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A COMPACTNESS RESULT FOR A SECOND-ORDER VARIATIONAL
DISCRETE MODEL
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Abstract. We analyze a nonlinear discrete scheme depending on second-order finite differences. This is
the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy
proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional.
In two dimension we give a compactness result showing that the continuous problem approximating
this difference scheme is still defined on special functions with bounded hessian, and we give an upper
and a lower bound in terms of the Blake and Zisserman energy. We prove a sharp bound by exhibiting
the discrete-to-continuous Γ -limit for a special class of functions, showing the appearance new ‘shear’
terms in the energy, which are a genuinely two-dimensional effect.
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1. Introduction

Since the seminal works by Geman and Geman [31], Blake and Zisserman [8] and Mumford and Shah [33], an
extensive and fruitful research has been carried out in the field of variational models in image processing, and
more in general in the study of the so-called free-discontinuity functionals. These functionals are characterized
by an interplay between a surface energy localized on an unknown lower-dimensional set K and a bulk term
depending on an unknown function u, which is sufficiently smooth outside K.

The first-order (i.e., depending on the first derivatives of u) prototypical free-discontinuity energy is the
celebrated Mumford and Shah functional:

MS(u,K) =
∫

Ω\K

|∇u|2 dx+ αH1(K ∩Ω)

(here Ω is a two-dimensional set and H1 is the one-dimensional Hausdorff measure). In the field of computer
vision, given a function g, interpreted as the ‘grey-level function’ of an input image on a bidimensional region
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1 Dipartimento di Matematica, Università di Roma ‘Tor Vergata’, via della Ricerca Scientifica, 00133 Rome, Italy.
braides@mat.uniroma2.it
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Ω, one seeks to find an output image as a minimizer of

min

{
MS(u,K) + μ

∫
Ω\K

|u− g|2 dx

}

over all closed sets K of Ω and all u ∈ C1(Ω \ K). Such a pair (u,K) gives an “optimal” balance between:
(i) detecting the discontinuities K of the image due to the edges of the objects (since the second term in MS
penalizes the length H1(K) of K); (ii) cancelling the discontinuities due to noise and small irregularities (by
the smoothing effect of the gradient term), and (iii) being close to the datum g. In this respect, the (positive)
coefficients μ and α are related to a characteristic length for smoothing and to a contrast threshold.

Minimization of free-discontinuity problems can be obtained by an ‘indirect’ approach, first obtaining weak
solutions by applying the so-called direct methods of the Calculus of Variations to analogous energies defined
on SBV spaces, where K is interpreted as the discontinuity set of the function u. To that end, a rather complete
theory of lower-semicontinuous first-order energies defined on SBV spaces has been developed, in which more
elaborated functionals are included. At the same time, a number of approximations of the Mumford-Shah
functional have been proposed (approximations by elliptic functionals on Sobolev spaces, finite element and finite
difference schemes, higher-order perturbations, non-local methods, etc.) in order to overcome the issues arising
from the difficulty of treating lower-dimensional interfacial energies and to make the numerical computation of
minimizers possible (see e.g. Braides [12]).

A simple energy related to finite-difference schemes which approximates the Mumford-Shah functional has
been derived from the model of Blake and Zissermann by Chambolle [25]. In a one-dimensional setting, it
consists in considering

Eε(u) =
∑

i

ε ψε

(
ui − ui−1

ε

)
, (1.1)

where (ui) is a discretization of u on a grid of mesh-size ε, while

ψε(t) = min
(
t2,

γ

ε

)
(with γ > 0 a given parameter) is a truncated quadratic potential. In this formulation, if the difference of the
grey-level values ui and ui−1 of two adjacent pixels is beyond the threshold

√
εγ, then the related energy gives

the fixed penalization γ, whereas we have the (discretization of the) squared gradient otherwise. The scaling of
the energy density is exactly conceived in a way that the contribution of this second type of interactions has the
dimension of a surface energy (in one dimension this translates into just counting the number of discontinuities).
The discrete functionals Eε are proved to be asymptotically equivalent to the continuous one, the parameter γ
playing the same role as α.

In two dimensions (and higher) a similar result holds when nearest-neighbor interactions on a square grid
are considered (see Chambolle [26]). In that case, the surface energy must be adapted to take into account the
anisotropy of the discrete model, substituting H1(K ∩Ω) by a surface integral∫

K∩Ω

‖ν‖1 dH1,

where ν is the normal to K and ‖ν‖1 = |ν1| + |ν2|. Note that the energies Eε are still ‘of the same or-
der’ of the Mumford-Shah energy since their limit is sandwiched between MS and

√
2 MS. In order to over-

come the anisotropy due to the lattice symmetries, various corrections have been proposed taking into account
long-range interactions (Braides and Gelli [15], Chambolle [27]), adapted grids for finite-elements (Chambolle
and Dal Maso [28]), averaged quantities (Bourdin and Chambolle [9]), or random interactions (Braides and
Piatnitski [16]). From a standpoint different from that of image processing, the same type of asymptotic anal-
ysis is of fundamental interest in physics and continuum mechanics when energies of the same form as Eε are
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considered, with ψε some type of interatomic potential (e.g., Lennard-Jones potentials), and the goal is to derive
a corresponding continuous theory. In many cases the truncated quadratic case has proved not to be a mere
prototype but a fundamental building block for general energies (e.g., in the case of Lennard-Jones interatomic
potential – see Braides et al. [17]). In that context, complex and possibly anisotropic energy densities in the con-
tinuous approximation are of great interest, highlighting critical phenomena at an atomistic level. Such energies
arise also for truncated quadratic potential as above when many-points interactions are taken into account in
the vector case (see Alicandro et al. [2]), which are necessary e.g. when we want to approximate general fracture
energies in the context of linear elasticity (for the derivation of linear elasticity with no fracture energy from
geometrically nonlinear quadratic lattice interactions see Braides et al. [18] and Schmidt [35]).

In this paper we will present the asymptotic analysis of a discrete scheme with many-point interactions related
to the second-order free-discontinuity energy analogous to MS also introduced by Blake and Zisserman [8];
namely, the functional

BZα,β(u,K0,K1) =
∫

Ω\(K0∪K1)

|∇2u|2 dxdy + αH1(K0 ∩Ω) + βH1((K1 \K0) ∩Ω) (1.2)

where u belongs to C0(Ω\K0)∩C2(Ω\(K0∪K1)), and the sets K0 and K1\K0 represent the set of discontinuity
points for u and ∇u, respectively; the constants α, β > 0 satisfy β ≤ α ≤ 2β for semicontinuity reasons.
A different choice for the leading second-order term |∇2u|2 is the square laplacian |Δu|2; indeed, any linear
combination of these two is a suitable (rotationally invariant) second-order energy density (see [8,10,32]). These
functionals were introduced to overcome some drawbacks of first-order models such as the over-segmentation
of steep gradients (ramp effect), or the inadequacy in detecting “crease discontinuities”. For the existence of
minimizers of BZα,β and an in-depth analysis of their properties we mainly refer to a series of papers by Carriero
et al. (see, for instance, the recent works [22–24] and the cited references therein).

In the one-dimensional case the discretization of the functional (1.2) consists in an energy taking into account
the discretization of the second derivative, exactly of the same form as (1.1):

Eε(u) =
∑

i

ε ψε

(
ui+1 − 2ui + ui−1

ε2

)
· (1.3)

For these energies we have three different regimes: when the argument of the truncated quadratic potential
is of order 1 (corresponding in the limit to the second derivative of u), of order 1/ε (allowing for ‘creases’;
i.e., discontinuities of the first derivative), and of order 1/ε2 (allowing for ‘jumps’, i.e., discontinuities of the
function u itself). The Γ -limit (see Braides [14]) is a one-dimensional version of (1.2); i.e.,

F (u,K0,K1) =
∫

Ω\(K0∪K1)

|∇2u|2 dx+ 2γ#(K0 ∩Ω) + γ#((K1 \K0) ∩Ω)

(in this case F = BZ2γ,γ ; i.e., α = 2γ and β = γ. To obtain arbitrary α and β, slightly more complex energy
density can be considered). Our work is related to the extension of the one-dimensional discrete-to-continuous
result above to the two-(and higher-)dimensional case, by considering energies

Eε(u) =
∑
i,j

ε2ψε

(√
V ε

i,j

)
,

where ψε is as above, the sum ranges over all the nodes of a square grid of mesh-size ε, while V ε
i,j is the value,

on the node (i, j), of a suitable discrete form of

u2
xx + 2u2

xy + u2
yy

(coinciding with (ui+1 − 2ui + ui−1/ε
2)2 in the one-dimensional case).
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The main results of the paper are a compactness result for functionals such as Eε (see Sect. 5) and a com-
parison with the continuous case by giving upper and lower estimates on the surface energy of the Γ -limit
in terms of F := BZ2γ,γ . Namely, we show that (suitably interpolated) sequences (uε) bounded in L2 and
with equibounded energies Eε(uε) admit a converging subsequence for which the (weak form of the) functional
F (u,K0,K1) is finite. The proof differs from the one-dimensional one, since it is not possible to directly inter-
polate the functions uε in such a way that Eε(uε) = F (uε,K

ε
0 ,K

ε
1) (Kε

0 ,K
ε
1 the ‘jump’ and ‘crease’ sets of uε,

respectively), which was the key argument in [14]. It is however possible to construct an interpolation such that
Eε(uε) ≥ F (uε,K

ε
0 ,K

ε
1), which provides at the same time the compactness result and a lower bound for the

energy. We then give an upper bound of the Γ -limit with c F (u,K0,K1), for c a (large) constant. We give an
estimate for this constant c and we compute exactly the Γ -limit in some special situations. In particular, for
example if Su and S∇u are composed of segments parallel to the coordinate axes, then there exists the Γ -limit

Γ - lim
ε→0

Eε(u) =
∫

Ω

|∇2u|2 dxdy + 2γH1(Su) + γH1(S〈∇u,ν〉 \ Su) + 2γH1(S〈∇u,ν⊥〉), (1.4)

where S〈∇u,ν〉 is the subset of S∇u where the orthogonal component 〈∇u, ν〉 of ∇u is discontinuous, and S〈∇u,ν⊥〉
is the subset of S∇u (possibly not disjoint from the previous one) where the tangential component 〈∇u, ν⊥〉
of ∇u is discontinuous. Note that the last term describes a ‘shear’ contribution, which is a genuinely higher-
dimensional effect.

Even though the computation of the limit is partial, our result shows the ‘asymptoticity’ of the discrete
energies to the Blake-Zisserman functional, and provides a new approximation which adds up to its only other
approximation, with elliptic energies, proposed by Ambrosio et al. [6] (see also [7]) following the celebrated
Ambrosio-Tortorelli approximation of the Mumford-Shah functional (see [3, 4]). It is likely that, for computa-
tional purposes, the anisotropies of the limit, even though not precisely described, can be corrected in the same
way as has been done for the discrete approximation of the Mumford-Shah functional (and recalled above).

The exact determination of the Γ -limit of (Eε) appears to be a technically demanding task, due to the com-
plex interaction with the underlying mesh. In fact, the discrete nature of the energies implies that discontinuity
sets (especially, of the first gradient) will in general have a ‘zig-zag’ microscopic geometry (even when the limit
continuous function has a crease along a straight segment, if this is not oriented along the coordinate directions),
which generates large second gradients. A main technical point that we have not been able to overcome is to
adapt to this situation the techniques that allow to modify boundary values without increasing the limit energy.
This has been shown to be possible for first-order problems by Alicandro and Cicalese [1], but for second-order
energies we face difficulties that resemble those that are encountered in the theory of solid-solid phase tran-
sitions (see Conti et al. [30]), complicated by the complex multi-scale interactions at the microscopic level.
A further difficulty is related to the lack of a general lower-semicontinuity theory for second-order free-
discontinuity functionals (see [11] for the one-dimensional theory, and [34] for some remarks in the general
case), and the corresponding lack of comparison energies other than the Blake-Zisserman functional. Note that
the interfacial energy in (1.4) is indeed of the form∫

Su∪S∇u

ϕ(u±,∇±u, ν) dH1

for which no lower-semicontinuity results are present in the literature.

2. Preliminaries

We will use standard notation for the Sobolev spaces H1(Ω) = W 1,2(Ω) and H2(Ω) = W 2,2(Ω) on an open
subset Ω of R

n. We denote by BV (Ω) the space of real-valued functions of bounded variation, i.e. the space of
functions u ∈ L1(Ω) whose distributional derivative is representable by a measure in Ω, i.e.∫

Ω

u
∂ϕ

∂xi
dx = −

∫
Ω

ϕdDiu for every ϕ ∈ C∞
c (Ω) and i = 1, . . . , n
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for some R
n-valued Borel measure Du = (D1u, . . . , Dnu) on Ω. Let Du = Dau + Dsu be the Lebesgue de-

composition of Du into absolutely continuous and singular part, and let ∇u be the density of Dau. We denote
by SBV (Ω) (special functions with bounded variation) the space of functions in BV (Ω) such that Dsu is a
(n− 1)-rectifiable measure, i.e. there exist a rectifiable set Su and a Borel function

(u+, u−, ν) : Su → R × R × Sn−1

which gives the following representation:

Dsu = (u+ − u−)νuHn−1 Su,

where Hn−1 stands for the (n− 1)-dimensional Hausdorff measure (u± are the traces of u on the approximate
discontinuity set Su; for the precise definitions we refer to [5]). We will also need the following space:

GSBV (Ω) = {u : Ω → R : uM := (−M) ∨ u ∧M ∈ SBV (Ω) for every M > 0}.
It turns out that for any u ∈ GSBV (Ω) an approximate gradient ∇u can be defined with the property that

∇u = ∇uM a.e. where u = uM , and ∇u = 0 a.e. where |u| > M .

We set S∇u =
⋃
i

S∇iu (where ∇iu is the ith component of ∇u).

Moreover, we define
GSBV 2(Ω) = {u ∈ GSBV (Ω) : ∇u ∈ [GSBV (Ω)]n}.

If u ∈ GSBV 2(Ω) we denote by ∇2u the matrix whose ith row is the approximate gradient of theGSBV function
∇iu; hence, (∇2u)ij = ∇j(∇iu) =: ∇2

iju. We will also refer to ∇2u as the approximate hessian (matrix) of u.
When n = 1 we write u′ and u′′ instead of ∇u and ∇2u, respectively, while for n = 2 we will usually use

∇xu,∇yu,∇2
xxu instead of ∇1u,∇2u,∇2

11, and so on.
Finally, we recall some basic properties of the one-dimensional sections of BV functions; they will be applied

in Section 6 to prove two-dimensional estimates from one-dimensional results (slicing). Let Ω ⊆ R
2 be an open

set, and u : Ω → R. For every y ∈ R let

Ωy = {x ∈ R : (x, y) ∈ Ω}, uy : Ωy → R, uy(x) = u(x, y). (2.1)

For the following results we refer, for instance, to [5, 19].

Theorem 2.1. Let w ∈ GSBVloc(Ω). Then for a.e. y ∈ R, with Ωy �= ∅,
(i) wy ∈ GSBV (Ωy);
(ii) (wy)′(x) = ∇xw(x, y) for a.e. x ∈ Ωy;
(iii) Swy = (Sw)y.

In particular, if w ∈ GSBV 2(Ω), then for a.e. y ∈ R

(wy)′′(x) = ∇2
xxw(x, y) for a.e. x ∈ Ωy.

3. The discrete second-order energy

Before displaying the precise definition of the energy functionals Eε, we introduce some notation.
If α = (α1, α2) ∈ (N ∪ {0})2 is a multiindex, we denote by |α| = α1 + α2 its length. For every ε > 0, and

for any given real-valued function u on a subset of R
2, we define the difference quotients Δα

ε u when |α| ≤ 2 as
follows. We set Δα

ε u = u if |α| = 0, and

Δ(1,0)
ε u(x, y) = ε−1[u(x+ ε, y) − u(x, y)],

Δ(0,1)
ε u(x, y) = ε−1[u(x, y + ε) − u(x, y)], (3.1)
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for any (x, y) ∈ R
2 where the right-hand sides are defined. Moreover, we set:

Δ(2,0)
ε u(x, y) = ε−1[Δ(1,0)

ε u(x, y) −Δ(1,0)
ε u(x− ε, y)]

= ε−2 [u(x+ ε, y) + u(x− ε, y) − 2u(x, y)] ,

Δ(1,1)
ε u(x, y) = ε−1[Δ(1,0)

ε u(x, y + ε) −Δ(1,0)
ε u(x, y)]

= ε−2 [u(x+ ε, y + ε) + u(x, y) − u(x+ ε, y) − u(x, y + ε)]

= ε−1[Δ(0,1)
ε u(x+ ε, y) −Δ(0,1)

ε u(x, y)],

Δ(0,2)
ε u(x, y) = ε−1[Δ(0,1)

ε u(x, y) −Δ(0,1)
ε u(x, y − ε)]

= ε−2 [u(x, y + ε) + u(x, y − ε) − 2u(x, y)] .

In the continuous setting we will use Dα as the usual differential operator determined by the multiindex α.
If A is a subset of R

2 we set

Aε = {(x, y) ∈ εZ2 : (x, y) + ε(σ, τ) ∈ Afor all σ, τ ∈ {−1, 0, 1}}.

We now introduce the second-order discrete energy functional Eε whose behaviour will be studied as ε→ 0.
If u is a real-valued function on a subset A of R

2 we define

Eε(u,A) =
∑

z∈Aε

ε2
(
ψε

(
Δ(2,0)

ε u(z)
)

+ 2ψε

(
Δ(1,1)

ε u(z)
)

+ ψε

(
Δ(0,2)

ε u(z)
))

, (3.2)

where
ψε(t) = min(t2, γ/ε)

and γ > 0 is a fixed parameter.
In Section 5 we prove that any sequence (uεk

), on which Eεk
are equibounded, is precompact with respect

to a suitable convergence. Clearly, in this respect, the same result can be applied e.g. to the functionals∑
z∈Aε

ε2ψε

(√
(Δ(2,0)

ε u)2 + 2(Δ(1,1)
ε u)2 + (Δ(0,2)

ε u)2
)

(where the difference quotients are computed at z). Indeed, for every a, b, c ≥ 0 it turns out that:

1
4
[ψε(a) + 2ψε(b) + ψε(c)] ≤ ψε

(√
a2 + 2b2 + c2

)
≤ ψε(a) + 2ψε(b) + ψε(c).

In Section 6 we give estimates for Γ -upper and lower limits of the energies Eε (Thms. 6.1 and 6.2). From those
results, in particular we may compare Γ -limits with the anisotropic Blake and Zisserman functionals defined as

BZ1
α,β(u,Ω) =

∫
Ω

|∇2u|2 dxdy + α

∫
Su∩Ω

‖ν‖1dH1 + β

∫
(S∇u\Su)∩Ω

‖ν‖1dH1, (3.3)

as follows.

Theorem 3.1. Let Eε be defined by (3.2) and let Ω be a bounded open set in R
2. Then we have

Γ - lim inf
ε→0

Eε(u,Ω) ≥ BZ1
2γ,γ(u,Ω);

moreover, if Ω is star-shaped we have

Γ - lim sup
ε→0

Eε(u,Ω) ≤ BZ1
24

√
2γ,24

√
2γ

(u,Ω).
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Note that neither of these estimates is sharp; in particular a better lower estimate is exhibited in Theorem 6.1
by taking into account also ‘shear’ contributions, which provide a lower-bound energy of a different form than
BZ1

α,β ; this lower estimate is sharp for u with discontinuity sets composed of segments in the coordinate directions
(see Thm. 6.4).

The study of the one-dimensional analog of (3.2) was addressed by Braides in [14]. In particular he proved
the following result, which will be needed in the slicing argument in Section 6. Let J be a bounded interval and
H2(J) be the space of piecewise-H2 functions on J . On H2(J) define

E(u) =
∫

J

|u′′|2 dt+ γ#(Su′ \ Su) + 2γ#Su.

Let now ε > 0; for any real-valued function u on J ∩ εZ define

Eε(u) =
∑

x∈J∩εZ

x±ε∈J

εψε

(
u(x+ ε) + u(x− ε) − 2u(x)

ε2

)
·

Extend any function u : J ∩ εZ → R to the whole εZ with value 0 outside J , and then to all of R by setting
u(x) = u(ε�x/ε�) (here �·� denotes the integer part). We can thus consider the L1(J)-convergence for sequences
of functions J ∩ εkZ → R as εk → 0. From [14] we have the following result.

Theorem 3.2. Let (εk) be a positive infinitesimal sequence. Then Eεk
Γ -converge to E (extended with value

+∞ on L1(J) \ H2(J)), with respect to the L1(J) convergence on bounded sets of L2(J).

4. Extension of functions

For any given real-valued function u on εZ2 we now define an extension to R
2 in such a way that the L2-norm

of the second gradient is controlled by the second difference quotients on the nodes in εZ2.
Let I be the set of multiindices {(0, 0), (1, 0), (0, 1), (1, 1)}. From the theory of finite elements we draw the

so-called Bogner-Fox-Schmit rectangle:

Proposition 4.1 ([29], Thm. 2.2.14). Let J1 and J2 be bounded intervals. There exists a unique polynomial
p(x, y) of the form

p(x, y) =
3∑

h,k=0

ahkx
hyk (4.1)

for which the values of Dαp at the vertices of the rectangle J1×J2 are equal to prescribed values for every α ∈ I.

Assume that at each point z ∈ εZ2 we are given four values:

pα(z), for every α ∈ I.

For each square Q of the mesh (with side of length ε), by the above proposition there exists a unique polynomial
pQ determined by the conditions

DαpQ(z) = pα(z) (α ∈ I)

when z varies among the vertices of Q.

Proposition 4.2 ([29], Thm 2.2.15). If two squares Q1 and Q2 of εZ2 share a side, then pQ1 = pQ2 on this
side.

Let v : R
2 → R be the function defined by

v
∣∣∣
Q

= pQ

for every Q of the mesh. Then v ∈ C1(R2) ∩H2
loc(R

2).
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We now consider the case when the values pα(z) are difference quotients of a given function u : εZ2 → R.
Therefore, we assume that

pα(z) = (Δα
ε u)(z), for every z ∈ εZ2 and α ∈ I.

Definition 4.3. On account of Proposition 4.2, for every u : εZ2 → R we can define the function Sεu : R
2 → R

as the unique function which coincides on each square Q of the mesh determined by εZ2 with the polynomial
p of the form (4.1) satisfying

Dαp(z) = Δα
ε u(z) for every α ∈ I

on the vertices z of Q.

We will estimate the L2-norm of D2Sεu for every square Q of the mesh. Let V0 be the set of the vertices of
Q0 := [−1, 1]× [−1, 1]. Denote the centre of Q by zQ = (xQ, yQ) and define

u0(z) = u
(
zQ +

ε

2
z
)
, for z ∈ V0 ; p0(z) = Sεu

(
zQ +

ε

2
z
)
, for z ∈ Q0. (4.2)

Then for every multiindex α and for every v ∈ V0 we have (note that the length of the sides of Q0 is 2):

Δα
2 u0(v) =

(ε
2

)|α|
Δα

ε u
(
zQ +

ε

2
v
)
. (4.3)

Moreover, by the definition of Sεu, for every α ∈ I and v ∈ V0:(ε
2

)|α|
Δα

ε u
(
zQ +

ε

2
v
)

=
(ε

2

)|α|
DαSεu

(
zQ +

ε

2
v
)

= Dαp0(v).

Therefore, by the uniqueness of the polynomial in Proposition 4.1, p0 can be determined as the polynomial of
the form (4.1) satisfying the conditions

Dαp0(v) = Δα
2 u0(v) for every v ∈ V0 and α ∈ I. (4.4)

Remark 4.4. The set of conditions (4.4) allows to express the coefficients ahk of p0, for every square, in a
linear way through the values Δα

2u0(v). In particular, this implies a pointwise estimate for the interpolating
polynomial Sεu. For every square Q of the mesh εZ2 let

M(u,Q) = max{|u(x, y)| : (x, y) ∈ εZ2, x− x, y − y ∈ {−ε, 0, ε} for some vertex (x, y) of Q}.
Then there exists C > 0, independent of u, such that for every square Q

|Sεu| ≤ CM(u,Q) on Q.

Indeed, if Q is such a square, then for every (x, y) ∈ Q

Sεu(x, y) =
3∑

h,k=0

ahk
(x− xQ)h(y − yQ)k

(ε/2)h+k
,

where the coefficients ahk are bounded in terms of the values of u0 on Q0 and on the neighbouring squares,
hence in terms of M(u,Q). Moreover, |x− xQ|, |y − yQ| ≤ ε/2 on Q.

As mentioned above we have to estimate the L2-norm of D2Sεu. Since∫
Q

|D2Sεu(z′)|2 dz′ =
4
ε2

∫
Q0

|D2p0(z)|2 dz, (4.5)

we focus on the corresponding estimate for D2p0.
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Proposition 4.5. Let p0 be the unique polynomial of the form (4.1) satisfying condition (4.4), where u0 is
a given function for which the right-hand side is defined. Then the coefficients aij, for i + j ≥ 2, depend in
a linear way on the values of u0 only through the difference quotients

Δα
2u0(v), for v ∈ V0 and |α| = 2.

In particular, there exists a positive constant C, independent of u0, such that

∫
Q0

|D2p0(z)|2 dz ≤ C
∑
v∈V0

∑
|α|=2

|Δα
2u0(v)|2.

Proof. Let A = (1, 1), B = (−1, 1), C = (−1,−1), D = (1,−1) be the vertices of Q0. As mentioned above, the
set of conditions (4.4) allows to express the coefficients ahk of p0 in a linear way through the difference quotients
Δα

2 u0(v). Since the symmetries ofQ0 reflect on the symmetries of these linear conditions, by addition/subtraction
of suitable pairs of equations we easily get the following linear equations:
• the condition for α = (0, 0) yields:

(1) a33 + (a31 + a22 + a13) + (a20 + a11 + a02) + a00 =
1
2
(u0(A) + u0(C)),

(2) (a32 + a23)+(a30 + a21 + a12 + a03)+(a10 + a01) =
1
2
(u0(A) − u0(C)),

(3) − a33 + (−a31 + a22 − a13) + (a20 − a11 + a02) + a00 =
1
2
(u0(B) + u0(D)),

(4) (−a32 + a23)+(−a30 + a21 − a12 + a03)+(−a10 + a01) =
1
2
(u0(B) − u0(D)).

• the condition for α = (1, 0) yields (for ease of notation we denote Δ(1,0)
ε u0 and Δ

(0,1)
ε u0, with ε = 2, simply

by δ1u0 and δ2u0, respectively):

(5) (3a32 + 2a23) + (3a30 + 2a21 + a12) + a10 =
1
2
[(δ1u0)(A) + (δ1u0)(C)],

(6) 3a33+(3a31 + 2a22 + a13)+(2a20 + a11) =
1
2
[(δ1u0)(A) − (δ1u0)(C)],

(7) (3a32 − 2a23) + (3a30 − 2a21 + a12) + a10 =
1
2
[(δ1u0)(B) + (δ1u0)(D)],

(8) 3a33+(3a31 − 2a22 + a13)+(−2a20 + a11) =
1
2
[(δ1u0)(B) − (δ1u0)(D)].

An analogous set corresponds to α = (0, 1) (with δ2 in place of δ1).

• the conditions for α = (1, 1) clearly have the right-hand sides which depend only on Δ
(1,1)
2 u0 and do not

involve ahk if h+ k ≤ 1.
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By replacing equations (1) and (3) with 1
2 [(1) ± (3)] and equations (2) and (4) with 1

2 [(2) ± (4)] we get

(1′) a22 + (a20 + a02) + a00 = β1,

(2′) a23 + (a21 + a03) + a01 = β2,

(3′) a33 + (a31 + a13) + a11 = β3,

(4′) a32 + (a30 + a12) + a10 = β4,

where

β1 =
1
4
[u0(A) + u0(B) + u0(C) + u0(D)],

β2 =
1
4
[u0(A) + u0(B) − u0(C) − u0(D)],

β3 =
1
4
[u0(A) − u0(B) + u0(C) − u0(D)],= (Δ(1,1)

2 u0)(C),

β4 =
1
4
[u0(A) − u0(B) − u0(C) + u0(D)].

The same argument on the set (5)–(8) yields:

(5′) 3a32 + (3a30 + a12) + a10 = γ1,

(6′) 3a33 + (3a31 + a13) + a11 = γ2,

(7′) 2a23 + 2a21 = γ3,

(8′) + 2a22 + 2a20 = γ4,

where

γ1 =
1
4
[(δ1u0)(A) + (δ1u0)(B) + (δ1u0)(C) + (δ1u0)(D)],

γ2 =
1
4
[(δ1u0)(A) + (δ1u0)(B) − (δ1u0)(C) − (δ1u0)(D)] =

1
2

[
(Δ(1,1)

2 u0)(D) + (Δ(1,1)
2 u0)(C)

]
,

γ3 =
1
4
[(δ1u0)(A) − (δ1u0)(B) + (δ1u0)(C) − (δ1u0)(D)] =

1
2

[
(Δ(2,0)

2 u0)(A) − (Δ(2,0)
2 u0)(D)

]
,

γ4 =
1
4
[(δ1u0)(A) − (δ1u0)(B) − (δ1u0)(C) + (δ1u0)(D)] =

1
2

[
(Δ(2,0)

2 u0)(A) + (Δ(2,0)
2 u0)(D)

]
.

Through equations (1′), (2′) and (4′) we can express a00, a01 and a10 in terms of ahk for h + k ≥ 2. Thus, we
can eliminate a10 from equation (5′) by means of equation (4′), and get

(5′′) 2a32 + 2a30 = γ1 − β4 =
1
2
[(Δ(2,0)

2 u0)(A) + (Δ(2,0)
2 u0)(D)]

(the same can be done for the corresponding equation containing a01 in the set of conditions for the derivative
with respect to the second variable). Therefore, the resulting equations involving the terms ahk with h+ k ≥ 2
(i.e. Eqs. (5′′), (6′), (7′), (8′), the analogous ones for the other derivative, the equations for the mixed derivative
and (3′)) have a right-hand side which can be expressed only through (Δα

2 u0) for |α| = 2. �

Remark 4.6. From the proof of Proposition 4.5 (see, in particular, Eqs. (2′) and (4′)) we also get that ahk

with h + k = 1 can be expressed in terms of Δα
2u0(v) for v ∈ V0 and |α| ≥ 1 (indeed β2 and β4 are sums of

first-order difference quotients).
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Corollary 4.7. There exists a constant C such that for every u : εZ2 → R and for every square Q of the mesh
εZ2 we have ∫

Q

|D2Sεu(z)|2 dz ≤ C
∑

z

∑
|α|=2

ε2|Δα
ε u(z)|2,

where the first sum is performed on all z vertices of Q.

Proof. By Proposition 4.5 and by (4.5) and (4.3), it turns out that:∫
Q

|D2Sεu(z)|2 dz =
4
ε2

∫
Q0

|D2p0(z)|2 dz ≤ C
4
ε2

∑
v∈V0

∑
|α|=2

|(Δα
2u0)(v)|2

=
1
4
C

∑
z vertex of Q

∑
|α|=2

ε2|Δα
ε u(z)|2. �

5. Compactness

Let Ω be a bounded open subset of R
2 with Lipschitz boundary. Let u be a real-valued function on Ω ∩ εZ2;

by previously defining u with value 0 on εZ2 \Ω, we can apply the procedure introduced in Section 4 and extend
u to a C1 piecewise-polynomial function Sεu on R

2 in such a way that the L2-norm of D2Sεu is controlled by the
second difference quotients on the nodes in εZ2 (see Cor. 4.7). The function u also admits the trivial “pixel-like”
piecewise-constant extension Tεu : R

2 → R defined by:

Tεu(x, y) = û(x, y) := u(xε, yε), where (xε, yε) := (ε�x/ε�, ε�y/ε�) (5.1)

(� · � denotes the integer part).
In this section we prove a compactness result for the smooth and the piecewise-constant interpolations of

sequences (uεk
) for which the energies Eεk

(uεk
, Ω) are equibounded, as well as their L2-norms (this assumption

is satisfied e.g. if a fidelity term to an L2 input is added as for the Mumford-Shah functional).

Remark 5.1. Let us note that the L2-norm of the smooth interpolation Sεu can be easily estimated by the
L2-norm of the piecewise-constant interpolation Tεu:

‖Sεu‖L2(R2) ≤ C‖Tεu‖L2(R2)

for a suitable C > 0 independent of u (as above u has value 0 on εZ2 \Ω). Indeed, in the notation of Remark 4.4
there exists a constant C such that

‖Sεu‖2
L2(R2) ≤ C

∑
Q

ε2M(u,Q)2,

where the sum is taken over all squares Q of the mesh εZ2. By the definition of M(u,Q) we get

M(u,Q) ≤
∑

{|u(x, y)| : (x, y) ∈ εZ2, x− x, y − y ∈ {−ε, 0, ε} for some vertex (x, y) of Q}. (5.2)

Hence ∑
Q

ε2M(u,Q)2 ≤ 16
∑

(x,y)∈εZ2

ε2u(x, y)2 = 16‖Tεu‖2
L2(R2)

(as a consequence of the application of (5.2) for every Q, each node is considered 16 times).
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Theorem 5.2. Let (εk) be a positive infinitesimal sequence and let (uk) be a sequence of functions Ωεk
→ R.

Assume that
sup

k
Eεk

(uk, Ω) < +∞, sup
k

‖Tεk
uk‖L2(R2) < +∞

(uk is extended with value 0 to the whole εZ2). Then there exists a subsequence (not relabelled) and a function
u0 ∈ GSBV 2(Ω) ∩ L2(Ω) such that

Tεk
uk → u0

Sεk
uk → u0

}
a.e. and strongly in Lq(Ω) for every 1 ≤ q < 2.

Moreover, for every k there exists a finite union Zk of squares of the mesh εkZ
2, with |Zk| → 0, such that the

functions

vk :=

{
Sεk

uk on Ω \ Zk

0 on Zk

have the following convergence properties:

vk → u0 a.e. and strongly in Lq(Ω) for every 1 ≤ q < 2;
∇vk → ∇u0 a.e. in Ω;
∇2vk ⇀ ∇2u0 weakly in L2(Ω;M2×2).

(5.3)

Proof. Extend uk to εkZ
2 with value zero outside Ωεk

. By the assumptions on ∂Ω, if Nk = #(Ωεk
\Ωεk

), then
Nk = O(1/εk) (it is sufficient to consider the points (x, y) ∈ εkZ

2 whose distance from ∂Ω does not exceed
εk

√
2). Since

Eεk
(uk, εkZ

2) ≤ Eεk
(uk, Ω) + 4Nkε

2
k

γ

εk
,

we deduce that the sequence
(
Eεk

(uk, εkZ
2)
)
k

is bounded. Let Zk be the family of those (closed) squares Q of
the mesh εkZ

2 such that
|(Δα

εk
uk)(z)| ≥

√
γ/εk

for at least one vertex z of Q and a multiindex α with |α| = 2. Note that

Eεk
(uk, εkZ

2) ≥ 1
4

∑
Q∈Zk

∑
(z vertex of Q)

∑
|α|=2

ε2kψεk

(
(Δα

εk
uk)(z)

) ≥ 1
4

∑
Q∈Zk

ε2kγ/εk =
1
4
(#Zk)γεk.

Therefore supk(#Zk)εk < +∞.
For every k let Zk =

⋃Zk, and

vk =

{
Sεk

uk on R
2 \ Zk

0 otherwise.

If Bk denotes the boundary of Zk, then vk is H2 on R
2 \ Bk; moreover, vk ∈ L2(Ω) by Remark 5.1. Thus,

vk ∈ GSBV 2(Ω) ∩ L2(Ω).
On the space GSBV 2(Ω) consider the functional

F (v) =
∫

Ω

(|∇2v|2 + |v|2) dxdy + H1(Sv ∪ S∇v).

We aim at proving that (F (vk))k is bounded. Clearly, this is true for the term H1(Svk
∪ S∇vk

) ≤ 4(#Zk)εk.
Moreover, the sequence (vk) is bounded in L2(Ω) as a consequence of Remark 5.1.
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Finally, by Corollary 4.7 there exists a constant C such that for every k∫
Ω

|∇2vk|2 dxdy ≤
∫

R2
|∇2vk|2 dxdy =

∫
R2\⋃ Zk

|D2(Sεk
uk)|2 dxdy

≤ C
∑

Q/∈Zk

∑
(z vertex of Q)

∑
|α|=2

ε2k|(Δα
εk
uk)(z)|2 ≤ 4CEεk

(uk, εkZ
2).

We can conclude that (vk) is a sequence in GSBV 2(Ω) ∩ L2(Ω) such that

sup
k
F (vk) < +∞.

The assumptions of the compactness Theorem 8 in [19] are thus satisfied: there exists a function u0 ∈
GSBV 2(Ω)∩L2(Ω) such that, up to a subsequence, (5.3) holds. Since Zk has vanishing Lebesgue measure, the
sequence (Sεk

uk)
k

is bounded in L2, and q < 2, this also implies the stated convergence for (Sεk
uk)

k
.

Now, we have to consider the sequence (Tεk
uk)

k
of the piecewise-constant interpolations. With the letter Q

we will denote any square of the mesh εkZ
2. For such Q we can write Sεk

uk as in Remark 4.4

Sεk
uk(x, y) =

3∑
i,j=0

aQ
ij

(x− xQ)i(y − yQ)j

(εk/2)i+j
·

Let wk be the piecewise-affine function which is defined by

wk(x, y) = aQ
00 + 2

aQ
10

εk
(x− xQ) + 2

aQ
01

εk
(y − yQ)

on each square Q /∈ Zk, and wk = 0 on those Q in Zk. Let us show that wk → u0 in Lq for every 1 ≤ q < 2.
We have: ∫

Ω

|vk − wk|q dxdy ≤ C
∑

Q/∈Zk

ε2k

3∑
i,j=0
i+j≥2

|aQ
ij |q (5.4)

(here and in the sequel of the proof, C denotes a positive constant suitable for the current inequality). By the
boundedness of Ω, the number of all the squares is of order 1/ε2k. Therefore

∑
Q/∈Zk

ε2k

3∑
i,j=0
i+j≥2

|aQ
ij |q ≤ Cε2k

(
1
ε2k

)1−q/2

⎛
⎜⎝ ∑

Q/∈Zk

3∑
i,j=0
i+j≥2

|aQ
ij |2
⎞
⎟⎠

q/2

= Cεq
k

⎛
⎜⎝ ∑

Q/∈Zk

3∑
i,j=0
i+j≥2

|aQ
ij |2
⎞
⎟⎠

q/2

.

Moreover, taking Proposition 4.5 and equation (4.3) into account, we have

∑
Q/∈Zk

3∑
i,j=0
i+j≥2

|aQ
ij |2 ≤ C

∑
Q/∈Zk

∑
|α|=2

∑
(z vertex of Q)

ε4k |(Δα
ε uk)(z)|2 ≤ 4Cε2kEεk

(uk, Ω).

We deduce that ∑
Q/∈Zk

ε2k

3∑
i,j=0
i+j≥2

|aQ
ij |q ≤ Cε2q

k (Eεk
(uk, Ω))q/2 → 0 as k → +∞. (5.5)

By (5.4) we conclude that ‖vk − wk‖Lq → 0, therefore ‖wk − u0‖Lq → 0, too.
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Let wk be the piecewise-constant function which takes the value −
∫

Q

wk (the average of wk on Q) on each

square Q. We claim that (wk) converges to u0 in Lq(R2) for every 1 ≤ q < 2. Indeed,∫
R2

|wk(z) − u0(z)|q dz =
∑
Q

∫
Q

∣∣∣∣−
∫

Q

wk(z′) dz′ − u0(z)
∣∣∣∣
q

dz

≤ 2q−1
∑
Q

[∫
Q

∣∣∣∣−
∫

Q

(wk(z′) − u0(z′)) dz′
∣∣∣∣
q

dz +
∫

Q

∣∣∣∣−
∫

Q

u0(z′)dz′ − u0(z)
∣∣∣∣
q

dz
]

≤ 2q−1
∑
Q

[∫
Q

dz−
∫

Q

|wk(z′) − u0(z′)|q dz′ +
∫

Q

|fk(z)|q dz
]

=: 2q−1(I1
k + I2

k),

where fk is the function defined a.e. on R
2 by

fk(z) = −
∫

Q(z)

u0(z′)dz′ − u0(z),

with Q(z) denoting the unique open square of the mesh εkZ
2 containing z.

Clearly

I1
k =
∑
Q

∫
Q

|wk(z′) − u0(z′)|q dz′ =
∫

R2
|wk(z′) − u0(z′)|q dz′ → 0

as k → +∞. As for I2
k , we note that for k sufficiently large fk vanishes outside a fixed neighborhood of Ω;

moreover, fk → 0 a.e. on R
2. Let us now look for a summable function dominating |fk|q. We have

−
∫

Q(z)

|u0(z′)|dz′ ≤ 1
ε2k

∫
B√

2εk
(z)

|u0(z′)|dz′ ≤ 2πM(u0)(z),

where M(u0) denotes the Hardy-Littlewood maximal function of u0. Since u0 ∈ L2(R2), it follows that M(u0) ∈
L2(R2), too. Since fk vanishes outside a compact set, the function (2πM(u0) + |u0|)q yields a summable bound
for |fk|q. By the dominated convergence theorem we get

I2
k =
∫

R2
|fk(z)|q dz → 0 as k → +∞.

We conclude that wk → u0 in Lq(Ω).
Clearly for every Q /∈ Zk we have wk = aQ

00 on Q; hence,

∑
Q/∈Zk

∫
Q

|wk(z) − wk(z)|q dz =
∑

Q/∈Zk

∫
Q

∣∣∣∣2aQ
10

x− xQ

εk
+ 2aQ

01

y − yQ

εk

∣∣∣∣
q

dxdy

≥
∑

Q/∈Zk

∫
AQ

[(
2aQ

10

x− xQ

εk

)q

+
(

2aQ
01

y − yQ

εk

)q]
dxdy,

where AQ = {(x, y) ∈ Q : aQ
10(x− xQ) ≥ 0, aQ

01(y − yQ) ≥ 0}. It turns out that∫
AQ

[(
2aQ

10

x− xQ

εk

)q

+
(

2aQ
01

y − yQ

εk

)q]
dxdy =

1
q + 1

(εk

2

)2

(|aQ
10|q + |aQ

01|q).

Thus, the convergence of both (wk)k and (wk)k to u0 in Lq implies that∑
Q/∈Zk

∑
i+j=1

ε2k|aQ
ij |q → 0. (5.6)
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We now prove the convergence of (Tεk
uk)

k
. We have:

‖Tεk
uk − wk‖q

Lq(Ω) =
∑

Q∈Zk

∫
Q

|Tεk
uk|q dxdy +

∑
Q/∈Zk

∫
Q

|Tεk
uk − wk|q dxdy =: J1

k + J2
k .

Since Zk =
⋃Zk has vanishing Lebesgue measure, and Tεk

uk are equibounded in L2, J1
k → 0. As to the second

term, given a square Q of the mesh, let z = (x, y) be the left lower corner of Q; then Tεk
uk = uk(z) = Sεk

uk(z)
on Q and

J2
k =

∑
Q/∈Zk

∫
Q

∣∣∣Sεk
uk(z) − aQ

00

∣∣∣q dxdy

=
∑

Q/∈Zk

ε2k

∣∣∣∣∣∣
∑

i+j≥1

aQ
ij

(x− xQ)i(y − yQ)j

(εk/2)i+j

∣∣∣∣∣∣
q

≤ C
∑

Q/∈Zk

ε2k
∑

i+j≥1

|aQ
ij |q.

It is now enough to apply (5.6), for the terms aQ
ij with i+ j = 1 and (5.5) when i+ j ≥ 2, in order to conclude

that ‖Tεk
uk − wk‖Lq(Ω) → 0. �

6. Estimates for the Γ -limit

In this section we obtain upper and lower estimates for the Γ -limit of the functionals Eε. For the lower bound
we reduce the problem to a one-dimensional setting through a slicing technique. Thus, the first and third term
in definition (3.2) can be managed by means of Theorem 3.2, while for the mixed-derivatives term we have to
exploit the convergence of the gradients guaranteed by the compactness theorem of the previous section, and
then apply a convergence result for first-order functionals (see Chambolle [25, 26]).

Theorem 6.1 (lower estimate). Let Ω be a bounded open subset of R
2. Let (uk)

k
and u0 be as in Theorem 5.2.

Then

lim inf
k→+∞

Eεk
(uεk

, Ω) ≥
∫

Ω

|∇2u0(x, y)|2 dxdy + 2γ
∫

Su0

‖ν‖1 dH1 + γ

∫
S∇xu0\Su0

|ν1| dH1 + γ

∫
S∇yu0\Su0

|ν2| dH1

+ 2γ
∫

S∇yu0\S∇xu0

|ν1| dH1 + 2γ
∫

S∇xu0\S∇yu0

|ν2| dH1 + 2γ
∫

S∇yu0∩S∇xu0

‖ν‖∞ dH1,

where ‖ν‖1 = |ν1| + |ν2| and ‖ν‖∞ = max(|ν1|, |ν2|).
Proof. For notational convenience, in the sequel we will simply write ε instead of εk. We can assume that
Eε(uε, Ω) converge for ε → 0, so that the possible extraction of subsequences does not affect the estimate of
the lower limit.

Let Ω′ ⊂⊂ Ω be fixed. If ε > 0 is sufficiently small, then∑
(x,y)∈Ωε

ε2ψε

(
Δ(2,0)

ε uε(x, y)
)
≥
∫

R

∑
x∈(Ω′)y∩εZ

εψε

(
ûy

ε(x+ ε) + ûy
ε(x− ε) − 2ûy

ε(x)
ε2

)
dy,

where (Ω′)y and ûy
ε denote the one-dimensional sections of Ω′ and ûε, respectively, introduced in (2.1). Since

(up to a subsequence) ûy
ε → uy

0 in L1(Ωy) for a.e. y ∈ R, we are in a position to apply Theorem 3.2 to each
connected component of (Ω′)y. Thus uy

0 is piecewise-H2 on (Ω′)y and

lim inf
ε→0

∑
(x,y)∈Ωε

ε2ψε

(
Δ(2,0)

ε uε(x, y)
)

≥
∫

R

(∫
(Ω′)y

|(uy
0)

′′(x)|2 dx+ γ#[(S(uy
0)′ \ Suy

0
) ∩Ω′] + 2γ#[Suy

0
∩Ω′]

)
dy.
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Since u0 ∈ GSBV 2(Ω) (Thm. 5.2), by the arbitrariness of Ω′, the same inequality holds with Ω in place of
Ω′. On account of Theorem 2.1 we have∫

R

∫
(Ω′)y

|(uy
0)

′′(x)|2 dxdy =
∫

Ω

|∇2
xxu0(x, y)|2 dxdy.

Moreover, Theorem 2.1 also yields that, for a.e. y ∈ R with Ωy �= ∅,

Suy
0

= (Su0)
y , (uy

0)
′ = ∇xu0(·, y) = (∇xu0)y a.e. on Ωy .

Therefore we have S(uy
0 )′ = (S∇xu0)

y, too; thus

S(uy
0 )′ \ Suy

0
= (S∇xu0)

y \ (Su0)
y = (S∇xu0 \ Su0)

y
.

By the coarea formula ∫
R

#(Ey) dy =
∫

E

|ν1| dH1

whenever E ⊆ R
2 is a H1-rectifiable set with ν = (ν1, ν2) as unit normal field; hence,∫

R

#Suy
0
dy =

∫
Su0

|ν1| dH1,

∫
R

#(S(uy
0 )′ \ Suy

0
) dy =

∫
S∇xu0\Su0

|ν1| dH1.

We conclude that

lim inf
ε→0

∑
(x,y)∈Ωε

ε2ψε

(
Δ(2,0)

ε uε(x, y)
)
≥
∫

Ω

|∇2
xxu0(x, y)|2 dxdy+2γ

∫
Su0

|ν1| dH1 +γ

∫
S∇xu0\Su0

|ν1| dH1. (6.1)

An analogous estimate for the term involving Δ(0,2)
ε clearly holds.

We now turn to the mixed-derivatives term involving Δ
(1,1)
ε . If ε > 0 is sufficiently small, then for every

(x, y) ∈ Ω′ ∩ εZ2 each square of the mesh with a vertex in (x, y) is contained in Ω. Therefore

Δ(1,1)
ε uε(x, y) =

1
ε

[
Δ(0,1)

ε uε(x+ ε, y) −Δ(0,1)
ε uε(x, y)

]
=

1
ε

[DySεuε(x+ ε, y) −DySεuε(x, y)] .

We now introduce the function sε = Tε(DySεuε), i.e. the piecewise constant extension of (DySεuε)
∣∣∣
εZ2

according

to (5.1). Since Ω′ ⊂⊂ Ω, we have:

∑
(x,y)∈Ωε

ε2ψε

(
Δ(1,1)

ε uε(x, y)
)
≥
∫

R

∑
x∈(Ω′)y∩εZ

εψε

(
sy

ε(x + ε) − sy
ε(x)

ε

)
dy. (6.2)

We would like to apply Chambolle’s one-dimensional convergence result (see [25,26]) to the integrand function.
To this end we need the pointwise convergence of sε.

Note that, for any given N ∈ N there exists a constant C such that if p(x, y) is a polynomial whose degree
does not exceed N and if p(0, 0) = 0, then∫

[0,1]2
|p(x, y)|2 dxdy ≤ C

∫
[0,1]2

|Dp(x, y)|2 dxdy

(indeed,
∫
[0,1]2 |p(x, y)|2 dxdy

/ ∫
[0,1]2 |Dp(x, y)|2 dxdy is a 0-homogeneous function of the coefficients a = (aij)

of p(x, y) =
∑

i,j aijx
iyj, defined for every a �= 0). By translating and rescaling we deduce that there exists
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a constant C such that for every (x0, y0) ∈ R
2, if Qε(x0, y0) = [x0, x0 + ε) × [y0, y0 + ε) then∫

Qε(x0,y0)

|p(x, y) − p(x0, y0)|2 dxdy ≤ Cε2
∫

Qε(x0,y0)

|Dp(x, y)|2 dxdy,

whenever p(x, y) is a polynomial whose degree does not exceed N .
Apply this inequality to the polynomial p = DySεuε on every square Qε(x0, y0) (of the mesh εZ2) covering

Ω′ (when ε is sufficiently small Sεuε is defined on each of these squares). Note that for every (x, y) ∈ Qε(x0, y0)

sε(x, y) = DySεuε(x0, y0) = p(x0, y0).

Therefore ∫
Qε(x0,y0)

|DySεuε(x, y) − sε(x, y)|2 dxdy ≤ Cε2
∫

Qε(x0,y0)

|D2Sεuε(x, y)|2 dxdy. (6.3)

Let vε be as in Theorem 5.2, i.e.: vε = 0 on those squares where |(Δα
ε uε)(z)| ≥

√
γ/ε for at least one vertex

z of Q and a multiindex α with |α| = 2; and vε = Sεuε outside the union Zε of these squares. Then, by (6.3),∫
Ω′

|∇yvε − sεχε|2 dxdy ≤ Cε2
∑
Qε

∫
Qε

|D2Sεuε(x, y)|2 dxdy

where χε denotes the function which takes the values 0 on Zε and 1 otherwise, and the sum on the right-hand
side ranges over all the squares covering Ω′ but outside Zε. By Corollary 4.7, and the definition of Zε we can
estimate this sum by Eε(uε, Ω), which is bounded by assumption. Since ∇yvε → ∇yu0 a.e. by Theorem 5.2,
we deduce that (up to a subsequence), sεχε → ∇yu0 a.e. in Ω′. Since |Zε| → 0, possibly extracting a further
subsequence, we get

sε → ∇yu0 a.e. in Ω′.

We now recall Chambolle’s convergence results [25, 26]: let (a, b) be a given open interval, and let (wε) be
a sequence of real-valued functions on (a, b) ∩ εZ, extended with value 0 in εZ \ (a, b). Assume wε defined, as
a piecewise constant function, all over (a, b) by wε(x) = wε(ε�x/ε�). If (wε) converges a.e. in (a, b) to a SBV
function w, then

lim inf
ε→0

∑
x∈εZ

x,x+ε∈(a,b)

εψε

(
wε(x + ε) − wε(x)

ε

)
≥
∫

(a,b)\Sw

|w′|2 dx+ γ#Sw.

Let M > 0 be fixed. We are in a position to apply the inequality above for a.e. y ∈ R on each connected
component of (Ω′)y (to be precise, for each of them we have to consider a sequence of compact intervals invading
it), and with

wε = wy
ε := (−M) ∨ sε(·, y) ∧M, w = wy := (−M) ∨∇yu0(·, y) ∧M.

Take now (6.2) into account; since the first-order quotients decrease by truncation we get

lim inf
ε→0

∑
(x,y)∈Ωε

ε2ψε

(
Δ(1,1)

ε uε(x, y)
)
≥
∫

R

(∫
Ωy

|(wy)′|2 dx+ γ#Swy

)
dy.

By letting M tend to +∞ we conclude that

lim inf
ε→0

∑
(x,y)∈Ωε

ε2ψε

(
Δ(1,1)

ε uε(x, y)
)
≥
∫

R

(∫
Ωy

|[(∇yu0)y]′|2 dx+ γ#S(∇yu0)y

)
dy.
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As before this implies that

lim inf
ε→0

∑
(x,y)∈Ωε

ε2ψε

(
Δ(1,1)

ε uε(x, y)
)

≥
∫

Ω

|∇2
xyu0(x, y)|2 dxdy + γ

∫
S∇yu0

|ν1| dH1.

An analogous estimate holds with the roles of x and y interchanged:

lim inf
ε→0

∑
(x,y)∈Ωε

ε2ψε

(
Δ(1,1)

ε uε(x, y)
)
≥
∫

Ω

|∇2
xyu0(x, y)|2 dxdy + γ

∫
S∇xu0

|ν2| dH1.

We now consider the supremum (in a measure theoretic sense) of these two lower bounds. To this end we have
to ‘localize’ the estimates above by applying the argument with Ω replaced by any open subset A ⊆ Ω; if we
set

G(A) = lim inf
ε→0

∑
(x,y)∈Aε

ε2ψε

(
Δ(1,1)

ε uε(x, y)
)
−
∫

A

|∇2
xyu0(x, y)|2 dxdy,

then
G(A) ≥

∫
A

(ψ + ψi) dH1, i = 1, 2,

where
ψ = |ν1|1S∇yu0\S∇xu0

+ |ν2|1S∇xu0\S∇yu0
, ψi = |νi|1S∇yu0∩S∇xu0

.

A standard measure-theoretical result (see e.g. Thm. 1.16 in [12]) yields

G(A) ≥
∫

A

(ψ + max(ψ1, ψ2)) dH1.

In particular we take A = Ω. This inequality, together with (6.1) and the analogous one for the term involving
Δ

(0,2)
ε , finally results in the stated bound for the lower limit. �

We now turn to the upper estimate, which relies on a construction close to the discontinuity points of u and
∇u. This can be compared with the one in [6], where an optimal interpolation is constructed on a tubular
neighbourhood of the jump set of u. In our case we simply extend the function u to 0 in the same neighbourhood.
As in [6], since we cannot use this construction for the jump set of ∇u, this argument may be sharp only when
the energy on ‘creases’ is determined by that on ‘jumps’ (i.e. when α = 2β in (1.2)).

Theorem 6.2 (upper estimate). Let Ω be a star-shaped bounded open subset of R
2, and let u0 ∈ GSBV 2(Ω)

∩L2(Ω). Then for all sequences εk → 0 there exists a sequence uεk
→ u0 L

2 (i.e. Tεk
uεk

→ u0 in L2) such that

lim sup
k→+∞

Eεk
(uεk

, Ω) ≤
∫

Ω

|∇2u0|2dxdy + 24
√

2γH1(Su0 ∪ S∇u0). (6.4)

Proof. For notational convenience we will drop the index k from sequences.
The idea is to define uε as the discretization of u0χΩ\Uε

, where Uε is a suitable tubular neighbourhood of
Su0 ∪S∇u0 . The singular set of uε is thus related to ∂Uε, and can be estimated in term of H1(Su0 ∪S∇u0 ) under
the additional assumption that the 1-dimensional Hausdorff measure of Su0 ∪S∇u0 coincides with its Minkowski
content (see (6.6)). In order to remove this assumption, u0 will then be approximated by a regularizing sequence
of minimizers of suitable minimum problems: since the regularity of the singular sets of these minimizers is only
guaranteed on the compact subsets of the domain, we will need the technical assumption that Ω is star-shaped,
thus allowing a simple dilation argument which extends the functions to a domain Ω′ which strictly contains Ω
(see (6.5)).
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According to the line of proof sketched above, we first deal with the case when u0 is defined on some Ω′ with
Ω ⊂⊂ Ω′, and is such that, having set K ′ = (Su0 ∪ S∇u0 ) ∩Ω′:

u0 ∈ H2(Ω′ \K′
) ∩ C2(Ω′ \K ′

). (6.5)

Moreover, we require that if Ω′′ is an open set with Ω ⊂⊂ Ω′′ ⊂⊂ Ω′, then the set K ′′ = (Su0 ∪ S∇u0)∩Ω′′ has
the property that

H1(K ′′) = M(K ′′) < +∞, (6.6)

where

M(K ′′) := lim
ρ→0

|{x ∈ Ω′ : dist (x,K ′′) < ρ}|
2ρ

denotes the Minkowski content of K ′′, and |.| stands for the Lebesgue measure.
Let us look for a suitable radius for the tubular neighborhood Uε of K ′′. With fixed ρ, δ > 0, with δ < ρ, by

the coarea formula, we can write

∫ ρ− 3
2 ε

√
2

δ+ 3
2 ε

√
2

∣∣∣∣
{
x ∈ Ω′ : |dist (x,K ′′) − t| ≤ 3

2
ε
√

2
}∣∣∣∣dt =

∫ ρ− 3
2 ε

√
2

δ+ 3
2 ε

√
2

∫ t+ 3
2 ε

√
2

t− 3
2 ε

√
2

H1({x ∈ Ω′ : dist (x,K ′′) = s})dsdt

≤ 3ε
√

2
∫ ρ

δ

H1({x ∈ Ω′ : dist (x,K ′′) = s})ds

≤ 3ε
√

2|{x ∈ Ω′ : dist (x,K ′′) < ρ}|
≤ 6ρε

√
2
(H1(K ′′) + oρ(1)

)
;

hence we can find δ < tε < ρ such that, having set

Dε =
{
x ∈ Ω′ : tε − 3

2
ε
√

2 ≤ dist(x,K ′′) ≤ tε +
3
2
ε
√

2
}
,

we have
|Dε| ≤ ρ

ρ− δ − 3ε
√

2
6
√

2ε(H1(K ′′) + oρ(1)). (6.7)

We notice that: (i) the shrinking to 0 of the radius tε will be obtained as ρ→ 0; (ii) the radius 3
2ε
√

2 is chosen
in order to estimate the sum I2

ε below; (iii) the positive radius δ allows the argument for the estimate of I1
ε

below.
We define uρ,δ

ε as the discretization of u0χΩ\Uε
(i.e. uρ,δ

ε = Tεk
(u0χΩ\Uε

)), where Uε = {x ∈ Ω′: dist(x,K ′′) <
tε}. We can write

Eε(uρ,δ
ε , Ω) =

∑
z∈Ωε

ε2
(
ψε

(
Δ(2,0)

ε uρ,δ
ε (z)

)
+ 2ψε

(
Δ(1,1)

ε uρ,δ
ε (z)

)
+ ψε

(
Δ(0,2)

ε uρ,δ
ε (z)

))
= I1

ε + I2
ε + I3

ε ,

where
• I1

ε is the sum on all z ∈ Ωε with dist(z,K) > tε + ε
√

2,
• I2

ε is the sum on all z ∈ Ωε with tε − ε
√

2 ≤ dist(z,K) ≤ tε + ε
√

2,
• I3

ε is the sum on all z ∈ Ωε with dist(z,K) < tε − ε
√

2.

Since u0 ∈ H2(Ω′ \K′
) ∩ C2(Ω′ \K′

), it turns out that |∇2u0|2 is continuous on a neighborhood of G, where
G = Ω \ {x ∈ Ω′ : dist(x,K ′′) ≤ δ}. Moreover, if z ∈ Ωε is a point of the sum I1

ε , then each of the squares of
the mesh with a vertex in z is contained in G. Therefore it is easy to see that:

lim sup
ε→0

I1
ε ≤
∫

Ω\{x: dist(x,K)≤δ}
|∇2u0|2 dxdy ≤

∫
Ω

|∇2u0|2 dxdy.
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Trivially, I3
ε = 0. As for I2

ε , we note that every coordinate square of side length ε with center z ∈ Ωε with
tε − ε

√
2 ≤ dist(z,K ′′) ≤ tε + ε

√
2 is contained in Dε; hence, by (6.7) we can estimate

I2
ε ≤ 4γε#({z ∈ Ωε : tε − ε

√
2 ≤ dist(z,K ′′) ≤ tε + ε

√
2})

≤ 4γε
1
ε2

|Dε| ≤ 24γ
√

2
ρ

ρ− δ − 3ε
√

2
(H1(K ′′) + oρ(1)).

Hence:
lim sup

ε→0
Eε(uρ,δ

ε , Ω) ≤
∫

Ω

|∇2u0|2dxdy + 24γ
√

2
ρ

ρ− δ

[H1(Su0 ∪ S∇u0) + oρ(1)
]
.

Since limρ,δ→0 limε→0 ‖uρ,δ
ε − u0‖L2 = 0, letting ρ and δ tend to 0, by a diagonal argument we then have the

thesis for u0 satisfying (6.5) and (6.6).
The general case is obtained by approximation. In order to simplify the notation, we suppose without loss of

generality that Ω is star-shaped with respect to the origin. Given an arbitrary target u0, for fixed λ > 0 we can
define vλ as a minimizer of the energy

v �→
∫

Ω

|∇2v|2dxdy + 24γ
√

2H1(Sv ∪ S∇v) + λ

∫
Ω

|v − u0|2dxdy,

and uλ(x, y) = vλ

(
λ

1 + λ
(x, y)

)
. By the regularity results of [20,21] such uλ satisfy conditions (6.5) and (6.6);

moreover, after setting

uλ
0 (x, y) = u0

(
λ

1 + λ
(x, y)

)
,

by the minimality of vλ we have
(

1 +
1
λ

)2 ∫
Ω

|∇2uλ|2dxdy +
(

1 +
1
λ

)−1

24γ
√

2H1(Suλ ∪ S∇uλ) + λ

(
1 +

1
λ

)−2 ∫
Ω

|uλ − uλ
0 |2dxdy

≤
(

1 +
1
λ

)2 ∫
(1+ 1

λ )Ω

|∇2uλ|2dxdy +
(

1 +
1
λ

)−1

24γ
√

2H1

(
(Suλ ∪ S∇uλ) ∩

(
1 +

1
λ

)
Ω

)

+ λ

(
1 +

1
λ

)−2 ∫
(1+ 1

λ )Ω

|uλ − uλ
0 |2dxdy

=
∫

Ω

|∇2vλ|2dxdy + 24γ
√

2H1(Svλ ∪ S∇vλ) + λ

∫
Ω

|vλ − u0|2dxdy

≤
(∫

Ω

|∇2u0|2dxdy + 24γ
√

2H1(Su0 ∪ S∇u0)
)
.

From this chain of inequalities we obtain first that uλ − uλ
0 → 0 in L2(Ω), and hence that uλ → u0 in L2(Ω),

as λ→ +∞, and secondly that∫
Ω

|∇2uλ|2dxdy + 24γ
√

2H1(Suλ ∪ S∇uλ) ≤
(

1 +
1
λ

)(∫
Ω

|∇2u0|2dxdy + 24γ
√

2H1(Su0 ∪ S∇u0 )
)
. (6.8)

From the first part of the proof, having set E′′(u) = Γ - lim sup
ε→0

Eε(u) (see [13] Sect. 1.6), we have, taking into

account (6.8)),

E′′(uλ) ≤
(

1 +
1
λ

)(∫
Ω

|∇2u0|2dxdy + 24γ
√

2H1(Su0 ∪ S∇u0)
)
. (6.9)
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By the lower semicontinuity of the Γ -limsup (see [13] Sect. 1.7) we have

E′′(u0) ≤ lim inf
λ→+∞

E′′(uλ) ≤
∫

Ω

|∇2u0|2dxdy + 24γ
√

2H1(Su0 ∪ S∇u0),

as a consequence of (6.9). �

Remark 6.3. A slightly more refined argument by slicing in the proof above for regular u satisfying (6.5)
and (6.6) gives an upper estimate with the anisotropic energy BZ1

α,β as defined in (3.3) with α = β = 24
√

2γ.
Unfortunately, the second part of the proof cannot be directly recovered from existence results in the literature.

The upper bound above is clearly not sharp, since it recovers both crease and jump discontinuities as limits
of two layers of ‘discrete’ jump discontinuities. The need of this approximation comes from the difficulty of
constructing optimal transitions close to general jump or crease sets. It can be overcome when all discontinuity
sets are parallel to the coordinate axes. In this case we have the following result.

Theorem 6.4 (sharp bounds). Let u be a piecewise C2 function with Su and S∇u composed of segments parallel
to the coordinate axes. Then there exists the Γ -limit

Γ - lim
ε→0

Eε(u) =
∫

Ω

|∇2u(x, y)|2 dxdy + 2γH1(Su) + γH1(S〈∇u,ν〉\Su) + 2γH1(S〈∇u,ν⊥〉),

where S〈∇u,ν〉 is the subset of S∇u where the orthogonal component 〈∇u, ν〉 of ∇u is discontinuous, and S〈∇u,ν⊥〉
is the subset of S∇u (possibly not disjoint from the previous one) where the tangential component 〈∇u, ν⊥〉 of
∇u is discontinuous.

Proof. The proof follows from a direct computation by choosing the (discretizations of) same target u as recovery
sequence, and noticing that it gives the lower bound obtained in Theorem 6.1. �
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