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LEARNING TREE LANGUAGES FROM TEXT

Henning Fernau1

Abstract. We study the problem of learning regular tree languages
from text. We show that the framework of function distinguishability,
as introduced by the author in [Theoret. Comput. Sci. 290 (2003)
1679–1711], can be generalized from the case of string languages to-
wards tree languages. This provides a large source of identifiable classes
of regular tree languages. Each of these classes can be characterized in
various ways. Moreover, we present a generic inference algorithm with
polynomial update time and prove its correctness. In this way, we gen-
eralize previous works of Angluin, Sakakibara and ourselves. Moreover,
we show that this way all regular tree languages can be approximately
identified.

Mathematics Subject Classification. 68Q32, 68Q45.

1. Introduction

Grammatical inference (GI) – also called grammar induction – mostly focussed
on learning string languages, although there are many practical motivations for
studying formally specified sets not being comprised of words, as well:

• Linguists are often interested in the dependencies of different parts of a
sentence. This sort of dependencies is likely to be reflected in the deriva-
tion trees of a context-free grammar which captures the main syntactical
features of the language in question. Moreover, the meaning attached to a
sentence is in close relation to the tree reflecting its analysis. So, tree lan-
guages are quite important to linguists. Applications of GI in this setting
are reported, e.g., in [6, 38].

• Derivation trees play an important role when studying the use of GI in
connection with programming languages, starting from [12]. The whole
area of programming by examples, sometimes also called programming by
demonstration, shows the importance of learning context-free languages,
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at best annotated by derivation trees. Comprehensive introductions into
this fields are [13, 46].

• Recently, tree language inference was proposed as a tool in inductive logic
programming (ILP) [5], this way (again) underlining the intimate relation-
ship between ILP and GI, as already seen, e.g., in [8].

• The quite natural relationship between tree structures and databases gave
rise to several more practic-oriented papers in that area; a starting point
for reading may be [14].

• In the flourishing area of developing tools that help deal with XML doc-
uments, trees can play their rôle, as well, as indicated by the works of
Neven and others [53], also see [10]1. Up to now, e.g., tools for creating
document type descriptions were all based, one way or other, on regular
language learners, see [1, 20, 31, 37].

• In [33] Chapters 3.2 and 6.4, applications of tree language inference to pat-
tern recognition can be found. We will report on a particular application
area in this respect at the end of this paper.

• Finally, trees can be equivalently interpreted as terms, so that the study
of the inference of tree languages might also contribute to the learning of
term algebras, a topic touched in [42, 43, 56].

Hence, the study of the automatic inference of tree languages is well motivated.
Besides [29, 41–43], the classes of regular tree languages presented in this paper
are the first ones which are characterized by well-defined restrictions on automata,
an important issue in GI [36]2. Another characteristic is that we are dealing with
inferring deterministic automata. In a certain sense, this line of research therefore
contrasts with the research undertaken to learn probabilistic or stochastic tree
automata, see [9, 56, 57, 68, 69]. The importance of this area of research can be
likewise seen by the fact that a special workshop on context-free grammar learning
was organized for the joint ECML/PKDD event in Dubrovnik in 20033. In his
bibliographical survey [35], de la Higuera dedicates one section to this topic, also
cf. [24].

In some sense, the present paper can be seen as a continuation of Sakakibara’s
work [60] on the inference of 0-reversible tree languages4 and of ours on the infer-
ence of distinguishable string languages [22]: we will explore how to learn – exactly
and approximately – function distinguishable regular tree languages from text,
a setting introduced by Gold [32], also known as identification in the limit from

1More references can be found on Neven’s homepage http://alpha.uhasselt.be/~fneven/

publsn2.html. We also refer to works of G. Gottlob’s group in Vienna, see, e.g., [11].
2After the publication of the conference version of this paper [21], López et al. published a

paper [50] in which they showed that natural generalizations of the k-reversible languages towards
tree languages, as introduced by Angluin [3] in the string case, lead to tree language classes that
can be efficiently learned from text. Besides minor technical differences, the present work also
generalizes that of López et al. [50], as already in the string case functional distinguishable
languages were designed to generalize k-reversible languages.

3see http://ilk.uvt.nl/~mvzaanen/ECMLPKDD/workshop.html
4Ideas similar to Sakakibara’s are contained in [18]. Another early work on tree language

inference that is worth mentioning is [28].
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positive samples. Both [22] and [60] are based on Angluin’s paper [3], which was
ground-breaking for the revival of the interest in learning regular languages from
text, exhibiting the first non-trivial and interesting classes of regular languages
which can be learned in this scenario. This paper therefore aims to lay solid the-
oretical foundations for works on applications of learning regular tree languages,
as there are plenty of them as outlined above.

In a nutshell, a function distinguishable regular tree language is given by a
bottom-up deterministic tree automaton such that any occurring backward non-
determinism can be resolved by means of an “oracle” called distinguishing func-
tion. The 0-reversible tree languages considered by Sakakibara [60] are a special
case where the oracle gives no information at all. We will show the usefulness
of our approach by exhibiting “tree-counterparts” of terminal distinguishable and
k-reversible languages, which are the most “popular” learnable regular language
classes according to Gregor [34].

Note that, from a linguistic point of view, the fact that every context-free
language is the yield of a 0-reversible tree language is somewhat misleading, since
not all possible syntax trees (which reflect the interesting semantical connections)
are 0-reversible. Hence, it is important to go beyond 0-reversible tree languages.
As we will see, the tree language classes introduced in this paper are a natural
extension of the 0-reversible tree languages.

Let us mention that the learnability of context-free languages and likewise that
of regular tree languages was also studied under different learning paradigms, es-
pecially in Angluin’s model of a “minimally adequate teacher” (query learning),
see [4, 5, 7, 16, 17, 40, 52, 59] and when providing both positive and negative infor-
mation [30].

The paper is organized as follows. In Section 2, the basic definitions of tree
languages which we use are summarized. Nonetheless, we assume some basic
knowledge and acquaintance with basic notions in formal language theory and
grammatical inference as provided, e.g., within the Handbook of Formal Languages,
in particular in the third volume [58]. Section 3 explains the central notion of
this paper, that of function distinguishability in the context of tree languages.
In Section 4, several characterizations of the classes of function distinguishable tree
languages are derived. Section 5 collects and proves the learnability results of this
paper. In Section 6, the corresponding learning algorithms are explained. Section 7
on approximability notably not only extends but supplements Sakakibara’s work.
The final section explains some further research directions.

2. Definitions

Let N be the set of nonnegative integers and let (N∗, ·, λ) (or simply N∗) be the
free monoid generated by N. For y, x ∈ N∗, write y ≤ x iff there is a z ∈ N∗ with
x = y · z; “y < x” abbreviates: y ≤ x and y �= x. |x| denotes the length of x.
We are now giving the necessary definitions for trees and tree automata. More
details can be found, e.g., in the chapter written by Gécseg and Steinby in [58].
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Trees. A ranked alphabet V is a finite set of symbols together with a finite rank
relation rV ⊂ V ×N. Define Vn := {f ∈ V | (f, n) ∈ rV }. Since elements in Vn are
often considered as function symbols (standing for functions of arity n), elements
in V0 are also called constant symbols. A tree over V is a mapping t : ∆t → V ,
where the domain ∆t is a finite subset of N∗ such that (1) if x ∈ ∆t and y < x,
then y ∈ ∆t; (2) if y · i ∈ ∆t, i ∈ N, then y · j ∈ ∆t for 1 ≤ j ≤ i. An element
of ∆t is also called a node of t, where the node λ is the root of the tree. Then
t(x) ∈ Vn whenever, for i ∈ N, x · i ∈ ∆t iff 1 ≤ i ≤ n. If t(x) = A, A is the
label of x. Let V t denote the set of all finite trees over V . By this definition, trees
are rooted, directed, acyclic graphs in which every node except the root has one
predecessor and the direct successors of any node are linearly ordered from left
to right. Interpreting V as a set of function symbols, V t can be identified with
the well-formed terms over V . This yields a compact string denotation of trees.
A frontier node in t is a node y ∈ ∆t such there is no x ∈ ∆t with y < x. If y ∈ ∆t

is not a frontier node, it is called interior node. The depth of a tree t is defined as
depth(t) := max{|x| | x ∈ ∆t}, whereas the size of t is given by |∆t|. Letters (or
constant symbols) will be viewed as trees of size one and depth zero.
Operations on trees. We are now going to define a catenation on trees. Let $ be
a new symbol, i.e., $ /∈ V , of rank 0. Let V t

$ denote the set of all trees over V ∪{$}
which contain exactly one occurrence of label $. By definition, only frontier nodes
can carry the label $. For trees u ∈ V t

$ and t ∈ (V t ∪ V t
$ ), we define an operation

# to replace the frontier node labelled with $ of u by t according to

u#t(x) :=
{

u(x), if x ∈ ∆u ∧ u(x) �= $,
t(y), if x = z · y ∧ u(z) = $ ∧ y ∈ ∆t.

The set of nodes can then be described as

∆u#t = ∆u ∪ {x · y | u(x) = $, y ∈ ∆t}.

If U ⊆ V t
$ and T ⊆ (V t ∪ V t

$ ), then U#T := {u#t | u ∈ U ∧ t ∈ T }. For t ∈ V t

and x ∈ ∆t, the subtree of t at x, denoted by t/x, is defined by t/x(y); = t(x · y)
for any y ∈ ∆t/x, where ∆t/x := {y | x · y ∈ ∆t}. ST(T ) := {t/x | t ∈ T ∧ x ∈ ∆t}
is the set of subtrees of trees from T ⊆ V t. Furthermore, for any t ∈ V t and any
tree language T ⊆ V t, the quotient of T and t is defined as:

UT (t) :=
{ {u ∈ V t

$ | u#t ∈ T }, if t ∈ V t \ V0,
{t}, if t ∈ V0.

Tree automata. Let V be a ranked alphabet and m be the maximum rank of the
symbols in V . A (bottom-up) tree automaton over V is a quadruple A = (Q, V, δ, F )
such that Q is a finite state alphabet (disjoint with V0), F ⊆ Q is a set of final
states, and δ = (δ0, . . . , δm) is an m + 1-tuple of state transition functions, where
δ0(a) = {a} for a ∈ V0 and δk : Vk × (Q ∪ V0)k → 2Q for k = 1, . . . , m. In this
definition, the constant symbols at the frontier nodes are taken as sort of initial
states. Now, a transition relation (also denoted by δ) can be recursively defined



LEARNING TREE LANGUAGES FROM TEXT 355

on V t by letting

δ(f(t1, . . . , tk)) :=
{

δ0(f), if k = 0,⋃
qi∈δ(ti),i=1,...,k δk(f, q1, . . . , qk), if k > 0.

A tree t is accepted by A iff δ(t) ∩ F �= ∅. The tree language accepted by A is
denoted by T (A). A is deterministic if each of the functions δk maps each possible
argument to a set of cardinality of at most one. Deterministic tree automata can
be viewed as algorithms for labelling the nodes of a tree with states. Analogously
to the string case, it can be shown that nondeterministic and deterministic finite
tree automata accept the same class of tree languages, namely the regular tree
languages, at the expense of a possibly exponential state explosion.

Remark 2.1. Observe that there is some sort of arbitrariness in having Q∩V0 = ∅.
Other papers on tree languages even enforce V0 ⊆ Q.

This tiny technical difference has a certain influence on the subsequent defi-
nitions, where especially one-node trees attached with symbols from V0 are not
considered as valid subtrees in the construction of the canonical and of the base
tree automata. This of course also influences the learnable classes. Our approach
(adapted from Sakakibara’s definition [60]) is more appropriate when thinking
about derivation trees of context-free grammars as being the most important ap-
plication of trees, since one-node trees labelled with terminal symbols are no valid
derivation trees. Fortunately, all major constructions presented in this paper would
work with the indicated different definition(s) of tree automata, as well.

The notions of isomorphic automata and (state subset induced) subautomata
can be easily carried over from the well-known string case to the tree case.
A state q of a deterministic tree automaton A is useful iff there exists a tree t
and some node x ∈ ∆t such that δ(t/x) = q and δ(t) ∈ F . A deterministic
automaton containing only useful states is called stripped.
Constructions for tree automata. We need four special constructions of tree
automata in our exposition.

Base tree automaton: firstly, we define the analogue of the well-known
prefix-tree acceptor in the string case: let I+ be a finite tree language
over V . The base tree automaton for I+, denoted by Bs(I+) = (Q, V, δ, F ),
is defined as follows: Q = ST(I+) \ V0, F = I+,

δk(f, u1, . . . , uk) := f(u1, . . . , uk)

for u1, . . . , uk ∈ Q ∪ V0, whenever f(u1, . . . , uk) ∈ Q.
Obviously, T (Bs(I+)) = I+.

Canonical tree automaton: secondly, we transfer the notion of canoni-
cal automaton to the tree case: Let T be a regular tree language over
V . The canonical tree automaton for T , denoted by C(T ) = (Q, V, δ, F ),
is defined by: Q = {UT (s) | s ∈ ST(T ) \ V0}, F = {UT (t) | t ∈ T },
δk(f, UT (s1), . . . , UT (sk)) := UT (f(s1, . . . , sk)) if f(s1, . . . , sk) is in ST(T ).
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Observe that C(T ) is a deterministic stripped automaton which is formed
completely analogously to the minimal deterministic string automaton.

Product automaton: as in the string case, the notion of a product au-
tomaton can be defined. If A = (Q, V, δ, F ) and A′ = (Q′, V, δ′, F ′) are
deterministic tree automata, then A × A′ = (Q × Q′, V, δ̄, F × F ′) is the
deterministic product tree automaton of A and A′, where δ̄ is defined by
δ̄0(a) = a for a ∈ V0 and

δ̄k(f, p1, . . . , pk) := (δk(f, q1, . . . , qk), δ′k(f, q′1, . . . , q
′
k))

with f ∈ Vk, q1, . . . , qk ∈ Q ∪ V0 and q′1, . . . , q′k ∈ Q′ ∪ V0; if pi ∈ V0, we
have pi = qi = q′i, and otherwise, i.e., if pi ∈ Q×Q′, we have pi = (qi, q

′
i).

Quotient automaton: finally, we define quotient automata. A partition of
a set S is a collection of pairwise disjoint nonempty subsets of S whose
union is S. If π is a partition of S, then, for any element s ∈ S, there is
a unique element of π containing s, which we denote B(s, π) and call the
block of π containing s. A partition π is said to refine another partition π′

iff every block of π′ is a union of blocks of π. If π is any partition of the
state set Q of the automaton A = (Q, V, δ, F ), then the quotient automaton
π−1A = (π−1Q, V, δ′, π−1F ) is given by π−1Q̂ = {B(q, π) | q ∈ Q̂ } (for
Q̂ ⊆ Q) and, for B1, . . . , Bk ∈ π−1Q ∪ V0, f ∈ Vk, B ∈ δ′k(f, B1, . . . , Bk)
whenever there exist q ∈ B and qi ∈ Bi ∈ π−1Q or qi = Bi ∈ V0 for
1 ≤ i ≤ k such that q ∈ δk(f, q1, . . . , qk).

3. Function distinguishability

The main feature of the automata classes which are learnable from text seems
to be some sort of “backward determinism” or “reversibility”. In the case of string
languages, the corresponding notion of reversible languages due to Angluin was
generalized in [22] with the aid of distinguishing functions. We will take a similar
venue here for the case of tree languages in order to generalize the learnability
results of Sakakibara for reversible tree languages. More precisely, we will add a
so-called distinguishing function as a kind of “oracle” to make a decision when
backward nondeterminism conflicts arise.

Definition 3.1. Let Aδ = (Qδ, V, δ, Qδ) be some deterministic tree automaton;
in fact, we only need the functional behaviour of the state transition function δ
which we also call a distinguishing function, which can be viewed as a partial
mapping V t → Qδ. A deterministic tree automaton A = (Q, V, δ̄, F ) is called
δ-distinguishable if it satisfies the following two properties:

(1) For all states q ∈ Q and all x, y ∈ V t with δ̄(x) = δ̄(y) = q, we have
δ(x) = δ(y), i.e., δ is defined on x and on y and the corresponding values
coincide. In other words, for q ∈ Q, we may view δ also as a mapping
δ : Q → Qδ by defining δ(q) := δ(x) for some x with δ̄(x) = q.
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(2) For all q1, q2 ∈ Q∪V0, q1 �= q2, with either (a) q1, q2 ∈ F or (b) there exist
q3 ∈ Q, k ≥ 1, 1 ≤ i < k, p1, . . . , pk−1 ∈ Q ∪ V0 and f ∈ Vk with
δ̄k(f, p1, . . . , pi−1, q1, pi, . . . , pk−1)= δ̄k(f, p1, . . . , pi−1, q2, pi, . . . , pk−1) = q3,
we have δ(q1) �= δ(q2).

A regular tree language T over V is called δ-distinguishable if it is accepted by a
δ-distinguishable tree automaton. Let δ-DT denote the class of δ-distinguishable
tree languages.

Notice one technical detail: the first item in the definition entails that the
domain of δ̄ is a subset of the domain of δ. This means that the choice of a
distinguishing function δ usually severely restricts the possible “compatible” δ-
distinguishable tree automata, even if we only consider trees with label alphabet V .

However, there are generic ways how to define distinguishing functions that are
compatible with any tree automaton, by defining δ = (δi)i≥0 with δi : Vk × (Q ∪
V0)i → Q so that δ can be interpreted as a state transition function for any arity.
Then, the domain of δ would be all of V t. For each fixed k, δk = (δ0, . . . , δk)
defines a distinguishing function, and δ can be seen as a homogeneous series of
distinguishing functions.

Let us consider some examples to clarify these notions.

Example 3.2. The distinguishing function induced by the trivial tree automaton
with just one state leads to a slight generalization of the 0-reversible tree automata
studied by Sakakibara [60]; in Sakakibara’s model, for each arity k ≥ 1, there was
only one symbol σk permitted as label of the interior nodes.

Example 3.3. As a further simple example of distinguishing function, consider
the function Ter defined by Ter 0(a) = {a} and

Terk(f, q1, . . . , qk) = {f} ∪
k⋃

j=1

qj ,

where 2V is the state set of ATer . Ter is the natural tree-analogue of the termi-
nal distinguishing function basically introduced by Radhakrishnan and Nagaraja
in [54]. Ter can be seen as a homogeneous series of distinguishing functions.
As exhibited in [22] in the string case, several other similar distinguishing func-
tions can be defined which also yield immediate analogues in the tree case. In
particular, analogues to k-terminal distinguishable languages [19] and to the k-
reversible languages [3] can be defined by means of the notions of k-roots, k-forks
and k-subtrees as defined in [42].

Example 3.4. Without going into technical details here, the important notion
of testable languages gives rise to an automaton that keeps track of the k-roots,
k-forks and k-subtrees seen so far, and this automaton is finite when k is fixed
and the underlying label alphabet V . (In fact, the literature is not completely
coherent about this notion neither in the string nor in the tree case, but the basic
idea prevails, see [29,41,56,57,68,69].) If δV,k denotes the corresponding transition
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function, then k-testable languages over V are characterized as those languages
that can be accepted by some finite tree automaton with transition function δV,k.
δV,k can be also seen as a homogeneous series of distinguishing functions. As it
has been worked out for the string case in [19], δV,k-distinguishable tree languages
generalize the k-testable languages over V .

We now shortly discuss two important application areas for tree-based learning
algorithms: the learning of string languages and the learning of derivation trees.

Inference algorithms for tree languages can be readily used for the inference
of context-free string languages, once the structure of the derivation tree is fixed.
We consider two examples of this technique:

• Observe that trees whose domain is contained in {1}∗ correspond to usual
strings, and the notion of distinguishability obtained in this way is nearly
the same as the one introduced in [22]5. With this interpretation, learning
algorithms for regular tree languages give rise to learning algorithms for
regular string languages.

• If we restrict ourselves to Ter applied to derivation trees of even linear
grammars (with trivial labels for interior nodes), we basically arrive at
a variant of the terminal distinguishable even linear languages discussed
in [23] in more detail. Here, focussing on derivation trees for even linear
grammars basically entails a reordering of the letters, a technique ad-
dressed in particular in [26]. Possible pitfalls in this interpretation are
discussed in the following example.

The following example expands a bit more on the description of derivation trees
of context-free languages.

Example 3.5. Consider A = ({q0, q1}, V, δ, {q1}) with

V = {a, ∗}, rV = {(a, 0), (∗, 1), (∗, 2), (∗, 3)} and

δ1(∗, a) = δ2(∗, a, a) = q0

δ3(∗, a, q0, a) = δ3(∗, a, q1, a) = q1.

A is intended to accept a certain class of derivation trees of context-free grammars,
namely, those of (even) linear grammars. A is not Ter -distinguishable, since it
violates the second condition, because Ter(q0) = Ter(q1) = {∗, a}. By way of
contrast, if we consider an automaton A′ = ({q0}, V, δ′, {q0}) with the same rank
relation rV and with δ′ obtained by merging q0 and q1, i.e., δ′i = δi for i = 1, 2
and δ′3(∗, a, q0, a) = q0, then A′ is Ter -distinguishable. Obviously, many more
trees are accepted by A′ than by A, e.g., consider the tree t given by the term
∗(∗(a, a), ∗(a, a)), since δ(t) = q0; this term surely does not correspond to a linear
derivation tree.

If we like to keep the property of only accepting the originally intended class of
derivation trees of context-free grammars, this is possible by modifying A to cope

5Except from the treatment of the empty word.
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with larger alphabets. Consider, e.g., A′′ = ({q0, q1}, V = {a, ∗, +}, δ′′, {q1}) with
rV = {(a, 0), (∗, 1), (∗, 2), (+, 3)} and

δ′′1 (∗, a) = δ′′2 (∗, a, a) = q0

δ′′3 (+, a, q0, a) = δ′′3 (+, a, q1, a) = q1.

Since Ter(q0) = {a, ∗} �= Ter(q1) = {a, ∗, +}, A′′ is Ter -distinguishable. Obvi-
ously, the automata are constructed for accepting the usual derivation trees of
(even-)linear grammars.

4. Characterizations of distinguishable tree languages

In this section, we derive as a main result a number of characterizations of each
of the tree language classes δ-DT. Due to the similarity to the string case, we will
omit some proofs in the following; instead, we refer to [22]. The reader comparing
the given proofs with their string analogues will notice that, while the proof ideas
are similar, the tree formalism entails more formal complications and care.

So, in the following, let δ be some arbitrary distinguishing function.

Remark 4.1. Any subautomaton of a δ-distinguishable tree automaton A is
δ-distinguishable. �

Lemma 4.2. Let A = (Q, V, δ̄, F ) be a δ-distinguishable tree automaton. Let u ∈
V t

$ , {t1, t2} ⊆ V t. {u#t1, u#t2} ⊆ T (A) and δ(t1) = δ(t2) imply δ̄(t1) = δ̄(t2).

Proof. Firstly observe that, since δ(t1) = δ(t2), we have δ(u#t1) = δ(u#t2) for
all u ∈ V t

$ and t1, t2 ∈ V t. The proof proceeds via induction on the level � of the
node with label $ in u. If � = 0, then u = $. Consider the final states qi = δ̄(u#ti)
of A for i = 1, 2. Since δ(q1) = δ(u#t1) = δ(u#t2) = δ(q2), condition 2a for
δ-distinguishable tree automata yields q1 = q2.

Assume the claim holds for � < h. Consider u ∈ V t
$ with label $ at level h.

u can be uniquely represented as u = u′#f(s1, . . . , si−1, $, si, . . . , sk−1) for some
s1, . . . , sk−1 ∈ V t and some u′ ∈ V t

$ having the node labelled $ at level h − 1.
The induction hypothesis yields: if A accepts

u#tj = u′#f(s1, . . . , si−1, tj , si, . . . , sk−1), j = 1, 2,

then δ̄(f(s1, . . . , si−1, t1, si, . . . , sk−1)) = δ̄(f(s1, . . . , si−1, t2, si, . . . , sk−1)), since
δ(t1) = δ(t2) gives

δ(f(s1, . . . , si−1, t1, si, . . . , sk−1)) = δ(f(s1, . . . , si−1, t2, si, . . . , sk−1)).

Hence,
δ̄k(f, δ̄(s1), . . . , δ̄(si−1), δ̄(t1), δ̄(si), . . . , δ̄(sk−1))

= δ̄k(f, δ̄(s1), . . . , δ̄(si−1), δ̄(t2), δ̄(si), . . . , δ̄(sk−1)),
so that condition 2b for δ-dist-inguishable tree automata yields q1 = q2. �
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With the help of Lemma 4.2, the following statement is easily shown:

Lemma 4.3. Let A = (Q, V, δ̄, F ) be a δ-distinguishable tree automaton. Let
{u1, u2} ⊆ V t

$ and {t, t′} ⊆ V t. If {u1#t, u2#t} ⊆ T (A) and δ(t) = δ(t′), then
u1#t′ ∈ T (A) iff u2#t′ ∈ T (A).

Proof. Consider u1#t ∈ T (A). If u1#t′ ∈ T (A), then Lemma 4.2 yields δ̄(t) =
δ̄(t′). Hence, u2#t′ ∈ T (A), because u2#t ∈ T (A) by assumption. Symmetrically,
the other part of the claim follows. �

Corollary 4.4. If T ⊆ V t is δ-distinguishable, then:

∀t, t′ ∈ V t with δ(t) = δ(t′) ∀u1, u2 ∈ UT (t) : u1 ∈ UT (t′) ⇐⇒ u2 ∈ UT (t′).

Let T ⊆ V t be a regular tree language. Let A(T, δ) denote the stripped subautoma-
ton of C(T )×Aδ. Obviously, T (A(T, δ)) = T . A(T, δ) is called the δ-canonical tree
automaton of T . As the following theorem shows, we can take A(T, δ) as canonical
objects describing δ-DT, since A(T, δ) is a unique object. Moreover, it is proved
that the tree language class δ-DT can be characterized in a number of ways.

Theorem 4.5 (Characterization theorem). Let δ : V t → Qδ be a distinguishing
function. Then, the following conditions are equivalent for a regular tree language
T ⊆ V t:

(1) T ∈ δ-DT.
(2) There is a tree automaton A = (Q, V, δ̄, F ) with T (A) = T satisfying

∀t1, t2 ∈ V t ∀u ∈ V t
$ : ({u#t1, u#t2} ⊆ T ∧ δ(t1) = δ(t2)) ⇒ δ̄(t1) = δ̄(t2) .

(3) ∀t1, t2 ∈ V t ∀u, v ∈ V t
$ : ({u#t1, v#t1} ⊆ T ∧ δ(t1) = δ(t2)) ⇒

(u#t2 ∈ T ⇐⇒ v#t2 ∈ T ).
(4) ∀t1, t2 ∈ V t ∀u, v ∈ UT (t1) : δ(t1) = δ(t2) ⇒

(u ∈ UT (t2) ⇐⇒ v ∈ UT (t2)).
(5) A(T, δ) is δ-distinguishable.
(6) ∀u1, u2 ∈ V t

$ ∀t1, t2 ∈ V t : ({u1#t1, u2#t1} ⊆ T ∧ δ(t1) = δ(t2)) ⇒
UT (t1) = UT (t2).

Proof. 1. → 2. due to Lemma 4.2. According to the proof of Lemma 4.3, 2. → 3.
The implications 3. ↔ 4., 5. → 1. and 6. → 2. are trivial. 5. → 6. follows with
Lemma 4.2.

We are going to show 4. → 5. in the following.
Consider a language T satisfying the condition 4. We have to show that A(T, δ)

is δ-distinguishable. By definition, A(T, δ) is deterministic. Since (a subautomaton
of) Aδ can be obtained from A(T, δ) by simple projection, δ(q) is well-defined for
any state q of A(T, δ).

We now turn to the second condition of δ-distinguishable automata. Let q1, q2

be two states of A(T, δ) (or constant symbols) with q̂ := δ(q1) = δ(q2). Hence,
qi = (UT (ti), q̂) for some ti ∈ ST(T ).
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Consider first case (a), i.e., both q1 and q2 are final states. Then, {t1, t2} ⊆ T .
Hence, u := $ ∈ UT (ti) for i = 1, 2. By condition 4 of the characterization theorem,
we know that, for all v ∈ UT (t1), v ∈ UT (t2). Interchanging the roles of t1 and t2,
we can conclude that UT (t1) = UT (t2).

Regarding case (b), assume that there are states (or constant symbols) q3,
p1, . . . , pk−1 such that

δ̄k(f, p1, . . . , pi−1, q1, pi, . . . , pk−1) = δ̄k(f, p1, . . . , pi−1, q2, pi, . . . , pk−1) = q3

for some f ∈ Vk and some 1 ≤ i < k. Since A(T, δ) is stripped, there are a û ∈ V t
$

and s1, . . . , sk−1 ∈ V t such that

{û#f(s1, . . . , si−1, t1, si, . . . , sk−1), û#f(s1, . . . , si−1, t2, si, . . . , sk−1)} ⊆ T.

Hence, u := û#f(s1, . . . , si−1, $, si, . . . , sk−1) ∈ UT (ti) for i = 1, 2. Condition 4 of
the characterization theorem shows again that UT (t1) = UT (t2). �
Remark 4.6. As in the string case [22], we could have added further characteriza-
tions of δ-DT by means of grammars or Myhill-Nerode like algebraic formulations.
We did not do this here in order to avoid unnecessary technical complications. The
interested reader is referred to the chapter written by Gécseg and Steinby in [58]
and to [45] as regards the corresponding formalisms in the tree case.

The following lemma is useful for proving the correctness of our learning algo-
rithms and is, moreover, a simple characterization of our canonical objects.

Lemma 4.7. The stripped subautomaton of a δ-distinguishable tree automaton A
is isomorphic to A(T (A), δ).

Proof. According to Remark 4.1, the stripped subautomaton A′ of A is δ-distin-
guishable. Let A = (Q, V, δ̄, F ) and A′ = (Q′, V, δ̄′, F ′). We have to show that, for
all q1, q2 ∈ Q′ with δ(q1) = δ(q2),

{u ∈ V t
$ | ∃t ∈ V t \ V0 : δ̄′(u#q1) ∈ F ′}

= {u ∈ V t
$ | ∃t ∈ V t \ V0 : δ̄′(u#q2) ∈ F ′}

implies that q1 = q2, since then, the mapping q �→ (UT (A)(t), δ(q)) for some t ∈ V t

with δ̄′(t) = q will supply the required isomorphism.
Since A′ is stripped, there are t1, t2 ∈ V t and u ∈ V t

$ , q1 = δ̄′(t1), q2 = δ̄′(t2)
and {u#t1, u#t2} ⊆ T (A′) = T (A). Since A′ is δ-distinguishable, δ(q1) = δ(q2)
implies that δ(t1) = δ(t2). Hence, we can apply Lemma 4.2 to show the result. �

5. Inferrability

Learning from text. The learning model we use is identification in the limit from
positive samples as proposed by Gold [32], sometimes also called learning from text.
In this well-established model, a language class L (defined via a class of language
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describing devices D as, e.g., grammars or automata) is said to be identifiable if
there is a so-called inference machine I to which as input an arbitrary language
L ∈ L may be enumerated (possibly with repetitions) in an arbitrary order, i.e.,
I receives an infinite input stream of words E(1), E(2), . . . , where E : N → L is
an enumeration of L, i.e., a surjection, and I reacts with an output device stream
Di ∈ D such that there is an N(E) so that, for all n ≥ N(E), we have Dn = DN(E)

and, moreover, the language defined by DN(E) equals L.
In order to ensure the convergence of the hypothesis stream output by a Gold-

style learner, we need some well-defined canonical output objects. In the case of
δ-DT, this will be the δ-canonical automata introduced above.
Telltale sets. According to [2] Theorem 1, a class L (Characterized by D) com-
prised of recursive languages is identifiable iff, for any language description D ∈ D
a so-called telltale set exists, i.e., a finite subset χ(D) ⊆ L such that L is a minimal
language from L containing χ(D).

For the tree language class δ-DT and some language T ∈ δ-DT, consider the
corresponding δ-canonical automaton A(T, δ) = (Q, V, δ̄, F ) and define

χ(T, δ) = { u(q)#t(q) | q ∈ Q }
∪ { u(δ̄k(f, q1, . . . , qk))#f(t(q1), . . . , t(qk)) |

q1, . . . , qk ∈ Q ∪ V0, f ∈ Vk },

where u(q) ∈ V t
$ and t(q) ∈ V t \ V0 are (arbitrary) trees each of minimal size

satisfying δ̄(t(q)) = q (if q ∈ Q) and δ̄(u(q)#q) ∈ F . If q ∈ V0, we set t(q) = q.
Naturally, a finite automaton for χ(T, δ) may be computed by some Turing machine
which is given C(T ) and Aδ as input.

Theorem 5.1 (Telltale property). For each Aδ and each T ∈ δ-DT, χ(T, δ) is a
telltale set of T .

Proof. Clearly, χ(T, δ) ⊆ T . Consider some tree language T ′ ∈ δ-DT with
χ(T, δ) ⊆ T ′. We have to show that T ⊆ T ′. Let A(T, δ) = (Q, V, δ̄, F ).

By induction on the height of s, we show

(∗) UT ′(s) = UT ′(t(δ̄(s))) and δ(s) = δ(t(δ̄(s)))

for all s ∈ ST(T ). Note that (∗) implies the following: if s ∈ T , i.e., qf = δ̄(s) is
a final state of A(T, δ), then UT ′(t(qf )) is a final state of C(T ′), because t(qf ) ∈
χ(T, δ) ⊆ T ′. Therefore, (UT ′(t(qf )), δ(t(qf )) is a final state of A(T ′, δ). Due to
(∗), we conclude that s ∈ T ′. Hence, T ⊆ T ′.

Now, we prove (∗). If the height of s is zero, then s ∈ V0, which means that
s = t(s) by definition of t(·). Assume that (∗) holds for all trees of depth at most
h ≥ 0. Consider some s ∈ ST(T ) of depth h + 1, i.e., s = f(s1, . . . , sk) for some
f ∈ Vk, s1, . . . , sk ∈ ST(T ); obviously, all si are trees of depth at most h. By the
induction hypothesis,

UT ′(si) = UT ′(t(δ̄(si))) and δ(si) = δ(t(δ̄(si))), 1 ≤ i ≤ k.
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Therefore,

UT ′(s) = UT ′(f(s1, . . . , sk))
= δ̄k(f, UT ′(s1), . . . , UT ′(sk))
= δ̄k(f, UT ′(t(δ̄(s1))), . . . , UT ′t(δ̄(sk)))
= UT ′(f(t(δ̄(s1)), . . . , t(δ̄(sk))))

and

δ(s) = δ(f(s1, . . . , sk)) = δ(f(t(δ̄(s1)), . . . , t(δ̄(sk)))).

Define q′ = δ̄k(f, δ̄(s1), . . . , δ̄(sk)). Since by definition of the telltale set, both

u(q′)#f(t(δ̄(s1)), . . . , t(δ̄(sk))) and u(q′)#t(q′)

are contained in χ(T, δ) ⊆ T ′, Lemma 4.2 yields

UT ′(s) = UT ′(f(t(δ̄(s1)), . . . , t(δ̄(sk)))) = UT ′(t(q′)),

because

δ(t(q′)) = δ(δ̄k(f, δ̄(s1), . . . , δ̄(sk)))
= δ(f(t(δ̄(s1)), . . . , t(δ̄(sk)))). �

6. Inference algorithms

For each Aδ, we sketch an algorithm which receives an input sample set
I+ = {t1, . . . , tM} (a finite subset of the tree language T ∈ δ-DT to be iden-
tified) and finds a minimal language T ′ ∈ δ-DT which contains I+. Of course,
Theorem 5.1 already guarantees the existence of such an algorithm, but the ad-
hoc enumeration algorithm is not very efficient. In contrast, our algorithms will
have polynomial update time, but the number of so-called implicit errors of pre-
diction is not polynomially bounded, as explained by Sakakibara for his simpler
setting [60].

Our merging state inference algorithm δ-Ident for δ-DT now starts with the
automaton A0 = Bs(I+) = (Q = ST(T ) \ V0, V, δ̄, F = I+) on receiving I+ as
input. Then, it subsequently merges two states which cause a conflict to one of
the requirements for δ-distinguishable automata. This way, we get a sequence of
automata A0, A1, . . . , Af each of which can be interpreted as a quotient automaton
of A0 by the partition of the state set of A0 induced by the corresponding merging
operation. Let δi denote the transition function of Ai. Observe that each Ai is
stripped, since A0 is stripped. Moreover, Af is δ-distinguishable, as being the
last automaton in this chain. In terms of the partitions inducing the mentioned



364 H. FERNAU

quotient automata, δ-Ident starts with the trivial partition π0 of Q into singletons
and repeatedly merges two distinct blocks B1 and B2 at stage i, i = 0, . . . , f − 1
if any of the following conditions is satisfied:

Final state conflict: B1 and B2 contain both final states q1 ∈ B1, q2 ∈ B2

of A0 with δ(q1) = δ(q2). This would mean that B1 and B2 are both final
states (in Ai) with δ(B1) = δ(B2).

Determinism conflict: there exist two states q1 ∈ B1, q2 ∈ B2 of the form

q1 = f(p1, . . . , pk) and q2 = f(p′1, . . . , p
′
k)

such that, for all 1 ≤ j ≤ k, either pj = p′j ∈ V0 or B(pj , πi) = B(p′j , πi).
Namely, if this situation occurred, this would mean that

Bi = δi(f, B(p1, πi), . . . , B(pk, πi)) for i = 1, 2.

Backward determinism conflict: there exist two states q1, q2 of the form

q1 = f(p1, . . . , pk) and q2 = f(p′1, . . . , p
′
k)

with B(q1, πi) = B(q2, πi) and an integer 1 ≤ � ≤ k such that, for all
1 ≤ j ≤ k with i �= �, either pj = p′j ∈ V0 or B(pj , πi) = B(p′j , πi).
Moreover, p� ∈ B1, p′� ∈ B2 and δ(p�) = δ(p′�).

To be more concrete, consider the following program fragment:

Algorithm 6.1 (δ-Ident).
Input: a nonempty positive sample I+ ⊆ V t.

Output: A(T, δ), where T is a minimal δ-distinguishable tree language containing I+.

*** Initialization

Let A0 = (Q \ V0, V, δ̄, F ) = Bs(I+) with Q = ST(T ) and F = I+.

Let π0 be the trivial partition of Q into singletons.

Let LIST contain all unordered pairs {q, q′} of final states of Q such that q �= q′ and

δ(q) = δ(q′).
Let i := 0.

*** Merging

While LIST �= ∅ do begin

Remove some element {q1, q2} from LIST.

Consider the blocks B1 = B(q1, πi) and B2 = B(q2, πi).

If B1 �= B2, then begin

Let πi+1 be πi with B1 and B2 merged.

Identify newly produced determinism conflicts & update LIST.

Identify newly produced backward determinism conflicts & update LIST.

Increment i by one.

If i = |Q| − 1, then LIST:= ∅.
end *** if

end *** while
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The conflict resolution can be implemented either by means of an explicit search
through all possible conflict situations, which results in an algorithm similar to the
one proposed by Sakakibara [60] or by keeping track of the forward and backward
transition functions of the automata Ai with the help of union/find techniques, as
elaborated in [25] in the case of string language identification; then, the running
time of the algorithm is linear for all practical purposes. In either case, we obtain
algorithms with polynomially bounded update times, see [60] for the definitions.

Example 6.2. If I+ = {(a, ∗(a), a), ∗(a, ∗(a, a), a), ∗(a)} is given to Ter-Ident,
then the automaton A′ from Example 3.5 will result.

Moreover, it is possible to design so-called incremental versions of the algo-
rithms, where the input sample is fed to the algorithm in an on-line manner.

We now give the ingredients for showing the correctness of δ-Ident. The fol-
lowing lemma is crucial in this respect:

Lemma 6.3. Let I+ ⊆ T ∈ δ-DT be given. Let π be the partition of A0 = Bs(I+)
described by: q1, q2 belong to the same block if 6 UT (q1) = UT (q2) and δ(q1) = δ(q2).
Then, π−1A0 is isomorphic to a subautomaton of A(T, δ).

Proof. Let π−1A0 = (Q̂, V, δ̂, F̂ ) and A(T, δ) = (Q, V, δ̄, F ). By definition, Q̂ =
{B(t, π) | t ∈ ST(I+) \ V0} and the mapping

h : Q̂ → Q, B(t, π) �→ (UT (t), δ(t))

is well-defined and injective. If B1 ∈ F̂ , then B1 = B(t, π) for some t ∈ I+ ⊆ T ,
and hence, (UT (t), δ(t)) ∈ F . Therefore, h(F̂ ) ⊆ F . π−1A0 is deterministic,
because, if

f(s1, . . . , sk), f(s′1, . . . , s
′
k) ∈ ST(I+),

with B(si, π) = B(s′i, π) if si, s
′
i ∈ ST(I+) \ V0 and si = s′i if si, s

′
i ∈ V0, then

B(f(s1, . . . , sk), π) = B(f(s′1, . . . , s
′
k), π)

for any f ∈ Vk. h is an automaton morphism, since

h(δ̂k(f, q1, . . . , qk)) = h(B(f(t1, . . . , tk), π))

with ti = qi if qi ∈ V0 and ti chosen otherwise to satisfy B(ti, π) = qi. Hence,

h(δ̂k(f, q1, . . . , qk)) = (UT (f(t1, . . . , tk)), δ(f(t1, . . . , tk)))
= δ̄k(f, (UT (t1), δ(t1)), . . . , (UT (tk), δ(tk))).

So, h is an isomorphism between π−1A0 and a tree subautomaton of A(T, δ). �
Theorem 6.4. Fix Aδ. Consider a chain of automata A0, A1, . . . , Af obtained by
applying the sketched algorithm δ-Ident on input sample I+, where A0 = Bs(I+).

6Recall that qi ∈ ST(I+) \ V0.
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Then, we have:
(1) T (A0) ⊆ T (A1) ⊆ · · · ⊆ T (Af ).
(2) Af is δ-distinguishable and stripped.
(3) The partition πf of the state set of A0 corresponding to Af is the finest

partition π of the state set of A0 such that the quotient automaton π−1A0

is δ-distinguishable.

Proof.
1. is clear, since δ-Ident is a merging states algorithm;
2. follows almost by definition;
3. can be shown by induction, proving that each πi corresponding to Ai

refines π, quite analogous to [3] Lemma 25 and [60] Lemma 13. �

Theorem 6.5. In the notations of Theorem 6.4, T (Af) is a minimal δ-distin-
guishable language containing I+.

Proof. Theorem 6.4 states that T (Af ) ∈ δ-DT and I+ = T (A0) ⊆ T (Af ). Con-
sider now an arbitrary language T ∈ δ-DT containing I+. We consider the quotient
automaton π−1A0 defined in Lemma 6.3. This Lemma shows that

T (π−1A0) ⊆ T = T (A(T, δ)).

By Remark 4.1, π−1A0 is δ-distinguishable, because A(T, δ) is δ-distinguishable
due to Theorem 4.5. Theorem 6.4 yields that πf refines π, so that

T (Af ) = T (π−1
f A0) ⊆ T (π−1A0) ⊆ T. �

Remark 6.6. Up to now, in accordance with the definition of a telltale set, we
always spoke about a minimal δ-distinguishable language containing the sample
I+. Considering again the previous proof, one sees that there is actually a unique
minimal language in δ-DT containing I+, so that we can talk about the smallest
language in δ-DT containing I+ in the following. This means that each telltale is
in fact a characteristic sample as defined in [3].

Theorem 6.5 immediately yields:

Corollary 6.7 (Correctness of δ-Ident). Let (ti)i≥1 be an enumeration of
T ∈ δ-DT. Then, the sequence (δ-Ident({t1, . . . , ti}))i≥1 converges to the δ-canon-
ical automaton A(T, δ).

Proof. At some point N of the enumeration process, the telltale set χ(T, δ) will
have been given to δ-Ident. By combining Theorems 5.1 and 6.5, for all n ≥ N
and all automata An output by δ-Ident, we have T (An) = T . The argument of
Theorem 6.5 shows that each An (with n ≥ N) is isomorphic to a subautomaton
of A(T, δ) generating T = T (A(T, δ)). Since each An is stripped, it must be
isomorphic to A(T, δ) for n ≥ N due to Lemma 4.7. �
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We finally remark that the performance of the general algorithm δ-Ident
sketched above depends on the size of Aδ (since the telltale set χ(T, δ) we defined
above depends on this size). Hence, δ-Ident offers a tradeoff of the following form:

• the larger Aδ, the slower performs the algorithm δ-Ident, but the identi-
fiable language class tends to be bigger;

• the smaller Aδ, the faster performs the algorithm δ-Ident, but the iden-
tifiable language class tends to be smaller.

The relationship between the size of Aδ and the size of the corresponding language
class can be made precise as follows; the easy proof of the assertion is omitted.

Proposition 6.8. If Aδ is a homomorphic image of Aγ , then δ-DT ⊆ γ-DT.

7. Approximation

We are going to show that, for any class δ-DT, all regular tree languages may
be approximated by some language from δ-DT in a certain sense. Firstly, we give
the necessary general definitions due to Kobayashi and Yokomori [44].

Let L be a language class and L be a language, possibly outside L. An upper-
best approximation L̄L of L with respect to L is defined to be a language L∗ ∈ L
containing L such that for any L′ ∈ L with L ⊆ L′, L∗ ⊆ L′ holds. If such an L∗
does not exist, L̄L is undefined.

Let us consider a simple example:

Example 7.1. Let L be the class of co-finite languages over an alphabet Σ, i.e.,
L = {Σ∗ \ F | F ⊂ Σ∗, |F | < ∞}. Then, the empty set has no upper-best
approximation L̄∅, since for every L∗ = Σ∗ \ F∗ ∈ L, there is a w ∈ Σ∗ \ F∗ (since
F∗ is finite) such that L′ = Σ∗ \ (F∗ ∪ {w} ∈ L and ∅ ⊆ L′, but L∗ � L′ holds.

Remark 7.2. If L is closed under intersection, then L̄L is uniquely defined (or
undefined).

Consider an inference machine I to which as input an arbitrary language L may
be enumerated (possibly with repetitions) in an arbitrary order, i.e., I receives an
infinite input stream of words E(1), E(2), . . . , where E : N → L is an enumeration
of L. We say that I identifies an upper-best approximation of L in the limit (from
positive data) by L if I reacts on an enumeration of L with an output device stream
Di ∈ D such that there is an N(E) so that, for all n ≥ N(E), we have Dn = DN(E)

and, moreover, the language defined by DN(E) equals L̄L ∈ L.
Let L1 and L2 be two language classes. We say that L1 has the upper-best

approximation property (u.b.a.p.) with respect to L2 iff, for every L ∈ L2, L̄1L is
defined.

A language class L1 is called upper-best approximately identifiable in the limit
(from positive data) by L2 iff there exists an inference machine I which identifies
an upper-best approximation of each L ∈ L1 in the limit (from positive data)
by L2. Observe that this notion of identifiability coincides with Gold’s classical
notion of learning in the limit in the case when L1 = L2.
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Consider a language class L and a language L from it. A finite subset F ⊆ L is
called a telltale set of L with respect to L iff, for any L′ ∈ L, F ⊆ L′ implies that
L ⊆ L′.

Now, let us turn more specifically to the distinguishable languages. Fix some
distinguishing function δ. We call a language T ⊆ V t pseudo-δ-distinguishable iff,
for all t1, t2 ∈ V t with δ(t1) = δ(t2) and for all u ∈ V t

$ , we have UT (t1) = UT (t2)
whenever {u#t1, u#t2} ⊆ T . By our characterization theorem, T ∈ δ-DT iff T is
a pseudo-δ-distinguishable and regular tree language.

Immediately from the definition, we may conclude:

Proposition 7.3. Let T1 ⊆ T2 ⊆ . . . be any ascending sequence of pseudo-δ-
distinguishable languages. Then,

⋃
i≥1 Ti is pseudo-δ-distinguishable.

For brevity, we write t1 ≡T,δ t2 iff UT (t1) = UT (t2) and δ(t1) = δ(t2).

Remark 7.4. If T ⊆ V t is a regular tree language and if δ : V t → Qδ is some
distinguishing function, then the number of equivalence classes of ≡T,δ equals the
number of states of C(T ) (plus one) times |Qδ|, and this is just the number of
states of A(T, δ) (plus |Qδ|).

Let T ⊆ V t. For any integer i, we will recursively define Rδ(i, T ) as follows:
(1) Rδ(0, T ) = T and
(2) Rδ(i, T ) = Rδ(i − 1, T )

∪{ u#t2 | u#t1, u
′#t1, u

′#t2 ∈ Rδ(i − 1, T ) ∧ δ(t1) = δ(t2) }
for i ≥ 1.

Furthermore, set Rδ(T ) =
⋃

i≥0 Rδ(i, T ).

Since Rδ turns out to be a hull operator, the following statement is obvious.

Proposition 7.5. For any tree language T and any distinguishing function δ,
Rδ(T ) is the smallest pseudo-δ-distinguishable language containing T .

Lemma 7.6. Let T ⊆ V t be any tree language. If t1 and t2 are subtrees of T ,
then t1 ≡T,δ t2 implies that URδ(T )(t1) = URδ(T )(t2).

Proof. Let t1 and t2 be subtrees of T with t1 ≡T,δ t2. By definition of ≡T,δ,
UT (t1) = UT (t2) �= ∅. Hence, there is a tree u ∈ V t

$ so that {u#t1, u#t2} ⊆
T ⊆ Rδ(T ). Furthermore, by definition of ≡T,δ, δ(t1) = δ(t2). Since Rδ(T ) is
pseudo-δ-distinguishable due to Proposition 7.5, URδ(T )(t1) = URδ(T )(t2). �

Similarly to the string case [22], we can show:

Lemma 7.7. Let T ⊆ V t be any tree language and let δ be any distinguishing
function. Then, for any subtree t1 of Rδ(T ), there exists a subtree t2 of T with
URδ(T ) (t1) = URδ(T ) (t2).

Proof. Since t1 is a subtree of Rδ(T ) iff t1 is a subtree of Rδ(i, T ) for some i ≥ 0,
it suffices to show the following claim by induction.

Let i ≥ 0. Then, for any subtree t1 of Rδ(i, T ), there exists a subtree t2 of T
with URδ(T ) (t1) = URδ(T ) (t2).
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Trivially, the claim is true when i = 0, since Rδ(0, T ) = T . As an induction
hypothesis, assume that the claim is shown for i = �. Hence, we have to consider
some t1 ∈ ST(Rδ(� + 1, T )) in the induction step. Consider some

u#t1 ∈ Rδ(� + 1, T ) \ Rδ(�, T ).

This means that there are trees u1, u2 ∈ V t
$ and t, t′ ∈ V t with

{u1#t, u2#t, u2#t′} ⊆ Rδ(�, T ), δ(t1) = δ(t2) and u1#t′ = u#t1.

We encounter three possible situations:

(1) If t1 is a subtree of t′, then t1 is a subtree of u2#t′ ∈ Rδ(�, T ), and the
claim follows by the induction hypothesis.

(2) If t1 is not subtree of t′ and if t′ is not subtree of t1, then t1 is a subtree
of u1 and is, hence, a subtree of u1#t ∈ Rδ(�, T ), so that the induction
hypothesis is again applicable.

(3) If t′ is a subtree of t1, then t1 = u′#t′ for some u′ ∈ V t
$ . Since Rδ(T )

is pseudo-δ-distinguishable and {u2#t, u2#t′} ⊆ Rδ(T ) as well as δ(t) =
δ(t′), URδ(T )(t) = URδ(T )(t′), which yields URδ(T )(t1) = URδ(T )(u′#t′) =
URδ(T )(u′#t). Since u′ is a subtree of u1, u′#t is a subtree of u1#t ∈
Rδ(�, T ). By our induction hypothesis, there is a subtree t2 of T such that
URδ(T )(t2) = URδ(T )(u1#t) = URδ(T )(t1).

�

By a reasoning completely analogous to [44], we may conclude:

Theorem 7.8. For any distinguishing function δ, the class δ-DT has the u.b.a.p.
with respect to the class of regular tree languages. �

Observe that the number of states of ARδ(T ) is closely related to the number of
states of A(T, δ), see Remark 7.4.

Theorem 7.9. For any distinguishing function δ, the class of regular languages is
upper-best approximately identifiable in the limit from positive data by δ-DT. �

In addition to the last two theorems, we remark that an upper-best approxima-
tion of a regular tree language with respect to each class δ-DT is uniquely defined,
since the classical product automaton construction shows that each of these classes
is closed under intersection, see Remark 7.2.

Given some tree automaton A and some distinguishing function δ, an automaton
accepting δ-DTT (A) can be constructed as follows:

(1) Compute C(T (A)).
(2) Construct A′ = A(T (A), δ).
(3) Merge “conflicting states” in A′ as long as possible.
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8. Discussion and prospects

For a variety of regular tree language classes, we showed in which way they
can be efficiently inferred. To this end, we had to define new canonical automata
specific to each of these classes. Each of these classes can be characterized in
various ways. Moreover, we showed that every regular tree language can be ap-
proximated in a well-defined manner by languages from δ-DT for any chosen Aδ.
In this context, the question what δ to choose seems to be quite interesting for
practical purposes.

In the future, we will try to compare our work with other works on the inference
of tree languages and of context-free languages, as they are contained, e.g., in
[5,27,30,33,43,47,48,61,64–66,71–73]. Moreover, it would be interesting to extend
the work to other, more general classes of tree languages and the corresponding
languages of yielded strings, see [70] for a short exposition.

Our results can be also employed for devising learning algorithms for linear
languages, which will be a complimentary approach to the ones detailed in [55,62],
as well as in [23]. In order to design string language learning algorithms based on
tree learning, it seems to be best to prescribe, for each word length n, a skeleton
tree Sn which defines how to parse strings of length n. There seem to be interesting
connections to the idea of employing permutation (families) for learning as detailed
in [26].

Of course, applications of our learning algorithms in the various domains where
tree languages have been successfully applied to would be interesting. One of the
nicest resources on the web is the “treebag page”

www.informatik.uni-bremen.de/theorie/treebag/

A corresponding book [15] is currently in print.
Together with L. Buisman, we have started investigating the possibility of ap-

plying tree learning algorithms to shock tree classification problems, see [39, 63].
It would then probably become important to also incorporate “error-correcting
features,” since real-world data is always containing noise in some form, see [48,
49, 51, 67].

Finally, an implementation of our tree language inference algorithms, done by
A. Radl and later worked on by L. Buisman, will be accessible through our new
homepage at the University of Trier; for the string case, please consult

www-fs.informatik.uni-tuebingen.de/~fernau/GI.htm

see [25].
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[68] J.L. Verdú-Mas, M.L. Forcada, R.C. Carrasco and J. Calera-Rubio, Tree k-grammar models
for natural language modelling and parsing, in Structural, Syntactic, and Statistical Pattern
Recognition SSPR and SPR 2002, edited by T. Caelli, A. Amin, R.P.W. Duin, M. Kamel
and D. de Ridder. Lect. Notes Comput. Sci. 2396 (2002) 56–63.
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