ESAIM: M2AN 46 (2012) 797-812 ESAIM: Mathematical Modelling and Numerical Analysis
DOI: 10.1051/m2an/2011065 WwWw.esalm-m2an.org

A SUPERCONVERGENCE RESULT FOR MIXED FINITE ELEMENT
APPROXIMATIONS OF THE EIGENVALUE PROBLEM *

QuN LIN' AND HEHU XIE!

Abstract. In this paper, we present a superconvergence result for the mixed finite element approxima-
tions of general second order elliptic eigenvalue problems. It is known that a superconvergence result has
been given by Durdn et al. [Math. Models Methods Appl. Sci. 9 (1999) 1165-1178] and Gardini [ESAIM:
M2AN 43 (2009) 853-865] for the lowest order Raviart-Thomas approximation of Laplace eigenvalue
problems. In this work, we introduce a new way to derive the superconvergence of general second or-
der elliptic eigenvalue problems by general mixed finite element methods which have the commuting
diagram property. Some numerical experiments are given to confirm the theoretical analysis.
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1. INTRODUCTION

In this paper, we are concerned with the following second order elliptic eigenvalue problem: find (p, \) such

that
—V - (AVp) +¢p = App, in £,
B(p) =0, on 012, (1.1)
fQ pp*d2 =1,

where A = (a;j)2x2 is a symmetric positive definite matrix with a;; € Wh(2) for 1 < i,j < 2,0 < ¢ €
W0 (£2) on §2, p is a bounded positive function on 2 and 0 < ¢g < p € W%(£2), 2 C R? is a bounded
domain with Lipschitz boundary 92, V and V- denote the gradient and divergence operators and B(p) denotes
the boundary condition which can be Dirichlet or Neumann type, i.e.,

Bp(p) =p=0, on 042, (1.2)
or
By(p) =n-AVp =0, on 0f2. (1.3)
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The mixed formulation for the eigenvalue problem (1.1) comes from computing the vibration modes of a fluid
in a displacement formulations since using the displacement formulation for fluid is more convenient than using
the pressure or potential as variable (see, e.g., [11]).

There are several works for the second order elliptic eigenvalue problems in the mixed formulation and their
numerical methods such as Babuska and Osborn [1,2,21], Mercier et al. [20], Boffi et al. [5,6], Boffi [4], etc.
Osborn [21], Mercier et al. [20], Boffi et al. [5], Boffi [4] give the analysis for the eigenpair approximations by
mixed/hybrid finite element methods based on the theory of compact operator (see, e.g., [9]).

In [11-13], a superconvergence result between the lowest order Raviart-Thomas mixed finite element approxi-
mation and their corresponding mixed finite element projection for the Laplace eigenvalue problem with A = I,
@ =0and p=11n (1.1) has been proven. Their analysis is based on the equivalence between the lowest order
Raviart-Thomas approximation and the non-conforming Crouzeix-Raviart approximation for Laplace eigenvalue
problem with Neumann boundary condition. In this paper, we extend the superconvergence result to general
second order elliptic eigenvalue problems with general mixed finite element methods. This is also an extension
of the superconvergence for the second order elliptic problem by mixed finite element methods (see, e.g., [8]).

The outline of the paper goes as follows. In Section 2, we introduce some preliminaries and notations, and state
the weak form of the eigenvalue problem and its corresponding discrete form. A superconvergence result between
the eigenfunction approximations and its corresponding interpolant is obtained in Section 3. Some numerical
results are given in Section 4 to confirm the theoretical analysis in Section 3. Some concluding remarks are given
in the last section.

Throughout this paper C' or ¢, denotes a generic positive constant which is independent of the mesh size but
sometimes depends on the eigenvalues of the problem (1.1).

2. MIXED FINITE ELEMENT METHOD

We define a new vector-valued function u as follows
u=AVp.
Then (1.1) can be transformed into the following equivalent mixed formulation

-V -u+ep=App, in §2,

A7 lu—Vp =0, in 2, (2.1)
Jorp*d2 =1,
with the boundary condition
p =0, on 012, (2.2)
for the Dirichlet boundary case (1.2) or
n-u=0, on 042, (2.3)

for the Neumann boundary case (1.3).
Let W := L?(§2) be the standard L? space on {2 with norm || - || and let V be the Hilbert space

V= H(div, 2) = {v e (L2(R)? :V.-ve L2(9)}
for Dirichlet boundary condition (1.2) or

V = Hy(div, 2) = {v €(L3(R)? :V-veL¥ ), n-v= o}
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for Neumann boundary condition (1.3) equipped with the norm

1
2
Ivliv = (IvI3+ 17 - viI3)

respectively.
The corresponding weak formulation for the problem (2.1) seeks (u,p, A\) € V x W x R such that p # 0 and

a(u,v) —b(v,p) =0, Vv eV,
b(u,q) +d(p,q) = Ar(p,q), Vg e W, (2.4)
r(p,p) =1,

where a(-, ), b(-,-), d(-,-) and r(-,-) are bilinear forms defined by
a(u,v) = / u- A 'vd, b(v,q) = —/ V - vqd{2,
2 2
d(p,q) = /Q epqdf?, r(p,q) = /Q ppqds2.

For the aim of the analysis, we also need to define the weighted L?(§2) norm based on the inner product 7 (-, -)
as

1
lall::==7(q,q)%.

Based on the property of the function p, it is obvious that the norm | - ||, is equivalent to || - ||o.
From [2], we know that the eigenvalue problem (2.4) owns an eigenvalue sequence {\;} :

0§)\1§>\2§§>\k§, lim)\k:oo,

k—o0
and the associated eigenfunctions
(ulapl)a (112,]?2), ) (uk:apk:)a teey

where r(p;, pj) = dij.

Now, let us define the mixed finite element discretization method for the eigenvalue problem (2.4). The well-
posedness of the discrete weak form of (2.4) can be guaranteed by the fact that the corresponding approximation
spaces satisfy the Babuska-Brezzi condition (see, e.g., [7,8,14]). Let 7;, be a partition of {2 into finite elements
(triangles or rectangles), which is regular and has a mesh size h. Associated with the partition 7, we define the
finite dimensional spaces Vj, C V and W}, C W as finite element spaces [8,14].

In this paper, we assume the mixed finite element space V5, x W}, has an interpolation operator (I, Jy)

InxJp: VXWr— V), x W
satisfying the following commuting diagram property (see, e.g., [8])
V- -Iyv=J,V-v, VYveVnH(Q2), (2.5)

where J;, denotes the L2-projection on Wj.
The mixed finite element space Vj, x W}, is assumed to have the following approximation properties:

[Tnvllo < Clvll1, (2.6)
lu = Lpullv + llp = Jrpllo < CA™ ([[allm + IV - tllm + [Ipllm), 0 <m <k,

for any u € (H™(£2))?, V-u € H™(2), and p € H™(§2), where k is a positive integer according to the degree
of the mixed finite element space Vj, x Wj,.
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Now, let us define the approximation of eigenpair (u,p,A) of (2.4) by the mixed finite element method as
finding a pair of (up, pn, An) € Vi, x Wp, x R such that

a(up,vy) — b(vy,pn) =0, Yvp € Vy,
b(an,qn) + d(pn,qn) = A (Pn,qn), Yan € Wh, (2.8)
(P, pn) = 1.

In this paper, we assume the eigenfunctions of (1.1) has the regularity p € H'*(02), i.e.,

Iplli4e < C, (2.9)

where ¢ is a positive real number and the constant C' depends on the eigenfunction p. From [2] the discrete
eigenvalue problem (2.8) has eigenvalues

O<Mn< .S An < S Av,
and the corresponding eigenfunctions

(ul,h,Pl,h), (llz,h,pzh), ceey (uk,hapk,h)a ceey (uN,hapN,h)a

where 7(pin,pjn) = 0ij,1 < 1,7 < N (N is the dimension of the mixed finite element space Vj, x Wj). For
simplicity, we only consider numerical approximations of simple eigenvalues in this paper.

3. A SUPERCONVERGENCE RESULT

In [11-13], a type of superconvergence between the eigenfunction approximation and its corresponding mixed
finite element projection has been given for Laplace eigenvalue problems (A4 = I, ¢ = 0 and p = 1) by the
lowest order Raviart-Thomas mixed finite element. For the general second order elliptic eigenvalue problem
(1.1), there is no corresponding superconvergence result. In this section, we show the same superconvergence
result for the general eigenvalue problem (1.1) with general mixed finite elements which satisfy the commuting
diagram property (2.5).

In order to deduce the superconvergence result, we need to define the solution operators: 1" and S, and their
discrete version 73, and Sj,.

First, let us define the pair of solution operators T" and S as

T:W+— W, S:Wr—V

such that for any g € W
a(Sg,v) —b(v,Tg) =0, Vv ev, (3.1)
b(Sg,9) +d(Tg,q) = r(9,9), VgeW. '

For this elliptic problem, the following regularity estimate holds (see, e.g., [3,15])
159lly + 1 Tglli+~ < Cligllo, (32)

where 7 € (0, 1] depends on the maximum interior angle w < 27 of {2 (for example, v = T — € and v = 1 if 2
is convex for the Dirichlet boundary condition (1.2) case).
Then we define the corresponding discrete pair of operators T} and Sy,

Th:W>—>Wh, ShZW>—>Vh
such that for any g € W

{ a(Shg,vn) = b(vh, Thg) = 0 Vvy € Vi, (3.3)

b(Sng,qn) + d(Thg, qn) = 7(g,qn),  Yqn € Wh.



SUPERCONVERGENCE OF MIXED EIGENVALUE PROBLEM 801

Based on the Babuska-Brezzi condition of the mixed finite element space Vj x W), we have
1Shgllv + [ Thgllo < Cllgllo- (3-4)
We also need to define the mixed finite element projection operator (Ry,, Gj) by
Ry xGp: W xVi— W, xVy
such that for (p,u) € W x 'V

{ a(Gr(u,p),vh) = b(vh, Rp(u,p)) = a(u,vy) = b(vh,p),  Vvi € Vp,

b(Gn(w,p),an) + d(Rn(w,p), an) = b(w,qu) + d(p,an),  Van € Wi, (3.5)

Notice that operator G, and Rj, are mutually coupled through system (3.5). For this type of projection, we
have the following error estimate (see, e.g., [8])

1Gh(a,p) —ullv + || Rr(u,p) = pllo < Ch?, (3.6)

where (u, p) satisfies problem (2.1) and the constant C' depends on the eigenfunction (u, p) but independent of
the mesh size h.
So the eigenvalue problem (2.1) can be written as

AM'p = p, (3.7)
and the discrete eigenvalue problem (2.8) can also be written as
AnThph = ph.- (3.8)
Based on the operator definitions (3.1), (3.3), and (3.5), the following relation holds
Ry (S,T) = Ty, (3.9)

where the composite operator Ry (S,T) is defined by
Ru(S,T)g = Rn(Sg,Tg), VgeW,

and this type of definition is also valid for G, (S, T). From the projection definition (3.5) and equations (3.7)
and (3.8), we also have the following relations

An B (S, T)pn = ph, (3.10)
and
ARL(S,T)p = Rp(u,p). (3.11)
Throughout this paper, we assume the following hypothesis holds
|Sg — 1nSgllo — 0, as h — 0 for any g € L*(§2). (3.12)

Based on the abstract theory of [2,20], the recent important results [4,5], and [6], Lemma 6.1, and (2.6), (2.7)
and (3.12), we know a priori error estimates for the eigenpair approximation (up, pn, An) of (2.8) when h is small
enough,

_ 2s
{ ‘)‘ )\h‘ <Ch ) (3.13)

[u—upllv+p—prllo < CL,
where s = min{k,t}.
For the aim of the superconvergence analysis for the eigenfunction projection Ry (u,p) and the eigenfunction

approximation pj, we need the following superconvergence between J,p and Ry, (u,p) which has been analyzed
by Douglas and Roberts in 1985 (see [10]) and Brezzi and Fortin in 1991 (see [8]).
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Lemma 3.1 (cf. [8]). Assume the mized finite element space V, x Wy, satisfy the commuting diagram (2.5). We
have the following superconvergence result for the mized finite element projection Ry(u,p) and the corresponding
interpolant Jpp

Ry (u,p) = Jppllo < Ch¥7. (3.14)

Proof. First we choose a function ¢ such that ||¢[|, =1 and ||Ry(u,p) — Jppll» = r(Rp(u,p) — Jup, ). Then we
define the auxiliary equation:
Find (z,¢) € V x W such that

a(v,z) —b(v,y) = 0, VeV,
{ b(z,q) +d(q, ) = r(q,9), VgeW. (3.15)

This auxiliary equation has the following regularity ([3,15])

I12lly + [l <Cllo - (3.16)
The corresponding mixed finite element approximation (z,¥n) € Vi x W, is defined as:
a(vh,zp) = b(va,thn) = 0, Vv € Vy, (3.17)
b(Zh,Qh) + d(Qh,'(/)h) = T(Qha ¢)a VQh S Wh~ '
The approximation (zp, 1) has the following error estimate
Iz —znllo + [ — ¥nllo <CR||B]|,- (3.18)
Then with commuting diagram property (2.5) and equations (3.5), (3.15), (3.17), we have
||Rh(uap) - Jthr ( ) Jhpa ¢)

zp, Ry (w,p) — Jup) + d(Rn(u,p) — Jup, ¥n)

r(R
= ( h
(zn, Bn(u,p) — p) + d(Rp(u,p) — Jnp, ¥n)

=b

= a(G(w,p) — w,2) + d(Rn(w,p) — Jup, )

— a(G(w,p) — w2 — 2) + a(Gn(u,p) — 0,2) + d(Ru(w, p) — Jip, )

= a(Gr(w,p) — w2, — 2) + b(Gr(w, p) — w, ) + d(Rn(a,p) — Jup, ¥n)

= a(Gr(w,p) — w2, = 2) + (G, p) — W, 9 — ) + b(Gr(w,p) — u, ¢p)

+d(R(u,p) = p,vbn) + d(p — Jnp, tn)
= a(Gr(u,p) —u,zp —z) + b(Gr(u,p) —u, v —p) + d(p — Jpp, ¥n). (3.19)
From (3.6) and (3.18), it is easy to know that

la(Gr(u,p) —u,zp —z)| < Ch*T7, (3.20)
1b(Gr(u,p) —u, v — )| < CRTHY, (3.21)

We can also estimate the term d(p — Jup,¥p) as

A Jhpwhdfz] | (o - @) — hppinae
N 0

< Ch* g, (8.22)

where @ is the interplant of ¢ onto the piecewise constant function. Combining (3.19), (3.20), (3.21), and (3.22),
we can obtain
[1Br(a,p) = Jupllr < Ch™7.

Combining the above inequality with the equivalence of norms || - ||o and || - ||, the desired result (3.14) can be
derived. 0
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Now, let us state the superconvergence result which is the main content in this section. The idea we use here
comes from [18] which is based on the operator analysis.

Theorem 3.2. Let (up,pp, An) be the corresponding discrete eigenpair approximation for the eigenvalue prob-
lem (2.8) and (Gr(u,p), Rp(u,p)) be the mized finite element projection of (u,p) defined by (3.5) where (u,p)
is the solution of (2.1). When the mesh size h is small enough, we have the following superconvergence result

[Rn(u,p) = pallo < CR*TY, (3.23)
where the constant C' depends on the eigenvalue A but independent of the mesh size h.
Proof. First from (3.7), (3.10), and (3.11), we have

(I = AT)(Ru(u,p) — pr) = (MR (S, T) — AT)(Rn(u,p) — pr) + Ra(a,p) — pn
—AnBn (S, T)(Rr(u,p) = p) = AR (S, T)(p — pn)
= (MR (S, T) = AT)(Rn(a,p) — pr) + (A = An)Ru(S, T)p

—An R (S, T)(Ri(u,p) — p). (3.24)

Let us define a function dj as
6n = Rp(a,p) — pn — r(Rn(u,p) — pn, p)p. (3.25)

Since r(p,p) = 1, it is easy to check that r(Rp(u,p) — prn — r(Rn(u,p) — pn,p)p,p) = 0. Hence the following
inequality holds
cllonllr < (I = AT)én]l- (3.26)

From (3.13), (3.4), (3.2), (3.6), (3.24), (3.26), and (I — AT")p = 0, we obtain
cllonlly < [An = All[RR (S, T)(Rn(u, p) — p)lle + A (Br(S,T) — T)(Rn(u,p) — pu)|lr

+ A = AR (S, T)pllr + Anl|Br (S, T) (R (u, p) — p)||r

< Ch** || Th(Ru(w,p) = pu)llr + CARY [T (Ru(w,p) — pi)ll144
+ Ch** | Tpllr + Anll Rn(S, T) (Bn (u, p) = p)ll-

< Ch**||Ru(u,p) — pullr + CARY||Ru(u,p) — pallr
+ Ch*|plly + Aul|Ba (S, T) (i (u, p) — p)ll+

< Ch*|lp|l» + CARY | Ry (w,p) = il + Anl| R (S, T)(Ri(u, p) = p)| (3.27)

where we used the error estimate

I(Br(S,T) = T)(Bn(w,p) = pu)llr < CAY|T(Bi(w,p) = pn)li+~y < CRY[|Rr(w,p) = pallr

which is based on the regularity property (3.2).

Now let us estimate the term || Rp(S,T)(Rp(u,p) — p)|-. First we choose a function g, € Wj, such that
lgrllr = 1 and —r(gn, Rn(S,T)(Rp(u,p) — p)) = |[|Rn(S,T)(Rn(u,p) — p)|l-- Then we define the auxiliary
equation: Find (xp,&,) € V), x W), such that

a(Vh,Xn) = b(vh, &p) = 0, Vv € Vi (3.28)
b(Xn,qn) + d(qn, &) = r(gn,qn),  Yan € Wh. '
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Based on the Babuska-Brezzi condition of the mixed finite element space Vj, x W}, and the equivalence between
the norms || - ||, and || - |0, we have

a(va,Xp) = b(vi, &n) + b(Xn, qn) + d(qn, §n)

Ixnllv + [[€nllo < C sup
0#4(Vh,qn)EV R X W), ”vhHV + ”qhHO
e sup __rlgn.an)
0£(vn.an)eVixwy [IVellv + llanllo
< Cllgnllr
=¢ (3.29)

Choosing (vi,qn) = (Gr(S, T)(Rp(u,p) — p), Rp(S, T)(Rp(u,p) — p)) in (3.28) and combining (3.1), (3.3), and
(3.5) leads to

=7(gn, Bn(S, T)(Rp(u,p) — p)) = a(Gn(S. T)(Rp(a,p) — p),xn) — b(xn, Bi (S, T)(Rp(u,p) — p))
= b(Gw (S, T)(Rn(u,p) — p), &) — d(Rn(S,T)(Rn(u,p) — p),&n)
= a(S(Rn(u,p) — p),xn) = b(xn, T(Ru(u,p) — p))
= b(S(Rn(u,p) —p),&n) — d(T(Rp(u,p) — p),&n)
= —7(Rp(u,p) — p, &n)- (3.30)

Furthermore from the defintion of J;,, the superconvergence (3.14), and inequality (3.29), we have the following
estimate

7 (R (w,p) — p,&n)| = |r(Ru(w,p) — Jnp,&n) + 7(Jnp — p,&n)l

< /Qp(Jhp—p)fth

+Ch1€allo

_ \ / p<Jhp—p>shdfz] + \ [ 0= 90 - e + b el
0 0

< Chllpllr.sollTnp = pllolinllo + Ch* I lo
< Ch (1 +lpll1.00)lIEn o
< ChY (1 +lpll1.0)llgnllr, (3.31)

where p denotes the interplant of p onto the piecewise constant function. Then combining (3.30), (3.31), and
the definition of g, we obtain

I1RR (S, T)(Bn(w,p) = p)llr < CR(1+[lp]l1.00)- (3.32)

So from (3.25), (3.27), and (3.32) and the property of function p, we can give the estimate for || Ry (u, p) —prllo
as

[ Bn(u,p) = pullr < Cllonllr + [l (Ba(u, p) = pr, p)pll»
< Ch*™ + CARY||Rp(a,p) — prllr + Cl(pp, Bi(u,p) — pr)]
= Ch*™ + CARY||Rp(a,p) = pallr + Cl(pp, Ru(u. p) — p)|

+ C|(pp;p — pn)- (3.33)
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Now, let us consider the two terms |(pp, Rp(u, p) — p)| and |(pp, p — pp)|. First from (2.1), (2.8), and (3.13), the
following holds

|(pp,p — pr)| = |(ppsp) — (pp:PR)|

1 1
= §(pp,p) — (pp.pn) + §(pph,ph)

%\(p(p—ph),p—ph)\

Ch*. (3.34)

IN

Then from (2.4), (3.5), and (3.6), we have

= —a(u,Gp(u,p) —u) + b(Gp(u,p) —u,p)
+0(u, Rp(u,p) — p) + d(p, Ru(u,p) — p)
= —a(u — Gp(u,p),Gr(u,p) —u) + b(Gr(u,p) —u,p — Ri(u,p))
+b(u— Gr(u,p), Ru(u,p) — p) +d(p — Rn(u,p), Rp(u,p) — p)
< Ch*. (3.35)

A(pp, By (u,p) — p)

Finally combining (3.33), (3.34), and (3.35) leads to
[Rn(w,p) = pullr < Ch*T7 + CARY|| Ry (u,p) — prl:- (3.36)

It means when / is small enough, we have

| R (0, p) — pall, < Ch™7. (3.37)
The desired result (3.23) can be obtained by the equivalence between the norms || - ||, and || - ||o, and the proof
is complete. O

Based on the obtained superconvergence (3.14) and (3.23), we give some obvious corollaries.

Corollary 3.3. For the eigenfunction approzimation pp of the eigenvalue problem (2.4) by the mized finite
element method and the L%-projection Jnp of the exact eigenfunction, the following superconvergence resull
holds when the mesh size h is small enough

Ipn — Jnpllo < Ch¥7. (3.38)

Based on this superconvergence result, using a suitable interpolation postprocessing operator for py, we can get
a superconvergent eigenfunction approximation.

Corollary 3.4. Let (up,pn, An) be the corresponding discrete eigenpair approzimation for the eigenvalue prob-
lem (2.8) and (Gp(u,p), Rn(u,p)) is the mized finite element projection of (u,p) defined by (3.5) where (u,p)
is the exact solution of (2.1). When the mesh size h is small enough, we have the following superconvergence
result

Jup, — Gr(u,p)llv + [|Rr(u, p) — prllo < ChR*, (3.39)

where constant C' depends on the eigenvalue A but independent of the mesh size h.
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Proof. From (2.4), (2.8), (3.5), (3.38) and Babuska-Brezzi condition, we have

|un — Gr(a,p)llv + [lpn — Ri(u,p)llo

<C sup a(up, — Gp(u,p), vi) = b(va, pn — Rp(u,p)) + b(up — Gu(u,p), gn) + d(pr — Rn(u,p), qn)
0#(Vh,an) €V X Wy, [vrllv + [lgnllo

T(AnDh — AD, qn)

=C sup —_—
0 (vian)evixwi [Vrllv + llanllo
_o sup Ant(Ph — Jnp; an) + At (Jnp — pign) + (An — M)r(p, gn)
0% (V1,an)EVi X Wi, vallv + llgnllo
< C(lpn = Jupllo + hl[Jnp = pll + [A = An])
< Chs Y, (3.40)
where we use the same technique as in (3.31). O

Remark 3.5. From (3.39), we know that there exists supercovergence for both [|Gp(u,p) — unllv and
|Rn(u, p) — prlo for general second order elliptic eigenvalue problems by general mixed finite element methods.
This is an extension of the results in [11-13].

4. NUMERICAL RESULTS

In this section, we give three numerical examples to illustrate the superconvergence between the mixed finite
element approximation (up,pr) and the corresponding mixed finite element projection (Gp(u,p), Ry(u,p)).
Furthermore the superconvergence between p;, and interpolant Jpp is also investigated here. Throughout this
section, numerical results are given for the first eigenvalue and its corresponding eigenfunction. Of course, we
should point out that our result is also valid for other eigenvalues. Here, the implicitly restarted Arnoldi method
is applied to compute the eigenvalues. The Raviart-Thomas, Brezzi-Douglas-Marini and Brezzi-Douglas-Fortin-
Marini mixed finite elements are applied to solve the eigenvalue problems on the triangular and rectangular
meshes. The notation used in the error figures is defined as follows

th = Rh(uvp)a and Ghu = Gh(uap)v
where (u,p) is the exact solution of the corresponding eigenvalue problem.

4.1. Model eigenvalue problem

In this subsection, we investigate the superconvergence phenomena of the model eigenvalue problem

—Ap = Ap, in {2,
p=0, ondf, (4.1)
fgpzd() =1,

on the domain 2 = (0,1) x (0,1).
It is well known that the exact eigenpair is

pr = sin(krz)sin(iry), A\ = (k% +1%)7%, 0 <kl and k,[ are integers.

Here we test the superconvergence property on triangular and rectangular meshes. On the triangular meshes,
the lowest and first order Raviart-Thomas (RTp and RT3) and the lowest order Brezzi-Douglas-Marini (BDM;)
mixed finite elements are applied to do the test. Additionally we also use the lowest and first order Raviart-
Thomas (RTy and RT}), the first order Brezzi-Douglas-Fortin-Marini (BDF M) mixed finite elements on the
rectangular meshes to solve the eigenvalue problem (4.1).
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FIGURE 1. Initial triangular and rectangular meshes for regular refinement.
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FiGURE 2. Errors of RTy, BDM; and RT; on the regular refinement triangular meshes for
model problem.

First we give the numerical results of the superconvergence on the triangular meshes obtained by regular
refinement of the initial mesh showed in Figure 1. The corresponding numerical results with RTy, BDM; and
RT are presented in Figure 2. We also test the RTy, RT; and BDF M, mixed finite elements on the rectangular
meshes. Right hand side of Figure 1 shows the initial mesh and we use regular refinement to produce the mesh
sequence. The numerical results are showed in Figure 3.

In order to test the superconvergence on more general meshes. We also test the superconvergence on the mesh
sequence in which each level triangular mesh is obtained by Delaunay algorithm. The triangular mesh sequence
is presented in Figure 4. The corresponding numerical results are listed in Figure 5.
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FIGURE 5. Errors of RTy, BDM; and RT; on the irregular refinement triangular meshes for
model problem.

From Figures 2, 3, and 5, we can find that there exists superconvergence for the eigenfunction approximation
(up, pr) and the corresponding projection (Gy(u,p), Ry (u,p)), the approximation p;, and interpolant Jyp. This
confirms the results of Corollaries 3.3 and 3.4.

4.2. More general eigenvalue problem

In this subsection, we are concerned with a more general eigenvalue problem (1.1) with Dirichlet boundary
condition (1.2), and
1\2 1 1
A:<(1+<x1—§> <x1—§><x2—;>>’

p=el=2)E272) p— 14 (21 — 3)(ws — 3) and 2 = (0,1) x (0,1).

Since the exact solution is not known, we choose an adequately accurate approximation A = 23.7784248452082
which is obtained by extrapolation method (see, e.g., [17,19]) as the exact first eigenvalue (has 8 significant
digits at least). In order to measure the errors of eigenfunction approximations, we use the corresponding higher
order Galerkin finite element eigenfunction approximation, which has higher order accuracy in L?({2) norm
sense, as the exact eigenfunction.

First we test the superconvergence on triangular meshes obtained by the regular refinement with the initial
mesh showed in Figure 1. The corresponding numerical results by RTy, BDM;, and RT; mixed finite elements
are presented in Figure 6. Then we give the numerical results of RTy, RT) and BDF M; mixed finite elements
on rectangular meshes which are also obtained by regular refinement with the initial mesh showed in Figure 1.
Figure 7 shows the corresponding numerical results by RTy, RT}, and BDF M;.

From Figures 6 and 7, we can find there also exists superconvergence of the general problem and this confirms
the results of Corollaries 3.3 and 3.4 again.

Remark 4.1. From Figures 2, 3, 5, 6, and 7, it seems that there exists the ultrasuperconvergence (||p, —
Ry(u,p)|lo < Ch**2) for p, — Ry(u,p) by high order mixed finite element method. The reason may rest with
~v = 2 for high order mixed finite element methods on the unit square domain.
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Errors by RT0 with regular refinement
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general problem.
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Errors by BDM ) with regular refinement

Errors by F{T1 with regular refinement

FIGURE 7. Errors of RTy, RT} and BDF M, on the regular refinement rectangular meshes for

general problem.

4.3. L shape domain

Here we solve the model problem (4.1) but with L shape domain {2 := (—1,1) x (—1,1)\[-1,0] x [0, 1]. It is
known that the eigenfunction corresponding to the first eigenvalue is singular.

We solve this problem with RTy and B D M; mixed finite elements on triangular meshes, which are obtained by
regular refinement with the initial mesh showed in Figure 8. The same as last subsection, the first exact eigenvalue
and the corresponding eigenfunction is not known neither. We adopt an adequately accurate approximation
A = 9.6397238440219 (see, e.g., [17]) as the smallest accurate eigenvalue and the eigenfunction obtained by
higher order Galerkin finite element method as the accurate eigenfunction according to the first eigenvalue. The
numerical results are listed in Figure 9.
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F1GURE 9. Errors of RTy and BDM; on the regular refinement triangular meshes for L shape
domain problem.

Figure 9 shows that there exists superconvergence between the eigenfunction approximation (uy,, p) and the
corresponding projection (G} (u,p), Ry (u,p)), the eigenfunction approximation pj, and the interpolant Jp,p even
for the singular eigenfunction. This confirms Corollaries 3.3 and 3.4.

Remark 4.2. Figure 9 shows that the convergence order of ||ps — p||o is 1 which is larger than our expectancy.
The reason is that the eigenfunction p € HS/S’E((Z) on the L-shape domain, the superconvergence result (3.38)
and the following inequality

lp = prllo < llp = Jupllo + 17ap — prllo < Chpll + Ch** < Ch.
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The surprising convergence rate of the eigenvalue approximation by BDM; element may due to the inexactness
of our used “accurate” eigenvalue A = 9.6397238440219 in this example.

5. CONCLUDING REMARKS

In this paper, we give a superconvergence result for the general second order elliptic eigenvalue problems by
mixed finite element methods. Based on the results in Corollaries 3.3 and 3.4, as discussed in the superconver-
gence theory [16,18], suitable interpolation postprocessing methods can be applied to improve the convergence
order of the eigenfunction approximations. Additionly, based on the result of Corollary 3.4, we can also obtain
some superconvergence results on some special types of structured meshes with the integral identity techniques
in superconvergence theory (see, e.g., [16,18]). Furthermore, with this superconvergence result, the Rayleigh
quotient acceleration technique can be applied to improve the accuracy of the eigenvalue approximations. These
will be our future works.
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