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THE THEOREM OF FINE AND WILF
FOR RELATIONAL PERIODS

Vesa Halava1, Tero Harju1 and Tomi Kärki1

Abstract. We consider relational periods, where the relation is a
compatibility relation on words induced by a relation on letters. We
prove a variant of the theorem of Fine and Wilf for a (pure) period and
a relational period.
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1. Introduction

In 1999 Berstel and Boasson introduced the notion of a partial word. In their
paper [1] they studied periodicity properties of partial words and presented a
variant of the theorem of Fine and Wilf for partial words with one hole. Further
results with more holes and on periodicity properties of partial words in general
can be found in [2,3,5–7,12,13]. The motivation for this research comes partly
from the study of biological sequences such as DNA, RNA and proteins [4,11].

In the article [9] we introduced word relations as compatibility relations of words
induced by a relation on letters. We showed that partial words can be seen as words
with a special word relation. The study of relational codes and relationally free
monoids continued in [10]. In this article we will consider relational periods of
words. We shall prove a variant of the theorem of Fine and Wilf as an example of
an interaction property between a (pure) period and a relational period.

2. Word relations

For a relation R ⊆ X × X we often write xR y instead of (x, y) ∈ R. The
restriction of R on Y ⊆ X is RY = R ∩ (Y × Y ). A relation R is a compatibility
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relation on letters if it is both reflexive and symmetric, i.e., (i) ∀x ∈ X : xRx,
and (ii) ∀x, y ∈ X : xRy =⇒ y R x. The identity relation on a set X is
defined by ιX = {(x, x) | x ∈ X} and the universal relation on X is defined by
ΩX = {(x, y) | x, y ∈ X}. Subscripts are often omitted when they are clear from
the context. Clearly, both ιX and ΩX are compatibility relations on X .

A compatibility relation R ⊆ A+×A+ on the set of all nonempty words over an
alphabet A will be called a word relation if it is induced by a relation on letters,
i.e.,

a1 · · ·am R b1 · · · bn ⇐⇒ m = n and ai R bi for all i = 1, 2, . . . , m

whenever a1, . . . , am, b1, . . . , bn ∈ A. The restriction of R on letters, denoted by
RA, is called the generating relation of R. Words u and v satisfying u R v are said
to be compatible or, more precisely, R-compatible. If the words are not compatible,
they are said to be incompatible.

Since a word relation R is induced by its restriction on letters, it can be pre-
sented by listing all pairs {a, b} (a �= b) such that (a, b) ∈ RA. We use the notation

R = 〈r1, . . . , rn〉,

where ri = (ai, bi) ∈ A×A for i = 1, 2, . . . , n, to denote that R is the word relation
generated by the symmetric closure of ιA ∪ {r1, . . . , rn}.
Example 2.1. In the binary alphabet A = {a, b} the compatibility relation

R = 〈(a, b)〉 = {(a, a), (b, b), (a, b), (b, a)}

makes all words with equal length compatible with each other. In the ternary
alphabet {a, b, c}, where

S = 〈(a, b)〉 = {(a, a), (b, b), (a, b), (b, a), (c, c)},

we have abba S baab but, for instance, words abc and cac are not S-compatible.

Partial words can be interpreted as words with a word relation. The next
example will express this in more detail.

Example 2.2. A partial word of length n over an alphabet A is a partial function

w : {1, 2, . . . , n} → A.

The domain D(w) of w is the set of positions p ∈ {1, 2, . . . , n} such that w(p)
is defined. The set H(w) = {1, 2, . . . , n} \ D(w) is the set of holes of w. To
each partial word we may associate a total word w♦ over the extended alphabet
A♦ = A ∪ {♦}. This companion of w is defined by

w♦(p) =
{

w(p) if p ∈ D(w),
♦ if p ∈ H(w).
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Thus, the holes are marked with the “do not know” symbol ♦. Clearly, partial
words are in one-to-one correspondence with words over A♦.

The compatibility relation of partial words is defined as follows. Let x and y
be two partial words of equal length. The word y is said to contain the word x if
D(x) ⊆ D(y) and x(k) = y(k) for all k in D(x). Two partial words x and y are
said to be compatible if there exists a partial word z such that z contains both x
and y. Then we write x ↑ y.

From another viewpoint partial words with compatibility relation ↑ can be seen
as words over the alphabet A♦ with the relation

R↑ = 〈{(♦, a) | a ∈ A}〉.

Two partial words x♦ and y♦ are compatible if and only if x♦ R ↑y♦. Namely, two
partial words are compatible if for 1 ≤ i ≤ |x♦| = |y♦| we have x♦(i) = y♦(i) or
at least one of the letters x♦(i) and y♦(i) is ♦. For more details, see [10].

3. Relational period

Let x = x1 · · ·xn be a word over the alphabet A. An integer p ≥ 1 is a (pure)
period of x if, for all i, j ∈ {1, 2, . . . , n}, we have

i ≡ j (mod p) =⇒ xi = xj .

In this case, the word x is called (purely) p-periodic. The smallest integer which
is a period of x is called the (minimal) period of x. Here we denote it by π(x), or
shortly, π if the word x is clear from the context.

For words with compatibility relation R on letters, we will now define relational
periods.

Definition 3.1. Let R be a compatibility relation on an alphabet A. For a word
x = x1 · · ·xn ∈ A+, an integer p ≥ 1 is a (relational) R-period of x if, for all
i, j ∈ {1, 2, . . . , n}, we have

i ≡ j (mod p) =⇒ xi R xj .

For a word x the minimal (relational) R-period is denoted by πR(x), or shortly,
πR if the word x is clear from the context. Note that a (pure) period is a relational
R-period with R = ι. Note also that for the universal similarity relation Ω = 〈ΩA〉,
we clearly have πΩ(x) = 1 for any word x.

Example 3.2. Define the following compatibility relations on the alphabet A =
{a, b, c}: R = 〈(b, c)〉, S = 〈(a, b)〉, T = 〈(a, c)〉. Consider the word x = abcba. We
clearly have

π = πR = 4 > πS = 3 > πT = 2 > πΩ = 1·
Note that in this example the universal relation on A is the only relation such
that the minimal relational period of x is one. Indeed, if one is an R′-period of x,
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then x1 R′ x2, x1 R′ x3 and x2 R′ x3. In other words, R′ = 〈(a, b), (a, c), (b, c)〉 =
〈ΩA〉 = Ω.

The following result is an easy consequence of the definition of a relational
period.

Proposition 3.3. Let R and S be compatibility relations on A such that R ⊆ S.
Then every R-period of a word x is an S-period of x. Moreover, πR ≥ πS .

Since ι ⊆ R by the reflexivity of a compatibility relation R, we have the following
corollary.

Corollary 3.4. Every pure period of a word x is a relational period. Thus, for a
word x and for a compatibility relation R, we always have π ≥ πR.

As an example of the use of relational periods we will consider periods of partial
words.

Example 3.5. In [1] a partial word w is said to have a (partial) period p if, for
all i, j ∈ D(w),

i ≡ j (mod p) =⇒ w(i) = w(j).

Consider now the companion of a partial word over the alphabet A♦. Recall that

R↑ = 〈{(♦, a) | a ∈ A}〉.

The number i belongs to D(w) if and only if w♦(i) �= ♦. Thus

i, j ∈ D(w) ⇐⇒ w♦(i), w♦(j) ∈ A♦ \ {♦} = A.

If a partial word w has a period p, then for all i, j ∈ D(w), we have

i ≡ j (mod p) =⇒ w♦(i)R↑ w♦(j),

since R↑ ∩ (A × A) = ι. If i and j do not both belong to D(w), then w♦(i) or
w♦(j) is ♦ and w♦(i)R↑ w♦(j) is clear by the definition of the relation R↑. Thus,
p is a relational R↑-period of w♦. On the other hand, if p is a relational R↑-period
of w♦, then it is a partial period of w, since we have to consider only positions
without holes and R↑ ∩ (A × A) = ι. In other words, we have showed that these
two definitions of periods are equivalent.

Note that there exists also a weaker period of partial words. After Berstel and
Boasson [1] a partial word w is said to have a local period p if

i, i + p ∈ D(w) =⇒ w(i) = w(i + p).

This can be expressed using compatibility relation R↑ similarly to the example
above.
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4. Fine and Wilf’s theorem

The theorem of Fine and Wilf [8] is well-known in combinatorics on words:

Theorem 4.1. If a word x has periods p and q, and the length of x is at least
p + q − gcd(p, q), then also gcd(p, q) is a period of x.

Berstel and Boasson gave the following variant of this theorem for partial words
with one hole in [1]. Recall that H(w) denotes the set of holes of w.

Theorem 4.2. Let w be a partial word of length n with local periods p and q. If
H(w) is a singleton and if n ≥ p + q, then gcd(p, q) is a (partial) period of w.

Furthermore, they showed that the bound p + q on the length is sharp. For
partial words with more holes, the theorem of Fine and Wilf was considered, for
example, in [7] and [3]. There it is shown that local periods p and q make a
sufficiently long word to have also the period gcd(p, q) when certain unavoidable
cases (special words) are excluded. The bound on the length depends on the
number of holes in the word. Another result concerning interaction properties
of partial periods was given in [12,13]. Shur and Gamzova found bounds for the
length of a word with k holes such that partial periods p and q imply the partial
period gcd(p, q).

These results concerning periods of partial words are special cases of interaction
properties of relational periods. Since the interaction bounds of partial periods
depend on the number of holes, this means that the interaction of periods in the
case of arbitrary relational periods must depend on the number of occurrences
of certain letters. Namely, any non-transitive compatibility relation R must have
letter relations (x1, x2), (x2, x3) ∈ R, but (x1, x3) �∈ R for some letters x1, x2, x3.
Then the role of the letter x2 in R{x1,x2,x3} is exactly the same as the role of
the hole ♦ in R↑. Hence, by the results of partial words, interaction bounds for
R-periods will depend on the number of occurrences of x2. This indicates that
the situation can be very complicated when we consider general non-transitive
relations. The following example shows that without any additional assumption
we cannot find a general bound for the interaction of relational periods.

Example 4.3. Let R = 〈(a, b), (b, c)〉. There exists an infinite (not necessarily
ultimately periodic) word

w = w1w2w3 · · · = acb6i1−2acb6i2−2 · · · ,

where the numbers ij ≥ 1 are chosen freely. Now w has R-periods 2 and 3. Namely,
w1w3w5 · · · ∈ {a, b}∗, w2w4w6 · · · ∈ {b, c}∗,

and
w1w4w7 · · · ∈ {a, b}∗, w2w5w8 · · · ∈ {b, c}∗, w3w6w9 · · · ∈ {b}∗.

However, 1 is not a relational R-period of the word w. For example, (w1, w2) =
(a, c) �∈ R. Furthermore, all numbers 2, 3, 4, . . . are R-periods of the ultimately
periodic word w′ = acbbb · · · , but 1 is not an R-period of w′.
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Nonetheless, some period interaction results can be obtained. If the relation R
is an equivalence relation, the situation is reduces to Theorem 4.1.

Proposition 4.4. Let R be an equivalence relation. If a word x has R-periods p
and q and the length of the word is at least p + q − gcd(p, q), then gcd(p, q) is an
R-period of x. The bound on the length is strict.

Proof. Let R be an equivalence relation on the alphabet A and let x be a word
over the alphabet with R-periods p and q and of length n ≥ p + q − gcd(p, q).
Suppose that A has m equivalence classes and let their set of representatives
be {a1, . . . , am}. Let B = {b1, . . . , bm} be another alphabet. Consider now a
letter-to-letter morphism ϕ : A∗ → B∗, where for every i ∈ {1, 2, . . . , m}, each
letter belonging to an equivalence class of ai is mapped to bi. This mapping
is clearly well defined. Then w = ϕ(x) = w1 · · ·wn is a word over B∗. Let
i, j ∈ {1, 2, . . . , n} satisfy i ≡ j (mod p). Since xi R xj by the assumption, we
have wi = ϕ(xi) = ϕ(xj) = wj by the definition of the morphism ϕ. Thus, also
w has the period p. Similarly, the word w is q-periodic. By the theorem of Fine
and Wilf (Th. 4.1), we therefore conclude that w is also gcd(p, q)-periodic. Let
now i, j ∈ {1, 2, . . . , n} satisfy i ≡ j (mod gcd(p, q)). Then wi = wj . By the
definition of ϕ this means that xi = ϕ−1(wi) and xj = ϕ−1(wj) belong to the
same equivalence class. Hence, xi R xj . This means that gcd(p, q) is a relational
R-period of the word x. Of course, the bound p+ q−gcd(p, q) is the best possible,
since there are counter examples of the original theorem of Fine and Wilf with
length p + q − gcd(p, q) − 1 and our statement coincides with Theorem 4.1 by
choosing R = ι. �

As was mentioned above, the theorem of Fine and Wilf cannot be generalized
for relational periods (neither to local periods) of a non-transitive compatibility
relation unless some restrictions on the number of relations (holes) and exclusions
of some special cases are given. On the other hand, it might be possible to get new
variations of the theorem by assuming some restrictions on compatibility relations.
For example, by assuming that one of the periods is pure and only the other one is
relational by the relation R �= ι we get a theorem similar to that of Fine and Wilf.
The sufficient and necessary lower bounds on the length of the word w considered
in the theorem are given in Table 1.

Theorem 4.5. Let P and Q be positive integers with gcd(P, Q) = d. Denote
P = pd and Q = qd. Suppose that a word w has a (pure) period Q and a relational
R-period P . Let B = B(p, q) be defined by Table 1. If |w| ≥ Bd, then also
gcd(P, Q) = d is an R-period of the word w. This bound on the length is sharp.

In order to make the proof of this theorem more readable, we first prove two
propositions concerning the case d = 1. The first one says that our lower bounds
B(p, q) are sufficient.

Proposition 4.6. Let p and q be positive integers and let gcd(p, q) = 1. Suppose
that a word w has a (pure) period q and a relational R-period p. Let B = B(p, q)
be defined as in Table 1. If |w| = B, then 1 is a relational R-period of w.
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Table 1. Table of lower bounds B(p, q).

B(p, q) p < q p > q

p, q odd
p + 1

2
q q +

q − 1
2

p

p odd, q even
p + 1

2
q

p + 1
2

q

p even, q odd q +
q − 1

2
p q +

q − 1
2

p

Proof. The word w is a rational power of a word of length q. Thus in w there
are at most q different letters. We show that a letter in an arbitrary position
s ∈ {1, 2, . . . , q} is R-compatible with all the other letters of the word w. If q = 2,
then there are at most two letters in w and we may use Proposition 4.4. Hence,
let us assume that q ≥ 3.

We make the following definitions. Let b be an integer in {1, 2, . . . , q} such that
b ≡ B (mod q) and define

s′ =
{

B − b + s if s ∈ {1, 2, . . . , b},
B − q − b + s if s ∈ {b + 1, b + 2, . . . , q}.

By the definition, s′ is the last position in w such that s′ ≡ s (mod q). Note that
since B ≥ q ≥ b, we have

0 < s ≤ B − b + s ≤ B,

if s ∈ {1, 2, . . . , b} and

0 < s − b ≤ B − q − b + s ≤ B − b < B,

if s ∈ {b + 1, b + 2, . . . , q}. Let us now define two sets

S1 =
{

s + ip | i = 1, 2, . . . ,

⌊
B − s

p

⌋}
,

S2 =
{

s′ − jp | j = 0, 1, . . . , q −
⌊

B − s

p

⌋
− 1

}
.

Note that 0 < B − s < pq, which implies that

1 ≤
⌊

B − s

p

⌋
≤ q − 1 and q > q −

⌊
B − s

p

⌋
− 1 ≥ q − (q − 1) − 1 = 0.



216 V. HALAVA, T. HARJU AND T. KÄRKI

Now we prove that all elements of S1 and S2 belong to the set {1, 2, . . . , B}. For
the set S1 this is clear, since

max(S1) = s +
(⌊

B − s

p

⌋)
p ≤ s +

B − s

p
p = s + B − s = B.

In order to prove that the minimal element of S2 is always positive, we have to
consider two different cases.

Case 1. Let us first assume that B = p+1
2 q. Then b = q and s′ = B − q + s for

all s ∈ {1, 2, . . . , q}. We have

min(S2) = s′ −
(

q −
⌊

B − s

p

⌋
− 1

)
p > s′ −

(
q − 1 −

(
B − s

p
− 1

))
p

= B − q + s − qp + B − s = 2B − (p + 1)q
= (p + 1)q − (p + 1)q = 0.

Case 2. Let us then assume that B = q + q−1
2 p = p+2

2 q − p
2 . Now

⌊
B − s

p

⌋
=

q − 1
2

+
⌊

q − s

p

⌋
≥ q − 1

2
,

since q is odd and q ≥ s. If s ∈ {1, 2, . . . , b}, then

min(S2) = s′ −
(

q −
⌊

B − s

p

⌋
− 1

)
p ≥ s′ −

(
q − q − 1

2
− 1

)
p

= q +
q − 1

2
p − b + s − qp +

q − 1
2

p + p

= q − b + s ≥ s > 0.

If s ∈ {b + 1, b + 2, . . . , q}, then

min(S2) ≥ s′ −
(

q − q − 1
2

− 1
)

p

= q +
q − 1

2
p − q − b + s − qp +

q − 1
2

p + p

= s − b > 0.

Next we show that the set S1∪S2 is a complete residue system modulo q for every
chosen s ∈ {1, 2, . . . , q}. The elements of S1 are pairwise incongruent modulo q,
since gcd(p, q) = 1 and

⌊
B−s

p

⌋
≤ q. The same holds for S2. Assume now that for

some i ∈ {1, 2, . . . ,
⌊

B−s
p

⌋
} and for some j ∈ {0, 1, . . . , q −

⌊
B−s

p

⌋
− 1} we have

s + ip ≡ s′ − jp (mod q). (1)



THE THEOREM OF FINE AND WILF FOR RELATIONAL PERIODS 217

Table 2. Table of critical positions a(p, q).

a(p, q) p < q p > q

p, q odd
q − p

2
q

p odd, q even
q

2
q

2

p even, q odd q q

This is true if and only if (i + j)p + s− s′ ≡ 0 (mod q). Since B ≡ b (mod q), we
have s′ ≡ s (mod q) by the definition of s′. In other words, (i+j)p+s−s′ ≡ (i+j)p
(mod q). Since gcd(p, q) = 1, equation (1) is true if and only if (i+j) ≡ 0 (mod q).
But this is not possible, since

0 < (i + j) ≤
⌊

B − s

p

⌋
+ q −

⌊
B − s

p

⌋
− 1 = q − 1 < q.

Hence, in S1 ∪ S2 we have

|S1 ∪ S2| =
⌊

B − s

p

⌋
+ q −

⌊
B − s

p

⌋
= q

pairwise incongruent elements modulo q. Let b be a letter in position t and let
a be the letter in position s (and s′). Now either an element in S1 or in S2 is
congruent to t modulo q. Hence a R b. �

Next we will prove that our lower bounds are necessary.

Proposition 4.7. Let p and q be positive integers such that gcd(p, q) = 1. Let
B = B(p, q) be defined as in Table 1. There exists a word w and a compatibility
relation R such that |w| = B − 1, w has a (pure) period q and an R-period p but
1 is not an R-period of w.

Proof. Like in the proof of Proposition 4.6, let b ∈ {1, 2, . . . , q} satisfy
b ≡ B (mod q). In addition, we define so called critical positions a(p, q) according
to Table 2. We show that it is possible to construct a word w of length |w| = B−1
with a pure period q and an R-period p such that the letter in the critical position
is not related to the letter in the position b. Note that all these critical posi-
tions are positive integers less than or equal to q. In the sequel we denote critical
positions shortly by a.

Consider now the minimal solution (i, j) for the equation

a + iq ≡ b + jq (mod p), (2)

such that i and j are nonnegative integers. By the minimal solution we mean a
solution where max(a + iq, b + jq) is as small as possible. Note that if i > j for
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some solution, then a + (i − j)q ≡ b (mod p) is a smaller solution. Similarly, if
j > i, then a ≡ b + (j − i)q (mod p) is a smaller solution. Thus the minimal
solution is of the form where either i = 0 or j = 0.

Since gcd(p, q) = 1, we know that {a + iq | i = 0, 1, . . . , p − 1} and {b + iq |
i = 0, 1, . . . , p − 1} are complete residue systems modulo p. Hence there ex-
ists exactly one j ∈ {0, 1, . . . , p − 1} satisfying a ≡ b + jq (mod p) and ex-
actly one i ∈ {0, 1, . . . , p − 1} satisfying a + iq ≡ b (mod p). Furthermore, for
j ∈ {1, 2, . . . , p − 1}, we have

a ≡ b + jq (mod p) =⇒ a + (p − j)q = a + pq − jq ≡ b (mod p),

and p − j ∈ {1, 2, . . . p − 1}. Hence, the minimal solution of (2) is either of the
form (0, j) or (p − j, 0).

Now we prove that in all the cases of Tables 1 and 2 the minimal solution is

i = 0 and j =
B − b

q
·

Note that, since B < pq, we have B−b
q ∈ {1, 2, . . . , p − 1}.

Consider first those cases where B = p+1
2 q and consequently b = q. Let j =

B−b
q .
Case 1. Let p and q be both odd and p < q. By Table 2, we have a = q−p

2 .
Now b + jq = B and, since q is odd, it follows that

(b + jq) − a =
p + 1

2
q − q − p

2
=

q + 1
2

p ≡ 0 (mod p).

Hence, (0, B−b
q ) is a solution. Furthermore,

jq = B − b =
p + 1

2
q − q =

p − 1
2

q

and
a + (p − j)q = a + pq − p − 1

2
q = a +

p + 1
2

q = a + B > B.

Hence, in the solution (p− B−b
q , 0), we have max(a+ iq, b+ jq) > B whereas in the

solution (0, B−b
q ), we have max(a + iq, b + jq) = B. Thus, (0, B−b

q ) is the minimal
solution.

Case 2. Suppose that p is odd and q is even. By the parity of q, a = q
2 is an

integer and

(b + jq) − a =
p + 1

2
q − q

2
=

q

2
p ≡ 0 (mod p).

Hence, (0, B−b
q ) is a solution. Like in Case 1, we have

a + (p − j)q = a + B > B,

and therefore (0, B−b
q ) is the minimal solution also in this case.
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Consider next those cases where B = q + q−1
2 p. According to Tables 1 and 2

we have a = q and q is odd. Clearly, (i, j) = (0, B−b
q ) is a solution, since

(b + jq) − a = q +
q − 1

2
p − q =

q − 1
2

p ≡ 0 (mod p).

Like above a + (p − j)q = a + pq − B + b. By substituting a and B we get

a + (p− j)q = q +
(

q − 1
2

p +
q − 1

2
p + p

)
−

(
q +

q − 1
2

p

)
+ b = B + (p − q) + b.

Case 3. Assume that p > q. Then p− q is positive and a+(p− j)q > B. Thus
the smallest solution is not (p − j, 0).

Case 4. Assume that p is even, q is odd and p < q. Then b = q− p
2 . Moreover,

a + (p − j)q = B + (p − q) + q − p

2
= B +

p

2
> B,

and we conclude that (0, B−b
q ) is the smallest solution also in this final case.

Define now a word w in the three letter alphabet {α, β, γ} by the rule

w =

{
(γa−1αγq−a−1β)

p+1
2 if B = p+1

2 q,

(γb−1βγq−b−1α)
B−b

q γb−1β if B = q + q−1
2 p,

(3)

where a = a(p, q) is given by Table 2. Define further that w′ = wβ−1. If w has a
relational R-period p, then by Proposition 4.6, it has also a relational R-period 1.
However, by the considerations above, the word w′ does not have an R-period 1 if
α and β are unrelated by the compatibility relation R. Namely, the first occasion
where the distance between the letters α and β in w is a multiple of p is the case
where α is in the position a and β is in the position B. �

Now we are ready to prove our main theorem.

Proof of Theorem 4.5. Suppose that a word w has a pure period Q and a relational
R-period P such that gcd(P, Q) = d. Let P = pd, Q = qd and B = B(p, q). Let
us consider a word

w(i) = wiwi+d · · ·wi+kid

where 1 ≤ i ≤ d and ki = � |w|−i
d � ≥ B. Now gcd(q, p) = 1 and the word w(i)

has a pure period q and a relational R-period p. The period q implies that the
word w(i) is over the alphabet Ai = {wi, wi+d, . . . , wi+(q−1)d}. Since B > q, also
the prefix of w(i) of length B is over the same alphabet. By Proposition 4.6, the
prefix has a relational R-period 1. In other words, all letters Ai are compatible
with each other. This means that also the whole word w(i) has 1 as an R-period.
This is true for all i = 1, 2, . . . , d. Consequently, d is a relational R-period of w.

In order to prove that the bound Bd on the length of w is necessary, we give
an example of a word w′ of length Bd − 1 such that it has a period Q and an
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R-period P but no R-period d. Suppose that w(d) is given by equation (3) and
w(i) = γB for i = 1, 2, . . . , d − 1. Let w be a perfect shuffle of these d sequences,
i.e.,

w = w
(1)
1 w

(2)
1 · · ·w(d)

1 w
(1)
2 w

(2)
2 · · ·w(d)

2 · · ·w(1)
B w

(2)
B · · ·w(d)

B .

Define further that
w′ = wβ−1.

Clearly w′ has a period Q and an R-period P , but by the proof of Proposition 4.7,
gcd(P, Q) = d is not an R-period of w′, if α and β are unrelated by the compati-
bility relation R. �
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