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A SUPERCONVERGENCE RESULT FOR MIXED FINITE ELEMENT
APPROXIMATIONS OF THE EIGENVALUE PROBLEM ∗

Qun Lin1 and Hehu Xie1

Abstract. In this paper, we present a superconvergence result for the mixed finite element approxima-
tions of general second order elliptic eigenvalue problems. It is known that a superconvergence result has
been given by Durán et al. [Math. Models Methods Appl. Sci. 9 (1999) 1165–1178] and Gardini [ESAIM:
M2AN 43 (2009) 853–865] for the lowest order Raviart-Thomas approximation of Laplace eigenvalue
problems. In this work, we introduce a new way to derive the superconvergence of general second or-
der elliptic eigenvalue problems by general mixed finite element methods which have the commuting
diagram property. Some numerical experiments are given to confirm the theoretical analysis.
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1. Introduction

In this paper, we are concerned with the following second order elliptic eigenvalue problem: find (p, λ) such
that ⎧⎨

⎩
−∇ · (A∇p) + ϕp = λρp, in Ω,

B(p) = 0, on ∂Ω,∫
Ω
ρp2dΩ = 1,

(1.1)

where A = (aij)2×2 is a symmetric positive definite matrix with aij ∈ W 1,∞(Ω) for 1 ≤ i, j ≤ 2, 0 ≤ ϕ ∈
W 0,∞(Ω) on Ω̄, ρ is a bounded positive function on Ω̄ and 0 < c0 ≤ ρ ∈ W 0,∞(Ω), Ω ⊂ R2 is a bounded
domain with Lipschitz boundary ∂Ω, ∇ and ∇· denote the gradient and divergence operators and B(p) denotes
the boundary condition which can be Dirichlet or Neumann type, i.e.,

BD(p) = p = 0, on ∂Ω, (1.2)

or

BN(p) = n · A∇p = 0, on ∂Ω. (1.3)
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The mixed formulation for the eigenvalue problem (1.1) comes from computing the vibration modes of a fluid
in a displacement formulations since using the displacement formulation for fluid is more convenient than using
the pressure or potential as variable (see, e.g., [11]).

There are several works for the second order elliptic eigenvalue problems in the mixed formulation and their
numerical methods such as Babuška and Osborn [1, 2, 21], Mercier et al. [20], Boffi et al. [5, 6], Boffi [4], etc.
Osborn [21], Mercier et al. [20], Boffi et al. [5], Boffi [4] give the analysis for the eigenpair approximations by
mixed/hybrid finite element methods based on the theory of compact operator (see, e.g., [9]).

In [11–13], a superconvergence result between the lowest order Raviart-Thomas mixed finite element approxi-
mation and their corresponding mixed finite element projection for the Laplace eigenvalue problem with A = I,
ϕ = 0 and ρ = 1 in (1.1) has been proven. Their analysis is based on the equivalence between the lowest order
Raviart-Thomas approximation and the non-conforming Crouzeix-Raviart approximation for Laplace eigenvalue
problem with Neumann boundary condition. In this paper, we extend the superconvergence result to general
second order elliptic eigenvalue problems with general mixed finite element methods. This is also an extension
of the superconvergence for the second order elliptic problem by mixed finite element methods (see, e.g., [8]).

The outline of the paper goes as follows. In Section 2, we introduce some preliminaries and notations, and state
the weak form of the eigenvalue problem and its corresponding discrete form. A superconvergence result between
the eigenfunction approximations and its corresponding interpolant is obtained in Section 3. Some numerical
results are given in Section 4 to confirm the theoretical analysis in Section 3. Some concluding remarks are given
in the last section.

Throughout this paper C or c, denotes a generic positive constant which is independent of the mesh size but
sometimes depends on the eigenvalues of the problem (1.1).

2. Mixed finite element method

We define a new vector-valued function u as follows

u = A∇p.

Then (1.1) can be transformed into the following equivalent mixed formulation⎧⎨
⎩

−∇ · u + ϕp = λρp, in Ω,
A−1u −∇p = 0, in Ω,∫

Ω ρp
2dΩ = 1,

(2.1)

with the boundary condition

p = 0, on ∂Ω, (2.2)

for the Dirichlet boundary case (1.2) or

n · u = 0, on ∂Ω, (2.3)

for the Neumann boundary case (1.3).
Let W := L2(Ω) be the standard L2 space on Ω with norm ‖ · ‖0 and let V be the Hilbert space

V := H(div, Ω) =
{
v ∈ (L2(Ω))2 : ∇ · v ∈ L2(Ω)

}
for Dirichlet boundary condition (1.2) or

V := H0(div, Ω) =
{
v ∈ (L2(Ω))2 : ∇ · v ∈ L2(Ω), n · v = 0

}
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for Neumann boundary condition (1.3) equipped with the norm

‖v‖V :=
(
‖v‖2

0 + ‖∇ · v‖2
0

) 1
2
,

respectively.
The corresponding weak formulation for the problem (2.1) seeks (u, p, λ) ∈ V×W ×R such that p �= 0 and⎧⎨

⎩
a(u,v) − b(v, p) = 0, ∀v ∈ V,
b(u, q) + d(p, q) = λr(p, q), ∀q ∈ W,

r(p, p) = 1,
(2.4)

where a(·, ·), b(·, ·), d(·, ·) and r(·, ·) are bilinear forms defined by

a(u,v) =
∫

Ω

u · A−1vdΩ, b(v, q) = −
∫

Ω

∇ · vqdΩ,

d(p, q) =
∫

Ω

ϕpqdΩ, r(p, q) =
∫

Ω

ρpqdΩ.

For the aim of the analysis, we also need to define the weighted L2(Ω) norm based on the inner product r(·, ·)
as

‖q‖r := r(q, q)
1
2 .

Based on the property of the function ρ, it is obvious that the norm ‖ · ‖r is equivalent to ‖ · ‖0.
From [2], we know that the eigenvalue problem (2.4) owns an eigenvalue sequence {λj} :

0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . . , lim
k→∞

λk = ∞,

and the associated eigenfunctions
(u1, p1), (u2, p2), . . . , (uk, pk), . . . ,

where r(pi, pj) = δij .
Now, let us define the mixed finite element discretization method for the eigenvalue problem (2.4). The well-

posedness of the discrete weak form of (2.4) can be guaranteed by the fact that the corresponding approximation
spaces satisfy the Babuška-Brezzi condition (see, e.g., [7, 8, 14]). Let Th be a partition of Ω into finite elements
(triangles or rectangles), which is regular and has a mesh size h. Associated with the partition Th, we define the
finite dimensional spaces Vh ⊂ V and Wh ⊂W as finite element spaces [8, 14].

In this paper, we assume the mixed finite element space Vh ×Wh has an interpolation operator (Ih, Jh)

Ih × Jh : V ×W 
−→ Vh ×Wh

satisfying the following commuting diagram property (see, e.g., [8])

∇ · Ihv = Jh∇ · v, ∀v ∈ V ∩Hε(Ω), (2.5)

where Jh denotes the L2-projection on Wh.
The mixed finite element space Vh ×Wh is assumed to have the following approximation properties:

‖Ihv‖0 ≤ C‖v‖1, (2.6)
‖u− Ihu‖V + ‖p− Jhp‖0 ≤ Chm (‖u‖m + ‖∇ · u‖m + ‖p‖m) , 0 < m ≤ k, (2.7)

for any u ∈ (Hm(Ω))2, ∇ · u ∈ Hm(Ω), and p ∈ Hm(Ω), where k is a positive integer according to the degree
of the mixed finite element space Vh ×Wh.
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Now, let us define the approximation of eigenpair (u, p, λ) of (2.4) by the mixed finite element method as
finding a pair of (uh, ph, λh) ∈ Vh ×Wh ×R such that⎧⎨

⎩
a(uh,vh) − b(vh, ph) = 0, ∀vh ∈ Vh

b(uh, qh) + d(ph, qh) = λhr(ph, qh), ∀qh ∈ Wh,
r(ph, ph) = 1.

(2.8)

In this paper, we assume the eigenfunctions of (1.1) has the regularity p ∈ H1+t(Ω), i.e.,

‖p‖1+t ≤ C, (2.9)

where t is a positive real number and the constant C depends on the eigenfunction p. From [2] the discrete
eigenvalue problem (2.8) has eigenvalues

0 ≤ λ1,h ≤ λ2,h ≤ . . . ≤ λk,h ≤ . . . ≤ λN,h,

and the corresponding eigenfunctions

(u1,h, p1,h), (u2,h, p2,h), . . . , (uk,h, pk,h), . . . , (uN,h, pN,h),

where r(pi,h, pj,h) = δij , 1 ≤ i, j ≤ N (N is the dimension of the mixed finite element space Vh ×Wh). For
simplicity, we only consider numerical approximations of simple eigenvalues in this paper.

3. A superconvergence result

In [11–13], a type of superconvergence between the eigenfunction approximation and its corresponding mixed
finite element projection has been given for Laplace eigenvalue problems (A = I, ϕ = 0 and ρ = 1) by the
lowest order Raviart-Thomas mixed finite element. For the general second order elliptic eigenvalue problem
(1.1), there is no corresponding superconvergence result. In this section, we show the same superconvergence
result for the general eigenvalue problem (1.1) with general mixed finite elements which satisfy the commuting
diagram property (2.5).

In order to deduce the superconvergence result, we need to define the solution operators: T and S, and their
discrete version Th and Sh.

First, let us define the pair of solution operators T and S as

T : W 
−→W, S : W 
−→ V

such that for any g ∈ W {
a(Sg,v) − b(v, T g) = 0, ∀v ∈ V,
b(Sg, q) + d(Tg, q) = r(g, q), ∀q ∈ W.

(3.1)

For this elliptic problem, the following regularity estimate holds (see, e.g., [3, 15])

‖Sg‖γ + ‖Tg‖1+γ ≤ C‖g‖0, (3.2)

where γ ∈ (0, 1] depends on the maximum interior angle ω < 2π of Ω (for example, γ = π
ω − ε and γ = 1 if Ω

is convex for the Dirichlet boundary condition (1.2) case).
Then we define the corresponding discrete pair of operators Th and Sh

Th : W 
−→Wh, Sh : W 
−→ Vh

such that for any g ∈ W {
a(Shg,vh) − b(vh, Thg) = 0, ∀vh ∈ Vh,
b(Shg, qh) + d(Thg, qh) = r(g, qh), ∀qh ∈ Wh.

(3.3)
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Based on the Babuška-Brezzi condition of the mixed finite element space Vh ×Wh, we have

‖Shg‖V + ‖Thg‖0 ≤ C‖g‖0. (3.4)

We also need to define the mixed finite element projection operator (Rh, Gh) by

Rh ×Gh : W × V 
−→Wh × Vh

such that for (p,u) ∈W × V{
a(Gh(u, p),vh) − b(vh, Rh(u, p)) = a(u,vh) − b(vh, p), ∀vh ∈ Vh,
b(Gh(u, p), qh) + d(Rh(u, p), qh) = b(u, qh) + d(p, qh), ∀qh ∈Wh.

(3.5)

Notice that operator Gh and Rh are mutually coupled through system (3.5). For this type of projection, we
have the following error estimate (see, e.g., [8])

‖Gh(u, p) − u‖V + ‖Rh(u, p) − p‖0 ≤ Chs, (3.6)

where (u, p) satisfies problem (2.1) and the constant C depends on the eigenfunction (u, p) but independent of
the mesh size h.

So the eigenvalue problem (2.1) can be written as

λTp = p, (3.7)

and the discrete eigenvalue problem (2.8) can also be written as

λhThph = ph. (3.8)

Based on the operator definitions (3.1), (3.3), and (3.5), the following relation holds

Rh(S, T ) = Th, (3.9)

where the composite operator Rh(S, T ) is defined by

Rh(S, T )g = Rh(Sg, T g), ∀g ∈ W,

and this type of definition is also valid for Gh(S, T ). From the projection definition (3.5) and equations (3.7)
and (3.8), we also have the following relations

λhRh(S, T )ph = ph, (3.10)

and

λRh(S, T )p = Rh(u, p). (3.11)

Throughout this paper, we assume the following hypothesis holds

‖Sg − IhSg‖0 → 0, as h→ 0 for any g ∈ L2(Ω). (3.12)

Based on the abstract theory of [2, 20], the recent important results [4, 5], and [6], Lemma 6.1, and (2.6), (2.7)
and (3.12), we know a priori error estimates for the eigenpair approximation (uh, ph, λh) of (2.8) when h is small
enough, {

|λ− λh| ≤ Ch2s,
‖u− uh‖V + ‖p− ph‖0 ≤ Chs,

(3.13)

where s = min{k, t}.

For the aim of the superconvergence analysis for the eigenfunction projection Rh(u, p) and the eigenfunction
approximation ph, we need the following superconvergence between Jhp and Rh(u, p) which has been analyzed
by Douglas and Roberts in 1985 (see [10]) and Brezzi and Fortin in 1991 (see [8]).
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Lemma 3.1 (cf. [8]). Assume the mixed finite element space Vh×Wh satisfy the commuting diagram (2.5). We
have the following superconvergence result for the mixed finite element projection Rh(u, p) and the corresponding
interpolant Jhp

‖Rh(u, p) − Jhp‖0 ≤ Chs+γ . (3.14)

Proof. First we choose a function φ such that ‖φ‖r = 1 and ‖Rh(u, p)− Jhp‖r = r(Rh(u, p)− Jhp, φ). Then we
define the auxiliary equation:

Find (z, ψ) ∈ V ×W such that {
a(v, z) − b(v, ψ) = 0, ∀v ∈ V,
b(z, q) + d(q, ψ) = r(q, φ), ∀q ∈ W.

(3.15)

This auxiliary equation has the following regularity ([3, 15])

‖z‖γ + ‖ψ‖1+γ ≤C‖φ‖r. (3.16)

The corresponding mixed finite element approximation (zh, ψh) ∈ Vh ×Wh is defined as:{
a(vh, zh) − b(vh, ψh) = 0, ∀vh ∈ Vh,
b(zh, qh) + d(qh, ψh) = r(qh, φ), ∀qh ∈Wh.

(3.17)

The approximation (zh, ψh) has the following error estimate

‖z− zh‖0 + ‖ψ − ψh‖0 ≤Chγ‖φ‖r. (3.18)

Then with commuting diagram property (2.5) and equations (3.5), (3.15), (3.17), we have

‖Rh(u, p) − Jhp‖r = r(Rh(u, p) − Jhp, φ)
= b(zh, Rh(u, p) − Jhp) + d(Rh(u, p) − Jhp, ψh)
= b(zh, Rh(u, p) − p) + d(Rh(u, p) − Jhp, ψh)

= a(Gh(u, p) − u, zh) + d(Rh(u, p) − Jhp, ψh)
= a(Gh(u, p) − u, zh − z) + a(Gh(u, p) − u, z) + d(Rh(u, p) − Jhp, ψh)
= a(Gh(u, p) − u, zh − z) + b(Gh(u, p) − u, ψ) + d(Rh(u, p) − Jhp, ψh)
= a(Gh(u, p) − u, zh − z) + b(Gh(u, p) − u, ψ − ψh) + b(Gh(u, p) − u, ψh)

+ d(Rh(u, p) − p, ψh) + d(p− Jhp, ψh)
= a(Gh(u, p) − u, zh − z) + b(Gh(u, p) − u, ψ − ψh) + d(p− Jhp, ψh). (3.19)

From (3.6) and (3.18), it is easy to know that

|a(Gh(u, p) − u, zh − z)| ≤ Chs+γ , (3.20)
|b(Gh(u, p) − u, ψ − ψh)| ≤ Chs+γ . (3.21)

We can also estimate the term d(p− Jhp, ψh) as

|d(p− Jhp, ψh)| ≤
∣∣∣∣
∫

Ω

ϕ̄(p− Jhp)ψhdΩ
∣∣∣∣+
∣∣∣∣
∫

Ω

(ϕ− ϕ̄)(p− Jhp)ψhdΩ
∣∣∣∣

≤ Chs+1‖ϕ‖1, (3.22)

where ϕ̄ is the interplant of ϕ onto the piecewise constant function. Combining (3.19), (3.20), (3.21), and (3.22),
we can obtain

‖Rh(u, p) − Jhp‖r ≤ Chs+γ .

Combining the above inequality with the equivalence of norms ‖ · ‖0 and ‖ · ‖r, the desired result (3.14) can be
derived. �
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Now, let us state the superconvergence result which is the main content in this section. The idea we use here
comes from [18] which is based on the operator analysis.

Theorem 3.2. Let (uh, ph, λh) be the corresponding discrete eigenpair approximation for the eigenvalue prob-
lem (2.8) and (Gh(u, p), Rh(u, p)) be the mixed finite element projection of (u, p) defined by (3.5) where (u, p)
is the solution of (2.1). When the mesh size h is small enough, we have the following superconvergence result

‖Rh(u, p) − ph‖0 ≤ Chs+γ , (3.23)

where the constant C depends on the eigenvalue λ but independent of the mesh size h.

Proof. First from (3.7), (3.10), and (3.11), we have

(I − λT )(Rh(u, p) − ph) = (λhRh(S, T ) − λT )(Rh(u, p) − ph) +Rh(u, p) − ph

−λhRh(S, T )(Rh(u, p) − p) − λhRh(S, T )(p− ph)

= (λhRh(S, T ) − λT )(Rh(u, p) − ph) + (λ − λh)Rh(S, T )p

−λhRh(S, T )(Rh(u, p) − p). (3.24)

Let us define a function δh as

δh = Rh(u, p) − ph − r(Rh(u, p) − ph, p)p. (3.25)

Since r(p, p) = 1, it is easy to check that r(Rh(u, p) − ph − r(Rh(u, p) − ph, p)p, p) = 0. Hence the following
inequality holds

c‖δh‖r ≤ ‖(I − λT )δh‖r. (3.26)

From (3.13), (3.4), (3.2), (3.6), (3.24), (3.26), and (I − λT )p = 0, we obtain

c‖δh‖r ≤ |λh − λ|‖Rh(S, T )(Rh(u, p) − ph)‖r + λ‖(Rh(S, T ) − T )(Rh(u, p) − ph)‖r

+ |λh − λ|‖Rh(S, T )p‖r + λh‖Rh(S, T )(Rh(u, p) − p)‖r

≤ Ch2s‖Th(Rh(u, p) − ph)‖r + Cλhγ‖T (Rh(u, p) − ph)‖1+γ

+ Ch2s‖Thp‖r + λh‖Rh(S, T )(Rh(u, p) − p)‖r

≤ Ch2s‖Rh(u, p) − ph‖r + Cλhγ‖Rh(u, p) − ph‖r

+ Ch2s‖p‖r + λh‖Rh(S, T )(Rh(u, p) − p)‖r

≤ Ch2s‖p‖r + Cλhγ‖Rh(u, p) − ph‖r + λh‖Rh(S, T )(Rh(u, p) − p)‖r, (3.27)

where we used the error estimate

‖(Rh(S, T ) − T )(Rh(u, p) − ph)‖r ≤ Chγ‖T (Rh(u, p) − ph)‖1+γ ≤ Chγ‖Rh(u, p) − ph‖r,

which is based on the regularity property (3.2).
Now let us estimate the term ‖Rh(S, T )(Rh(u, p) − p)‖r. First we choose a function gh ∈ Wh such that

‖gh‖r = 1 and −r(gh, Rh(S, T )(Rh(u, p) − p)) = ‖Rh(S, T )(Rh(u, p) − p)‖r. Then we define the auxiliary
equation: Find (xh, ξh) ∈ Vh ×Wh such that{

a(vh,xh) − b(vh, ξh) = 0, ∀vh ∈ Vh

b(xh, qh) + d(qh, ξh) = r(gh, qh), ∀qh ∈ Wh.
(3.28)
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Based on the Babuška-Brezzi condition of the mixed finite element space Vh ×Wh and the equivalence between
the norms ‖ · ‖r and ‖ · ‖0, we have

‖xh‖V + ‖ξh‖0 ≤ C sup
0�=(vh,qh)∈Vh×Wh

a(vh,xh) − b(vh, ξh) + b(xh, qh) + d(qh, ξh)
‖vh‖V + ‖qh‖0

= C sup
0�=(vh,qh)∈Vh×Wh

r(gh, qh)
‖vh‖V + ‖qh‖0

≤ C‖gh‖r

= C. (3.29)

Choosing (vh, qh) = (Gh(S, T )(Rh(u, p) − p), Rh(S, T )(Rh(u, p) − p)) in (3.28) and combining (3.1), (3.3), and
(3.5) leads to

−r(gh, Rh(S, T )(Rh(u, p) − p)) = a(Gh(S, T )(Rh(u, p) − p),xh) − b(xh, Rh(S, T )(Rh(u, p) − p))

− b(Gh(S, T )(Rh(u, p) − p), ξh) − d(Rh(S, T )(Rh(u, p) − p), ξh)

= a(S(Rh(u, p) − p),xh) − b(xh, T (Rh(u, p) − p))

− b(S(Rh(u, p) − p), ξh) − d(T (Rh(u, p) − p), ξh)

= −r(Rh(u, p) − p, ξh). (3.30)

Furthermore from the defintion of Jh, the superconvergence (3.14), and inequality (3.29), we have the following
estimate

|r(Rh(u, p) − p, ξh)| = |r(Rh(u, p) − Jhp, ξh) + r(Jhp− p, ξh)|

≤
∣∣∣∣
∫

Ω

ρ(Jhp− p)ξhdΩ
∣∣∣∣+ Chs+γ‖ξh‖0

=
∣∣∣∣
∫

Ω

ρ̄(Jhp− p)ξhdΩ
∣∣∣∣+
∣∣∣∣
∫

Ω

(ρ− ρ̄)(Jhp− p)ξhdΩ
∣∣∣∣+ Chs+γ‖ξh‖0

≤ Ch‖ρ‖1,∞‖Jhp− p‖0‖ξh‖0 + Chs+γ‖ξh‖0

≤ Chs+γ(1 + ‖ρ‖1,∞)‖ξh‖0

≤ Chs+γ(1 + ‖ρ‖1,∞)‖gh‖r, (3.31)

where ρ̄ denotes the interplant of ρ onto the piecewise constant function. Then combining (3.30), (3.31), and
the definition of gh, we obtain

‖Rh(S, T )(Rh(u, p) − p)‖r ≤ Chs+γ(1 + ‖ρ‖1,∞). (3.32)

So from (3.25), (3.27), and (3.32) and the property of function ρ, we can give the estimate for ‖Rh(u, p)−ph‖0

as

‖Rh(u, p) − ph‖r ≤ C‖δh‖r + ‖r(Rh(u, p) − ph, p)p‖r

≤ Chs+γ + Cλhγ‖Rh(u, p) − ph‖r + C|(ρp,Rh(u, p) − ph)|

= Chs+γ + Cλhγ‖Rh(u, p) − ph‖r + C|(ρp,Rh(u, p) − p)|

+ C|(ρp, p− ph)|. (3.33)
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Now, let us consider the two terms |(ρp,Rh(u, p)− p)| and |(ρp, p− ph)|. First from (2.1), (2.8), and (3.13), the
following holds

|(ρp, p− ph)| = |(ρp, p) − (ρp, ph)|

=
∣∣∣∣12(ρp, p) − (ρp, ph) +

1
2
(ρph, ph)

∣∣∣∣
=

1
2
|(ρ(p− ph), p− ph)|

≤ Ch2s. (3.34)

Then from (2.4), (3.5), and (3.6), we have

λ(ρp,Rh(u, p) − p) = −a(u, Gh(u, p) − u) + b(Gh(u, p) − u, p)
+ b(u, Rh(u, p) − p) + d(p,Rh(u, p) − p)

= −a(u−Gh(u, p), Gh(u, p) − u) + b(Gh(u, p) − u, p−Rh(u, p))
+ b(u−Gh(u, p), Rh(u, p) − p) + d(p−Rh(u, p), Rh(u, p) − p)

≤ Ch2s. (3.35)

Finally combining (3.33), (3.34), and (3.35) leads to

‖Rh(u, p) − ph‖r ≤ Chs+γ + Cλhγ‖Rh(u, p) − ph‖r. (3.36)

It means when h is small enough, we have

‖Rh(u, p) − ph‖r ≤ Chs+γ . (3.37)

The desired result (3.23) can be obtained by the equivalence between the norms ‖ · ‖r and ‖ · ‖0, and the proof
is complete. �

Based on the obtained superconvergence (3.14) and (3.23), we give some obvious corollaries.

Corollary 3.3. For the eigenfunction approximation ph of the eigenvalue problem (2.4) by the mixed finite
element method and the L2-projection Jhp of the exact eigenfunction, the following superconvergence result
holds when the mesh size h is small enough

‖ph − Jhp‖0 ≤ Chs+γ . (3.38)

Based on this superconvergence result, using a suitable interpolation postprocessing operator for ph, we can get
a superconvergent eigenfunction approximation.

Corollary 3.4. Let (uh, ph, λh) be the corresponding discrete eigenpair approximation for the eigenvalue prob-
lem (2.8) and (Gh(u, p), Rh(u, p)) is the mixed finite element projection of (u, p) defined by (3.5) where (u, p)
is the exact solution of (2.1). When the mesh size h is small enough, we have the following superconvergence
result

‖uh −Gh(u, p)‖V + ‖Rh(u, p) − ph‖0 ≤ Chs+γ , (3.39)

where constant C depends on the eigenvalue λ but independent of the mesh size h.
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Proof. From (2.4), (2.8), (3.5), (3.38) and Babuška-Brezzi condition, we have

‖uh −Gh(u, p)‖V + ‖ph −Rh(u, p)‖0

≤ C sup
0�=(vh,qh)∈Vh×Wh

a(uh −Gh(u, p),vh) − b(vh, ph −Rh(u, p)) + b(uh −Gh(u, p), qh) + d(ph −Rh(u, p), qh)
‖vh‖V + ‖qh‖0

= C sup
0�=(vh,qh)∈Vh×Wh

r(λhph − λp, qh)
‖vh‖V + ‖qh‖0

= C sup
0�=(vh,qh)∈Vh×Wh

λhr(ph − Jhp, qh) + λhr(Jhp− p, qh) + (λh − λ)r(p, qh)
‖vh‖V + ‖qh‖0

≤ C (‖ph − Jhp‖0 + h‖Jhp− p‖ + |λ− λh|)
≤ Chs+γ , (3.40)

where we use the same technique as in (3.31). �

Remark 3.5. From (3.39), we know that there exists supercovergence for both ‖Gh(u, p) − uh‖V and
‖Rh(u, p)− ph‖0 for general second order elliptic eigenvalue problems by general mixed finite element methods.
This is an extension of the results in [11–13].

4. Numerical results

In this section, we give three numerical examples to illustrate the superconvergence between the mixed finite
element approximation (uh, ph) and the corresponding mixed finite element projection (Gh(u, p), Rh(u, p)).
Furthermore the superconvergence between ph and interpolant Jhp is also investigated here. Throughout this
section, numerical results are given for the first eigenvalue and its corresponding eigenfunction. Of course, we
should point out that our result is also valid for other eigenvalues. Here, the implicitly restarted Arnoldi method
is applied to compute the eigenvalues. The Raviart-Thomas, Brezzi-Douglas-Marini and Brezzi-Douglas-Fortin-
Marini mixed finite elements are applied to solve the eigenvalue problems on the triangular and rectangular
meshes. The notation used in the error figures is defined as follows

Rhp := Rh(u, p), and Ghu = Gh(u, p),

where (u, p) is the exact solution of the corresponding eigenvalue problem.

4.1. Model eigenvalue problem

In this subsection, we investigate the superconvergence phenomena of the model eigenvalue problem⎧⎨
⎩

−Δp = λp, in Ω,
p = 0, on ∂Ω,∫

Ω
p2dΩ = 1,

(4.1)

on the domain Ω = (0, 1) × (0, 1).
It is well known that the exact eigenpair is

pkl = sin(kπx) sin(lπy), λkl = (k2 + l2)π2, 0 ≤ k, l and k, l are integers.

Here we test the superconvergence property on triangular and rectangular meshes. On the triangular meshes,
the lowest and first order Raviart-Thomas (RT0 and RT1) and the lowest order Brezzi-Douglas-Marini (BDM1)
mixed finite elements are applied to do the test. Additionally we also use the lowest and first order Raviart-
Thomas (RT0 and RT1), the first order Brezzi-Douglas-Fortin-Marini (BDFM1) mixed finite elements on the
rectangular meshes to solve the eigenvalue problem (4.1).
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Figure 1. Initial triangular and rectangular meshes for regular refinement.
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Figure 2. Errors of RT0, BDM1 and RT1 on the regular refinement triangular meshes for
model problem.

First we give the numerical results of the superconvergence on the triangular meshes obtained by regular
refinement of the initial mesh showed in Figure 1. The corresponding numerical results with RT0, BDM1 and
RT1 are presented in Figure 2. We also test the RT0, RT1 and BDFM1 mixed finite elements on the rectangular
meshes. Right hand side of Figure 1 shows the initial mesh and we use regular refinement to produce the mesh
sequence. The numerical results are showed in Figure 3.

In order to test the superconvergence on more general meshes. We also test the superconvergence on the mesh
sequence in which each level triangular mesh is obtained by Delaunay algorithm. The triangular mesh sequence
is presented in Figure 4. The corresponding numerical results are listed in Figure 5.
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Figure 3. Errors of RT0, RT1 and BDFM1 on the regular refinement rectangular meshes for
model problem.
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Figure 4. Unstructured triangular mesh sequence.



SUPERCONVERGENCE OF MIXED EIGENVALUE PROBLEM 809

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

log(1/h)

E
rr

o
rs

Errors by RT
0
 on irregular refinement mesh

|λ−λ
h
|

||p
h
−p||

0
||p

h
−J

h
p||

0
||p

h
−R

h
p||

0
||u

h
−G

h
u||

V

slope=−1
slope=−2

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

log(1/h)

E
rr

o
rs

Errors by BDM
1
 on irregular refinement mesh

|λ−λ
h
|

||p
h
−p||

0
||p

h
−J

h
p||

0
||p

h
−R

h
p||

0
||u

h
−G

h
u||

V

slope=−1
slope=−2

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

log(1/h)

E
rr

o
rs

Errors by RT
1
 on irregular refinement mesh

|λ−λ
h
|

||p
h
−p||

0

||p
h
−J

h
p||

0

||p
h
−R

h
p||

0

||u
h
−G

h
u||

V

slope=−2

slope=−3

slope=−4

Figure 5. Errors of RT0, BDM1 and RT1 on the irregular refinement triangular meshes for
model problem.

From Figures 2, 3, and 5, we can find that there exists superconvergence for the eigenfunction approximation
(uh, ph) and the corresponding projection (Gh(u, p), Rh(u, p)), the approximation ph and interpolant Jhp. This
confirms the results of Corollaries 3.3 and 3.4.

4.2. More general eigenvalue problem

In this subsection, we are concerned with a more general eigenvalue problem (1.1) with Dirichlet boundary
condition (1.2), and

A =

(
1 +

(
x1 − 1

2

)2 (
x1 − 1

2

) (
x2 − 1

2

)(
x1 − 1

2

) (
x2 − 1

2

)
1 +

(
x2 − 1

2

)2
)
,

ϕ = e(x1− 1
2 )(x2− 1

2 ), ρ = 1 + (x1 − 1
2 )(x2 − 1

2 ) and Ω = (0, 1) × (0, 1).
Since the exact solution is not known, we choose an adequately accurate approximation λ = 23.7784248452082

which is obtained by extrapolation method (see, e.g., [17, 19]) as the exact first eigenvalue (has 8 significant
digits at least). In order to measure the errors of eigenfunction approximations, we use the corresponding higher
order Galerkin finite element eigenfunction approximation, which has higher order accuracy in L2(Ω) norm
sense, as the exact eigenfunction.

First we test the superconvergence on triangular meshes obtained by the regular refinement with the initial
mesh showed in Figure 1. The corresponding numerical results by RT0, BDM1, and RT1 mixed finite elements
are presented in Figure 6. Then we give the numerical results of RT0, RT1 and BDFM1 mixed finite elements
on rectangular meshes which are also obtained by regular refinement with the initial mesh showed in Figure 1.
Figure 7 shows the corresponding numerical results by RT0, RT1, and BDFM1.

From Figures 6 and 7, we can find there also exists superconvergence of the general problem and this confirms
the results of Corollaries 3.3 and 3.4 again.

Remark 4.1. From Figures 2, 3, 5, 6, and 7, it seems that there exists the ultrasuperconvergence (‖ph −
Rh(u, p)‖0 ≤ Chs+2) for ph − Rh(u, p) by high order mixed finite element method. The reason may rest with
γ = 2 for high order mixed finite element methods on the unit square domain.



810 Q. LIN AND H. XIE

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

log(1/h)

E
rr

o
rs

Errors by RT
0
 with regular refinement

|λ−λ
h
|

||p
h
−p||

0
||p

h
−J

h
p||

0
||p

h
−R

h
p||

0
||u

h
−G

h
u||

V

slope=−1
slope=−2

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

log(1/h)

E
rr

o
rs

Errors by BDM
1
 with regular refinement

|λ−λ
h
|

||p
h
−p||

0
||p

h
−J

h
p||

0
||p

h
−R

h
p||

0
||u

h
−G

h
u||

V

slope=−1
slope=−2

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

log(1/h)

E
rr

o
rs

Errors by RT
1
 with regular refinement

|λ−λ
h
|

||p
h
−p||

0
||p

h
−J

h
p||

0
||p

h
−R

h
p||

0
||u

h
−G

h
u||

V
slope=−2
slope=−3
slope=−4

Figure 6. Errors of RT0, BDM1 and RT1 on the regular refinement triangular meshes for
general problem.
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Figure 7. Errors of RT0, RT1 and BDFM1 on the regular refinement rectangular meshes for
general problem.

4.3. L shape domain

Here we solve the model problem (4.1) but with L shape domain Ω := (−1, 1)× (−1, 1)\[−1, 0]× [0, 1]. It is
known that the eigenfunction corresponding to the first eigenvalue is singular.

We solve this problem with RT0 and BDM1 mixed finite elements on triangular meshes, which are obtained by
regular refinement with the initial mesh showed in Figure 8. The same as last subsection, the first exact eigenvalue
and the corresponding eigenfunction is not known neither. We adopt an adequately accurate approximation
λ = 9.6397238440219 (see, e.g., [17]) as the smallest accurate eigenvalue and the eigenfunction obtained by
higher order Galerkin finite element method as the accurate eigenfunction according to the first eigenvalue. The
numerical results are listed in Figure 9.
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Figure 8. Initial mesh for L shape domain.
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Figure 9. Errors of RT0 and BDM1 on the regular refinement triangular meshes for L shape
domain problem.

Figure 9 shows that there exists superconvergence between the eigenfunction approximation (uh, ph) and the
corresponding projection (Gh(u, p), Rh(u, p)), the eigenfunction approximation ph and the interpolant Jhp even
for the singular eigenfunction. This confirms Corollaries 3.3 and 3.4.

Remark 4.2. Figure 9 shows that the convergence order of ‖ph − p‖0 is 1 which is larger than our expectancy.
The reason is that the eigenfunction p ∈ H5/3−ε(Ω) on the L-shape domain, the superconvergence result (3.38)
and the following inequality

‖p− ph‖0 ≤ ‖p− Jhp‖0 + ‖Jhp− ph‖0 ≤ Ch‖p‖1 + Ch4/3 ≤ Ch.
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The surprising convergence rate of the eigenvalue approximation by BDM1 element may due to the inexactness
of our used “accurate” eigenvalue λ = 9.6397238440219 in this example.

5. Concluding remarks

In this paper, we give a superconvergence result for the general second order elliptic eigenvalue problems by
mixed finite element methods. Based on the results in Corollaries 3.3 and 3.4, as discussed in the superconver-
gence theory [16,18], suitable interpolation postprocessing methods can be applied to improve the convergence
order of the eigenfunction approximations. Additionly, based on the result of Corollary 3.4, we can also obtain
some superconvergence results on some special types of structured meshes with the integral identity techniques
in superconvergence theory (see, e.g., [16, 18]). Furthermore, with this superconvergence result, the Rayleigh
quotient acceleration technique can be applied to improve the accuracy of the eigenvalue approximations. These
will be our future works.
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ments; they led to a significant improvement in the presentation of our paper.
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