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ITERATIVE SCHEMES FOR HIGH ORDER COMPACT DISCRETIZATIONS
TO THE EXTERIOR HELMHOLTZ EQUATION ∗

Yogi Erlangga
1,2

and Eli Turkel
3

Abstract. We consider high order finite difference approximations to the Helmholtz equation in an
exterior domain. We include a simplified absorbing boundary condition to approximate the Sommerfeld
radiation condition. This yields a large, but sparse, complex system, which is not self-adjoint and not
positive definite. We discretize the equation with a compact fourth or sixth order accurate scheme. We
solve this large system of linear equations with a Krylov subspace iterative method. Since the method
converges slowly, a preconditioner is introduced, which is a Helmholtz equation but with a modified
complex wavenumber. This is discretized by a second or fourth order compact scheme. The system is
solved by BICGSTAB with multigrid used for the preconditioner. We study, both by Fourier analysis
and computations this preconditioned system especially for the effects of high order discretizations.

Mathematics Subject Classification. 35J47, 65M06.

Received August 26, 2009. Revised January 3, 2011.
Published online January 11, 2012.

1. Introduction

Many physical phenomena such as acoustics, elasticity and electromagnetic waves are governed in the fre-
quency domain by the Fourier transform of the wave equation, the Helmholtz equation, with appropriate
boundary conditions. Examples include acoustic scattering about bodies and geophysical problems. In these
problems, the boundaries of the computational domain are typically treated as absorbing ones to guarantee
that the outgoing waves are not reflected back into the domain. The main challenge comes from the fact that
the Helmholtz equation has to be solved for a wide range of frequencies, from low to high, especially if one is
interested in the associated time-domain solution of the problem, obtained by an inverse Fourier-transform of
the frequency-domain solutions.

In order to compute the numerical solution, a mesh needs to be defined, and an appropriate discretization is
applied to the Helmholtz equation. It is well known [1,3] that the mesh length, h, required for a fixed accuracy
increases faster than linear in the frequency. Babus̆ka and coworkers named this the “pollution effect” [1]. In
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particular, the number of grid points N follows the relation

N =
1
h
∼ k

p+1
p ,

where p is the order of accuracy of the scheme. Thus, for a second order accurate scheme the grid grows like
k3/2, in order to maintain a constant accuracy. For a fourth order algorithm N ≈ k

5
4 , while for a sixth order

accurate scheme N ≈ k
7
6 . Hence, for high wave numbers (frequencies) there is a need for very fine grids. This

requirement is, however, less demanding if a higher order discretization is used. For finite differences, examples
of high order accurate finite-difference discretizations on uniform meshes are introduced and analyzed by Harari
and Turkel [12], and later by Singer and Turkel [13, 14].

Given a discrete approximation to the Helmholtz equation, we need to solve the associated linear system.
As the problem size increases, the efficiency, in terms of computational work and storage, of a direct method
deteriorates rapidly, especially in 3D. For Helmholtz problems, iterative methods, however, are not an alter-
native to direct methods unless a special preconditioner is incorporated. In [9], Erlangga et al. introduce a
preconditioner based on a discrete approximation to the damped wave equation. The idea of using an operator
as a preconditioner for the Helmholtz equation is not new. A prototype of this can be traced back to the work
by Bayliss et al. [2] in the early 1980s. In [9] it is shown that a Krylov method preconditioned by a damped wave
equation can attain convergence, which depends linearly on the frequency (with a small proportional constant).

It is well known that classical multigrid methods cannot be used to solve the Helmholtz equation with the
main difficulty being intermediate frequencies. Instead the multigrid can be used only for very fine grids that
still maintain some accuracy. Elman and O’Leary [6] suggested a combination of multigrid and Krylov strategies
on various grids. Alternatively, Brandt and Livshitz [5] developed a new multigrid strategy based on waves.

In this study we solve the Helmholtz equation with a preconditioned Krylov method. The preconditioner is
based on a modified Helmholtz equation which is then solved by classical multigrid techniques utilizing all coarser
levels of grids. In contrast to [9], which focused only on second-order accurate schemes, we shall concentrate on
the effect of high-order finite-difference schemes on the convergence.

The paper is organized as follows. In Section 2, we shall briefly discussed the Helmholtz equation and the
construction of some high-order finite difference schemes. Discretization of boundary conditions is described in
Section 3. In Section 4, the iterative method for solving the resultant linear system is discussed, followed by
Section 5, which presents numerical results. Some concluding remarks are drawn in Section 6.

2. Discretization

A dissipative term, for the wave equation, translates to either a plus or minus sign in the exponent in the
frequency domain and similarly for the radiation condition. However, the two have to be consistent. Hence,
depending on how the Sommerfeld radiation condition is implemented it will affect the sign of an additional
imaginary dissipative term to the Helmholtz equation. Note that, with zero dissipation, we have

vxx + vyy + k2v = 0, (2.1)

the standard Helmholtz equation. In general, the right-hand side may not be equal to zero. In this paper we
only consider a zero right hand side. In [13] the formulae for including the right hand is given.

Let φi,j be a numerical approximation to v (xi, yj). We wish to use symmetric stencil in both directions x
and y. A nine point scheme having these properties has the form

A0φi,j + Asσs + Acσc = 0, (2.2)

where
σs = φi,j+1 + φi+1,j + φi,j−1 + φi−1,j
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is the sum of the values of the mid-side points, while

σc = φi+1,j+1 + φi+1,j−1 + φi−1,j−1 + φi−1,j+1

is the sum of the values at the corner points.
The standard second order accurate approximation is given by

A0 = −4 + (kh)2 , As = 1, Ac = 0. (2.3)

A fourth order accurate scheme is given by the relations

A0 = −10
3

+ (kh)2
(

2
3

+
γ

36

)
, (2.4)

As =
2
3

+ (kh)2
(

1
12

− γ

72

)
, Ac =

1
6

+ (kh)2
γ

144
,

with γ an arbitrary constant. For variable k the scheme needs to be slightly modified. Instead of (kh)2 appearing
in formula (2.4) multiplying the corresponding A in (2.2) now for each node of the stencil the (kh)2 of that
node is used. So, for example, φi+1,j+1 is multiplied by the modified Ac = 1

6 + (kh)2i+1,j+1
γ

144 . This is then
fourth-order accurate also for variable k(x, y) as shown in [12]. By choosing γ = 14

5 and adding O((kh)4) terms
to the coefficients, one can achieve sixth order accuracy for constant k [14]. In this case, for arbitrary δ we have

A0 = −10
3

+
67
90

(kh)2 +
δ − 3
180

(kh)4 ,

As =
2
3

+
2
45

(kh)2 +
3 − 2δ

720
(kh)4 , (2.5)

Ac =
1
6

+
7

360
(kh)2 +

δ

720
(kh)4 .

3. Boundary condition

We next wish to construct approximations to the boundary conditions that maintain the high order accuracy.
Suppose that along the boundary x = 1 we have a simplified radiation condition of the form

∂u

∂x
+ iβu = 0. (3.1)

We approximate the derivative by (dropping the index in the y direction for simplicity)

uN+1 − uN−1

2h
=

∂u

∂x
+

h2

6
∂3u

∂x3
+

h4

120
∂5u

∂x5
+ O(h6), (3.2)

where the N + 1-th grid point lies outside the computational domain, and hence is a virtual point.
Differentiating (3.1) twice we obtain a relation for the third-order and fifth-order derivatives in (3.2):

∂3u

∂x3
= (−iβ)3u = iβ3u

∂5u

∂x5
= −iβ5u

Substitution of the above relation into (3.2) yields

uN+1 − uN−1

2h
=

∂u

∂x
+

iβ3h2

6

(
1 − β2h2

20

)
uN + O(h6),
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or

∂u

∂x
=

uN+1 − iβ3h3

3

(
1 − β2h2

20

)
uN − uN−1

2h
+ O(h6)

and hence from (3.1),

0 =
∂u

∂x
+ iβu =

uN+1 + 2iβh
(
1 − β2h2

6 + β4h4

120

)
uN − uN−1

2h
+ O(h6). (3.3)

This is combined with the discretization of the Helmholtz equation (2.2) at the N -th grid point to eliminate
the uN+1 term.

4. Iterative methods

The resultant linear system of equations has a matrix of coefficients, which is sparse, has complex quantities,
is not self adjoint and is not positive definite. Furthermore, the resultant systems are too large, especially in
three dimensions to directly solve. In order to solve this linear system, we shall concentrate on iterative methods.
In particular we shall consider Krylov space methods.

Numerous authors have found that BICGSTAB [18] is an effective iterative method to solve the linear system
arising from the Helmholtz equation. However, this method, along with other Krylov space methods, converges
reasonably well only if the equations are preconditioned. Hence, we replace

Av = b

by the right preconditioning
AP−1w = b Pv = w. (4.1)

For the preconditioner to be efficient we require two conditions. The first is that P is an approximation to A
and second that Pv =w is much easier to solve than Av = b. Over the years two types of preconditioners have
been developed [16,17]. In the first kind, the preconditioner utilizes algebraic properties of the matrix. A typical
example is ILU , where lower and upper factors are derived which are sparse and LU agrees with A for some
set of elements of A.

A different class of preconditioners is based on properties of the differential system, i.e. an operator based
preconditioner. An example of this is basing the preconditioner on the solution of the Laplace equation [2].
Erlangga et al. [7–10] extended this idea by considering a Helmholtz equation with a complex wave number as
the preconditioner, namely

Δv + k2
precv = 0, k2

prec = (1 + iα)k2, (4.2)

with the sign of α depending on formulation 1 or formulation 2 as noted in Section 2, and similarly for the sign
in the radiation boundary condition. After discretization, the linear system associated with the preconditioner
is then approximately inverted by one multigrid iteration, with point damped Jacobi as a smoother [9]. This
will make the preconditioning step cheap, i.e., it is an O(N) work.

In this paper, in addition to the use of damped Jacobi smoother, we also consider a (red-black (RB)) point
Gauss-Seidel (GS) smoother with a damping factor 0 < ωR ≤ 1. This should be referred to as successive
underrelaxation. Nevertheless, we shall use the more standard notation of either SOR or GS. In both case, one
pre- and post- smoothing step is employed. The coarsest grid goes to a 2×2 grid independent of k. We compare
V, F and W cycles, with bilinear interpolation and full weighting as the restriction and prolongation operator,
respectively.

Since the original Helmholtz equation (without a dissipative term) is discretized by a high order method we
study what is the appropriate discretization for (4.2).
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Figure 1. Spectrum of the unpreconditioned system (top left) and preconditioned systems with
second-order (top right), fourth order (bottom left) and sixth order (bottom right) discretization
used in A and P . k = 20, grid = 322, and α = 0.5.

4.1. Spectra of the preconditioned system

For Krylov subspace iterative methods, spectrum of the matrix in the linear system to be solved often
provides information about convergence. In general, a clustered spectrum is favorable for fast convergence, and
this clustering should be sufficiently far from zero. While spectral information is important, this information
is difficult to obtain theoretically for general problems. In this section, we present some spectral information,
numerically computed to show the effectiveness of the preconditioner (4.2).

Figure 1 shows spectra of AP−1 (4.1) for matrices A and P obtained with the same order of discretization,
with k = 20, 322 mesh (kh = 0.625), and α = 0.5 in (4.2). To obtain these spectra, we assume that P is
inverted exactly. Compared with the spectrum of unpreconditioned system, the matrix P effectively reduces
the condition number and also clusters the eigenvalues around the circle with a center C = 0.5 and a radius
R = 0.5. This result confirms the algebraic results discussed in [19] and holds independent of the discretization
and kh.

Since the preconditioner is defined based on a partial differential equation, we examine the effect of different
discretizations of the Helmholtz and preconditioning operators. Figure 2 shows spectra of AP−1, with P based
on second order accurate differences and A based either on fourth order or sixth order accurate scheme. Again,
similar clustering to Figure 1 is observed, except that some differences in the detail, especially in the half right
of the spectra. Both possible combinations, however, lead to very similar spectra. Of course the spectra are not
identical but the differences do not seem to impact the convergence rate as demonstrated by the computational
results. In general, it is difficult to deduce which will lead to a better convergence. Hence, we find that the
order of accuracy of both the scheme and the preconditioner has little effect on the spectrum and this is borne
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Figure 2. Spectrum of the preconditioned system, with a combination of second order dis-
cretization for P and fourth order (left) and sixth order (right) for A.
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Figure 3. Spectrum of the preconditioned system, with a noncompact fourth order scheme
preconditioned by noncompact fourth order scheme (left) and a second order scheme (right).

out by the computational results. In Figure 3 we plot the spectrum for a noncompact fourth order scheme
preconditioned by the same fourth order noncompact scheme (left figure) and by the standard second order five
point scheme (right figure). For the first case, the spectrum is very similar to that in Figure 1. In the latter
case, however, we see a tail extending from the spectrum. It is not completely clear what effect this will have
on convergence. In any case a noncompact scheme has difficulties near boundaries and has no clear advantage
and so no computational results will be presented.

We note that since we solve (4.2) using only one multigrid iteration, the exact inverse of the preconditioning
matrix is never available. Hence, the actual spectrum will deviate from the ideal situation.

4.2. Multigrid as the preconditioner solver

Multigrid is typically very efficient for Poisson-like equations. For this class of problems, a smoothing method
(typically based on a basic iterative method) effectively reduces high frequency components of error, while a
coarse-grid correction takes care the low frequency components. This is however not the case for the Helmholtz
equation, unless the wavenumber is sufficiently small, i.e., k2 less than the smallest eigenvalue of the Laplacian.
For high wavenumbers, some eigenvalues will have a negative sign (indefinite). For indefinite systems, Jacobi
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Table 1. Fourier analysis asymptotic convergence for the Helmholtz equation. μ is the smooth-
ing factor, ρ2 and ρ3 are the two- and three-grid convergence, respectively. Bilinear interpolation
and full weighting are used, with coarse-grid approximation based on the Galerkin operator and
one pre- and post-smoothing.

k Grid μ ρ2 ρ3

5 322 0.56 0.56 0.56
20 322 0.60 1.82 2.04
50 1282 0.58 1.05 4.04

iteration, for instance, does not converge. In multigrid, the smoothing factor of a basic iterative method is more
important than its convergence, and for the Helmholtz equation, Jacobi iteration still gives satisfactory smooth-
ing properties. Due to the increase of indefiniteness, its smoothing properties will deteriorate. (A convergent
Jacobi iteration can be based on two-step Jacobi iteration with complex relaxation, as discussed in [11]. But
experiments show no advantage of using this method as a smoother for multigrid as compared to a one-step
Jacobi iteration). Another source of difficulty comes from the coarse-grid correction. Due to indefiniteness, a
sign change may occur to the eigenvalues close to zero after coarse-grid discretization. This will eventually lead
to a convergence degradation.

A powerful tool to evaluate properties of a multigrid method is based on Fourier analysis [4,20? ]. An example
of results from Fourier analysis is shown in Table 1 for a W-cycle multigrid method with one pre- and post
point-wise Jacobi smoothing, with underrelaxation ωR = 0.5. (For three-grid methods, F-cycle is identical to
W-cycle). The coarse-grid correction is based on a Galerkin approximation, with bilinear interpolation and
full weighting as the prolongation and the restriction operator, respectively. For k = 5 (small wavenumber), a
convergent multigrid method can still be obtained, indicated by a satisfactory smoothing factor μ, and two- and
three-grid convergence, denoted by ρ2 and ρ3, respectively. For higher wavenumbers, even though the smoothing
properties are still satisfactory (μ < 1), results from Fourier analysis indicate problematic coarse-grid correction,
especially with three grids.

Having a complex wavenumber in the Helmholtz equation makes the situation quite different. We first analyze
the use of damped Jacobi for the complex equation (4.2). To simplify the analysis we consider the discretization
of the one dimensional equation with central differences. So we consider

vj+1 − 2vj + vj−1 + (1 + iα)(kh)2vj = 0. (4.3)

The damped Jacobi iteration for this is given by

v̂j =
vj+1 + vj−1

2 − (1 + iα)(kh)2
(4.4)

vj = ωRv̂j + (1 − ωR)vj ·
The amplification matrix is given by

G(θ) = 1 − ωR + ωR
cos(θ)

1 − 1+iα
2 k2h2

= 1 − ωR + ωR cos(θ)
1 + 1+iα

2 k2h2

(1 + k2h2

2 )2 + α2k4h4

4

= 1 − ωR +
ωR cos(θ)

(
1 + k2h2

2

)
1 + k2h2 + (α2+1)k4h4

4

+ iα
ωR cos(θ)

1 + k2h2 + (α2+1)k4h4

4

·

So

|G(θ)|2 =

⎛
⎝1 − ωR +

ωR cos(θ)
(
1 + k2h2

2

)
1 + k2h2 + (α2+1)k4h4

4

⎞
⎠

2

+

(
αk2h2ωR cos(θ)

1 + k2h2 + (α2+1)k4h4

4

)2

·
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Table 2. Fourier analysis asymptotic convergence for the Helmholtz equation with complex
wavenumber. μ is the smoothing factor, ρ2 and ρ3 are the two- and three-grid convergence,
respectively. Bilinear interpolation and full weighting are used, with coarse-grid approxima-
tion based on the Galerkin operator and one pre- and post-smoothing with point Jacobi and
ωR = 0.5.

k = 20, 322 grid k = 50, 1282 grid k = 100, 5122 grid
μ ρ2 ρ3 μ ρ2 ρ3 μ ρ2 ρ3

2th order 0.60 0.60 0.59 0.58 0.58 0.58 0.57 0.57 0.57
4th order 0.53 0.53 0.73 0.50 0.50 0.50 0.49 0.49 0.49
6th order 0.52 0.52 0.52 0.50 0.50 0.50 0.49 0.49 0.49

Noncompact 0.62 0.62 0.61 0.60 0.60 0.60 0.59 0.59 0.59

We thus, see that α only multiplies terms k4h4. Hence, if kh is small enough the effect of α on the convergence
is minimal. In other words changing k2 to a complex coefficient in the Helmholtz equation has a minimal effect on
the smoother on fine grids. Only on coarser grids where kh is not small does it have an effect. It is straightforward
to check that changes to the discretization of the Helmholtz equation has no effect on these conclusions.

To quantify multigrid convergence properties, we perform Fourier analysis on (4.2), with α = 0.5. The
associated matrix is obtained via second, fourth, or sixth order finite differences. Results from this analysis are
shown in Table 2. In addition to the satisfactory smoothing factor, these results now indicate no problematic
coarse-grid corrections. Fourier analysis, including for based on noncompact scheme, also shows that these
properties hold almost independently of discretizations used and the wave number k.

5. Results

We consider the following problem on a uniform Cartesian grid with mesh width h. We have Dirichlet
boundary conditions on three sides and a simplified absorbing boundary condition (ABC) on the fourth side.
The results are fairly independent of the details of the discretization of the original problem. Hence, replacing
this poor absorbing boundary condition by an improved one should have little effect on the convergence rates.
To verify the high order accuracy of the scheme we consider a system with an explicit solution:

∇2u + k2u = 0 in Ω = [0, 1] ×
[
−1

2
,
1
2

]
, (5.1)

u

(
x,−1

2

)
= u

(
x,

1
2

)
= 0,

u(0, y) = cos(πy),
∂u

∂x
+ iβu

∣∣∣∣
x=1

= 0.

The exact solution is u(x, y) = cos(πy)e−iβx with π2 + β2 =k2.
The preconditioned system is similar with k replaced by kprec in the Helmholtz equation but not the ABC.

Using this replacement also in the Robin boundary condition has a minor effect on the convergence.
We consider several discretizations of both the original and preconditioned Helmholtz equation. Using a

second (2.3) or fourth (2.4) or sixth order (2.5) (with δ = 0) accurate approximation for both equations will be
denoted as scheme 2, HO4, HO6 respectively. If we use a fourth order or sixth high order accurate approximation
for the original equation but second order for the preconditioned equation it will be denoted as scheme HO42,
HO62 respectively. Scheme HO64 is similarly defined.

In Table 3 we check the accuracy of the code. We reduced the residual by 10 orders of magnitude. This
was necessary to get the full accuracy on the finest mesh 512×512. On coarser meshes we give the number of
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Table 3. k=30, BICGSTAB with F cycle; damped Jacobi α = .5, ωR = 0.4.

Scheme Mesh Tol # iter Sec Tol # iter L2 error Conv rate

HO42 65 × 65 10 78 0.39 6 53 1.08 × 10−3

HO42 129 × 129 10 61 1.27 7 47 7.10 × 10−5 3.93

HO42 257 × 257 10 54 5.03 8 45 4.57 × 10−6 3.96

HO42 513 × 513 10 53 22.22 10 53 2.83 × 10−7 3.98

HO62 65 × 65 10 78 0.38 6 53 4.21 × 10−5

HO62 129 × 129 10 64 1.33 7 49 1.39 × 10−6 4.92

HO62 257 × 257 10 54 5.16 8 45 4.54 × 10−8 4.93

HO62 513 × 513 12 53 21.56 12 53 5.09 × 10−9 4.94
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Figure 4. Amplification factor of damped Jacobi.

iterations required to reduce the residual by 10 orders of magnitude and also to reduce the residual by enough
not to affect the final accuracy. The number of orders of magnitude of reduction is given by ”tol”. We clearly
see the global fourth order accuracy of HO42 including the simplified absorbing boundary condition while HO62
seems to give only fifth order accuracy. In this test the Helmholtz equation was approximated by a fourth or
sixth order approximation while the preconditioner was approximated by a standard five point second order
finite difference (HO42/HO62). BICGSTAB was used for the solver with point Jacobi used as the smoother for
the MG of the preconditioner. To graphically see the amplification factor as a function of θ we plot in Figure 4
the amplification factor for the 512× 512 grid.

For the Laplacian the best smoother with SOR is ωr = 1, i.e. Gauss-Seidel. However, for the modified
Helmholtz equation we have found that under-relaxation is required. In addition using a red-black ordering
increases the convergence rate and allows for parallelization. Hence, in Table 4 we repeat the computations but
using RB-SOR with ωR =0.5 as the smoother. We see that this converges slower than with the damped Jacobi.
Lexicographic GS with the same damping factor was not as robust.

In Table 5 we consider the two smoothers for a range of wavenumbers k. All the numbers in the table are
still based on a reduction of 10 orders. This uses a fourth (or sixth) order nine point discretization of the
original equation but a five point second order discretization of the modified (preconditioner) equation. The
preconditioned equation is solved by a F-cycle multigrid down to a 2 × 2 grid with one iteration of a damped
point Jacobi preconditioner with a relaxation factor, ωR = .5 or ωR = 2

3 . The dependence on ωR is very slight.
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Table 4. k = 30, HO42, BICGSTAB with F cycle; SOR; α = .7, ωR = 0.5.

Mesh Tol # iter Sec
65 × 65 10 81 0.43

129 × 129 10 64 1.62
257 × 257 10 61 4.56
513 × 513 10 57 29.20

Table 5. BICGSTAB F cycle MG and damped Jacobi, 513× 513 mesh, HO42.

k α Jacobi ωR = .4 α GS ωR = .5 L2 error

5 .2 12 .5 12 1.73 × 10−11

10 .4 25 .5 19 1.28 × 10−9

20 .5 33 .5 45 3.03 × 10−8

30 .5 57 .6 70 2.89 × 10−7

40 .5 63 .7 96 1.33 × 10−6

50 .5 98 .7 118 3.96 × 10−6

60 .5 153 .7 208 9.17 × 10−6

For the highest k the number of iterations is large but this is mainly due to a slowdown after the residual has
been reduced 7 orders of magnitude. We also present the optimal α for k2

prec = (1 + iα)k2. We again see that
the damped Jacobi is more efficient and more robust compared with RB-SOR. In Table 6 we solve (5.1) with
BICGSTAB and the preconditioned system (4.2) with multigrid. A F cycle is used with 1 iteration of damped
Jacobi with ωR = 0.4 as the smoother, before and after each cycle. However, for higher values of k we found
that lower values of ωR is necessary. We reduce the residual by 10 orders of magnitude for all k.

We see from Table 6 that the convergence for fixed k is independent of the mesh. Similarly, when we use a
standard second order five point stencil to approximate the preconditioned equation we get the same convergence
independent of whether a second order or high order discretization is used for the original equation. We stress
that the accuracy of the total scheme is independent of the treatment of the preconditioner. As k increases, α (the
imaginary part of k prec, (4.2)), the convergence slows down. For k ≤ 20 the number of iterations grows linear
in k. However, for larger k it grows faster than linear. If instead of damped Jacobi we use GS underrelaxation
then the results are very dependent on the ωR chosen. For large k we need to choose ωR = 0.5 and the number
of iterations for convergence is larger than with the damped Jacobi. In Figure 5 we display the convergence
history for the case k = 50, HO42 and a 512 × 512 grid. We see that the convergence slows down for smaller
residual levels. Hence, if we reduce the residual by less than 10 orders of magnitude the time required is much
less than indicated in the tables. This is typical of all the cases described here.

A main point is that the convergence rate is insensitive to the details of the discretization both of the
equation and the preconditioner. Higher and lower order accuracy schemes for both the Helmholtz equation and
the preconditioner converge at similar rates. The damping factor ωR has a greater influence on the convergence
than α as long as α is sufficiently large which depends on k.

We also note that the convergence in Tables 6 and 5 depends on k. Similar behavior is also observed for lower
order scheme, as reported in [9]. This convergence degradation when k increases, is relatively mild, compared
to the unpreconditioned Bi-CGSTAB. The latter typically shows extremely slow convergence for even small
k [8, 10] and an exponential increase of the number of iterations as k increases.

In Table 7 we compare, on a 512×512 mesh, Red-Black SOR, SOR or damped Jacobi as the smoother for the
multigrid for the preconditioner. We again reduce the residual by 10 orders of magnitude. We see that RB-SOR
requires fewer iterations but more computer time. The extra CPU is caused by needing 2 loops to go through
the mesh and moving data to and from a temporary storage. However, this is very dependent on the computer
architecture.
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Table 6. BICGSTAB with F cycle, damped Jacobi.

Mesh k ωR α Scheme γ # iterations
129 × 129 5 .4 0 2 18
129 × 129 5 .3 0 HO42 0 11
513 × 513 5 .4 0 2 14
513 × 513 5 .3 0 2 11
513 × 513 5 .3 0 HO4 0 11
513 × 513 5 .3 0 HO6 11

129 × 129 10 .2 .2 2 32
129 × 129 10 .2 .2 HO4 0 27
129 × 129 10 .4 .2 HO4 0 37
129 × 129 10 .4 .2 HO42 0 37
129 × 129 10 .4 .2 HO6 35
513 × 513 10 .4 .2 2 58
513 × 513 10 .2 .2 2 26
513 × 513 10 .4 .2 HO4 0 64
513 × 513 10 .2 .4 HO4 0 25
513 × 513 10 .2 .2 HO4 0 24
513 × 513 10 .2 .4 HO42 0 26
513 × 513 10 .4 .2 HO42 0 54
513 × 513 10 .2 .2 HO42 0 27
513 × 513 10 .2 .4 HO6 26

513 × 513 30 .4 .5 2 54
513 × 513 30 .4 .5 HO4 0 51
513 × 513 30 .4 .5 HO42 0 56
513 × 513 30 .4 .5 HO6 50
513 × 513 30 .4 .5 HO62 53
513 × 513 30 .4 .7 HO64 56

513 × 513 50 .4 .5 2 101
513 × 513 50 .4 .5 HO4 0 95
513 × 513 50 .4 .5 HO42 0 98
513 × 513 50 .4 .5 HO6 101
513 × 513 50 .4 .5 HO62 96
513 × 513 50 .4 .5 HO64 101

In Table 8 we compare the use of V-, F- or W-cycles within the multigrid used to solve the preconditioned
equation. We now only consider the fourth order discretization for the original equation and the five point second
order stencil for the preconditioned equation (HO42) on a 513×513 mesh. As usual we reduce the residual by
10 orders of magnitude. The V cycle is less efficient than either F and W cycles especially for larger k.

In Table 9 we examine the effect of k and the mesh on the optimal α. To keep all other parameters the same
we choose the HO42 scheme with a F multigrid strategy and a damped Jacobi smoother, ω = 0.5. To account
for the pollution effect whenever we double k we increase the number of mesh points in each direction, N , by
approximately k

5
4 × 2 which should keep the error approximately constant. In this table we present various k

and the appropriate mesh and the experimentally found best α (i.e. the one that minimized the number of
iterations). In many cases changing α slightly had little effect on the number of iterations and so the optimal α
is actually an interval around that listed in the table. The optimal α seems to grow as approximately k1/2. We
also present the L2 and maximum errors, to indeed verify the fourth order accuracy and the pollution effect. In
Figure 5 we plot a typical convergence history for the above case with a 512 × 512 mesh. We see that there is
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Table 7. BICGSTAB with F cycle and SOR or damped Jacobi smoother, mesh 513 × 513.

k α Smoother ωR Scheme # iterations Time (s)
5 .2 RB-SOR 0.4 2 12 6.70
5 .2 SOR 0.4 2 12 5.35
5 .2 JAC 0.4 2 12 5.41
5 .2 RB-SOR 0.4 HO42 12 6.74
5 .2 SOR 0.4 HO42 12 5.36
5 .2 JAC 0.4 HO42 12 5.37

30 .5 RB-SOR 0.4 2 55 28.45
30 .5 SOR 0.8 2 106 41.75
30 .5 JAC 0.4 2 54 21.78
30 .5 RB-SOR 0.4 HO42 57 29.68
30 .5 SOR 0.8 HO42 113 44.97
30 .5 JAC 0.4 HO42 57 20.94

50 .5 RB-SOR 0.5 2 84 42.52
50 .5 SOR 0.5 2 122 47.86
50 .5 JAC 0.5 2 100 39.20
50 .5 RB-SOR 0.5 HO42 84 42.64
50 .5 SOR 0.5 HO42 120 46.58
50 .5 JAC 0.5 HO42 88 34.73

Table 8. HO42, BICGSTAB with V,F,W MG cycles; RB-SOR or Jacobi, mesh 513× 513.

k α Smoother ωR Cycle # iterations Time (s)
5 0 RB-SOR 0.4 V 11 5.84
5 .2 RB-SOR 0.4 F 12 7.23
5 .2 RB-SOR 0.4 W 12 7.53
5 0 JAC 0.4 V 12 4.95
5 .2 JAC 0.4 F 14 5.60
5 0 JAC 0.4 W 16 5.03

30 .5 RB-SOR 0.4 V 123 56.31
30 .5 RB-SOR 0.4 F 57 30.94
30 .5 RB-SOR 0.4 W 62 35.35
30 .5 JAC 0.4 V 108 37.56
30 .5 JAC 0.4 F 57 23.51
30 .5 JAC 0.4 W 65 28.11

50 .5 RB-SOR 0.6 V 151 99.37
50 .5 RB-SOR 0.5 F 84 45.47
50 .5 RB-SOR 0.5 W 79 63.34
50 .5 JAC 0.5 V 160 77.40
50 .5 JAC 0.5 F 88 50.14
50 .5 JAC 0.5 W 81 48.29

initially a slow convergence. After settling down we have a rapid convergence until the residual is reduced by
about 6 orders of magnitude. Then the convergence slows down to achieve a greater reduction in the residual.

We finally did the computations with a variable k. Thus, we now solve (5.1) with k(x, y) = k0g(x, y) and

g(x, y) =

{
1 near boundary
1 + f sin(px) sin(qy) in the interior f = 0.05



ITERATIVE SCHEMES FOR HELMHOLTZ EQUATION 659

Table 9. HO42, BICGSTAB with F,cycle and damped Jacobi. Optimal α and error for various
k with N = k5/4. mesh 513 × 513.

k Mesh N × N α # iterations L2 error Max error

4 8 × 8 0.0 8 4.0610−4 6.73 × 10−4

8 16 × 16 0.15 13 2.5210−4 9.00 × 10−4

16 38 × 38 0.35 32 4.2310−4 1.04 × 10−3

32 88 × 88 0.35 70 4.0910−4 1.06 × 10−3

64 210 × 210 0.55 119 4.3010−4 1.09 × 10−3

128 512 × 512 0.85 104 4.3110−4 1.06 × 10−3

256 1210 × 1210 1.08 177 4.3310−4 1.07 × 10−3

Table 10. Variable k same parameters as Table 9.

k Mesh N×N Optimal α # iterations
4 8 × 8 0.00 7
8 16 × 16 0.08 13
16 38 × 38 0.30 37
32 88 × 88 0.45 77
64 210 × 210 0.55 177
128 512 × 512 0.70 1590
256 1210 × 1210 1.10 263
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Figure 5. typical convergence, HO42, F cycle, damped Jacobi, 512 × 512 mesh.

p and q are chosen so that there is a complete sine wave perturbation in the interior in a centered subdomain with
half the width and length of the entire domain. We ran the exact parameters used in Table 9. The results are
presented in Table 10. We see that approximately the same optimal α is needed but that the number of iterations
required increases. With greater perturbations than f = 0.05 the residuals only converged about 5 orders of
magnitude, for large k, rather than the previous 7 orders of magnitude reduction. For k up to about 16 we could
considerably increase the amount of variability (f) without any adverse effects. Note, that the perturbation is
multiplicative and so smaller in absolute numbers for smaller k. Since only kh appears in the discretization a
nonuniform mesh has a similar effect to a variable wavenumber.
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6. Conclusion

We have considered second, fourth and sixth order compact discretizations of the Helmholtz equation coupled
with an absorbing boundary condition. The resultant linear system has complex coefficients, is not self-adjoint
and not positive definite. The system is solved using BICGSTAB. To accelerate the convergence we employ a
right preconditioner using a modified Helmholtz equation with a complex wavenumber. This modified equation
is then solved by multigrid going down to a 2× 2 coarse grid.

The convergence rate of the resultant scheme is relatively independent of the grid. Furthermore, if the
preconditioned is discretized by a 5-point second-order stencil then the convergence rate is independent of the
discretization of the original equation which determines the final accuracy. The multigrid scheme uses only
1 iteration of a pre and post smoother. Using a SOR scheme for the preconditioner uses fewer iterations but
more CPU time than a point damped Jacobi scheme. Both the SOR and damped Jacobi work best with a
relaxation parameter ωR = .5. Because of the complex wavenumber this relaxation factor is different than that
appropriate for the Laplace equation. A Fourier analysis is presented to justify the computational results.
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