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RECURSIVE COALGEBRAS OF FINITARY FUNCTORS ∗

Jiř́ı Adámek1, Dominik Lücke2 and Stefan Milius1

Abstract. For finitary set functors preserving inverse images, recur-
sive coalgebras A of Paul Taylor are proved to be precisely those for
which the system described by A always halts in finitely many steps.

Mathematics Subject Classification. 18A25, 08C05, 68R65.

1. Introduction

For finitary endofunctors H of the category of sets we study recursive coalge-
bras. A coalgebra for H is recursive if it admits a unique homomorphism into
every algebra for H . This concept stems from the work of Osius [11] (see also
Montague [10]) on coalgebras for the power-set functor. For an arbitrary endo-
functor the notion of a recursive coalgebra appears in the monograph of Taylor [13]
under the name “coalgebra obeying the recursion scheme”, and the name recursive
coalgebra stems from a recent paper of Capretta et al. [6]. It was proved by Taylor
that whenever a set functor H preserves inverse images, then recursive coalgebras
are precisely the well-founded ones. In the present paper we prove that if H is,
moreover, finitary, then recursive coalgebras are precisely those having the halting
property which means that the corresponding systems halt in finitely many steps
no matter what the initial state is and what input is processed.

Recall that a coalgebra is a set A of states together with a function α : A −→
HA assigning to every state a the collection α(a) of all observations about a. For
example, if H = HΣ is the polynomial functor of a signature Σ, then a coal-
gebra can be understood as a deterministic system given by a set A of states
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and by a dynamics

α : A −→ HΣA =
∐
n∈N

∐
σ∈Σn

An

assigning to every state an expression of the form σ(a0, . . . , an−1) for some n-ary
symbol σ. The states with n = 0 are the halting states of the system, the states
with n > 0 react to an n-ary input, they have the output σ, and a0, . . . , an−1 are
the successor states. The initial algebra IΣ can be described as the algebra of all
finite Σ-trees (i.e., trees labeled by Σ so that an n-ary label implies that the node
has n children). The systems with a homomorphism into IΣ are precisely those
which always halt in finitely many steps; this is called the halting property of the
system. Thus, recursive coalgebras are precisely the systems having the halting
property.

P. Taylor also mentioned in [13] that every recursive coalgebra α : A −→ HA
satisfies an inductive principle called parametric recursivity in [6] which states that
for the endofunctor H(−)×A the coalgebra 〈α, idA〉 : A −→ HA×A is recursive.
Explicitly: for every morphism e : HX × A −→ X there exists a unique morphism
e† : A −→ X such that the square

A
〈α,idA〉

��

e†

��

HA × A

He†×idA

��

X ��
e HX × A

(1.1)

commutes. This is the dual concept of the concept of a completely iterative algebra
of [9].

We believe that in addition to their theoretical importance our results have
many interesting applications which we illustrate with several examples. In par-
ticular, in functional programming one often uses the universal property of an
initial algebra to provide a semantics of a recursive program. Recursive coalgebras
extend that universal property beyond the initial algebra (considered as a coalge-
bra). So this provides a larger set of tools for semantics of functional programs.
For example, divide-and-conquer algorithms like Quicksort can easily be formu-
lated using recursive coalgebras. Furthermore, our characterization of recursive
coalgebras gives a necessary and sufficient condition which is easy to check in or-
der to establish recursivity in concrete examples. Finally, parametric recursivity
yields an extended universal property of recursive coalgebras that is useful for the
semantics of programs where the calling parameter is used not only in the base
case of the recursion. This happens frequently, for example in primitive recursion.
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The above results hold for every finitary endofunctor H which preserves inverse
images or satisfies H∅ = ∅. In case H is a nontrivial, connected functor, we prove
that, conversely, if for every coalgebra the equivalence

a homomorphism into the initial algebra exists ⇐⇒ recursive
is valid, it follows that H preserves inverse images or satisfies H∅ = ∅.

Preservation of inverse images is a relatively weak assumption on H : it is weaker
than the (often used, see e.g. [12]) assumption that H preserves weak pullbacks.
We provide a complete description of finitary functors preserving inverse images
in Section 2 based on the concept of regular equations well known in universal
algebra; our characterization appears to be new. We also present simple functors
which fail to preserve inverse images but have the above equivalence property. The
results of this article were announced at the workshop CALCO-jnr 2005, see [4].

2. Preservation of inverse images

Assumption 2.1. Throughout this section H denotes a finitary endofunctor of
Set.

Notation 2.2. For every signature Σ = (Σn)n∈N we define the polynomial endo-
functor HΣ : X �−→ ∐

n∈N

∐
σ∈Σn

Xn.

Remark 2.3. Recall that an endofunctor H of Set is finitary, if it fulfils one of
the equivalent conditions:

(i) H preserves directed colimits;
(ii) every element of HX , where X is an arbitrary set, lies in the image of

Hm for some finite subset m : M ↪→ X ;
(iii) H is a quotient of some polynomial functor.

See [3]. For example, the passage (ii) =⇒ (iii) is provided by the Yoneda Lemma:
given H satisfying (ii), let Σ be the signature with Σn = H(n) for all n ∈ N.
By the Yoneda Lemma each element of Σn corresponds to precisely one natural
transformation (−)n −→ H . These natural transformations for every n and every
element of Σn give a natural transformation ε : HΣ −→ H , and it is easy to see
that each component εX is surjective.

Definition 2.4. We call a functor F a quotient of a functor H , if there is a natural
transformation ε : H −→ F with surjective components. In case H = HΣ, we call
(Σ, ε), a presentation of F .

Example 2.5. The finite-power-set functor Pfin : X �−→ {A ⊆ X | A finite} is
finitary. It has a presentation with Σ having a unique n-ary symbol σn for every
n ∈ N, and εX(σn(x0, . . . , xn−1)) = {x0, . . . , xn−1}.
Remark 2.6. Every finitary functor has a presentation (Σ, ε). And ε is completely
described by the kernel pairs of each component εX , where X is a finite set, which
are written in the form of equations

σ(x0, . . . , xn−1) = �(y0, . . . , yk−1), (2.1)
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where σ and � are operation symbols from Σ and where x0, . . . , xn−1 and y0,
. . . , yk−1 are variables from X , see [3], III.3.3. The above equations are called
ε-equations. Notice that for every ε-equation the function εX : HΣX −→ HX
merges both sides (which are elements of HΣX).

Definition 2.7. A presentation is called regular provided that every ε-equation
has the same set of variables on both sides; more precisely: {x0, . . . , xn−1} =
{y0, . . . , yk−1} in the equations (2.1) above.

Remark 2.8. Recall that an inverse image of a subobject m : B0 ↪−→ B under a
morphism f : A −→ B is simply a pullback of f along m

A0
f0 ��

��

n

��

B0
��

m

��

A
f

�� B

(2.2)

A functor preserving such pullbacks is said to preserve inverse images.
Polynomial functors HΣ and the functor Pfin preserve inverse images. Moreover,

products, coproducts and composites of functors preserving inverse images also
preserve them.

Examples 2.9.
(i) The functor (−)32, which is the subfunctor of X �−→ X × X × X given

by all triples (x1, x2, x3) which do not have pairwise distinct components,
does not preserve weak pullbacks, see [1], but it of course preserves inverse
images.

(ii) Let R be the functor defined on objects by RX = {(x, y) ∈ X × X | x 
=
y} + {d} and on morphisms f : X −→ X ′ by

Rf(d) = d and Rf(x, y) =
{

d if f(x) = f(y)
(f(x), f(y)) else.

This functor does not preserve inverse images, consider e.g.

∅ ��

��

��

{0}
��

��

{0, 1}
const1

�� {0, 1}

(for the elements (0, 1) ∈ R{0, 1} and d ∈ R{0} there is no suitable
element of R∅).

Theorem 2.10. A finitary endofunctor H of Set preserves inverse images iff it
has a regular presentation.
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Proof. (1) Let H preserve inverse images. Recall from [3], VII.2.5, that a pre-
sentation ε : HΣ −→ H is minimal provided that no n-ary operation of Σ can be
substituted by an operation of arity k < n. More precisely, that means that for
every n-ary σ ∈ Σ the element

σ̂ = εn(σ(0, 1, . . . , n − 1)) ∈ Hn (where n = {0, 1, . . . , n − 1})

does not lie in the image of Hr for any function r : k −→ n with k < n. Every
finitary functor obviously has a minimal presentation: every operation σ with
σ̂ ∈ Hr([Hk]) can be substituted by a k-ary operation.

We prove that every minimal presentation of H is regular. In fact, let

σ(x0, . . . , xn−1) = �(y0, . . . , yk−1)

be an ε-equation. We derive a contradiction from the assumption, that

xi0 
∈ {y0, . . . , yk−1}

for some i0. By symmetry, this proves the regularity. Let

B = { i ∈ n | xi 
∈ {y0, . . . , yk−1} } 
= ∅.

Consider the n-tuple (x0, . . . , xn−1) as a function x : n −→ X , and denote by
x̄ : n − B −→ X̄ its domain-codomain restriction, where X̄ = X − {xi | i ∈ B}.
For the inclusion map v : X̄ −→ X form the inverse image

n − B
x̄ ��

��

w

��

X̄
��

v

��

n
x

�� X

The element σ(0, 1, . . . , n − 1) of HΣ(n) is mapped by εn to σ̂ and the element
�(y0, . . . , yk−1) of HΣX̄ is mapped by εX̄ to

εX̄(�(y0, . . . , yk−1)) = εX(σ(x0, . . . , xn−1)) ∈ HX.

Thus in the pullback

H(n − B) Hx̄ ��

��

Hw

��

HX̄
��

Hv

��

Hn
Hx

�� HX

the elements σ̂ and εX̄(�(y0, . . . , yk−1)) are mapped by Hx and Hv, respectively,
to the same element of HX . This implies that σ̂ lies in the image of Hw, in
contradiction to the minimality of the presentation ε.
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(2) Let H have a regular presentation. Suppose we have an inverse image

X0
f0 ��

��

w

��

Y0
��

v

��

X
f

�� Y

where v and w are inclusion maps, and two elements

a = εX(σ(x0, . . . , xn−1)) ∈ HX
b = εY0(�(y0, . . . , yk−1)) ∈ HY0

with Hf(a) = Hv(b). Then

σ(f(x0), . . . , f(xn−1)) = �(y0, . . . , yk−1)

is an ε-equation because

εY (σ(f(x0), . . . , f(xn−1))) = εY · HΣf(σ(x0, . . . , xn−1))
= Hf(εX(σ(x0, . . . , xn−1)))
= Hf(a)
= Hv(b)
= Hv(εY0(�(y0, . . . , yk−1)))
= εY (�(y0, . . . , yk−1)).

Consequently, {f(xi) | 0 ≤ i ≤ n − 1} = {yj | 0 ≤ j ≤ k − 1} ⊆ Y0. Therefore, the
subset X0 = f−1(Y0) contains all the variables of σ(x0, . . . , xn−1). Thus the ele-
ment a0 = εX0(σ(x0, . . . , xn−1)) of HX0 fulfils Hw(a0) = a and
Hf0(a0) = b. �

3. Recursive coalgebras

Notation 3.1. Throughout this section H denotes a finitary endofunctor of Set.
Recall from [5] that H has a terminal coalgebra

τ : T −→ HT

and an initial algebra
ϕ : HI −→ I.

We consider I as a coalgebra via ϕ−1. (Recall that ϕ is invertible due to Lambek’s
Lemma, see [8].) We denote by u : I −→ T the unique coalgebra homomorphism.
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Example 3.2. For a polynomial functor HΣ we can describe a terminal coalgebra
TΣ as the coalgebra of all Σ-trees and an initial algebra IΣ as the algebra of all
finite Σ-trees. A coalgebra α : A −→ HΣA yields the unique homomorphism
h : A −→ TΣ assigning to every state the tree unfolding.

Definition 3.3. We say that a HΣ-coalgebra A has the halting property, if every
tree in the image of the unique homomorphism h : A −→ TΣ is finite.

Example 3.4 (Ex. 3.2 continued). If a system A has the halting property, then it
halts after finitely many steps (no matter what the initial state is and what input
string comes), and vice versa. This property becomes trivial if Σ has no constant
symbols: then I = ∅ and only the empty coalgebra has the halting property.

Definition 3.5 (see [6, 13]). A coalgebra (A, α) is called recursive if for every
algebra (X, e) there exists a unique coalgebra-to-algebra morphism e† : A −→ X :

A
α ��

e†

��

HA

He†

��

X ��
e HX

A coalgebra (A, α) is called parametrically recursive if for every morphism e :
HX × A −→ X there exists a unique morphism e† : X −→ A such that the
diagram (1.1) commutes.

Remarks 3.6.
(i) It is obvious that the implications

parametrically recursive =⇒ recursive =⇒ has a homomorphism into I

hold for all endofunctors H : for the first one, turn every algebra e : HX −→ X
into a morphism

HX × A
outl �� HX

e �� X .

(ii) The converse implications need not hold. In fact, for the functor R of 2.9(ii)
both fail. Observe that here I = T = 1, thus every coalgebra has a homomorphism
into I. However, the coalgebra A = {0, 1} with

α(0) = (0, 1) and α(1) = d

is not recursive. In fact, let
e : RX −→ X

be any algebra which contains an element x ∈ X such that e(x, y) = e(y, x) = x
for x 
= y = e(d). Then any candidate of e† : A −→ X must satisfy e†(1) = y.
But, there are two possible choices e†(0) = y and e†(0) = x.

And the recursive coalgebra B = {0, 1} with

β(0) = β(1) = (0, 1)
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is not parametrically recursive. In fact, recursivity is easily seen: for every algebra
e : RX −→ X the only candidate of e† : B −→ X sends both 0 and 1 to y = e(d).
But consider any morphism e : RX × {0, 1} −→ X such that RX contains more
than one pair (x0, x1), x0 
= x1, with e((x0, x1), i) = xi for i = 0, 1. Each such pair
yields e† : B −→ X by e†(i) = xi. Thus, B is not parametrically recursive.

Remark 3.7. In the definition of recursive coalgebras the uniqueness of the mor-
phism cannot be lifted. In fact, a coalgebra with a (not necessarily unique) ho-
momorphism into every algebra is precisely a coalgebra with a homomorphism
into I. So the non-recursive coalgebra A of Remark 3.6(ii) has, for every algebra
e : RX −→ X , a coalgebra-to-algebra morphism, e.g., the constant function with
value e(d). Notice that our result of Theorem 3.17 shows that the uniqueness can
be lifted whenever H preserves inverse images.

Remark 3.8. The equivalence of the conditions (i), (iii) and (iv) in the following
theorem can be deduced from results of Taylor [13], see Proposition 6.3.9, Theo-
rem 6.3.13, Corollary 6.3.6 and Exercise 6.24. We present a (short) full proof for
the sake of completeness:

Theorem 3.9. For every Σ-coalgebra A the following conditions are equivalent:
(i) A is recursive;
(ii) A has the halting property;
(iii) a coalgebra homomorphism from A to IΣ exists; and
(iv) A is parametrically recursive.

Proof. The equivalence of (iii) and (ii) is obvious from the fact that the unique
coalgebra homomorphism A −→ TΣ assigns to every state the tree-unfolding. And
A has the halting property iff the unique homomorphism from A to TΣ factors
through u : IΣ −→ TΣ.

It remains to prove (iii) ⇒ (iv). Given e : HΣX × A −→ X , we are to prove
that there exists precisely one e† : A −→ X equal to e · (HΣe† × idA) · 〈α, idA〉.
We start with a homomorphism

A
α ��

h

��

HΣA

HΣh

��

IΣ
ϕ−1

Σ

�� HΣIΣ

Then A =
⋃

i∈N

Ai where A0 are the halting states,

A0 = {a ∈ A | α(a) ∈ Σ0}

and given Ai then

Ai+1 = Ai ∪ {a ∈ A | α(a) ∈ HΣAi}.
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In fact, since h is a homomorphism, it is easy to prove by induction on i that Ai

is the inverse image of the set of all Σ-trees of depth ≤ i under h, therefore, every
element of A lies in some Ai.

The morphism e† is uniquely determined
(a) on A0, since if α(a) = σ ∈ Σ0, then e†(a) = e(HΣe†(σ), a) = e(σ, a);
(b) on Ai+1 whenever it is uniquely determined on Ai since if α(a) =

σ(a0, . . . , an−1) for some σ ∈ Σn and at ∈ Ai with 0 ≤ t < n, then

e†(a) = e(HΣe†(σ(a0, . . . , an−1)), a) = e(σ(e†(a0), . . . , e†(an−1)), a).

Therefore, A is parametrically recursive. �
Example 3.10. The functor

HX = X + 1
has unary algebras with a constant as H-algebras, and partial unary algebras as
H-coalgebras. The coalgebra N of natural numbers with the partial operation
n �−→ n − 1 (defined iff n > 0) obviously has the halting property. Consequently,
it is parametrically recursive. Thus every function

e = [u, v] : HX × N = X × N + N −→ X

(with u : X × N −→ X and v : N −→ X) defines a unique sequence

e† : N −→ X, e†(n) = xn

in X such that the diagram (1.1) commutes, which means that x0 = v(0) and
xn+1 = u(xn, n + 1). For example, the factorial function is then given by the
choice X = N; u(n, m) = n · m and v(0) = 1.

Example 3.11. For the functor H given by

HX = X × X + 1

H-algebras are the algebras on one binary operation and one constant. Coalgebras
are deterministic systems with a binary input and with halting states (expressed
by the inverse image of the right hand summand 1 under the dynamics α : A −→
A × A + 1).

The coalgebra N of natural numbers with halting states 0 and 1 and dynamics
α : n �−→ (n−1, n−2) for n ≥ 2 obviously has the halting property. Consequently,
N is parametrically recursive.

To define the Fibonacci sequence, consider the morphism

e : HN × N = N
3 + N −→ N

given by

(i, j, k) �−→ i + j and n �−→
⎧⎨
⎩

a0 n = 0
a1 n = 1
0 n ≥ 2.
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We know that there is a unique sequence e† such that the diagram (1.1) commutes,
which means x0 = a0, x1 = a1 and xn+2 = xn+1 + xn.

Example 3.12 (Quicksort, see [6]). Let A be any linearly ordered set (of data
elements). Then Quicksort is usually given in terms of the following recursive
definition

qsort : A∗ −→ A∗

ε �−→ ε
a · w �−→ qsort(w≤a) 
 (a · qsort(w>a)),

where A∗ is the set of all lists on A, ε is the empty list, 
 is the concatenation
of lists and w≤a and w>a denote the lists of those elements of w which are less
than or equal, or greater than a, respectively. Now consider the functor HX =
A × X × X + 1, where 1 = {•}, and form the coalgebra

qsplit : A∗ −→ A × A∗ × A∗ + 1
ε �−→ •

a · w �−→ (a, w≤a, w>a).

This coalgebra obviously has the halting property. Thus, for the H-algebra

qmerge : A × A∗ × A∗ + 1 −→ A∗

• �−→ ε
(a, w, v) �−→ w 
 (av)

there exists a unique function qsort on A∗ such that

qsort = qmerge · H(qsort) · qsplit.

Notice that the last equation reflects the idea that Quicksort is a “divide-and-
conquer”-algorithm. The coalgebra structure qsplit divides a list into two parts w≤a

and w>a, then H(qsort) sorts these two smaller lists, and finally in the “combine”-
step (or “conquer”-step) the algebra structure qmerge merges the two sorted parts
to obtain the desired whole sorted list.

Similarly, functions defined by parametrical recursivity, see Diagram (1.1),
can be understood as “divide-and-conquer”-algorithms, where the “combine”-
step is allowed to access the original parameter additionally. For instance, in
our current example the “divide”-step 〈qsplit, idA∗〉 produces the pair consisting of
(a, w≤a, w>a) and the original parameter a · w, and the “combine”-step which is
given by an algebra HX × A∗ −→ X will by the commutativity of (1.1) get a · w
as its right-hand input.

Definition 3.13. Let ε : HΣ −→ H be a presentation of a set functor H .
A coalgebra α : A −→ HA for H is said to be presented by a HΣ-coalgebra
ᾱ : A −→ HΣA if α = εA · ᾱ. If some presentation of A has the halting property
(w.r.t. HΣ), we say that the H-coalgebra A has the halting property.

Observation 3.14. Let ε : HΣ −→ H be a presentation, and α : A −→ HA be
a coalgebra. Choose any m : HA −→ HΣA with εA · m = idHA and consider
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A as a Σ-coalgebra via ᾱ = m · α. Clearly, this is a presentation of A, and A is
a (parametrically) recursive coalgebra for H if it is (parametrically) recursive for
HΣ. In fact, given e : HX × A −→ X , then morphisms f = e† for H are precisely
the morphisms f = ē† for HΣ, where ē = e · (εX × idA):

A
〈ᾱ,idA〉

��

f

��

HΣA × A

HΣf×idA

��

εA×idA �� HA × A

Hf×idA

��

�� ����
〈α,idA〉

X���� ��
e

HΣX × A
εX×idA

��
ē

�� HX × A

In fact, the outer square of this diagram commutes iff the left-hand inner square
does since all other parts trivially commute.

Remarks 3.15.
(i) For every presentation ε : HΣ −→ H we have the initial H-algebra I as a

quotient of the initial Σ-algebra IΣ via the unique Σ-algebra homomorphism

i : IΣ −→ I ,

where I is considered as the Σ-algebra

HΣI
εI �� HI

ϕ
�� I .

In fact, I can be considered as the quotient of the Σ-algebra IΣ modulo the con-
gruence generated by ε-equations, see Remark 2.6.

(ii) Let α : A −→ HA be a coalgebra with a presentation ᾱ : A −→ HΣA.
Every homomorphism f : A −→ IΣ of HΣ-coalgebras defines a homomorphism
i · f : A −→ I of H-coalgebras. In fact, from the equations i · ϕΣ = (ϕ · εI) · HΣi
and ϕ−1

Σ · f = HΣf · ᾱ we easily derive ϕ−1 · f = Hf · α.
(iii) We also have the terminal H-coalgebra T as a quotient of the terminal

Σ-coalgebra TΣ via the unique H-coalgebra homomorphism

j : TΣ −→ T ,

where TΣ is considered as the H-coalgebra

TΣ
τΣ �� HΣTΣ

εTΣ �� HTΣ .

In fact, as proved in [2], T can be considered as the quotient of the Σ-coalgebra
TΣ modulo infinite application of ε-equations.

Finally, for every functor H we have the unique coalgebra homomorphism

u : I −→ T .
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In case H = HΣ we denote it by

uΣ : IΣ −→ TΣ;

this is the inclusion map (of all finite Σ-trees into all Σ-trees).

Lemma 3.16. If H is a finitary functor preserving inverse images, then a regular
presentation leads to a pullback

IΣ
uΣ ��

i

��

TΣ

j

��

I u
�� T

Proof. It is quite easy to show that j ·uΣ and u · i are both H-coalgebra homomor-
phisms, and since T is the terminal H-coalgebra, we obtain that they are equal.
Given Σ-trees s ∈ IΣ and t ∈ TΣ with u(i(s)) = j(t), it is our task to show that
t ∈ IΣ—it then follows that the above square is a weak pullback, and since uΣ is
a monomorphism, it is a pullback. The proof is an easy induction on the depth
n of the finite tree s: we prove that t and s have the same depth. The equality
u(i(s)) = j(t) implies, due to the regularity of the presentation, that we can obtain
t from s by applying ε-equations on (subtrees of) nodes of s. Since s is finite, it is
sufficient to consider one ε-equation applied to one node of s.

Case n = 0: the regularity of the presentation tells us that since s is a nullary
symbol, every ε-equation with s on one side has a constant symbol on the other
side. Thus, t is a nullary symbol.

Induction step: if the node of s to which the given ε-equation is applied is not
the root, use the induction hypothesis. And if it is the root, then we consider the
form

σ(x0, . . . , xm−1) = �(y0, . . . , yk−1)

of the ε-equation used, see Remark 2.6: it follows that

s = σ(s0, . . . , sm−1)

for trees s0, . . . , sm−1, and since the variables y0, . . . , yk−1 form the same set as
x0, . . . , xm−1, we conclude that t has the root labeled by � and has the same set
of children as s, thus, t has the same depth as s. �
Theorem 3.17. Let H be a finitary endofunctor of Set preserving inverse images.
Then for every H-coalgebra A the following conditions are equivalent:

(i) A is recursive;
(ii) A has the halting property;
(iii) a coalgebra homomorphism from A to I exists; and
(iv) A is parametrically recursive.
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Proof. (i) ⇒ (iii) is trivial.
(iii) ⇒ (ii) Let h : A −→ I be a homomorphism. For the coalgebra α : A −→

HA choose a presentation by putting ᾱ = m · α : A −→ HΣA where m : HA −→
HΣA is a morphism with εA · m = idHA. Let k : A −→ TΣ be the unique Σ-
coalgebra homomorphism from (A, m ·α) to (TΣ, τΣ). Then u ·h and j ·k are both
H-coalgebra homomorphisms from (A, α) to (T, τ), in fact, for j · k consider the
commutative diagram

A
α ��

k

��

HA
m �� HΣA

εA ��

HΣk

��

HA

Hk

��

������
α

TΣ τΣ
��

j

��

HΣTΣ εTΣ

�� HTΣ

Hj

��

T τ
�� HT

Due to the pullback in Lemma 3.16 we obtain the unique morphism

l : A −→ IΣ with h = i · l and k = uΣ · l.

Then l is a Σ-coalgebra homomorphism because HΣuΣ is a monomorphism and in
the diagram

A
α ��

l

��

HA
m �� HΣA

HΣl

��

IΣ

uΣ

��

ϕ−1
Σ

�� HΣIΣ

HΣuΣ

��

TΣ τΣ
��

��
��

��

k

HΣTΣ

��
��

��

HΣk

the outside square and all inner parts except the upper one commute. Thus, the
HΣ-coalgebra A has the halting property by Theorem 3.9.

(ii) ⇒ (iv) Let α : A −→ HA have the halting property, and choose some
presentation ᾱ : A −→ HΣA having the halting property, too (see Def. 3.13). By
Theorem 3.9, A is parametrically recursive for HΣ. Finally, the same argument as
in Observation 3.14 shows that A is parametrically recursive for H .

(iv) ⇒ (i) is trivial. �

Example 3.18. A Pfin -coalgebra is a finitely branching graph A: the structure
map α : A −→ PfinA assigns to every node the set of all neighbor nodes. Such a
graph is recursive iff it has no infinite paths.
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Example 3.19. Finitely branching labelled transition systems are coalgebras for
the functor Pfin(Σ×−), where Σ is the set of all actions. Recursivity means that
every development ends in finitely many steps in a state without transitions.

Remark 3.20. Recall from [14] that a set functor H is connected (i.e., is not a
coproduct of proper subfunctors) iff H1 ∼= 1. We call H trivial if HA ∼= 1 for all
sets A 
= ∅.
Theorem 3.21. For a nontrivial, connected endofunctor H the following condi-
tions are equivalent:

(i) every coalgebra, for which a homomorphism into I exists, is recursive;
(ii) H∅ = ∅.

Proof. It is obvious that (ii) ⇒ (i) since I = ∅, thus, only the empty coalgebra
has a homomorphism into I. Conversely, suppose H∅ 
= ∅, then we construct a
non-recursive coalgebra. This is sufficient because every coalgebra has a homo-
morphism into I: since H is connected, T = 1, and since H∅ 
= ∅, we have I 
= ∅.
However, there always exists a monomorphism u : I ↪→ T , thus,

I ∼= T.

By Lemma 4.3 in [7], since H is nontrivial, there exists a set A such that

cardHA ≥ cardA > 1.

Choose e : HA −→ A and α : A −→ HA with e · α = idA. Then the coalgebra
(A, α) is not recursive: for the algebra (A, e) one candidate of e† is idA:

A
α ��

idA

��

HA

HidA

��

A HAe
��

Another candidate is obtained by choosing an element d ∈ H∅: for every set X
the empty map rX : ∅ −→ X yields an element dX = HrX(d) such that

Hf(dX) = dY for all functions f : X −→ Y .

Consequently, the constant function c : A −→ A of value e(dA) also makes the
square

A
α ��

c

��

HA

Hc

��

A HAe
��

commute: in fact, since c factorizes through A −→ 1, it follows that Hc factorizes
through H(A −→ 1), thus, since H is connected, Hc is the constant function of
value dA. And c 
= idA because cardA > 1. �
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Example 3.22. There exists a functor not preserving inverse images, but having
the property that for all coalgebras the equivalences

a homomorphism into I exists ⇐⇒ recursive ⇐⇒ parametrically recursive

hold. Change the value of R, see Example 2.9(ii), in the empty set to the value ∅.
The only coalgebra having a homomorphism into I = ∅ is the empty one.

4. Conclusions

We study coalgebras for finitary set functors H , making use of the presentation
of such functors as (precisely all) quotients of polynomial functors HΣ modulo
ε-equations. We proved that the condition of H preserving inverse images, useful
in various parts of coalgebra theory, is equivalent to the fact that ε-equations have
the same set of variables on both sides.

Our main result is a characterization of recursive H-coalgebras as studied by
Taylor [13] and recently by Capretta et al. [6]; those are coalgebras with a unique
morphism into every algebra. We prove that recursive coalgebras are precisely
those describing systems with the “halting property”, i.e., such that when started
in any fixed state, the system halts in finitely many steps. This holds for finitary
set functors preserving inverse images.
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