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ERROR ESTIMATES FOR A FITZHUGH–NAGUMO
PARAMETER-DEPENDENT REACTION-DIFFUSION SYSTEM
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Abstract. Space-time approximations of the FitzHugh–Nagumo system of coupled semi-linear
parabolic PDEs are examined. The schemes under consideration are discontinuous in time but con-
forming in space and of arbitrary order. Stability estimates are presented in the natural energy norms
and at arbitrary times, under minimal regularity assumptions. Space-time error estimates of arbitrary
order are derived, provided that the natural parabolic regularity is present. Various physical parameters
appearing in the model are tracked and numerical examples are presented.
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1. Introduction

The FitzHugh–Nagumo (FHN) system consists of two parabolic PDEs which are coupled through nonlinear
terms, ⎧⎨

⎩
ut − Δu + u3 − u = −v + f1 in (0, T )× Ω
u = 0 on (0, T ) × Γ
u(0, x) = u0 in Ω,

(1.1)

⎧⎨
⎩

vt − δΔv = ε(u − α1v) + f2 in (0, T )× Ω
v = 0 on (0, T ) × Γ
v(0, x) = v0 in Ω.

(1.2)

Here, Ω denotes a bounded domain in R
2, with Lipschitz boundary Γ , u0, v0 and f1, f2 denote initial data and

forcing terms respectively. The parameters ε, δ, α1 appearing in the model problem, represent different scales
of the physical variables u, v involved in our model. The FitzHugh–Nagumo equations were proposed for the
modelling of the transmission of electrical impulses in a nerve axon (see e.g. [19, 26, 35, 36]). They belong to a
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general category of parabolic PDE systems of reaction-diffusion equations that model physical phenomena in
biology (see e.g. [18, 26, 36, 38, 42]) of the form,⎧⎨

⎩
ut − Δu = f(u, v) + f1 in (0, T )× Ω
u = 0 on (0, T ) × Γ
u(0, x) = u0 in Ω,

⎧⎨
⎩

vt − δΔv = εg(u, v) + f2 in (0, T )× Ω
v = 0 on (0, T ) × Γ
v(0, x) = v0 in Ω.

The classical FitzHugh–Nagumo model is deduced from the above system by choosing f(u, v) = u − u3 − v,
g(u, v) = u − α1v, and can be viewed as a simplified Hodgkin–Huxley model (see e.g. [26, 36] and references
within). These systems are coupled and parameter-dependent, hence they exhibit interesting dynamical behav-
ior. For several results regarding mathematical analysis, including dynamics, of such systems we refer the reader
to the books [18, 38] (see also references within).

Our main goal is to provide a rigorous analysis of a general class of numerical schemes that can be useful
to applied scientists in studying the behavior of such systems. The main difficulties associated to the approxi-
mation of the FHN system, as well as to other similar reaction-diffusion parameter dependent systems, can be
summarized as follows:

• Structural difficulties: the FHN system contains two parabolic PDEs which are coupled through nonlinear
terms. In addition, the physical phenomena modeled by the above system posses complex dynamics for
realistic values of the parameters ε, δ. In particular, the natural energy norms imposed by the structure of
our problem scale differently in terms of these parameters, creating substantial difficulties in the analysis
and computations of such problems.

• Regularity restrictions: the regularity of solutions u, v is typically low, hence standard techniques, which
require the presence of higher regularity, typically fail and/or require restrictions on the size of the time-
discretization parameter τ in terms of the spatial discretization parameter h that are prohibitively expensive
for realistic computations. Even when enhanced parabolic regularity is present, due to standard boot-strap
regularity arguments, it is not clear how to utilize high-order methods in order to speed up convergence of
discrete schemes.

• Parameter dependence: the physical parameters ε, δ should be tracked in the estimates since they effectively
determine the size of various norms, and hence, the overall behavior of the system. In particular, great care
should be exercised in order to avoid any exponential dependence of the time-step restriction to quantities
of the form 1/ε or 1/δ.

The schemes considered here are discontinuous (in time) but conforming in space. The motivation for using
the discontinuous (in time) Galerkin approach relies to its performance in a vast area of problems with solutions
of low regularity. In addition, as we will subsequently show discontinuous Galerkin schemes also provide the
natural framework to explore coarse time-stepping approaches. The main feature of discontinuous time stepping
Galerkin schemes is their ability to mimic the stability properties of the corresponding continuous system.
In particular, we will show that such numerical schemes are stable under minimal regularity assumptions on
the given data, i.e., f1, f2 ∈ L2[0, T ; H−1(Ω)], u0, v0 ∈ L2(Ω) in the natural energy norm and at arbitrary
time-points.

The main goal of this work is to derive stability and error estimates of arbitrary order for which τ and h can
be chosen independently. More specifically, we demonstrate convergence under minimal regularity assumptions
on the given data, and we derive optimal error estimates of order O(τk+1 + hl) when solutions are sufficiently
smooth. The above estimates are also applicable in case that standard conforming linear finite elements in
space are combined with high order discontinuous time-stepping schemes. In addition, great care is exercised
in order to track the appearance of the parameters δ, ε, α1 into various constants appearing in the estimates.
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Our computational results highlight the fact that discontinuous Galerkin time-stepping schemes provide a
unified framework to treat both high and low order schemes. Numerical experiments also verify our theoretical
findings, and in particular, the applicability of “coarse” time stepping approaches, where a few time-steps are
needed in order to achieve the spatial convergence rate. Our technique follows the recently developed analysis of
discontinuous time-stepping schemes for the Navier–Stokes equations [7] and can be extended in other reaction-
diffusion parameter dependent systems.

Semi-discrete estimates for the FitzHugh–Nagumo equations have been analyzed in [29], when δ = 0, while
error estimates for semi-discrete approximations for other reaction-diffusion parameter dependent systems have
been recently obtained in [21,22]. Fully-discrete schemes (first-order in time) were considered in [21,22,24], for
other parameter dependent systems of reaction-diffusion equations. In particular, in [24] a first order scheme
is analyzed under minimal regularity assumptions on the data for the forced Fisher equation, while in [21, 22],
a semi-implicit first order (in time) scheme is discussed for reaction-diffusion parameter dependent systems
modelling predator-prey interactions.

For a system of hysteric reaction-diffusion equations, an alternating direction method is studied in [4],
while convergence of order two is demonstrated for reaction-diffusion (parameter dependent) system using
the Peaceman–Rachford approximation in [10]. Operator splitting techniques are also considered in the work
of [25].

For methods related to the numerical analysis of general semilinear parabolic PDEs we refer the reader
to [40] and the references within. In [40] a survey of several results regarding a-priori and a-posteriori analysis
of semilinear PDEs is presented for smooth solutions. An imlpicit-explicit multistep method for approximations
of semi-linear parabolic PDEs is analyzed in the work of [3] and while linear implicit schemes were studied
in [1]. The discontinuous (in time) Galerkin technique is analyzed in the works of [2, 9, 11–15, 30–32] for linear
and semilinear problems. Several results regarding a posteriori error estimation of reaction-diffusion systems
are presented in [16] (see also references within), while space-time adaptivity techniques for reaction-diffusion
type of systems (including examples for the FHN system) are proposed in [20]. A survey of various numerical
techniques associated to the methods of lines, Runge–Kutta and operator splitting methods is presented in [27]
(see also references within). Finally, in the very recent work of [34], numerical techniques for the solution of
optimal control problems related to FHN systems are analyzed.

An outline of this paper follows. After presenting some preliminaries in Section 2, the setup of the fully
discrete problem, and the basic stability estimates of our FHN system under minimal regularity assumptions
are presented in Section 3. These results are necessary in order to derive the error estimates of Section 4. Finally,
in Section 5, we close this paper by presenting computational examples using high and low order in time schemes
for smooth solutions, as well as a numerical example under minimal regularity assumptions.

2. Preliminaries

2.1. Notation

For any banach space X we denote the time-space spaces by Lp[0, T ; X ], L∞[0, T ; X ], endowed with norms:

‖w‖Lp[0,T ;X] =

(∫ T

0

‖w‖p
Xdt

) 1
p

, ‖w‖L∞[0,T ;X] = esssupt∈[0,T ] ‖w‖X .

The set of all continuous functions v : [0, T ] → X , is denoted by C[0, T ; X ] endowed with norm

‖w‖C[0,T ;X] = max
t∈[0,T ]

‖w(t)‖X .

For the definition of spaces Hs[0, T ; X ], we refer the reader to [17,42]. Typically, X ≡ Hs(Ω), 0 < s ∈ R, where
Hs(Ω) denotes the standard Sobolev (Hilbert) spaces. We denote by H1

0 (Ω) ≡ {w ∈ H1(Ω) : w|Γ = 0}, and
by H−1(Ω) its dual. Finally, we use the notation 〈., .〉 for the duality pairing of H−1(Ω), H1

0 (Ω) and (., .) for
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the standard L2 inner product. In the sequel, we will use the following (natural energy) space for the variables
u, v ∈ W (0, T ) where,

W (0, T ) = L2[0, T ; H1
0 (Ω)] ∩ H1[0, T ; H−1(Ω)]

with norm
‖w‖2

W (0,T ) = ‖w‖2
L2[0,T ;H1

0 (Ω)] + ‖wt‖2
L2[0,T ;H−1(Ω)].

The bilinear form associated to our problem is defined by

a(w1, w2) =
∫

Ω

∇w1∇w2dx ∀w1, w2 ∈ H1(Ω).

Using Poincaré’s inequality we obtain the corresponding coercivity condition

a(w, w) ≥ CP ‖w‖2
H1(Ω) ∀w ∈ H1

0 (Ω).

We close this preliminary section, by recalling Young’s inequality, a discrete Grönwall lemma, and the Gagliardo–
Nirenberg interpolation inequality.

Young’s inequality: for any a, b ≥ 0 any δ > 0, and s1, s2 > 1

ab ≤ δas1 + C(δ)bs2 , with (1/s1) + (1/s2) = 1. (2.3)

Discrete Grönwall lemma: if an + bn ≤ (1 + Cτn)an−1 + fn and τn satisfies the inequality maxn Cτn < 1 then

aN +
N∑

n=1

eC(tN−tn)bi ≤ (1 + TO(τ))
(
eCtN

a0 +
N∑

n=1

eC(tN−tn)fn
)

where τ = maxn τn, τn = tn − tn−1, and tn =
∑n

i=1 τn.

Gagliardo–Nirenberg inequality: let 1 ≤ q ≤ r < ∞. Then, for s = 1 − (q/r),

‖u‖Lr(Ω) ≤ C‖u‖1−s
Lq(Ω)‖u‖s

H1(Ω), ∀u ∈ H1(Ω).

In particular, we will be using the following interpolation inequality,

‖u‖2
L4(Ω) ≤ C‖u‖L2(Ω)‖u‖H1(Ω).

2.2. Weak formulations

The following weak formulation of (1.1)–(1.2) will be used subsequently. Suppose that f1, f2 ∈
L2[0, T ; H−1(Ω)], and u0, v0 ∈ L2(Ω). Then, for all w ∈ H1

0 (Ω) and for a.e. t ∈ (0, T ], we seek u, v ∈ W (0, T )
such that { 〈ut, w〉 + a(u, w) + 〈u3 − u, w〉 = 〈f1 − v, w〉

(u(0), w) = (u0, w), (2.4)

{ 〈vt, w〉 + δa(v, w) = ε(u − α1v, w) + 〈f2, w〉
(v(0), w) = (v0, w). (2.5)

An equivalent weak formulation suitable for discontinuous time-stepping schemes considered here is to seek
u, v ∈ W (0, T ), satisfying,

(u(T ), w(T )) +
∫ T

0

(
− 〈u, wt〉 + a(u, w) + (u3 − u, w)

)
dt = (u0, w(0)) +

∫ T

0

〈f1 − v, w〉dt (2.6)

(v(T ), w(T )) +
∫ T

0

(
− 〈v, wt〉 + δa(v, w)

)
dt = (v0, w(0)) +

∫ T

0

(
ε(u − α1v, w) + 〈f2, w〉

)
dt (2.7)

for all w ∈ W (0, T ). Below, we state the basic solvability result of the weak problem, For rigorous proofs we
refer the reader to [28, 37, 38, 42].
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Theorem 2.1. Let f1, f2 ∈ L2[0, T ; H−1(Ω)], u0, v0 ∈ L2(Ω) and ε, δ, α1 positive constants. Then, there exists
a unique solution pair (u, v) ∈ W (0, T ) ≡ L2[0, T ; H1

0 (Ω)]∩H1[0, T ; H−1(Ω)] which satisfies the following energy
estimate

‖u‖W (0,T ) + ‖v‖W (0,T ) ≤ C
(
‖f1‖L2[0,T ;H−1(Ω)] + ‖u0‖L2(Ω) + ‖f2‖L2[0,T ;H−1(Ω)] + ‖v0‖L2(Ω)

)
,

where C depends on Ω, and the parameters ε, δ, α1 and T .

Remark 2.2. Here, the size of the norms involved is not necessary small, since for many physical choices
of the parameters, standard regularity theory results imply that C may depend upon quantities of the form
(1/ε), (1/α1) etc.

3. The fully-discrete system

3.1. The discontinuous time-stepping approximations

We discretize the FHN system in time by using a discontinuous time-stepping Galerkin approach, combined
with standard conforming finite element subspaces. Approximations will be constructed on a partition 0 = t0 <
t1 < . . . < tN = T of [0, T ]. On each interval of the form (tn−1, tn] of length τn = tn − tn−1, a subspace Un

h

of H1
0 (Ω) is specified for all n = 1, . . . , N and it is assumed that each Un

h satisfies the classical approximation
theory results (see e.g. [8, 23]), on regular triangulations. In particular, we assume that there exists an integer
	 ≥ 1 and a constant c > 0 (independent of the mesh-size parameter h) such that if w ∈ H l+1(Ω) ∩ H1

0 (Ω),

inf
wh∈Un

h

‖w − wh‖Hs(Ω) ≤ Chl+1−s‖w‖Hl+1(Ω), 0 ≤ l ≤ 	, s = −1, 0, 1.

In addition, if the triangulations are quasi-uniform, then there exists a constant C > 0 such that ‖wh‖H1(Ω) ≤
Ch−1‖wh‖L2(Ω), ∀wh ∈ Un

h . We also assume that the partition is quasi-uniform in time, i.e., there exists a
constant 0 < θ ≤ 1 such that θτ ≤ minn=1,...,N τn, where τ = maxn=1,...,N τn. We seek approximate solutions
which belong to the space

Uh = {wh ∈ L2[0, T ; H1
0(Ω)] : wh|(tn−1,tn] ∈ Pk[tn−1, tn; Un

h ]}.
Here Pk[tn−1, tn; Un

h ] denotes the space of polynomials of degree k or less having values in Un
h . By convention, the

functions of Uh are left continuous with right limits and hence will subsequently write wn
h for wh(tn) = wh(tn−),

and wn
h+ for wh(tn+). Note that we have also used the following notational abbreviation, wh ≡ wh,τ , Uh ≡ Uh,τ

etc. Similar notation will be also used for the error eu = u − uh, ev = v − vh functions. Due to a well known
embedding result, the solution u, v are in C[0, T ; L2(Ω)] so that the jump in the error at tn, denoted by [en

u], is
[en

u] = [un
h] = un

h+ − un
h, and by [en

v ] = vn
h+ − vn

h respectively.
The fully discrete system is defined as follows: we seek uh, vh ∈ Uh such that for every wh ∈ Uh,

(un
h, wn

h) +
∫ tn

tn−1

(−〈uh, wht〉 + a(uh, wh) + (u3
h − uh, wh)

)
dt = (un−1

h , wn−1
h+ ) +

∫ tn

tn−1
〈f1 − vh, wh〉dt, (3.1)

(vn
h , wn

h) +
∫ tn

tn−1
(−〈vh, wht〉 + δa(vh, wh)) dt = (vn−1

h , wn−1
h+ ) +

∫ tn

tn−1
(ε(uh − α1vh, wh) + 〈f2, wh〉) dt. (3.2)

Here, f1, f2 ∈ L2[0, T ; H−1(Ω)] are given data, and u0, v0 denote approximations of u0, v0 ∈ L2(Ω) respectively.

Remark 3.1. The existence and uniqueness of discontinuous Galerkin approximations can be proved easily
in case k = 0, 1. For the case k > 1, the existence and (local) uniqueness can be proved around the contin-
uous (smooth) solution u, v (in an appropriate “parabolic” cube), provided that the semi-linear term satisfies



286 K. CHRYSAFINOS ET AL.

suitable continuity and monotonicity assumptions which allow the application of standard fixed point theorems
(see, e.g., [2,15,40]). Existence of discrete schemes of arbitrary order k under minimal regularity assumptions on
the data can be proved analogously via fixed point theorems, while uniqueness follows by standard arguments
upon deriving stability estimates (see the subsequent section).

3.2. Approximation of discrete characteristic functions

In order to obtain stability and error estimates for the system, a key ingredient is the stability result at the
interior time points under minimal regularity assumptions. For the latter, we use the theory of the approximation
of the discrete characteristic functions (see e.g. [5]), which was used for a general linear parabolic PDE. The
main advantage of this approach is that the proof does not need any additional regularity, apart from the one
needed to guarantee the existence of a weak solution, i.e., we do not assume that ut, vt ∈ L2[0, T ; L2(Ω)] which
is frequently used in the literature for DG approximations of parabolic PDEs. Our main focus is to treat high
order (in time) schemes.

Note that the computation of the error at arbitrary times t ∈ [tn−1, tn) can be facilitated by substituting
uh = χ[tn−1,t)uh (similar for vh) into the discrete equations. However, this choice is not available since χ[tn−1,t)uh

is not a member of Uh, unless t coincides with a partition point. Therefore, approximations of such functions need
to be constructed. This is done in [5] Section 2.3. For completeness we state the main results. The approximations
are constructed on the interval (0, τ), and they are invariant under translations.

We consider polynomials p ∈ Pk(0, τ), and we denote the discrete approximation of χ[0,t)p by the polynomial
p̃ ∈ Pk(0, τ) with, p̃(0) = p(0) which satisfies∫ τ

0

p̃q =
∫ t

0

pq ∀ q ∈ Pk−1(0, τ).

To motivate the above construction we simply observe that for q = p′ we obtain
∫ τ

0 p′p̃ =
∫ t

0 pp′ = 1
2 (p2(t) −

p2(0)).
It is clear that this construction can be extended to approximations of χ[0,t)u for u ∈ Pk[0, τ ; U ] where U is

a linear space. Note that if u ∈ Pk[0, τ ; U ] then it can be written as u =
∑k

i=0 pi(t)ui where pi ∈ Pk[0, τ ] and
ui ∈ U . The discrete approximation of χ[0,t)u in Pk[0, τ ; U ] is then defined by ũ =

∑k
i=0 p̃i(t)ui and if U is a

semi-inner product space we deduce,

ũ(0) = u(0), and
∫ τ

0

(ũ, w)U =
∫ t

0

(u, w)U ∀w ∈ Pk−1[0, τ ; U ].

It remains to quote the main results from [5,7].

Proposition 3.2. Suppose that U is a (semi) inner product space. Then the mapping
∑k

i=0 pi(t)ui →∑k
i=0 p̃i(t)ui on Pk[0, τ ; U ] is continuous in ‖.‖L2[0,τ ;U ]. In particular,

‖ũ‖L2[0,τ ;U ] ≤ Ck‖u‖L2[0,τ ;U ], ‖ũ − χ[0,t)u‖L2[0,τ ;U ] ≤ Ck‖u‖L2[0,τ ;U ]

where Ck is a constant depending on k.

Proof. See [5] Lemma 2.4. �

A standard calculation gives an explicit formula of ũ = φ(s)z, when we choose u(s) = z ∈ U to be constant
(see e.g. [7]).

Lemma 3.3. Fix t ∈ [0, τ ] and let φ ∈ Pk[0, τ ] characterized by

φ(0) = 1,

∫ τ

0

φq =
∫ t

0

q, q ∈ Pk−1[0, τ ].
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Then,

φ(s) = 1 + (s/τ)
k−1∑
i=0

cip̂(s/τ), ci =
∫ 1

t/τ

p̂i(η)dη,

where {p̂i}k−1
i=0 is an orthonormal basis of Pk−1[0, 1] in the (weighted) space L2

w[0, 1] having inner product

(p̂, q̂) =
∫ 1

0

ηp̂(η)q̂(η)dη.

In particular, ‖φ‖L∞[0,τ ] ≤ Ck, where Ck is independent of t ∈ [0, τ ].

3.3. The main stability estimate

Now, we are ready to state the main stability result which will be used subsequently to the derivation of
estimates at arbitrary time-points. We emphasize that the time-discretization parameter τ is chosen independent
of h and the dependence of various constants on parameters ε, δ, α1 is quantified.

Proposition 3.4. Suppose that f1, f2 ∈ L2[0, T ; H−1(Ω)], u0, v0 ∈ L2(Ω), and let uh, vh be the approximate
solutions computed by using the discontinuous time-stepping scheme. Let τn = tn−tn−1 and define τ = maxn τn.
Then, there exists constant C depending on Ω, Ck, and T such that,

‖un
h‖2

L2(Ω) + (1/ε)‖vn
h‖2

L2(Ω) + ‖uh‖2
L2[0,T ;H1

0 (Ω)] + ‖uh‖4
L4[0,T ;L4(Ω)] + α1‖vh‖2

L2[0,T ;L2(Ω)] + (δ/ε)‖vh‖2
L2[0,T ;H1

0 (Ω)]

≤ C
(
‖u0‖2

L2(Ω) + (1/ε)‖v0‖2
L2(Ω) + ‖f1‖2

L2[0,T ;H−1(Ω)] + (1/δε)‖f2‖2
L2[0,T ;H−1(Ω)]

)
≡ Cst.

Here, τ is chosen to satisfy τ ≤ (C(Ck, CP )/α1), where C(Ck, CP ) is a constant depending only upon k and Ω
but not on ε, δ, α1. In addition,

‖uh‖2
L∞[0,T ;L2(Ω)] ≤ CCst,

where C is an algebraic constant independent of ε, δ, α1.

Proof.
Step 1. Preliminary estimates.

Setting wh = uh, wh = vh in (3.1)–(3.2) respectively and using the Poincaré inequality we obtain:

(1/2)‖un
h‖2

L2(Ω) +
∫ tn

tn−1

(
CP ‖uh‖2

H1(Ω) + ‖uh‖4
L4(Ω)

)
dt + (1/2)‖[un−1

h ]‖2
L2(Ω) − (1/2)‖un−1

h ‖2
L2(Ω)

≤
∫ tn

tn−1
‖uh‖2

L2(Ω)dt +
∫ tn

tn−1
〈f1 − vh, uh〉dt, (3.3)

and

(1/2)‖vn
h‖2

L2(Ω) +
∫ tn

tn−1
CP δ‖vh‖2

H1(Ω)dt + (1/2)‖[vn−1
h ]‖2

L2(Ω) − (1/2)‖vn−1
h ‖2

L2(Ω)

≤
∫ tn

tn−1
ε(uh − α1vh, vh)dt +

∫ tn

tn−1
〈f2, vh〉dt. (3.4)

Rearranging terms in inequalities (3.3) and (3.4) and using Young’s inequality, we obtain respectively

(1/2)‖un
h‖2

L2(Ω) − (1/2)‖un−1
h ‖2

L2(Ω) +
∫ tn

tn−1

(
(CP /2)‖uh‖2

H1(Ω) + ‖uh‖4
L4(Ω)

)
dt + (1/2)‖[un−1

h ]‖2
L2(Ω)

≤ −
∫ tn

tn−1
(vh, uh)dt +

∫ tn

tn−1
‖uh‖2

L2(Ω)dt +
∫ tn

tn−1
(1/CP )‖f1‖2

H−1(Ω)dt, (3.5)
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and

(1/2)‖vn
h‖2

L2(Ω) − (1/2)‖vn−1
h ‖2

L2(Ω) +
∫ tn

tn−1

(
(CP δ/2)‖vh‖2

H1(Ω) + εα1‖vh‖2
L2(Ω)

)
dt + (1/2)‖[vn−1

h ]‖2
L2(Ω)

≤
∫ tn

tn−1
ε(uh, vh)dt + (1/2CP δ)

∫ tn

tn−1
‖f2‖2

H−1(Ω)dt. (3.6)

Multiplying equation (3.5) by ε and adding the resulting equation to (3.6), we arrive at the following preliminary
estimate:

ε

{
(1/2)‖un

h‖2
L2(Ω) − (1/2)‖un−1

h ‖2
L2(Ω) +

∫ tn

tn−1

(
(CP /2)‖uh‖2

H1(Ω) + ‖uh‖4
L4(Ω)

)
dt + (1/2)‖[un−1

h ]‖2
L2(Ω)

}

+ (1/2)‖vn
h‖2

L2(Ω) − (1/2)‖vn−1
h ‖2

L2(Ω) +
∫ tn

tn−1
(CP δ/2)‖vh‖2

H1(Ω)dt +
∫ tn

tn−1
εα1‖vh‖2

L2(Ω)dt + (1/2)‖[vn−1
h ]‖2

L2(Ω)

≤
∫ tn

tn−1
ε‖uh‖2

L2(Ω)dt +
∫ tn

tn−1
CP ε‖f1‖2

H−1(Ω)dt + (1/2CP δ)
∫ tn

tn−1
‖f2‖2

H−1(Ω)dt. (3.7)

Step 2. Estimates based on the discrete characteristic function.
Recall that for k = 0, 1 one may hide the first term on the left to obtain an initial estimate for uh, vh upon

summation from 0 to N by using standard techniques. For the high order schemes, we employ properties of
the discrete characteristic and its approximation by following the technique of [7, 41]. For fixed t ∈ [tn−1, tn)
and zh ∈ Un

h we substitute wh(s) = zhφ(s) into (3.1), where φ(s) ∈ Pk[tn−1, tn] is constructed similar to
Lemma 3.3, i.e.,

φ(tn−1) = 1,

∫ tn

tn−1
φq =

∫ t

tn−1
q, q ∈ Pk−1[tn−1, tn].

Recall that Lemma 3.3 asserts that ‖φ‖L∞ ≤ Ck, with Ck independent of t. Now, it is easy to see that with this
particular choice of wh,∫ tn

tn−1
(uht, wh)ds + (un−1

h+ − un−1
h , wn−1

h+ ) =
∫ t

tn−1
(uht, zh)ds + (un−1

h+ − un−1
h , φ(tn−1)zh)

= (uh(t) − un−1
h , zh).

Hence integrating by parts (in time) equation (3.1) and using the above computation, we obtain

(uh(t) − un−1
h , zh) = −

∫ tn

tn−1

(
a(uh, zh) + (u3

h − uh, zh)
)
φds +

∫ tn

tn−1
〈f1 − vh, zh〉φds

≤ Ck

{∫ tn

tn−1

(‖∇uh‖L2(Ω)‖∇zh‖L2(Ω) + ‖uh‖L2(Ω)‖zh‖L2(Ω)

)
ds

+
∫ tn

tn−1

(‖u3
h‖L4/3(Ω)‖zh‖L4(Ω)+‖vh‖L2(Ω)‖zh‖L2(Ω)

)
ds+

∫ tn

tn−1
‖f1‖H−1(Ω)‖zh‖H1(Ω)ds

}
,

where we have used Lemma 3.3 to bound ‖φ‖L∞ ≤ Ck with Ck denoting a constant depending only on k, Ω.
Note also that zh ∈ Un

h (independent of s), hence the above inequality leads to

(uh(t) − un−1
h , zh) ≤ Ck

[∫ tn

tn−1

(‖uh‖H1(Ω) + ‖vh‖L2(Ω) + ‖f1‖H−1(Ω)

)
ds

]
‖zh‖H1(Ω)

+ Ck

[∫ tn

tn−1
‖uh‖3

L4(Ω)ds

]
‖zh‖L4(Ω).
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Here we have used the fact ‖u3
h‖L4/3(Ω) ≤ C‖uh‖3

L4(Ω). Setting zh = uh(t) (for the previously fixed t ∈ [tn−1, tn)),
using Hölder’s inequality, and integrating in time the resulting inequality, we obtain,

(1/2)
∫ tn

tn−1
‖uh(t)‖2

L2(Ω)dt ≤ (τn/2)‖un−1
h ‖2

L2(Ω)

+ Ckτ1/2
n

(
‖uh‖L2[tn−1,tn;H1(Ω)] + ‖vh‖L2[tn−1,tn;L2(Ω)] + ‖f1‖L2[tn−1,tn;H−1(Ω)]

)

×
∫ tn

tn−1
‖uh(t)‖H1(Ω)dt + Ckτ1/4

n ‖uh‖3
L4[tn−1,tn;L4(Ω)]

∫ tn

tn−1
‖uh(t)‖L4(Ω)dt. (3.8)

Using Hölder’s inequality to bound
∫ tn

tn−1 ‖uh‖L4(Ω)dt ≤ τ
3/4
n ‖uh‖L4[tn−1,tn;L4(Ω)],

∫ tn

tn−1 ‖uh‖H1(Ω)dt ≤
τ

1/2
n ‖uh‖L2[tn−1,tn;H1(Ω)], and Young’s inequalities we deduce (with different Ck),

(1/2)
∫ tn

tn−1
‖uh(t)‖2

L2(Ω)dt ≤ (τn/2)‖un−1
h ‖2

L2(Ω)

+ Ckτn

(
‖uh‖2

L2[tn−1,tn;H1(Ω)] + ‖vh‖2
L2[tn−1,tn;L2(Ω)] + ‖f1‖2

L2[tn−1,tn;H−1(Ω)]

)
+ Ckτn‖uh‖4

L4[tn−1,tn;L4(Ω)]. (3.9)

Step 3. Combining estimates.
The final step is to substitute the value of ‖uh‖2

L2[tn−1,tn;L2(Ω)] in (3.7) by the given bound of (3.9). Therefore,

ε‖un
h‖2

L2(Ω) + ε(CP − Ckτn)
∫ tn

tn−1
‖uh‖2

H1(Ω)dt + 2ε(1 − Ckτn)
∫ tn

tn−1
‖uh‖4

L4(Ω) + ‖vn
h‖2

L2(Ω) + ε(a1 − Ckτn)

×
∫ tn

tn−1
‖vh‖2

L2(Ω)dt + CP δ

∫ tn

tn−1
‖vh‖2

H1(Ω)dt ≤ ε(1 + Ckτn)‖un−1
h ‖2

L2(Ω) + ‖vn−1
h ‖2

L2(Ω)

+ C(Ck, Cp)

[∫ tn

tn−1

(
((ε + ετn) ‖f1‖2

H−1(Ω) + (1/δ)‖f2‖2
H−1(Ω)

)
dt

]
.

Selecting τ such that τn ≤ (1/Ckα1), and τn ≤ (CP /Ck) and using standard discrete Grönwall lemma arguments,
we obtain the estimates at partition points and at the energy norms, upon dividing by ε. Returning back to
(3.9) using the inverse estimate ‖uh(t)‖2

L2(Ω) ≤ (Ck/τn)
∫ tn

tn−1 ‖uh‖2
L2(Ω) and the previously developed estimates

we obtain the estimate,

‖uh‖2
L∞[tn−1,tn;L2(Ω)] ≤ Ck

(
‖un

h‖2
L2(Ω) + ‖uh‖2

L2[tn−1,tn;H1(Ω)] + ‖vh‖2
L2[tn−1,tn;L2(Ω)]

+‖f1‖2
L2[tn−1,tn;H−1(Ω)] + ‖uh‖4

L4[tn−1,tn;L4(Ω)]

)
.

The estimate now follows by substituting the estimates at the partition points and at energy norms. �

Remark 3.5. The above theorem states that the discontinuous Galerkin discretization inherits the stability
estimates of the weak formulation under minimal regularity assumptions on the given data.

Remark 3.6. The stability estimate at arbitrary time-points for vh can be obtained identically to [5] Section 2,
since we have already obtained an estimate on uh, vh in L2[0, T ; H1(Ω)].
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3.4. Convergence under minimal regularity assumptions

Using the approach of [41] we may recover strong convergence in an appropriate norm, and pass the limit
through the nonlinear term. Hence, the convergence of the space-time approximations can be shown even under
minimal regularity assumptions. First, we quote a general compactness result by Walkington (see [41] Thm. 3.1),
for discontinuous time-stepping schemes, that concerns the numerical approximations of solutions y : [0, T ] → X
of general evolution equations of the form

yt + A(y) = f(y), y(0) = y0, (3.10)

where X is a Banach space and each term of the equation takes values in X∗. Here, both A(y) = A(t, y) and
f(y) = f(t, y) may depend upon t and are allowed to be nonlinear. However, in our setting only f(y) = f(t, y)
contains nonlinear terms. Suppose that X ⊂ H ⊂ X∗ (with continuous embeddings) form the standard evolution
triple, i.e., the pivot space H is a Hilbert space. The numerical schemes approximate the weak form of (3.10),
i.e.,

〈yt, w〉 + a(y, w) = 〈f(y), w〉, ∀w ∈ X (3.11)

where a : X × X → R is defined by a(y, w) = (A(y), w). Let Uh ⊂ X and quasi-uniform partition 0 = t0 <
t1 < . . . < tN = T of [0, T ], and set Un

h ≡ Uh, for n = 1, . . . , N . Then, the DG scheme constructs a function in
Pk[tn−1, tn; Uh] on each (tn−1, tn), which satisfies for n = 1, . . . , N and for all wh ∈ Pk[tn−1, tn; Uh],

∫ tn

tn−1
((yht, wh) + a(yh, wh)) + (yn−1

h+ − yn−1
h , wn−1

h+ ) =
∫ tn

tn−1
(f(yh), wh). (3.12)

Here, y0
h is a given approximation of y0. Set F (y) ≡ f(y)−A(y). Then the following theorem [41] Theorem 3.1,

establishes the compactness property of the discrete approximation.

Theorem 3.7. Let H be a Hilbert space, X be a Banach space and X ⊂ H ⊂ X∗ be dense and compact
embeddings. Fix an integer k ≥ 0 and let 1 ≤ p, q < ∞. Let h > 0 be the mesh parameter, and let {ti}N

i=0 denote
a quasi-uniform partition of [0, T ]. Assume that:

1. for each h > 0, yh ∈ {yh ∈ Lp[0, T ; U ]|yh|(tn−1,tn) ∈ Pk[tn−1, tn; Uh]} and on each interval, satisfies

∫ tn

tn−1
(yht, wh) + (yn−1

h+ − yn−1
h , wn−1

h+ ) =
∫ tn

tn−1
(F (yh), wh)

for every wh ∈ Pk[tn−1, tn; Uh];
2. {yh}h>0 is bounded in Lp[0, T ; U ] and {‖F (yh)‖Lq [0,T ;U∗]}h>0 is also bounded.

Then,

1. if p > 1 then {yh}h>0 is compact in Lr[0, T ; H ] for 1 ≤ r < 2p;
2. if 1 ≤ (1/p) + (1/q) < 2, and

∑N
i=1 ‖[yh]‖2

H < C is bounded independent of h, then {yh}h>0 is compact in
Lr[0, T ; H ] for 1 ≤ r < 2/((1/p) + (1/q) − 1).

Proof. See [41] Theorem 3.1. �

We will utilize the above result to obtain strong convergence of the discrete (FHN) system to the continuous
one. The lack of any meaningful regularity for the discrete time derivative due to the presence of discontinuities,
requires special attention since the classical Aubin–Lions compactness argument is not directly applicable.
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Theorem 3.8. Suppose that f1, f2 ∈ L2[0, T ; H−1(Ω)], u0, v0 ∈ L2(Ω), and let ε, δ, α1 be given parameters. Let
{ti}N

i=0 denote a quasi-uniform partition of [0, T ], and Un
h ≡ Uh for n = 1, . . . , N . Suppose that the assumptions

of Proposition 3.4 hold, and let τ, h → 0. Then,

uh → u weakly in L2[0, T ; H1
0(Ω)], uh → u weakly-* in L∞[0, T ; L2(Ω)],

vh → v weakly in L2[0, T ; H1
0(Ω)], vh → v weakly-* in L∞[0, T ; L2(Ω)],

and

uh → u stronly in L2[0, T ; L2(Ω)], vh → v strongly in L2[0, T ; L2(Ω)].

In addition (u, v) is a weak solution of the (FHN) system.

Proof. We follow the same line of arguments with [41] Section 6. The stability estimates of Proposition 3.4
clearly imply that (passing to a subsequence if necessary) there exist u, v such that uh → u and vh → v weakly
in L2[0, T ; H1

0(Ω)] and weakly-* in L∞[0, T ; L2(Ω)]. It remains to obtain strong convergence in L2[0, T ; L2(Ω)].
For this purpose, fix X = H1

0 (Ω), H = L2(Ω), and F (u) = Δu − u3 + u − v + f1. It is easy to show that
F (uh) ∈ L4/3[0, T ; H−1(Ω)]. Indeed, uh ∈ L2[0, T ; H1

0(Ω)] ∩ L4[0, T ; L4(Ω)], and uh ∈ L∞[0, T ; L2(Ω)] clearly
imply that u3

h ∈ L4/3[0, T ; H−1(Ω)] by using standard interpolation theorems. The remaining terms can be
handled easily. Therefore, using the Theorem 3.7, we obtain the desired strong convergence in L2[0, T ; L2(Ω)].
The strong convergence on v follows similarly and more easily. Suppose now that we choose wh ∈ C[0, T ; Uh]∩Uh,
with wh(T ) = 0. Then, summing equations (3.1) from n = 1 to n = N , we deduce that

(uh(T ), wh(T ))+
∫ T

0

(−〈uh, wht〉+a(uh, wh)+〈u3
h − uh, wh〉

)
dt =

∫ T

0

(
〈f1, wh〉−λ〈vh, wh〉Γ

)
dt+(u0, wh(0)).

Note that we may pass the limit through the linear terms due to the stability estimates on uh, vh and the fact that
wh ∈ C[0, T ; Uh]∩Uh. The semilinear term can be treated easily by the strong convergence on L2[0, T ; L2(Ω)], by
noting that

∫ T

0

∣∣〈u3
h − u3, wh〉

∣∣dt ≤ Cu,uh
‖u− uh‖2

L2[0,T ;L2(Ω)], where C(u, uh) denotes a constant that depends
upon ‖.‖L∞[0,T ;L2(Ω)], ‖.‖L2[0,T ;H1(Ω)], the stability constants of Proposition 3.4 and it is independent of h, τ .
A standard density argument, now completes the proof. The equation of vh can be treated similarly and more
easily. �

Remark 3.9. The above methodology can be clearly applied in other choices of FigzHugh–Nagumo type of
models. Note that strong convergence can be also obtained in Lr[0, T ; L2(Ω)] for r ∈ [1, 4). In Section 5, we
present some numerical experiments that demonstrate convergence of the DG approximations under minimal
regularity assumptions u0, v0 ∈ L2(Ω), as predicted in Theorem 3.8.

4. Error estimates

So far we have shown the basic stability estimates in the natural energy norm, as well as at the arbitrary
time-points. Recall that, due to the presence of time discontinuities, the discrete time derivative does not possess
any meaningful regularity. Hence, for the error estimates, we will also rely on various techniques developed in
the previous section which circumvent the lack of regularity. The main strategy is to relate the error eu = u−uh

and ev = v−vh to a best approximation error viaan auxiliary uncoupled pair of parabolic PDEs. These auxiliary
PDEs play the role of a “global DG projection”.
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4.1. The auxiliary parabolic system

First, we construct a suitable global “parabolic projection”. For example, given data F1, F2 satisfying the
regularity assumptions of Sections 2 and 3, we denote by uph, vph the DG approximations of the following
decoupled systems: for all wh ∈ Uh, for n = 1, . . . , N , we seek uph, vph ∈ Uh,

(un
ph, w

n
h) +

∫ tn

tn−1
(−〈uph, wht〉 + a(uph, wh)) dt = (un−1

ph , wn−1
h+ ) +

∫ tn

tn−1
〈F1, wh〉dt, (4.1)

(vn
ph, wn

h) +
∫ tn

tn−1
(−〈vph, wht〉 + δa(vh, wh)) dt = (vn−1

ph , wn−1
h+ ) +

∫ tn

tn−1
〈F2, wh〉dt. (4.2)

Here, u0
p ≡ u0, v0

p ≡ v0. The given data F1, F2 ∈ L2[0, T ; H−1(Ω)], are defined as follows:

〈F1, wh〉 ≡ 〈ut − Δu, wh〉 ∀wh ∈ Uh

〈F2, wh〉 ≡ 〈vt − δΔv, wh〉 ∀wh ∈ Uh.

Note that the above system consists of two uncoupled problems, and hence working similarly to [5,7], we obtain
the following optimal convergence rates for u− uph, v − vph for suitably smooth solutions u, v. These estimates
allows the choice of “coarse” time-steps, while the coercivity constant δ > 0 is carefully tracked.

Theorem 4.1. Suppose that the time-steps are quasi-uniform, i.e., there exists 0 < θ ≤ 1 such that
θ max1≤n≤N τn ≤ min1≤n≤N τn where τn = tn−tn−1. Set, τ = maxn=1,...,N τn. Then if u, v ∈ C[0, T ; H l+1(Ω)]∩
Hk+1[0, T ; H1

0 (Ω)] there exists a constant C > 0 independent of h, τ, δ such that,

‖u − uph‖L2[0,T ;H1(Ω)] ≤ C
(
‖u‖L2[0,T ;Hl+1(Ω)]h

l + ‖u(k+1)‖L2[0,T ;H1(Ω)]τ
k+1

+‖u‖C[0,T ;Hl+1(Ω)] min
(
h2/τ, h/

√
τ
)
hl
)

‖v − vph‖L2[0,T ;H1(Ω)] ≤ C
(
‖v‖L2[0,T ;Hl+1(Ω)h

l + ‖v(k+1)‖L2[0,T ;H1(Ω)]τ
k+1

+‖v‖C[0,T ;Hl+1(Ω)] min
(
h2/(τδ), h/

√
τδ
)
hl
)

‖u − uph‖L∞[0,T ;L2(Ω)] ≤ C
((‖u‖L2[0,T ;Hl+1(Ω)] + h‖u‖L∞[0,T ;Hl+1(Ω)]

)
hl

+
(‖u(k+1)‖L2[0,T ;H1(Ω)] + ‖u(k+1)‖L∞[0,T ;L2(Ω)]

)
τk+1

+‖u‖C[0,T ;Hl+1(Ω)] min
(
h3/2/τ,

√
h/τ

)
hl+1/2

)
‖v − vph‖L∞[0,T ;L2(Ω)] ≤ C

((√
δ‖v‖L2[0,T ;Hl+1(Ω) + h‖v‖L∞[0,T ;Hl+1(Ω)]

)
hl

+
(√

δ‖v(k+1)‖L2[0,T ;H1(Ω)] + ‖v(k+1)‖L∞[0,T ;L2(Ω)]

)
τk+1

+‖v‖C[0,T ;Hl+1(Ω)] min
(
h3/2/(τ

√
δ),
√

h/τ
)
hl+1/2

)
.

If in addition, F1 ∈ L2[0, T ; L2(Ω)], u0 ∈ H1
0 (Ω), and the domain Ω is such that classical elliptic regularity is

valid then, ‖uph‖L∞[0,T ;H1(Ω)] ≤ C
′
st, and

‖u − uph‖L2[0,T ;L2(Ω)] ≤ C
(
‖u‖L∞[0,T ;Hl+1(Ω)]h

l+1 + ‖u(k+1)‖L2[0,T ;H1(Ω)]τ
k+1 + ‖u(k+1)‖L∞[0,T ;L2(Ω)]τ

k+1
)
.
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Proof. (Sketch)
The proof is essentially identical to that in [5,7] since the system is now decoupled. Starting from the estimate

for v − vph, we split the error as v − vph = (v − P
loc
h v) + (Ploc

h v − vph), where P
loc
h denotes a suitable locally

defined projection for discontinuous time-stepping schemes, (see e.g. [5] Def. 2.1 or [40]). Now, observe that the
error can be expressed in terms of local L2 projections, since [5] Theorem 2.5 asserts that

‖P
loc
h v(t) − vph(t)‖2

L2(Ω) + δ

∫ tn

0

‖∇(Ploc
h v − vph)(t)‖2

L2(Ω)dt +
n−1∑
i=0

‖[(Ploc
h v − vph)i]‖2

L2(Ω)

≤ Ck

(
‖v0 − v0

h‖2
L2(Ω) + δ

∫ tn

0

‖v − P
loc
h v‖2

H1(Ω)dt

+
n−1∑
i=0

min
(
1/(τiδ)‖Pi+1(I − Pi)v(ti)‖2

H−1(Ω), ‖(I − Pi)v(ti)‖2
L2(Ω)

))
,

where Pi : L2(Ω) → U i
h denotes the standard L2 projection. Now it remains to combine approximation theory

results (see e.g. [6] Cor. 4.8) and the above estimate in order to obtain the desired result. The last estimate
easily follows by a standard duality argument, combined with the projection estimates of [6] Lemma 4.8,
Corollary 4.9; alternatively see [33] Lemma 6.2. Finally, the stability bound on ‖uph‖L∞[0,T ;H1(Ω)] is given
in [7] Theorem 4.10. �

Remark 4.2. The structure of these estimates for u − uph, v − vph can be described as follows:

‖error‖X ≤ C
(‖best approx. error‖X + ‖init. data error‖L2(Ω) + ‖change of subspace error‖X1

)
,

where X = L∞[0, T ; L2(Ω)] ∩ L2[0, T ; H1
0 (Ω)]. The error due to the change of subspaces is described by the

summation term and can be omitted when we use the same subspaces in each time step, i.e. Un
h = Uh. Then,

the estimates can be simplified to:

‖u − uph‖L2[0,T ;H1(Ω)] ≤ C
(
‖u‖L2[0,T ;Hl+1(Ω)]h

l + ‖u(k+1)‖L2[0,T ;H1(Ω)]τ
k+1

)
‖v − vph‖L2[0,T ;H1(Ω)] ≤ C

(
‖v‖L2[0,T ;Hl+1(Ω)h

l + ‖v(k+1)‖L2[0,T ;H1(Ω)]τ
k+1

)
.

The same simplification also holds for the errors in L∞[0, T ; L2(Ω)] norms.

4.2. Space-time error estimates

It remains to bound the error euh = uph − uh, evh = vph − vh in terms of the projection error eup = u − uph

and evp = v − vph. Then, the error estimates for eu ≡ u − uh, and ev ≡ v − vh follow by the triangle inequality
and the estimates on eup, evp. First note that subtracting (3.1)–(3.2) from (2.6)–(2.7) respectively we obtain the
following orthogonality condition: for n = 1, . . . , N and for every wh ∈ Uh,

(en
u, wn

h) +
∫ tn

tn−1

(−〈eu, wht〉 + a(eu, wh) + (u3 − u3
h − eu, wh)

)
dt = (en−1

u , wn−1
h+ )−

∫ tn

tn−1
〈f1 − ev, wh〉dt, (4.3)

and

(en
v , wn

h) +
∫ tn

tn−1
(−〈ev, wht〉 + δa(ev, wh)) dt = (en−1

v , wn−1
h+ ) +

∫ tn

tn−1

(
ε(eu − α1ev, wh)

)
dt. (4.4)

Here, f1, f2 are given data, and u0, v0 denote approximations of u0, v0 respectively. Splitting the error into
eu ≡ eup +euh and ev ≡ evp +evh, using equations (4.1)–(4.2), and adding and subtracting u3

ph in the semilinear
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term, we obtain,

(en
uh, wn

h) +
∫ tn

tn−1
(−〈euh, wht〉 + a(euh, wh)) dt

+
∫ tn

tn−1

(〈
(eup(u2 + u2

ph + uuph) + euh(u2
ph + u2

h + uphuh) − (euh + eup), wh

〉)
dt

= (en−1
uh , wn−1

h+ ) +
∫ tn

tn−1
−〈evp + evh, wh〉dt, (4.5)

and

(en
vh, wn

h)+
∫ tn

tn−1
(−〈evh, wht〉 + δa(evh, wh)) dt = (en−1

vh , wn−1
h+ )+

∫ tn

tn−1
ε
(
euh +eup−α1(evp +evh), wh

)
dt. (4.6)

Now, we are ready to prove the bound on euh, evh in terms of the parabolic projection of Section 4.1. We will
closely follow the arguments of the main stability Proposition 3.4.

Theorem 4.3. Suppose that the assumptions of Proposition 3.4 and Theorem 4.1 hold. In addition, suppose
that the time-step τ ≡ maxi=0,...,n τn satisfies τ ≤ C/C2

st, τ ≤ CP /8Ck, τ ≤ Cα1 where C denotes a constant
depending on k, Ω, T. Here Cst, denotes the stability constants of Proposition 3.4. Then, there exists a positive
constant C̃ depending upon k, Ω, CP such that

∫ T

0

(
‖euh‖2

H1(Ω) + (δ/ε)‖evh‖2
H1(Ω) + α1‖evh‖2

L2(Ω)

)
dt + ‖en

uh‖2
L2(Ω) + (1/ε)‖en

vh‖2
L2(Ω)

≤ C̃

{∫ T

0

(
Cstτ

1/2
n ‖eup‖2

H1(Ω) + ‖evp‖2
H1(Ω)

)
dt +

∫ T

0

(
(1/α1 + 1)‖eup‖2

L2(Ω) + α1‖evp‖2
L2(Ω)

)

+C
′
st,u

∫ T

0

‖eup‖2
H1(Ω)

}
.

Here we denote by euh = uph − uh, evh = vph − vh, eup = u − uph and evp = v − vph, and C
′
st,u depends only

upon C
′
st of Theorem 4.1, and ‖u‖L∞[0,T ;H1(Ω)].

Proof. Setting wh = euh into (4.5) we obtain,

(1/2)‖en
uh‖2

L2(Ω) +
∫ tn

tn−1
CP ‖euh‖2

H1(Ω)dt + (1/2)‖[en−1
uh ]‖2

L2(Ω) − (1/2)‖en−1
uh ‖2

L2(Ω)

+
∫ tn

tn−1

(
(eup(u2 + u2

ph + uuph) + euh(u2
ph + u2

h + uphuh), euh

)
dt

≤ −
∫ tn

tn−1
(evh, euh)dt + C

∫ tn

tn−1

(
‖euh‖2

L2(Ω) + ‖eup‖2
L2(Ω) + ‖evp‖2

L2(Ω)

)
dt. (4.7)

Here C denotes an algebraic constant. For the nonlinear terms, note that,

∫ tn

tn−1

(
(eup(u2 + u2

ph + uuph) + euh(u2
ph + u2

h + uphuh), euh

)
dt =

∫ tn

tn−1

∫
Ω

eup(u2 + u2
ph + uuhp)euhdxdt

+
∫ tn

tn−1

∫
Ω

(|euhuph|2 + |euhuh|2)dxdt +
∫ tn

tn−1

∫
Ω

|euh|2uphuhdxdt. (4.8)
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Combining (4.7)–(4.8) we deduce that

(1/2)‖en
uh‖2

L2(Ω) +
∫ tn

tn−1
CP ‖euh‖2

H1(Ω)dt + (1/2)‖[en−1
uh ]‖2

L2(Ω) − (1/2)‖en−1
uh ‖2

L2(Ω)

+
∫ tn

tn−1
(‖euhuh‖2

L2(Ω) + ‖euhuph‖2
L2(Ω))dt ≤ −

∫ tn

tn−1
(evh, euh)dt

+
∫ tn

tn−1
C
(
‖euh‖2

L2(Ω) + ‖eup‖2
L2(Ω) + ‖evp‖2

L2(Ω)

)
dt

+
∫ tn

tn−1

∫
Ω

|euh|2|uphuh|dxdt +
∫ tn

tn−1

∫
Ω

|eup||u2 + u2
ph + uuph||euh|dxdt. (4.9)

For the last two integrals, Young’s inequality, implies that

∫ tn

tn−1

∫
Ω

|euh|2|uphuh|dxdt ≤ (1/2)
∫ tn

tn−1
‖euhuph‖2

L2(Ω)dt + (1/2)
∫ tn

tn−1
‖euhuh‖2

L2(Ω)dt,

while the generalized Cauchy–Schwarz inequality, the embedding H1(Ω) ⊂ L4(Ω), and ‖|uh|2‖L2(Ω) ≤
C‖uh‖2

L4(Ω), show that

∫ tn

tn−1

∫
Ω

|eup||euh||uph|2dxdt ≤
∫ tn

tn−1
‖euh‖L4(Ω)‖eup‖L4(Ω)‖|uph|2‖L2(Ω)dt

≤ (Cp/8)
∫ tn

tn−1
‖euh‖2

H1(Ω)dt +
∫ tn

tn−1
‖uph‖4

L4(Ω)‖eup‖2
L4(Ω)dt

≤ (Cp/8)
∫ tn

tn−1
‖euh‖2

H1(Ω)dt + C
′
st

∫ tn

tn−1
‖eup‖2

H1(Ω)dt.

The remaining terms can be treated similarly and more easily. Here we have used the stability properties of
Proposition 3.4, and Theorem 4.1 for ‖uph‖L∞[0,T ;H1(Ω)] ≤ C

′
st. Therefore, we deduce from (4.9) the following

relation, after dropping positive terms on the left,

(1/2)‖en
uh‖2

L2(Ω) +
∫ tn

tn−1
(Cp/8)‖euh‖2

H1(Ω)dt + (1/2)‖[en−1
uh ]‖2

L2(Ω) − (1/2)‖en−1
uh ‖2

L2(Ω)

≤
∫ tn

tn−1
−(evh, euh)dt + C

∫ tn

tn−1

(
‖euh‖2

L2(Ω) + ‖eup‖2
L2(Ω) + ‖evp‖2

L2(Ω)

)
dt

+ C
′
st,u

∫ tn

tn−1
‖eup‖2

H1(Ω)dt. (4.10)

Inserting now vh = evh into (4.6) we easily obtain,

(1/2)‖en
vh‖2

L2(Ω) +
∫ tn

tn−1
δ(CP /8)‖evh‖2

H1(Ω)dt + (1/2)‖[en−1
vh ]‖2

L2(Ω) − (1/2)‖en−1
vh ‖2

L2(Ω)

+ (εα1/4)
∫ tn

tn−1
‖evh‖2

L2(Ω)dt

≤
∫ tn

tn−1
ε(euh, evh)dt +

∫ tn

tn−1

(
(εα1/4)‖evp‖2

L2(Ω) + (ε/α1)‖eup‖2
L2(Ω)

)
dt. (4.11)
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Multiplying (4.10) by ε and adding the resulting estimate to (4.11) we deduce,

(1/2)ε
[
‖en

uh‖2
L2(Ω) +

∫ tn

tn−1
Cp/4‖euh‖2

H1(Ω)dt + (1/2)‖[en−1
uh ]‖2

L2(Ω) − (1/2)‖en−1
uh ‖2

L2(Ω)

]
+ (1/2)‖en

vh‖2
L2(Ω)

+
∫ tn

tn−1
(δCP /8)‖evh‖2

H1(Ω)dt + (1/2)‖[en−1
vh ]‖2

L2(Ω) − (1/2)‖en−1
vh ‖2

L2(Ω) + (εα1/4)
∫ tn

tn−1
‖evh‖2

L2(Ω)dt

≤ C

∫ tn

tn−1

(
ε‖euh‖2

L2(Ω) + ((ε/α1) + ε) ‖eup‖2
L2(Ω) + (εα1/4)‖evp‖2

L2(Ω)

)
dt + εC

′
st,u

∫ tn

tn−1
‖eup‖2

H1(Ω)dt.

(4.12)

For low order schemes, i.e., for k = 0, 1 it is possible to bound
∫ tn

tn−1 ‖euh‖2
L2(Ω) in terms of the basic energy

estimate at the end-points and complete the proof by standard Grönwall type arguments. For high-order schemes
we will use the approach of Proposition 3.4. First note that splitting the error eu = eup + euh, ev = evp + evh

into (4.3)–(4.4), and using integration by parts in time, we obtain the analog of (4.5), (switching the integrand
variable to s),

∫ tn

tn−1

(〈
d
ds

euh, wh

〉
+ a(euh, wh)

)
ds +

∫ tn

tn−1

〈
(euh + eup)(u2

h + u2 + uuh), wh

〉
ds

+ (en−1
uh+ − en−1

uh , wn−1
h+ ) =

∫ tn

tn−1
−〈evp + evh, wh〉ds. (4.13)

For fixed t ∈ [tn−1, tn), we will choose test function wh = zhφ(s) into (4.13), where φ is defined similar to
Proposition 3.4, and in particular satisfies,

φ(tn−1) = 1,

∫ tn

tn−1
φq =

∫ t

tn−1
q, q ∈ Pk−1[tn−1, tn].

Recall that Lemma 3.3 asserts that ‖φ‖L∞ ≤ Ck, with Ck independent of t. We note that the above choice of
wh leads to∫ tn

tn−1

(
d
ds

euh, wh

)
ds + (en−1

uh+ − en−1
uh , wn−1

h+ ) =
∫ t

tn−1

(
d
ds

euh, zh

)
ds + (en−1

uh+ − en−1
uh , φ(tn−1)zh)

= (euh(t) − en−1
uh , zh).

Hence substituting the last relation into (4.13) we obtain

(euh(t) − en−1
uh , zh) = −

∫ tn

tn−1

(
a(euh, zh) +

(
(euh + eup)(u2

h + u2 + uhu), zh

))
φds +

∫ tn

tn−1
−(euh + evh, zh)φds

≤ Ck

[∫ tn

tn−1

(
‖∇euh‖L2(Ω)‖∇zh‖L2(Ω) + ‖euh‖L2(Ω)‖zh‖L2(Ω)

)
ds

+
∫ tn

tn−1

(
‖euh‖L4(Ω)

(‖u2
h‖L2(Ω) + ‖u2‖L2(Ω)

)‖zh‖L4(Ω)

)
ds

+
∫ tn

tn−1

(
‖eup‖L4(Ω)

(‖u2
h‖L2(Ω) + ‖u2‖L2(Ω)

)‖zh‖L4(Ω)

)
ds

+
∫ tn

tn−1
‖evh‖L2(Ω)‖zh‖H1(Ω)ds

]
.
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We need to bound the terms on the left. Note that ‖u2
h‖L2(Ω) ≤ C‖uh‖2

L4(Ω) and that zh is chosen independent
of t. Hence,∫ tn

tn−1
‖euh‖L4(Ω)‖u2

h‖L2(Ω)‖zh‖L4(Ω)ds ≤
(∫ tn

tn−1
‖euh‖L4(Ω)‖uh‖2

L4(Ω)ds

)
‖zh‖L4(Ω)

≤
(∫ tn

tn−1
‖euh‖H1(Ω)‖uh‖L2(Ω)‖uh‖H1(Ω)ds

)
‖zh‖H1(Ω)

≤ Cst‖euh‖L2[tn−1,tn;H1(Ω)]‖zh‖H1(Ω),

where we have used the Gagliardo–Nirenberg inequality and the stability estimate on uh at arbitrary time-points
first, and then the Cauchy–Schwarz inequality. The remaining nonlinear terms can be handled similarly. For the
linear terms, we note that,∫ tn

tn−1
‖∇euh‖L2(Ω)‖∇zh‖L2(Ω)ds ≤ Cτ1/2

n ‖euh‖L2[tn−1,tn;H1(Ω)]‖zh‖H1(Ω).

The rest of terms can be handled similarly. Hence, we obtain

(euh(t) − en−1
uh , zh) ≤ Ck

[
τ1/2
n ‖euh‖L2[tn−1,tn;H1(Ω)] + τ1/2

n ‖evh‖L2[tn−1,tn;L2(Ω)]

]
‖zh‖H1(Ω)

+ CkCst

[‖euh‖L2[tn−1,tn;H1(Ω)] + ‖eup‖L2[tn−1,tn;H1(Ω)]

] ‖zh‖H1(Ω).

Selecting now zh = euh(t) and integrating with respect to t the above inequality, and using Cauchy–Schwarz
once more we deduce a bound on ‖euh‖2

L2[0,T ;L2(Ω)], i.e.,

∫ tn

tn−1
‖euh‖2

L2(Ω)dt ≤ τn‖en−1
uh ‖2

L2(Ω) + Ckτn

∫ tn

tn−1

(
‖euh‖2

H1(Ω) + ‖evh‖2
L2(Ω)

)
dt

+ CkCstτ
1/2
n

∫ tn

tn−1

(
‖euh‖2

H1(Ω) + ‖eup‖2
H1(Ω)

)
dt. (4.14)

The proof now follows identical to [7] Theorem 5.2, after noting that we may combine (4.14) to replace∫ tn

tn−1 ‖euh‖2
L2(Ω)dt from (4.12) and choose τn in such a way to hide the

∫ tn

tn−1 ‖euh‖2
H1(Ω)dt and

∫ tn

tn−1 ‖evh‖2
L2(Ω)dt

on the left hand side, i.e., we choose τn such that

(CP ε/2)− τ1/2
n εCkCst) ≥ (Cpε/8), τnεCk ≤ (Cpε/8), and εα1/4 − τnεCk ≥ (εα1/8).

Therefore, we obtain,

(1/2)ε

[
‖en

uh‖2
L2(Ω) +

∫ tn

tn−1
(Cp/4)‖euh‖2

H1(Ω)dt + (1/2)‖[en−1
uh ]‖2

L2(Ω)

]
+ (1/2)‖en

vh‖2
L2(Ω)

+
∫ tn

tn−1
(δCP /8)‖evh‖2

H1(Ω)dt + (1/2)‖[en−1
vh ]‖2

L2(Ω) + (εα1/8)
∫ tn

tn−1
‖evh‖2

L2(Ω)dt

≤ ε(1/2 + τn)‖en−1
uh ‖2

L2(Ω) + (1/2)‖en−1
vh ‖2

L2(Ω)

+
∫ tn

tn−1

(
((ε/α1) + ε) ‖eup‖2

L2(Ω) + (εα1/4 + ε) ‖evp‖2
L2(Ω)

)
dt

+ ε(Cstτ
1/2
n + C

′
st,u)

∫ tn

tn−1
‖eup‖2

H1(Ω)dt. (4.15)

A discrete Grönwal lemma finishes the proof. �
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Table 1. Rates of convergence for the 1d solution with l = 1, k = 0, ε = 10−3.

h = τ ‖eu‖L2[0,T ;H1(Ω)] Rate ‖ev‖L2[0,T ;H1(Ω)] Rate

1/4 8.567888e-02 3.346261e-03

1/8 4.286834e-02 5.912449e-01 2.844631e-03 2.343084e-01

1/16 2.143254e-02 6.471675e-01 2.272942e-03 3.236805e-01

1/32 1.072671e-02 7.264316e-01 1.521046e-03 5.794969e-01

1/64 5.383031e-03 8.110452e-01 7.981191e-04 9.303881e-01

1/128 2.720939e-03 8.753305e-01 4.013479e-04 9.917505e-01

Norm 3.219971e-01 4.161678e-03

Remark 4.4. Note that the restriction on the time step depends mildly upon the ε.

Combining the estimates of the previous theorem together with estimates on the parabolic projections of
Section 4, we deduce rates of convergence. Below, we state the relevant rates for smooth solutions u, v as well
as rate for the case Un

h = Uh for n = 1, . . . , N.

Theorem 4.5. Suppose that the assumptions of Proposition 3.4 and Theorems 4.1, 4.3 hold. Then for u, v ∈
C[0, T ; H l+1(Ω)] ∩ Hk+1[0, T ; H1

0 (Ω)] the following estimate holds:

‖eu‖L2[0,T ;H1(Ω)] +
√

δ/ε‖ev‖L2[0,T ;H1(Ω)] ≤ C̃
{
‖u‖C[0,T ;Hl+1(Ω)]h

l + ‖u(k+1)‖L2[0,T ;H1(Ω)]τ
k+1

+ ‖u‖C[0,T ;Hl+1(Ω)] min
(
h2/τ, h/

√
τ
)
hl + ‖v‖L2[0,T ;Hl+1(Ω)]h

l

+ ‖v(k+1)‖L2[0,T ;H1(Ω)]τ
k+1 + ‖v‖C[0,T ;Hl+1(Ω)] min

(
h2/(τδ), h/

√
τδ
)
hl
}
. (4.16)

If in addition the same subspaces are being used every time-step, i.e., Un
h = Uh for n = 1, . . . , N , then

‖eu‖L2[0,T ;H1(Ω)] +
√

δ/ε‖ev‖L2[0,T ;H1(Ω)] ≤ C̃
{
‖u‖C[0,T ;Hl+1(Ω)]h

l + ‖u(k+1)‖L2[0,T ;H1(Ω)]τ
k+1

+ ‖v‖L2[0,T ;Hl+1(Ω)]h
l + ‖v(k+1)‖L2[0,T ;H1(Ω)]τ

k+1
}
. (4.17)

Proof. The proof follows by combining Theorems 4.3, 4.1 and triangle inequality. �

5. Numerical experiments

In this section we present some numerical experiments of the proposed methodology.

5.1. Example 1: 1-D problem with smooth initial values

First, we are concerned in measuring the L2[0, T ; H1(Ω)] norms for both u, v variables, in case that d = 1
and piecewise linear polynomials in space (l = 1) and k = 0, 1, 2 polynomials in time are being used. For the
choice of parameters δ = 4, α1 = 2 (similar to [39]) we set ε = 0.001. The external forces f1, f2 are chosen in a
way to guarantee that u(t, x) = t

1+t2 sin(πx
2 )(1− x), v(t, x) = εt

ε+t2 cos(πx
2 )x are solutions of the FHN system in

the interval [0, 1] × [0, 1].
It is clear that v attains its maximum value vmax =

√
2ε/8 at t =

√
ε and then decays to zero for large t.

On the other hand, u rises slowly, reaching its maximum
√

2/8 at t = 1 and thus, the selected functions scale
significantly different in time for small ε. Thus, one should expect poor performance of the relevant approximate
solution when coarse grids in time are to be employed in combination with small ε values. In Tables 1–3 we
present the errors in the L2[0, T ; H1(Ω)] norm for ε = 0.001 and the relevant rates of convergence, as they result
with grid refinement for k = 0, 1, 2 respectively. In the ultimate line we denote the values of the L2[0, T ; H1(Ω)]
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Table 2. Rates of convergence for the 1d solution with l = 1, k = 1, ε = 10−3.

h = τ ‖eu‖L2[0,T ;H1(Ω)] Rate ‖ev‖L2[0,T ;H1(Ω)] Rate

1/4 7.637934e-02 1.845876e-03

1/8 3.809843e-02 1.003451e 00 1.286796e-03 5.205216e-01

1/16 1.904048e-02 1.000662e 00 7.450850e-04 7.883068e-01

1/32 9.523825e-03 9.994572e-01 3.388446e-03 1.136781e 00

1/64 4.771371e-03 9.971372e-01 1.008715e-04 1.748106e 00

1/128 2.404897e-03 9.884286e-01 3.634394e-05 1.472731e 00

Norm 3.219971e-01 4.161678e-03

Table 3. Rates of convergence for the 1d solution with l = 1, k = 2, ε = 10−3.

h = τ ‖eu‖L2[0,T ;H1(Ω)] Rate ‖ev‖L2[0,T ;H1(Ω)] Rate

1/4 7.629455e-02 1.582274e-03

1/8 3.808815e-02 1.002238e 00 9.397418e-04 7.516631e-01

1/16 1.903925e-02 1.000365e 00 4.088469e-04 1.200704e 00

1/32 9.523531e-03 9.994084e-01 1.489608e-04 1.456628e 00

1/64 4.771323e-03 9.971073e-01 6.901361e-05 1.109980e 00

1/128 2.404888e-03 9.884195e-01 3.371538e-05 1.033474e 00

Norm 3.219971e-01 4.161678e-03
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 k = 0
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τ = 1/64

τ = 1/256

τ = 1/16

τ = 1/32

Figure 1. Convergence in the compound norm for k = 0 and k = 1 with different time steps.

norms of the exact solution pair. It is clear that the rates are almost identical to one, which is in agreement
with the estimation of Theorem 4.5, since l = 1 for all cases. Note that the required error norms were computed
using the Gauss–Legendre rule with n = 10.

To demonstrate the validity of the error estimation presented in Theorem 4.5, we have compared the error
from methods of different order in time, employing the same grid in space and an accordingly coarser grid in time.
More specifically, we have calculated the error in the compound norm ‖eu‖L2[0,T ;H1(Ω) +

√
δ/ε‖ev‖L2[0,T ;H1(Ω)]

as it yields from the lower order in time (k = 0) method with time step size τ0 = 1/64 and 1/256, h0 = τ0

and the same quantity produced by the higher order in time (k = 1) method with corresponding time step
size τ1 = 2

√
τ0 and h1 = h0 = τ0. The same comparison has been done for the method with k = 1 using

h1 = τ1 = 1/64, 1/128 and 1/256 and for the method with k = 2 using τ2 = 2�τ2/3
1 � and h2 = h1. The results

are shown in Figures 1 and 2, by which it is evident that the order of convergence in τ estimated by (4.17) is
verified.
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Figure 2. Convergence in the compound norm for k = 1 and k = 2 with different time steps.

Figure 3. Plots of uh(x, t) and vh(x, t) for the second example.

5.2. Example 2: 1-D problem with L2(Ω) initial values

In the second experiment, we evolve the system with initial data given by u0 = 1 and v0 = 1
εα1

and f1 = f2 ≡ 0.
Then, for the same set of parameters, δ, α1 and for ε = 0.01 we compute by the discontinuous time-stepping
scheme for k = 0, 1, 2, l = 1, in the interval [0, 1] × [0, 1

2 ]. It is obvious, in this case, that u0, v0 ∈ L2 (0, 1).
In Figure 3 we show the graphs of u (x, t) and v (x, t) as computed using l = 1, k = 2, τ = h = 1

512 which is
considered the reference solution. Our aim is to verify that the higher order method (k = 1) yields comparable
error in the appropriate norm as the lower order method (k = 0) by keeping the same grid in space and using a
much coarser grid in time, i.e. taking τ1 = (τ0)

1
2 , where τ1 is the grid size for k = 1 and τ0 is the corresponding

quantity for k = 0. To this end, we evolve the system for l = 1, k = 0, h0 = τ0 = 1/16, 1/64, 1/256 and for
k = 1, h1 = h0, τ1 =

√
τ0, calculating the error norms with respect to the reference solution. In Figure 4 we

present the evolution of the error as a function of spatial grid size with the time step as a parameter for both
low order (k = 0) and high order (k = 1) methods. We observe that there is a decay in the size of the error in
the L2[0, T ; L2 (Ω)] norm with mesh refinement as predicted by Theorem 3.8. Further, for the same h, the high
order method manages to produce an error in the same order of magnitude with that of the low order method,
employing a significantly coarser temporal grid (τ1 =

√
τ0).
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Figure 4. Convergence in the L2[0, T ; L2 (Ω)] norm for k = 0 and k = 1 for the second example.
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Figure 5. Plots of exact solution pair for the second example and t = 0, ε, 10ε.

Table 4. Rates of convergence for the second solution with l = 1, k = 0, ε = 10−3.

h = τ ‖eu‖L2[0,T ;H1(Ω)] Rate ‖ev‖L2[0,T ;H1(Ω)] Rate

1/4 8.423625e-02 4.670405e-02

1/8 4.322326e-02 9.626333e-01 2.668618e-02 8.074546e-01

1/16 2.175905e-02 9.901927e-01 1.398540e-02 9.321719e-01

1/32 1.089823e-03 9.975214e-01 7.116571e-03 9.746669e-01

Norm 2.221436e-01 7.024673e-02

5.3. Example 3: A 2-D problem

In this example we consider the performance of the numerical method for a problem having the following
solution: u (x, y, t) = e−εt sin

(
πx
L

)
sin

(
πy
H

)
, v (x, y, t) = e−t/(2ε) sin

(
πx
L

)
sin

(
πy
H

)
.The physical domain dimen-

sions are L = H = 0.01 and the time interval length T = 0.01. In Figure 5 we show a plot of the solution for
t = 0, ε, 10ε and for ε = 10−4. It is obvious that, while u remains practically constant, v decays rapidly. For the
discretization in space we have used standard Galerkin formulation and linear triangular elements with 2 degrees
of freedom per node, while for time discretization k = 0, 1 has been employed. We chose δ = 4, α1 = 2 for the
parameter values and compute for the cases ε = 10−3 and ε = 10−4. In Tables 4 and 5 we present the errors
in the L2[0, T ; H1(Ω)] norm for ε = 10−3 along with the respective rates of convergence for k = 0, 1. Similarly,
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Table 5. Rates of convergence for the second solution with l = 1, k = 1, ε = 10−3.

h = τ ‖eu‖L2[0,T ;H1(Ω)] Rate ‖ev‖L2[0,T ;H1(Ω)] Rate

1/4 8.421848e-02 2.732333e-02

1/8 4.322319e-02 9.626331e-01 1.376980e-02 9.886259e-01

1/16 2.175904e-02 9.901909e-01 6.893596e-03 9.981786e-01

1/32 1.089823e-03 9.975214e-01 3.447845e-03 9.995618e-01

Norm 2.221436e-01 7.024673e-02

Table 6. Rates of convergence for the second solution with l = 1, k = 0, ε = 10−4.

h = 4τ ‖eu‖L2[0,T ;H1(Ω)] Rate ‖ev‖L2[0,T ;H1(Ω)] Rate

1/4 8.421064e-02 2.067186e-02

1/8 4.322338e-02 9.621906e-01 1.524974e-02 4.388833e-01

1/16 2.175914e-02 9.901902e-01 9.045178e-03 7.533639e-01

1/32 1.089828e-03 9.975214e-01 4.841640e-03 9.016530e-01

Norm 2.221436e-01 2.221447e-02

Table 7. Rates of convergence for the second solution with l = 1, k = 1, ε = 10−4.

h = τ ‖eu‖L2[0,T ;H1(Ω)] Rate ‖ev‖L2[0,T ;H1(Ω)] Rate

1/4 8.421886e-02 1.857317e-02

1/8 4.322338e-02 9.623314e-01 1.596766e-02 2.180675e-01

1/16 2.175913e-02 9.901909e-01 8.245388e-03 9.534935e-01

1/32 1.089827e-03 9.975214e-01 2.973031e-03 1.471653e 00

Norm 2.221436e-01 2.221447e-02
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Figure 6. Convergence in the compound norm for k = 0 and k = 1 for the second example.

in Tables 6 and 7, we present the same quantities for ε = 10−4. In all cases we use τ ≈ h and we observe the
predicted rates for u, and v, while for ε = 10−4 the exact predicted rate for v follows upon further refinement.
If we have chosen exact solution pair with time derivatives varying moderately in size with respect to ε, then
theoretical predictions would have been easily verified. However, even if the chosen example is better suited for
adaptive machineries, the proposed method manages to cope with the relatively coarse grids employed. Finally,
to demonstrate the ability of the higher order methods to perform equally well employing coarser grids in time,
we present in Figure 6 the comparative results for the error in the compound norm for ε = 10−3 and k = 0, 1.
We employed 2 grids for k = 0, i.e. one with h = τ = 1/16 and one with h = τ = 1/32 and 2 grids for k = 1 with
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the same h size, but using time steps τ1 =
√

τ . It is obvious that the higher order method produces solutions
with smaller error. However, the relatively big difference is due to the relatively coarse grid in time, i.e. we
should expect that the error size would be approximately the same for k = 0 and k = 1 at finer grids.
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