for our model problem (2.1) a finite or infinite-dimensional random vector
ξ := (ξi)i∈Iξ

with values in �|Iξ| is given such that κ and f are both measurable with respect to σ(ξ). Hence,
due to the Doob–Dynkin lemma (e.g. in [26]) there exist measurable functions κξ : �|Iξ| → L∞(D) and
fξ : �|Iξ| → H−1(D) satisfying κ = κξ(ξ) in L∞(D) and f = fξ(ξ) in H−1(D) almost surely. Because of the
assumptions on f we obtain a weak solution û in Ů1. By Corollary 2.8 the weak solution û is σ(κ, f)-measurable
and thus it is also σ(ξ)-measurable. Consequently there exists a measurable function ûξ : �|Iξ| → H̊1(D), such
that û = ûξ(ξ) a. s. in H̊1(D). In our setting all random variables of interest are σ(ξ)-measurable, thus, we
suppose w. l. o. g. that A = σ(ξ) holds. We then identify the space U1 = L2(Ω, σ(ξ),P; H̊1(D)) as appropriate
solution space.

Moreover, we assume that the random vector ξ has the distribution FP
ξ and each of the basic random variables

ξi, i ∈ Iξ, possesses finite moments of arbitrary order, i.e. EP|ξi|n < ∞ for all n ∈ �, and has a continuous
distribution function FP

ξi
. Here, the distributions FP

ξ and FP
ξi

are understood as the distributions of the random
variables ξ and ξi w. r. t. the probability measure P, i.e., these are the distributions of ξ and ξi as random
variables (with values in the spaces �|Iξ| and �, respectively) on the probability space (Ω, A,P). On occasion
we will consider these random variables also on probability spaces with other probability measures and thus
their distributions change accordingly. For this reason we attach the corresponding probability measure to the
distribution symbol of a random variable.

We choose the finite-dimensional solution space

UN,K,hp := Uhp ⊗ UN,K ⊂ H̊1(D) ⊗ L2(Ω, σ(ξ),P) � L2(Ω, σ(ξ),P; H̊1(D)),

where Uhp is a finite-dimensional subspace of H̊1(D) obtained by a suitable version (h-, p- or hp-) of the
deterministic finite element method and UN,K is a finite-dimensional subspace of L2(Ω, σ(ξ1, . . . , ξK),P) ⊂
L2(Ω, σ(ξ),P) where {1, . . . , K} ⊆ Iξ. Since we want to use generalized polynomial chaos (see e.g. [41,42]), i.e.
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polynomials in the underlying basic random variables ξi, i ∈ Iξ, we construct the finite dimensional space UN,K

as follows

UN,K := span

⎧⎨⎩ξα :=
∏
i∈Iξ

ξαi

i , α ∈ ΛN,K

⎫⎬⎭ ,

where ΛN,K denotes a finite index set

ΛN,K ⊂ Λ :=
{

α ∈ �|Iξ|
0 : α has only finitely many non-zero entries

}
such that the sequence of these finite-dimensional subsets (ΛN,K)N,K satisfies

⋃
N,K ΛN,K = Λ. For example,

we may choose ΛN,K = J1, where

J1 := {α ∈ Λ : αi = 0 ∀ i > K, |α| ≤ N }, |α| :=
∑
i∈Iξ

αi,

selects (complete) multivariate polynomials with bounded total degree, or ΛN,K = J2, where

J2 := {α ∈ Λ : αi = 0 ∀ i > K, αi ≤ N ∀ 1 ≤ i ≤ K}

selects (tensor product) multivariate polynomials with uniformly bounded degree of the individual basic random
variables. Then, the discrete versions of the unweighted and the weighted weak formulation introduced in
Section 2 read as follows.

Problem 3.1 (Discrete unweighted weak formulation). For a given f find ûN,K,hp ∈ UN,K,hp, such that there
holds

a(ûN,K,hp, v) = 	(v) for all v ∈ UN,K,hp.

Problem 3.2 (Discrete weighted weak formulation). For a given f find ūN,K,hp ∈ UN,K,hp, such that there
holds

aμ(ūN,K,hp, v) = 	μ(v) for all v ∈ UN,K,hp.

So Problem 3.1 is exactly that discrete weak problem which arises if we apply the stochastic Galerkin method
to the weak problem posed on the unweighted spaces (2.5) no matter if this is well-posed or not. Alternatively,
this means, Problem 3.1 corresponds to the discrete weak problem which results from applying the stochastic
Galerkin method to the standard weak problem arising in the case of a coefficient κ which can be bounded by
constants. Therefore, we call the approach yielding the discrete unweighted weak problem, i.e. Problem 3.1, the
standard stochastic Galerkin approach. Thus, the solution ûN,K,hp is called the standard stochastic Galerkin
solution or standard stochastic Galerkin approximation, respectively.

We then make the following observations.

Theorem 3.3. Let Assumption 2.1 be fulfilled and f ∈ U−1
μ−2 ∩ U−1

μ−1 .

(i) If κmax ∈ Lr(Ω, A,P) for some r > 1, then there exists a unique stochastic Galerkin solution ûN,K,hp in
UN,K,hp solving Problem 3.1. Moreover, ûN,K,hp is the best approximation in UN,K,hp of the weak solution
û with respect to the norm of Ůκ, i.e. ‖û − ûN,K,hp‖Ůκ

= inf
z∈UN,K,hp

‖û − z‖Ůκ
.

(ii) If κmax/μ ∈ Lr(Ω, A,P) for some r > 1, then there exists a unique stochastic Galerkin solution ūN,K,hp in
UN,K,hp solving Problem 3.2. Moreover, ūN,K,hp is the best approximation in UN,K,hp of the weak solution
û with respect to the norm of Ůκ

μ
, i.e. ‖û − ūN,K,hp‖Ů κ

μ

= inf
z∈UN,K,hp

‖û − z‖Ů κ
μ

.



ON THE CONVERGENCE OF THE STOCHASTIC GALERKIN METHOD FOR RANDOM ELLIPTIC PDES 1245

Proof. In order to prove this result we show that the finite-dimensional subspace UN,K,hp is a subset of Ůκ

and Ůκ
μ
, respectively. For any v = ξαϕ, α ∈ Λ and ϕ ∈ Uhp this can be deduced for (i) from the integrability

condition of κmax by

‖v‖2
Ůκ

= a(v, v) =
∫
Ω

∫
D

κ(x, ω)|∇v(x, ω)|2 dxdP(ω) ≤
∫
Ω

∫
D

κmax(ω)ξ(ω)2α|∇ϕ(x)|2 dxdP(ω)

= |ϕ|2H1(D)EP

(
κmaxξ

2α
) ≤ |ϕ|2H1(D) (EPκr

max)
1/r (EPξ2sα

)1/s
< ∞

and for (ii) from the integrability condition on κmax/μ by

‖v‖2
Ů κ

μ

= aμ(v, v) =
∫
Ω

∫
D

κ(x, ω)
μ(ω)

|∇v(x, ω)|2 dxdP(ω) ≤
∫
Ω

∫
D

κmax(ω)
μ(ω)

ξ(ω)2α|∇ϕ(x)|2 dxdP(ω)

= |ϕ|2H1(D)EP

(
κmax

μ
ξ2α

)
≤ |ϕ|2H1(D)

(
EP

(
κmax

μ

)r)1/r (
EPξ2sα

)1/s
< ∞,

respectively, where 1 < s < ∞ with 1
r + 1

s = 1 in both cases. Thus, there exist unique best approximations, i.e.
orthogonal projections ûN,K,hp := ΠUN,K,hp

û onto UN,K,hp in Ůκ and ūN,K,hp := ΠUN,K,hp
û onto UN,K,hp in Ůκ

μ

satisfying
a(û − ûN,K,hp, v) = 0 and aμ(û − ūN,K,hp, v) = 0, respectively,

for all v ∈ UN,K,hp. In other words, since a(û, v) = 	(v) and aμ(ū, v) = 	μ(v), we have arrived at

a(ûN,K,hp, v) = 	(v) and aμ(ūN,K,hp, v) = 	μ(v), respectively,

for all v ∈ UN,K,hp. �

Notably, the discrete version of the weighted weak problem can also be interpreted as a discrete version of
the unweighted variational formulation by using a so-called stochastic Petrov–Galerkin ansatz where the finite-
dimensional test function space differs from the finite-dimensional solution space. If we define the weighted
finite-dimensional test function space

VN,K,hp :=
{

u

μ
: u ∈ UN,K,hp

}
,

we see that the problem of finding ūN,K,hp ∈ UN,K,hp which satisfies

aμ(ūN,K,hp, v) = 	μ(v) for all v ∈ UN,K,hp

is equivalent to finding ūN,K,hp ∈ UN,K,hp which satisfies

a(ūN,K,hp, v) = 	(v) for all v ∈ VN,K,hp.

This means, the weighting 1/μ of the (bi)linear forms is transferred to the finite-dimensional test function space.
Thus, we arrive at the discrete weighted weak problem using the unweighted bilinear form a and linear form 	
(instead of aμ and 	μ) on the finite-dimensional solution space UN,K,hp and the finite-dimensional test function
space VN,K,hp which equals the space UN,K,hp weighted by 1/μ.

Altogether, this implies, that we have identified two different stochastic Galerkin approaches for the very
same variational equation: We are looking for a solution in UN,K,hp which satisfies the equation

a(u, v) = 	(v)
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for all v ∈ UN,K,hp or for all v ∈ VN,K,hp, respectively. In general this defines two different Galerkin projections
and hence two different solutions in the same finite-dimensional space.

If we know in addition that the finite-dimensional solution spaces (UN,K,hp)N,K,hp lie dense in the space Ůκ

or Ůκ
μ
, respectively, we can conclude that the approximation errors tend to zero, i.e.

‖û − ûN,K,hp‖Ůκ
→ 0 and ‖û − ūN,K,hp‖Ů κ

μ

→ 0.

In many cases of practical interest, however, we are not interested in the convergence in these weighted norms
but in the approximation error in the unweighted, the U1-norm which therefore we call also the natural norm.
Here the weighted weak formulation is advantageous due to the continuous embedding of Ůκ

μ
in Ů1 which allows

us to deduce

‖û − ūN,K,hp‖U1 ≤ C‖û − ūN,K,hp‖Ů κ
μ

= C inf
z∈UN,K,hp

‖û − z‖Ů κ
μ

(3.1)

together with an upper estimate of the form

‖û − ūN,K,hp‖U1 ≤ C inf
z∈UN,K,hp

‖û − z‖U1
κmax

μ

. (3.2)

Hence, we can estimate the approximation error of the stochastic Galerkin projection ūN,K,hp in U1 by a best
approximation error in a stronger norm related to a weighting by the real-valued random variable κmax/μ. Due
to the assumption κmax/μ ∈ Lr(Ω, A,P) for some r > 1 the expectation cκmax

μ
:= EP(κmax/μ) is finite and the

measure Q defined by

dQ :=
1

cκmax
μ

κmax

μ
dP

is a probability measure. In the following we consider the function spaces Um
Q and Ům

Q instead of Um
κmax

μ
and

Ům
κmax

μ
, m ∈ �, which coincide as sets with Um

κmax
μ

and Ům
κmax

μ
but are much easier to handle due to the corre-

sponding probability space (Ω, A,Q) at hand where w. l. o. g. we have assumed A = σ(ξ).

Corollary 3.4. If f ∈ U−1
μ−2 ∩ U−1

μ−1 , κmax/μ ∈ Lr(Ω, A,P) for some r > 1 and û ∈ Ů1
Q, then there holds

‖û − ūN,K,hp‖U1 ≤ C inf
z∈UN,K,hp

‖û − z‖U1
Q

(3.3)

for a constant C > 0 independent of N, K, h, p and û.

Proof. This follows immediately from the assumptions and the estimates (3.1) and (3.2). �

Remark 3.5. If the coefficient κ can be bounded from below by a positive constant, then the finite-dimensional
test function space VN,K,hp coincides with the solution space UN,K,hp and thus weighting is not necessary. If,
additionally, the coefficient κ can also be bounded from above by a constant, then the result of Corollary 3.4 is
equivalent to the deterministic theory.

3.1. Convergence analysis

Next, we proceed with a closer look at the estimate of the approximation error (3.3) and identify and analyze
different sources of discretization errors. To this end, we introduce three different orthogonal projections and
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denote by

ΠŮ1
Q,N,K,hp

: Ů1
Q → UN,K,hp

the orthogonal projection onto UN,K,hp,

ΠŮ1
Q,N,K

: Ů1
Q → H̊1(D) ⊗ UN,K

the orthogonal projection onto H̊1(D) ⊗ UN,K,

ΠŮ1
Q,K

: Ů1
Q → H̊1(D) ⊗ L2(Ω, σ(ξ1, . . . , ξK),Q)

the orthogonal projection onto

H̊1(D) ⊗ L2(Ω, σ(ξ1, . . . , ξK),Q) � L2(Ω, σ(ξ1, . . . , ξK),Q; H̊1(D)),

respectively. All projections are carried out w. r. t. the inner product associated with the U1
Q-norm. Assuming

û ∈ Ů1
Q we can estimate the approximation error of the stochastic Petrov–Galerkin approximation ūN,K,hp to

the exact solution by using (3.3) for z = ΠŮ1
Q,N,K,hp

û as follows

‖û − ūN,K,hp‖U1 ≤ C
[
‖û − ΠŮ1

Q,K
û‖U1

Q
+ ‖ΠŮ1

Q,K
û − ΠŮ1

Q,N,K
û‖U1

Q
+ ‖ΠŮ1

Q,N,K
û − ΠŮ1

Q,N,K,hp
û‖U1

Q

]
. (3.4)

Hence this error has three components, namely an approximation error induced by discretizing in the spatial
dimension

e1 := ‖ΠŮ1
Q,N,K

û − ΠŮ1
Q,N,K,hp

û‖U1
Q

and two approximation errors arising from the discretization in the stochastic dimension: We consider only
polynomials in the first K basic random variables

e2 := ‖û − ΠŮ1
Q,K

û‖U1
Q

and bound their polynomial degrees by N

e3 := ‖ΠŮ1
Q,K

û − ΠŮ1
Q,N,K

û‖U1
Q
.

Again, the first error term e1 is the error arising from the spatial discretization of the Sobolev space H̊1(D)
by the finite-dimensional finite element space Uhp. Therefore, the spatial approximation error can be bounded
using standard arguments from the theory of the deterministic finite element methods. Here, we employ an
hp-version of the finite element method (see e.g. [9]). For example, under the assumptions in Section 5.8.3 in [9]
and given that the domain D is obtained from the reference domain D̂ := (−1, 1)d, d = 1, 2, 3, by a smooth,
invertible and regular mapping F : D̂ → D (in the sense of Section 5.8.3 in [9]) there holds the following.

Corollary 3.6. For û ∈ Uk
Q ∩ Ů1

Q, k ≥ 2, there holds

e1 = ‖ΠŮ1
Q,N,K

û − ΠŮ1
Q,N,K,hp

û‖U1
Q
≤ C̃hm−1p−(k−1)‖û‖Uk

Q

where m = min{k, p + 1} and the constant C̃ > 0 is independent of N , K, h, p and û.

Proof. Based on the results in [9] (see e.g. Eq. (5.8.25)) for the deterministic case we find

‖ΠŮ1
Q,N,K

û(ω) − ΠŮ1
Q,N,K,hp

û(ω)‖H1(D) ≤ Chm−1p−(k−1)‖û(ω)‖Hk(D) a. s.

with m = min{k, p + 1} and a suitable constant C > 0 independent of N , K, h, p, û and ω ∈ Ω. Squaring the
formula above and taking the expectation EQ w. r. t. the probability measure Q yields

EQ

∥∥∥ΠŮ1
Q,N,K

û − ΠŮ1
Q,N,K,hp

û
∥∥∥2

H1(D)
≤ C2h2(m−1)p−2(k−1)EQ

(
‖û‖2

Hk(D)

)
= C2h2(m−1)p−2(k−1)‖û‖2

Uk
Q

with m = min{k, p + 1} and a suitable constant C > 0 independent of N , K, h, p and û. �
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Remark 3.7. If, in addition, the mapping F is affine we can prove, analogously to [9], the result

e1 = ‖ΠŮ1
Q,N,K

û − ΠŮ1
Q,N,K,hp

û‖U1
Q
≤ Chm−1p−(k−1)

(
EQ|û|2Hm;k(D)

)1/2

with m = min{k, p + 1}, a constant C > 0 and where | · |Hm;k(D) denotes the seminorm

|u|Hm;k(D) :=

⎛⎝ k∑
j=m

d∑
i=1

∥∥∥ ∂j

∂xj
i

u
∥∥∥2

L2(D)

⎞⎠1/2

where only pure derivatives in each spatial direction appear (cf. Canuto et al. [9], p. 318 and formula (5.8.12)
on p. 314).

Clearly, additional smoothness of the weak solution in the spatial argument implies faster convergence. Note
that the approximation error e1 does not depend on the basic random variables.

The second error term usually occurs only if countably many basic random variables are used to represent
the random input data. For finitely many basic random variables ξ = (ξi)i∈Iξ

, i.e. Iξ = {1, . . . , M} ⊂ �, the
finite-dimensional solution space UN,K,hp is usually defined for K = M . Thus, the orthogonal projection of the
weak solution û onto the space H̊1(D) ⊗ L2(Ω, σ(ξ1, . . . , ξK),Q) is the weak solution itself and the error e2

equals zero. For a countable set of basic random variables it can be shown that the error e2 converges to zero.

Corollary 3.8. Let Iξ = �, then there holds for û ∈ Ů1
Q

e2 = ‖û − ΠŮ1
Q,K

û‖U1
Q
→ 0, K → ∞.

Proof. The orthogonal projection ΠŮ1
Q,K

v onto L2(Ω, σ(ξ1, . . . , ξK),Q; H̊1(D)) is equal to the conditional

expectation of v ∈ Ů1
Q w. r. t. the σ-algebra spanned by the random variables ξ1, . . . , ξK (see e.g. [37]). This

means
ΠŮ1

Q,K
v = EQ

(
v
∣∣∣(ξ1, . . . , ξK)

)
.

Since

σ

⎛⎝ ⋃
K≥1

σ(ξ1, . . . , ξK)

⎞⎠ = σ(ξ),

it follows (see e.g. [7])∥∥∥v − ΠŮ1
Q,K

v
∥∥∥

U1
Q

=
∥∥∥v − EQ

(
v
∣∣∣(ξ1, . . . , ξK)

)∥∥∥
U1

Q

→ 0, K → ∞

for any v ∈ L2(Ω, σ(ξ),Q; H̊1(D)). Due to û ∈ L2(Ω, σ(ξ),Q; H̊1(D)) this implies immediately

‖û − ΠŮ1
Q,K

û‖U1
Q
→ 0, K → ∞

which completes the proof. �

Investigations of the third error term e3 are based on properties of generalized polynomial chaos. In order to
represent an arbitrary H̊1(D)-valued random variable in Ů1

Q = L2(Ω, σ(ξ),Q; H̊1(D)) in terms of a generalized
polynomial chaos expansion the multivariate polynomials in the basic random variables ξ must be complete
in L2(Ω, σ(ξ),Q). Since κmax/μ ∈ Lr(Ω, A,P) for some r > 1 there holds EQ|ξi|n < ∞ for all n ∈ � and
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i ∈ Iξ. Thus, there exists a set of multivariate orthonormal polynomials {pα(ξ), α ∈ Λ} w. r. t. the probability
measure Q, i.e.

EQ (pα(ξ)pβ(ξ)) = δα,β, for α, β ∈ Λ.

Here, the distribution FQ
ξ of the basic random variable ξ = (ξi)i∈Iξ

as random variable on the probability space
(Ω, A,Q) is defined by

FQ
ξ (y) = Q(ξ ≤ y) = EQ�{ξ≤y} =

1
cκmax

μ

EP

(
�{ξ≤y}

κmax

μ

)
Since κmax

μ is σ(ξ)-measurable, there exists a measurable function tκmax
μ

: �|Iξ| → � with tκmax
μ

(ξ) = κmax
μ ·

Therefore, the distribution FQ
ξ of ξ is determined by

FQ
ξ (dy) =

1
cκmax

μ

tκmax
μ

(y)FP
ξ (dy).

The completeness of the polynomials {pα(ξ), α ∈ Λ} in the space L2(Ω, σ(ξ),Q) is then equivalent to the density
of the polynomials {pα(y), α ∈ Λ} in L2(�|Iξ|, B(�|Iξ|), FQ

ξ (dy)). Some necessary conditions to establish this
property are discussed in [13]. For example, the polynomials form an orthonormal basis of L2(Ω, σ(ξ),Q) if for
any marginal distribution

FQ
ξ1,...,ξK

(y1, . . . , yK) =
∫

FQ
ξ (y1, . . . , yK , (dyi)i>K) =

∫
1

cκmax
μ

tκmax
μ

(y)FP
ξ (y1, . . . , yK , (dyi)i>K)

K ∈ � with {1, . . . , K} ⊆ Iξ, there exists a constant a > 0 such that

∫
exp

⎛⎝a

√√√√ K∑
i=1

y2
i

⎞⎠FQ
ξ1,...,ξK

(dy1, . . . , dyK) < ∞.

In summary, this condition is e.g. fulfilled if there exists a constant a > 0 satisfying∫
exp

⎛⎝a

√∑
i∈Iξ

y2
i

⎞⎠FQ
ξ (dy) = EQ exp

⎛⎝a

√∑
i∈Iξ

ξ2
i

⎞⎠ =
1

cκmax
μ

EP

⎛⎝exp

⎛⎝a

√∑
i∈Iξ

ξ2
i

⎞⎠ tκmax
μ

(ξ)

⎞⎠ < ∞.

Assuming that the polynomials are dense in L2(Ω, σ(ξ),Q) the weak solution û ∈ Ů1
Q possesses a generalized

polynomial chaos expansion, i.e.
û =
∑
α∈Λ

ûαpα(ξ),

since it is σ(ξ)-measurable. The generalized polynomial chaos coefficients are given by

ûα = EQ (ûpα(ξ)) = EQ (ûξ(ξ)pα(ξ)) ∈ H̊1(D), α ∈ Λ.

Notably, the orthogonal projections ΠŮ1
Q,K

û and ΠŮ1
Q,N,K

û admit also a generalized polynomial chaos represen-
tation, namely,

ΠŮ1
Q,K

û =
∑

d(α)≤K

ûαpα(ξ), d(α) := max{i ∈ � : αi �= 0}

and
ΠŮ1

Q,N,K
û =

∑
α∈ΛN,K

ûαpα(ξ).

Summarizing these results we arrive at the following corollary.



1250 A. MUGLER AND H.-J. STARKLOFF

Corollary 3.9. If the polynomials {pα(ξ), α ∈ Λ} form an orthonormal basis of L2(Ω, σ(ξ),Q), and û ∈ Ů1
Q,

then the approximation error e3 converges to zero, i.e.

e3 = ‖ΠŮ1
Q,K

û − ΠŮ1
Q,N,K

û‖U1
Q
→ 0 when N, K → ∞.

In particular, if the polynomials {pα(ξ), α ∈ Λ : d(α) ≤ K} form an orthonormal basis of
L2(Ω, σ(ξ1, . . . , ξK),Q) for any K ∈ � with {1, . . . , K} ⊆ Iξ, we have for any K

e3 = ‖ΠŮ1
Q,K

û − ΠŮ1
Q,N,K

û‖U1
Q
→ 0 for N → ∞.

Remark 3.10. A necessary condition for the completeness of the polynomials {pα(ξ), α ∈ Λ} in L2(Ω, σ(ξ),Q)
is their completeness in the space L2(Ω, σ(ξ),P).

Combining the results of the Corollaries 3.6, 3.8 and 3.9 we can now formulate the precise conditions for
which the sequence of stochastic Petrov–Galerkin solutions ūN,K,hp converges to the weak solution û in Ů1.

Corollary 3.11. For û ∈ Uk
Q ∩ Ů1

Q, k ≥ 2, if the stochastic Petrov–Galerkin solutions ūN,K,hp exist and the
orthonormal polynomials {pα(ξ), α ∈ Λ} are complete in L2(Ω, σ(ξ),Q), then the sequence of stochastic Petrov–
Galerkin solutions ūN,K,hp converge in Ů1 to the weak solution û.

Proof. The result follows immediately from the estimate (3.4) and the Corollaries 3.4, 3.6, 3.8 and 3.9. �

This means that for the stochastic Petrov–Galerkin solutions ūN,K,hp associated with the weighted test
function space we can establish relatively weak conditions which guarantee convergence in U1. We would like
to emphasize that for standard stochastic Galerkin solutions ûN,K,hp associated with unweighted test functions,
we need stronger assumptions to prove convergence in U1. To illustrate this point we refer to Example 4.1 in
Section 4 ahead where a convergent sequence of stochastic Petrov–Galerkin solutions ūN,K,hp is constructed
whereas the sequence of standard stochastic Galerkin solutions ûN,K,hp fails to converge. In ongoing research we
are also studying the basic random variables’ impact on the approximation quality and the rate of convergence
of the stochastic Petrov–Galerkin solutions ūN,K,hp.

3.2. Assembly of the stochastic Galerkin equations and computational aspects

The use of weighted test functions affects the assembly of the associated stochastic Galerkin system. In
what follows we outline the differences to the unweighted case (see e.g. [12,19,27]). Specifically, we address the
calculation of the stochastic Petrov–Galerkin solution ūN,K,hp and associated characteristics, for example, the
expectation function EPūN,K,hp and second order moment function EPū2

N,K,hp.
Let κmax/μ ∈ Lr(Ω, A,P) for some r > 1. Assume {qα(ξ)ϕi, α ∈ ΛN,K, i ∈ Ihp} is a basis of the space

UN,K,hp where the sets {ϕi, i ∈ Ihp} and {qα(ξ), α ∈ ΛN,K} are bases of the spaces Uhp and UN,K , respectively.
Then a basis of the finite-dimensional test function VN,K,hp space is given by{

qα(ξ)
μ

ϕi, α ∈ ΛN,K, i ∈ Ihp

}
.

Hence, the stochastic Petrov–Galerkin solution ūN,K,hp =
∑

α∈ΛN,K

i∈Ihp

uαiϕiqα(ξ) satisfies the linear system of

equations
Au = f

where
A :=

(
a(qαϕi, qβϕj/μ)

)
βj,αi

, f :=
(
	(ϕjqβ/μ)

)
βj

and u :=
(
uαi

)
αi

.
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Using the parameterized input data κξ(ξ) with κξ : �|Iξ| → L∞(D) and fξ(ξ) with fξ : �|Iξ| → H−1(D) we
obtain

a(ϕiqα, ϕjqβ/μ) = EP

⎛⎝⎛⎝∫
D

[κξ(ξ)](x)∇ϕi(x) · ∇ϕj(x) dx

⎞⎠ qα(ξ)qβ(ξ)/μ

⎞⎠
=
∫
D

EP

( [κξ(ξ)](x)
μ

qα(ξ)qβ(ξ)
)
∇ϕi(x) · ∇ϕj(x) dx

and

	(ϕjqβ/μ) = EP

(
〈fξ(ξ), ϕj〉H−1,H̊1 qβ(ξ)/μ

)
=
〈
EP

(fξ(ξ)
μ

qβ(ξ)
)
, ϕj

〉
H−1,H̊1

for any i, j ∈ Ihp, α, β ∈ ΛN,K.
It is important to choose suitable polynomials {qα(ξ), α ∈ ΛN,K} so that the computation of the expectations

in the linear system is actually feasible. To this end, we discuss two options.
First, it is possible to employ the polynomials {p̄α(ξ), α ∈ Λ} which form an orthonormal basis of

L2(Ω, σ(ξ),P). Thus, evaluation of the expected values

EP

(
κξ(ξ)p̄α(ξ)p̄β(ξ)/μ

)
and EP

(
fξ(ξ)p̄β(ξ)/μ

)
requires the calculation of the generalized polynomial chaos expansions of κξ(ξ)/μ and fξ(ξ)/μ or their gen-
eralized polynomial chaos coefficients, respectively. The corresponding characteristics of the stochastic Petrov–
Galerkin solution ūN,K,hp, i.e. expected value and second order moment function

EPūN,K,hp and EPū2
N,K,hp

are determined as usual by

EPūN,K,hp = EP

( ∑
α∈ΛN,K

i∈Ihp

uαiϕip̄α(ξ)
)

=
∑

α∈ΛN,K

i∈Ihp

uαiϕi EP (p̄α(ξ))︸ ︷︷ ︸
=δα,0

=
∑

i∈Ihp

u0iϕi

and

EPū2
N,K,hp = EP

( ∑
α,β∈ΛN,K

i,j∈Ihp

uαiuβjϕiϕj p̄α(ξ)p̄β(ξ)
)

=
∑

α,β∈ΛN,K

i,j∈Ihp

uαiϕiuβjϕj EP (p̄α(ξ)p̄β(ξ))︸ ︷︷ ︸
=δα,β

=
∑

α∈ΛN,K

∑
i,j∈Ihp

uαiuαjϕiϕj =
∑

α∈ΛN,K

( ∑
i∈Ihp

uαiϕi

)2
.

A second option can be obtained if the expectation of the random variable μ−1 is finite and EP|ξi|nμ−1 < ∞
holds for all n ∈ � and i ∈ Iξ. For example, this is satisfied if H−1(D) ⊂ U−1

μ−2 . Then, w. l. o. g. we can assume
that the expectation of μ−1 is equal to one. In this case the polynomials {p̃α(ξ), α ∈ Λ} which are orthonor-
mal in L2(Ω, A, μ−1dP) can serve as basis polynomials qα(ξ). Then, the computation of the expected values
EP

(
κξ(ξ)p̃α(ξ)p̃β(ξ)/μ

)
and EP

(
fξ(ξ)p̃β(ξ)/μ

)
requires only the generalized polynomial chaos expansions of

κξ and fξ in the polynomials {p̃α(ξ), α ∈ Λ}. However, evaluating the first and second order moment function
of the stochastic Petrov–Galerkin solution is more complicated than in the first option since the polynomials
{p̃α(ξ), α ∈ Λ} do not satisfy EP(p̃α(ξ)p̃β(ξ)) = Cαδα,β . Thus, we have to compute

EPūN,K,hp = EP

( ∑
α∈ΛN,K

i∈Ihp

uαiϕip̃α(ξ)
)

=
∑

α∈ΛN,K

i∈Ihp

uαiϕiEPp̃α(ξ)
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and
EPū2

N,K,hp = EP

( ∑
α,β∈ΛN,K

i,j∈Ihp

uαiuβjϕiϕj p̃α(ξ)p̃β(ξ)
)

=
∑

α,β∈ΛN,K

i,j∈Ihp

uαiϕiuβjϕjEP (p̃α(ξ)p̃β(ξ)) .

Suppose now, that the generalized polynomial chaos expansions of the polynomials p̃α(ξ), α ∈ ΛN,K, are given
in terms of sums of the polynomials {p̄α(ξ), α ∈ Λ}, i.e., we know the generalized polynomial chaos coefficients
c
(α)
β satisfying

p̃α(ξ) =
∑

β∈ΛN,K

c
(α)
β p̄β(ξ).

These coefficients are sometimes called connection coefficients in the literature [24, 30, 33]. We then obtain the
stochastic Petrov–Galerkin solution in terms of the polynomials {p̄α(ξ), α ∈ Λ} by rearranging

ūN,K,hp =
∑

α∈ΛN,K

i∈Ihp

uαiϕip̃α(ξ) =
∑

α∈ΛN,K

i∈Ihp

uαiϕi

∑
β∈ΛN,K

c
(α)
β p̄β(ξ) =

∑
β∈ΛN,K

p̄β(ξ)
( ∑

α∈ΛN,K

i∈Ihp

c
(α)
β uαiϕi

)
.

The expected value and second order moment function can be computed as follows

EPūN,K,hp =
∑

α∈ΛN,K

i∈Ihp

c
(α)
0 uαiϕi and EPū2

N,K,hp =
∑

β∈ΛN,K

( ∑
α∈ΛN,K

i∈Ihp

c
(α)
β uαiϕi

)2
.

If both sets of polynomials are basis polynomials of the finite-dimensional subspace UN,K , then the resulting
stochastic Galerkin solutions coincide, of course. Depending on the problem, however, it can happen that the
two options differ with respect to computational aspects and performance.

Example 3.12. Assume that for a given boundary-value problem the basic random variable is a single standard
Gaussian random variable ξ and that the random variable 1/μ = tμ−1(ξ) = exp

(
ε
2ξ2
)
/σ with σ = 1/

√
1 − ε

for 0 < ε < 1 serves as an admissible weighting random variable. Then the basic random variable ξ has also a
Gaussian distribution on the probability space (Ω, A, μ−1dP) and the corresponding density function fμ−1dP

ξ is
given by

fμ−1dP
ξ (y) = tμ−1(y)fP

ξ (y) =
1√
2πσ

exp
(ε

2
y2
)

exp
(
−y2

2

)
=

1√
2πσ

exp
(
−y2(1 − ε)

2

)
=

1√
2πσ

exp
(
− y2

2σ2

)
, y ∈ �.

The associated orthonormal polynomials {p̃n(ξ), n ∈ �0} in L2(Ω, σ(ξ), μ−1dP) are the normalized probabilistic
Hermite polynomials {Hen(ξ), n ∈ �0} scaled in the argument, i.e.

p̃n(ξ) =
1√
n!

Hen

(
ξ

σ

)
, n ∈ �0.

If we assemble the stochastic Galerkin system by the first option described above, the original Hermite polyno-
mials

p̄n(ξ) =
Hen(ξ)√

n!
, n = 0, . . . , N

are used to span the finite-dimensional subspace UN,K with K = 1. Therefore, we have to calculate for instance
the polynomial chaos coefficients of κξ(ξ)/μ, i.e.

EP

(
κξ(ξ)

μ

Hen(ξ)√
n!

)
, n ∈ �0.
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Using the second proposed option we have to calculate the generalized polynomial chaos coefficients of κ and f
w. r. t. the polynomials {p̃n(ξ), n ∈ �0}. For the coefficient κ this requires evaluation of the polynomial chaos
coefficients of κξ(σξ) by the change of variables z = y/σ

EP

(
κξ(ξ)

μ

Hen(ξ/σ)√
n!

)
=
∫
�

κξ(y)
Hen(y/σ)√

n!
tμ−1(y)fP

ξ (y) dy =
∫
�

κξ(y)
Hen(y/σ)√

n!
fμ−1dP

ξ (y) dy

=
∫
�

κξ(σz)
Hen(z)√

n!
fP

ξ (z) dz = EP

(
κξ(σξ)

Hen(ξ)√
n!

)
, n ∈ �0.

In order to obtain the first and second order moments of the approximate solution, we need the generalized
polynomial chaos coefficients c

(n)
i satisfying

Hen(ξ/σ)√
n!

=
n∑

i=0

c
(n)
i

Hei(ξ)√
i!

n ∈ �0.

Fortunately, in this case analytic expressions for these coefficients are available:

c
(n)
i =

⎧⎨⎩
√

n!√
i!(n−i

2 )!σ
−n
(

1−σ2

2

)(n−i)/2

, n + i even,

0, otherwise,
i = 0, . . . , n, n ∈ �0.

If the multivariate orthonormal polynomials {p̄α(ξ), α ∈ Λ} or {p̃α(ξ), α ∈ Λ} can be represented as
tensor products of univariate orthonormal polynomials, then the assembly of the stochastic Galerkin system
simplifies significantly. To answer this question, we need to investigate if the basic random variables (ξi)i∈Iξ

are independent as random variables on the probability spaces (Ω, A,P) or (Ω, A, μ−1dP), respectively. Let
tμ−1 : �|Iξ| → � be a measurable function such that there holds

tμ−1(ξ) = μ−1.

Then the distribution Fμ−1dP
ξ of ξ on (Ω, A, μ−1dP) is

Fμ−1dP
ξ (dy) = tμ−1(y)FP

ξ (dy).

Analogously, the distribution Fμ−1dP
ξi

of each random variable ξi, i ∈ Iξ, is given by

Fμ−1dP
ξi

(dyi) = tμ−1,i(yi)FP
ξi

(dyi),

where tμ−1,i : �→ � is the measurable function satisfying

tμ−1,i(ξi) = EP

(
μ−1|ξi

)
, i ∈ Iξ.

Then, the independence of the basic random variables (ξi)i∈Iξ
on the respective probability spaces holds if and

only if the associated distribution FP
ξ or Fμ−1dP

ξ is the product of the distributions of the individual random
variables ξi, i ∈ Iξ, i.e.,

FP
ξ (dy) =

∏
i∈Iξ

FP
ξi

(dyi) or Fμ−1dP
ξ (dy) =

∏
i∈Iξ

Fμ−1dP
ξi

(dyi),

respectively. If, for instance, the random variables (ξi)i∈Iξ
are independent on the probability space (Ω, A,P)

and the function tμ−1 can be represented as product

tμ−1(y) =
∏
i∈Iξ

tμ−1,i(yi),

then, the random variables (ξi)i∈Iξ
are also independent on the probability space (Ω, A, μ−1dP).
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4. Examples

In this section we present two examples of boundary-value problems which illustrate the different conver-
gence behavior of the standard stochastic Galerkin approach and the stochastic Petrov–Galerkin approach,
respectively. Because the difference is related to the stochastic aspects of the problems, we construct very sim-
ple one-dimensional boundary-value problems where the random coefficients depend on a single basic random
variable. In both examples we will observe that

• the standard stochastic Galerkin approach which is usually used (see e.g. [27,40]) fails to provide a sequence
of approximate solutions converging to the exact solution in the natural norm,

• the stochastic Petrov–Galerkin approach with a suitable weighted test function space yields a sequence of
approximate solutions converging to the exact solution in the natural norm.

Both results, non-convergence for the standard stochastic Galerkin approach and convergence for the stochastic
Petrov–Galerkin approach, respectively, are illustrated numerically. In addition, we prove non-convergence of
the standard stochastic Galerkin approach for Example 4.1 analytically.

In both examples we study a one-dimensional boundary-value problem of the type

−(κ(x, ω)u′(x, ω))′ = f(x, ω), x ∈ (0, 1), ω ∈ Ω,

with homogeneous Dirichlet boundary conditions

u(0, ω) = u(1, ω) = 0, ω ∈ Ω,

or mixed boundary conditions

u(0, ω) = 0 and κ(1, ω)u′(1, ω) = F (ω), ω ∈ Ω.

Though we do not consider mixed boundary conditions in our model problem (2.1) in Section 1, the theory
developed in the preceding sections still applies. To eliminate the spatial discretization error as far as possible
we use a single Gauss–Lobatto–Legendre spectral element of suitable degree p for the spatial discretization.
Thus, we are able to observe the effect of the different discretizations of the stochastic space. In the experiments
we always compare the corresponding relative approximation error in the U1-norm – the natural norm, i.e.,

‖û − ûN,K,hp‖U1

‖û‖U1
and

‖û − ūN,K,hp‖U1

‖û‖U1
,

respectively. Furthermore, since we consider a single basic random variable, we drop the index K in the notation
of the finite-dimensional subspaces and stochastic Galerkin solutions for the sake of convenience.

Example 4.1. We consider the boundary-value problem on the domain D = (0, 1) with random coefficient
κ(x, ω) = exp(ξ(ω)) and random forcing term f(x, ω) = exp(ξ(ω))|ξ(ω) − 1| where ξ ∼ N (0, 1) is a standard
Gaussian random variable. This means, we are looking for the solution of

− (exp(ξ(ω))u′(x, ω))′ = exp(ξ(ω))|ξ(ω) − 1|, x ∈ (0, 1), ω ∈ Ω,

u(0, ω) = u(1, ω) = 0, ω ∈ Ω.

Since the coefficient κ is strongly measurable in L∞(D) and there holds

0 < κmin := exp(ξ) ≤ κ ≤ exp(ξ) =: κmax < ∞
we can choose μ = κmin. Since f ∈ U−1

exp(−2ξ) ∩ U−1
exp(−ξ) we can also conclude that there exists a unique weak

solution û ∈ Ů1 given by

û(x, ω) = [ûξ(ξ(ω))](x) =
1
2
|ξ(ω) − 1|(x − x2), x ∈ (0, 1), ω ∈ Ω.

This is of course also a pathwise strong solution.
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Figure 1. Relative approximation error err of the standard stochastic Galerkin solution ûN,hp

for different orders N of polynomial chaos.

For the standard stochastic Galerkin approach we choose identical finite-dimensional solution and test func-
tion spaces UN,hp = Uhp ⊗ UN where

UN = span
{

Hen(ξ)√
n!

, n = 0, . . . , N

}
is spanned by the first N + 1 probabilistic Hermite polynomials {Hen(ξ), n ∈ �0}. The relative approximation
error

err =
‖û − ûN,hp‖U1

‖û‖U1

of the corresponding standard stochastic Galerkin solutions ûN,hp is shown in Figure 1. Here, we use a single
Gauss–Lobatto–Legendre spectral element of degree p = 3 for the spatial discretization. We clearly see that the
approximation error does not converge to zero for increasing orders of the chaos polynomials. In fact, we can
prove that the sequence of standard stochastic Galerkin solutions ûN,hp does not converge in Ů1 to the exact
solution for N → ∞. To see this, we note that due to the special structure of the boundary-value problem the
standard stochastic Galerkin solution

ûN,hp(x, ω) = ûhp(x)ûN (ξ(ω))

is the product of the deterministic function ûhp(x) which satisfies the equation∫
D

û′
hp(x)v′hp(x) dx =

∫
D

vhp(x) dx for all vhp ∈ Uhp (4.1)

and the random variable ûN (ξ) satisfying the equation

EP

(
exp(ξ)ûN (ξ)

Hem(ξ)√
m!

)
= EP

(
exp(ξ)|ξ − 1|Hem(ξ)√

m!

)
for all m = 0, . . . , N. (4.2)
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We denote ûD(x) := 1
2 (x − x2) and ûΩ(ξ) := |ξ − 1| and obtain the following lower bound

‖û − ûN,hp‖U1 = ‖ûDûΩ(ξ) − ûhpûN (ξ)‖U1 = ‖ûΩ(ξ)(ûD − ûhp) + ûhp(ûΩ(ξ) − ûN(ξ))‖U1

≥ ‖ûhp(ûΩ(ξ) − ûN(ξ))‖U1 − ‖ûΩ(ξ)(ûD − ûhp)‖U1

= ‖ûhp‖H1(D) ‖ûΩ(ξ) − ûN(ξ)‖L2(Ω,A,P) − ‖ûΩ(ξ)‖L2(Ω,A,P) ‖ûD − ûhp‖H1(D).

In view of
‖ûD − ûhp‖H1(D) → 0 and ‖ûΩ(ξ)‖L2(Ω,A,P) < ∞

the second error term
(‖ûΩ(ξ)‖L2(Ω,A,P) ‖ûD − ûhp‖H1(D)

)
converges to zero and the norm of ‖ûhp‖H1(D)

converges to ‖ûD‖H1(D). However, the stochastic part ûN(ξ) does not converge to ûΩ(ξ) in L2(Ω, A,P) as
shown in detail in the Appendix A. In fact, there exists a subsequence (ûNk

(ξ))k∈�0 of (ûN(ξ))N∈�0 whose
second order moments tend to infinity which implies that the error ‖ûΩ(ξ) − ûNk

(ξ)‖L2(Ω,A,P) goes to infinity,
i.e.,

‖ûΩ(ξ) − ûNk
(ξ)‖L2(Ω,A,P) → ∞, k → ∞.

Of course, this also implies that the corresponding approximation error err goes to infinity, i.e.,

‖û − ûNk,hp‖U1 → ∞, k, p → ∞.

Thus, the sequence of standard stochastic Galerkin solutions ûN,hp does not converge to the exact solution û

in Ů1.

Alternatively, we employ the proposed stochastic Petrov–Galerkin approach. W. l. o. g. we can normalize the
random variable μ such that the expectation of its reciprocal μ−1 is one, i.e., we take

μ := exp(1/2) exp(ξ).

We define the weighted finite-dimensional test function space

VN,hp = {u exp(−ξ), u ∈ UN,hp} = span
{

uhp
Hen(ξ)√

n!
exp(−ξ), uhp ∈ Uhp, n = 0, . . . , N

}
.

Since κmax = exp(−1/2)μ the probability measure Q coincides with the probability measure P and thus
Ů1 = Ů1

Q. Hence, based on Corollary 3.4, we obtain for the corresponding stochastic Galerkin solution ūN,hp

the estimate
‖û − ūN,hp‖U1 ≤ C inf

z∈UN,hp

‖û − z‖U1

where exactly the same norms appear on the left and right hand side of the inequality. Due to û ∈ Uk ∩ Ů1

for any k ≥ 1 and the completeness of the Hermite polynomials in the space L2(Ω, σ(ξ),P) the sequence
of the stochastic Petrov–Galerkin solutions ūN,hp converges to the exact solution. This is illustrated by the
approximation error err on the left side of Figure 2. Here we have again used a single Gauss–Lobatto–Legendre
spectral element of degree p = 3 for the spatial discretization. Again, any solution ūN,hp is the product of a
deterministic function ūhp and a random variable ūN(ξ) satisfying analogous equations as (4.1) and (4.2) for ûhp

and ûN (ξ). Note that in this case, the stochastic part ūN (ξ) is the exact polynomial chaos approximation of order
N of ûΩ(ξ), hence we compute the best approximation with respect to the norm of the space L2(Ω, σ(ξ),P). For
example, for N = 0 the expectation of the stochastic Petrov–Galerkin solution ū0,hp is the exact expectation
of û as function of the spatial argument x ∈ D. On the right side of Figure 2 (using a a single Gauss–Lobatto–
Legendre spectral element of degree p = 50 for the spatial discretization) the second order moment function of
the exact solution (blue-� line)

EPû2(x, ·) =
1
2
(x − x2)2, x ∈ D,
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û
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ūN,hp

Figure 2. Left: Relative approximation error err of the stochastic Petrov–Galerkin solu-
tion uN,hp for different orders N of polynomial chaos. Right: Second order moment function
of the exact solution û and the standard stochastic Galerkin solution ûN,hp and stochastic
Petrov–Galerkin solution ūN,hp for polynomial chaos of order N = 40.

is compared with the second order moment function of the stochastic Galerkin solutions ûN,hp (green-+ line)
and ūN,hp (red-× line) for generalized polynomial chaos order N = 40. As expected, the second order moment
function of the stochastic Petrov–Galerkin solution ūN,hp approximates well the second order moment function
of the exact solution whereas the second order moment function of the standard stochastic Galerkin solution
ûN,hp differs substantially.

Our second example is again a one-dimensional boundary-value problem but with a more sophisticated
random coefficient, a deterministic forcing term and mixed boundary conditions.

Example 4.2. We study the following boundary-value problem

− (exp
(−ξ2(ω)x/10

)
u′(x, ω)

)′
= f(x), x ∈ (0, 1), ω ∈ Ω,

u(0, ω) = 0, ω ∈ Ω,

exp(−ξ2(ω)/10)u′(1, ω) = exp(−6ξ2(ω)), ω ∈ Ω,

with random coefficient κ(x, ω) = exp
(−ξ2(ω)x/10

)
, deterministic forcing term f ∈ C[0, 1] ⊂ H−1(D) and

random boundary-value F (ω) = exp
(−6ξ2(ω)

)
where the random variable ξ is again standard Gaussian. The

coefficient κ depends on ω ∈ Ω as well as on the spatial argument x ∈ D, is strongly measurable and bounded
by the random variables

κmin := exp(−ξ2/10) and κmax := 1,

respectively, satisfying
0 < κmin ≤ κ ≤ κmax < ∞ a. e. and a. s.

The exact solution û of the boundary-value problem is explicitly given by

û(x, ω) =
∫ x

0

exp
(
ξ2(ω)y/10

)(
exp
(−6ξ2(ω)

)
+
∫ 1

y

f(z) dz

)
dy.

Alternatively, any random variable of the form exp
(− ε

10 ξ2
)

with ε ≥ 1 is also a lower bound for the coefficient κ.
Since we want to work with random variables for which the reciprocal has expectation one and is integrable of
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Figure 3. Relative approximation error err as function of the generalized polynomial chaos
order N for different weights με, ε = 0, 1, 2, 3.

an order greater than one we consider

με :=

√
5

5 − ε
exp
(
− ε

10
ξ2
)

, 1 ≤ ε < 5.

Then, for ε ≤ 3 the expectation

EP

(|û|2H1μ−1
ε

)
=

√
5 − ε

5
EP

(
|û|2H1 exp

( ε

10
ξ2
))

is also finite. Note that for ε > 3 the latter property is in general not satisfied. For 1 ≤ ε ≤ 3 there exists a
unique weak solution û in U1, especially in U1

μ−1
ε

. Therefore, any με with 1 ≤ ε ≤ 3 can serve as a suitable
weighting random variable. This allows us to define the weighted test function spaces

V
(ε)
N,hp = {u/με, u ∈ UN,hp}

where
UN,hp = Uhp ⊗ UN with UN = span{ξn, n = 0, . . . , N}

is the finite-dimensional solution space. Now, any sequence of stochastic Petrov–Galerkin solutions (ū(ε)
N,hp)N,hp

with 1 ≤ ε ≤ 3 converges to the exact solution û in U1, since there holds û ∈ Uκmax
με

∩ Uk
κmax

με

for any k ≥ 1

and the corresponding polynomials are dense in L2(Ω, σ(ξ), κmax/μεdP). For the constant forcing term f ≡ 1
we compute the relative approximation errors err of the stochastic Petrov–Galerkin solutions ū

(ε)
N,hp for different

values ε, namely ε = 1, 2, 3, using a single Gauss–Lobatto–Legendre spectral element of degree p = 50 for the
spatial discretization. The results are presented in Figure 3. Obviously the error decays according to the theory
developed in the preceding sections. For comparison purposes the relative approximation error of the standard
stochastic Galerkin solution ûN,hp for the unweighted test function space, i.e. ε = 0, is also shown in Figure 3.
After a period of decrease the approximation error increases suggesting that this sequence of standard stochastic
Galerkin solutions does not converge to the exact solution û in U1.
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5. Summary

In this work we have presented two possible stochastic variational formulations – an unweighted and a
weighted one – for elliptic partial differential equations with random coefficients where the coefficients are
bounded strictly away from zero and infinity by random variables. For each formulation we have established a
solution theory and applied the stochastic Galerkin method for the numerical solution. It turns out that the
stochastic Galerkin method employed on the unweighted weak formulation corresponds to the standard stochas-
tic Galerkin approach whereas the stochastic Galerkin method employed on the weighted weak formulation can
be interpreted as a stochastic Petrov–Galerkin approach since the test function space does no longer coincide
with the solution space but corresponds to the solution space weighted by a suitable random variable. We have
analyzed the convergence of these two different approximations to the exact solution. We have presented an
example where the standard stochastic Galerkin approach produces approximations which do not converge to
the exact solution in the natural norm. This does not mean, however, that this approach never yields con-
vergent approximate solutions to the weak problem. But the convergence of the standard stochastic Galerkin
approximation depends on the underlying boundary-value problem and must be proved separately. As possible
remedy we have presented the stochastic Petrov–Galerkin approach with a modified test function space. We
have established conditions for the convergence of the stochastic Petrov–Galerkin solutions in the natural norm
and presented examples where this approach produces convergent approximations despite the failure of the
standard stochastic Galerkin approach.

Appendix A. On the convergence of ûN(ξ) in Example 4.1

We consider the algebraic equation
κu = f

for a given random coefficient κ with
κ(ω) = exp(ξ(ω))

and random right side f with
f(ω) = exp(ξ(ω))|ξ(ω) − 1|

where the random variable ξ is standard Gaussian. Clearly, the exact solution is

u(ω) = uξ(ξ(ω)) = |ξ(ω) − 1| ∈ L2(Ω, σ(ξ),P).

As discussed in Example 4.1 of Section 4 the finite-dimensional solution and test function space of the standard
stochastic Galerkin approach is the subspace

UN = span
{

Hen(ξ)√
n!

, n = 0, . . . , N

}
spanned by the probabilistic Hermite polynomials. Thus, the corresponding solution uN ∈ UN solving

EP

(
exp(ξ)uN

Hem(ξ)√
m!

)
= EP

(
exp(ξ)|ξ − 1|Hem(ξ)√

m!

)
for all m = 0, . . . , N (A.1)

is equal to the stochastic part ûN(ξ) of the stochastic Galerkin solution ûN,hp of Example 4.1. Since uN ∈ UN

satisfies (A.1) there holds

EP (κuNv) − EP (fv) = EP (κ (uN − u) v) = 0 for all v ∈ UN .

Thus, the stochastic Galerkin solution uN is the best approximation to the exact solution u ∈ L2(Ω, σ(ξ), κdP)
in the subspace UN . In other words, uN is the orthogonal projection of u onto UN in L2(Ω, σ(ξ), κdP), i.e. with
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respect to the weighted inner product 〈v1, v2〉κ := EP(κv1v2). To prove that the solution uN does not converge
in quadratic mean to the exact solution u we consider the orthonormal basis {p̃n(ξ), n ∈ �0} of the weighted
space L2(Ω, σ(ξ), exp(ξ)dP) which is given by

p̃n(ξ) :=
e−1/4Hen(ξ − 1)√

n!
, n ∈ �0.

Hence, the stochastic Galerkin solution uN can be written as

uN =
N∑

n=0

〈u, p̃n(ξ)〉κ p̃n(ξ).

Assume that the polynomial chaos coefficients c
(n)
i , i = 0, . . . , n, n ∈ �0, in the expansions

p̃n(ξ) =
n∑

i=0

c
(n)
i

Hen(ξ)√
n!

,

are known, then the stochastic Galerkin solution of order N with respect to the Hermite polynomials takes on
the form

uN =
N∑

n=0

〈u, p̃n(ξ)〉κ p̃n(ξ) =
N∑

n=0

〈u, p̃n(ξ)〉κ
n∑

i=0

c
(n)
i

Hei(ξ)√
i!

=
N∑

i=0

Hei(ξ)√
i!

N∑
n=i

〈u, p̃n(ξ)〉κ c
(n)
i .

If the stochastic Galerkin solutions uN converge to the exact solution, their second order moments must converge
to the exact solution’s second order moment since∣∣‖u‖L2(Ω,A,P) − ‖uN‖L2(Ω,A,P)

∣∣ ≤ ‖u − uN‖L2(Ω,A,P) → 0, N → ∞,

i.e., there must hold

‖uN‖2
L2(Ω,A,P) = EP (uN )2 =

N∑
i=0

(
N∑

n=i

〈u, p̃n(ξ)〉κ c
(n)
i

)2

→ ‖u‖2
L2(Ω,A,P) = EPu2 < ∞, N → ∞.

However, we show that there exists a subsequence of stochastic Galerkin solutions (uN )N∈� where the second
order moments diverge to infinity.

To see this, we evaluate the generalized polynomial chaos coefficients 〈u, p̃n(ξ)〉κ for n ∈ �0 by the change
of variables y = x − 1 yielding

〈u, p̃n(ξ)〉κ =

∞∫
−∞

uξ(x)
e−1/4Hen(x − 1)√

n!
exp(x)

exp(− 1
2x2)√

2π
dx

= e1/4

∞∫
−∞

uξ(x)
Hen(x − 1)√

n!

exp(− (x−1)2

2 )√
2π

dx

= e1/4

∞∫
−∞

uξ(y + 1)
Hen(y)√

n!

exp(− y2

2 )√
2π

dy = e1/4EP

(
uξ(ξ + 1)

Hen(ξ)√
n!

)

= e1/4EP

(
|ξ|Hen(ξ)√

n!

)
=

{
e1/4 (−1)n/2+1√n!√

2π2n/2−1( n
2 )!(n−1)

, n even,

0, otherwise.
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Expanding the polynomials p̃n(ξ) in polynomial chaos leads us to the sums

p̃n(ξ) =
e−1/4Hen(ξ − 1)√

n!
=

n∑
i=0

c
(n)
i

Hei(ξ)√
i!

where the coefficients are given by

c
(n)
i = e−1/4 (−1)n−i

√
n!

(n − i)!
√

i!

due to Formula 22.12.8 in [1]. Combining these two results we obtain

〈u, p̃n(ξ)〉κ c
(n)
i =

{
e1/4 (−1)n/2+1√n!√

2π2n/2−1( n
2 )!(n−1)

e−1/4 (−1)n−i
√

n!

(n−i)!
√

i!
, n even,

0, otherwise,

=

{
(−1)3n/2+1−in!√

2π2n/2−1( n
2 )!(n−1)(n−i)!

√
i!
, n even,

0, otherwise.

Now, we investigate the second order moments of the subsequence (u2N )N∈�0 of the stochastic Galerkin solu-
tions, that is,

EP(u2N )2 =
2N∑
i=0

(
2N∑
n=i

〈u, p̃n(ξ)〉κ c
(n)
i

)2

.

In order to show that this sequence goes to infinity for N → ∞ we consider a single term in this sum, namely
the summand for i = 2N − 3:(

2N∑
n=2N−3

〈u, p̃2n(ξ)〉κ c
(n)
i

)2

=
(
〈u, p̃2N−2(ξ)〉κ c

(2N−2)
2N−3 + 〈u, p̃2N(ξ)〉κ c

(2N)
2N−3

)2
=

(
(−1)N+1(2N − 2)!√

2π2N−2(N − 1)!(2N − 3)
√

(2N − 3)!
+

(−1)N(2N)!√
2π2N−1N !(2N − 1)3!

√
(2N − 3)!

)2

=

(
(2N − 2)!√

2π2N−1(N − 1)!
√

(2N − 3)!

(
(−1)N+12
2N − 3

+
(−1)N

3

))2

=
(2N − 2)!2

2π22N−2(N − 1)!2(2N − 3)!

(
4

(2N − 3)2
− 4

3(2N − 3)
+

1
9

)
=

(2N − 2)!2−(2N−2)

π(N − 1)!2

(
4(N − 1)
(2N − 3)2

− 4(N − 1)
3(2N − 3)

+
N − 1

9

)
.

Then, applying the Stirling’s formula (see e.g. [1]) yields

(2N − 2)!2−(2N−2)

π(N − 1)!2︸ ︷︷ ︸
	 1√

N

(
4(N − 1)
(2N − 3)2

− 4(N − 1)
3(2N − 3)

+
N − 1

9

)
︸ ︷︷ ︸

	N

�
√

N
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when N → ∞ and thus we obtain

EP(u2N )2 =
2N∑
i=0

(
2N∑
n=i

〈u, p̃n(ξ)〉κ c
(n)
i

)2

≥ (2N − 2)!2−(2N−2)

π(N − 1)!2

(
4(N − 1)
(2N − 3)2

− 4(N − 1)
3(2N − 3)

+
N − 1

9

)
→ ∞

for N → ∞. This implies that the sequence of stochastic Galerkin solutions (uN )N∈�0 fails to converge in
quadratic mean to the exact solution u.
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