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ON SUBSTITUTION INVARIANT STURMIAN WORDS:
AN APPLICATION OF RAUZY FRACTALS
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Abstract. Sturmian words are infinite words that have exactly n+1
factors of length n for every positive integer n. A Sturmian word sα,ρ is
also defined as a coding over a two-letter alphabet of the orbit of point
ρ under the action of the irrational rotation Rα : x �→ x + α (mod 1).
A substitution fixes a Sturmian word if and only if it is invertible.
The main object of the present paper is to investigate Rauzy fractals
associated with two-letter invertible substitutions. As an application,
we give an alternative geometric proof of Yasutomi’s characterization
of all pairs (α, ρ) such that sα,ρ is a fixed point of some non-trivial
substitution.
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1. Introduction

1.1. Sturmian words and substitution invariance

Sturmian words are infinite words over a binary alphabet, say, {1, 2}, that have
exactly n + 1 factors of length n for every positive integer n. Sturmian words can
also be defined in a constructive way as follows. Let 0 < α < 1. Let T1 = R/Z

denote the one-dimensional torus. The rotation of angle α of T1 is defined by
Rα : T1 → T1, x �→ x + α. For a given real number α, we introduce the following
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two partitions of T1:

I1 = [0, 1 − α), I2 = [1 − α, 1); I1 = (0, 1 − α], I2 = (1 − α, 1].

Tracing the orbit of Rn
α(ρ), we define two infinite words for ρ ∈ T1:

sα,ρ(n) =
{

1 if Rn
α(ρ) ∈ I1,

2 if Rn
α(ρ) ∈ I2,

sα,ρ(n) =
{

1 if Rn
α(ρ) ∈ I1,

2 if Rn
α(ρ) ∈ I2.

It is well known [13,25] that an infinite word is a Sturmian word if and only if it
is equal either to sα,ρ or to sα,ρ for some irrational number α. The word sα,ρ is
called lower Sturmian word whereas the word sα,ρ is called upper Sturmian word.
The notation sα,ρ stands in all that follows indifferently for sα,ρ or for sα,ρ when
there is no need to distinguish between the two. A detailed description of Sturmian
words can be found in Chapter 2 of [23], see also [28].

Let {1, 2}∗ be the free monoid over {1, 2} endowed with the concatenation
operation. A non-erasing homomorphism σ of the free monoid {1, 2}∗ is called a
substitution. An infinite word s ∈ {1, 2}N is a fixed point of the substitution σ if
σ(s) = s.

It is well known that the famous Fibonacci word, i.e., the fixed point of the
Fibonacci substitution 1 �→ 12, 2 �→ 1, is a Sturmian word. It is thus natural to
ask when a Sturmian word is a fixed point of some non-trivial substitution. More
precisely, we want to know:

Question 1. For which α and ρ is the Sturmian word sα,ρ (resp. sα,ρ) a fixed point
of some non-trivial substitution?

By non-trivial substitution, we mean here a substitution that is distinct from the
identity. In all that follows, we say that a Sturmian word is substitution invariant
if it is a fixed point of a non-trivial substitution.

There is a substantial literature devoted to Question 1. The first step has been
made in [14] (Th. 1.1 below). When ρ = α, we have sα,α = sα,α since α is an
irrational number. We thus denote this word by sα,α. It is usually called the
characteristic word of α. For a number x in a quadratic field, we denote by x′ the
conjugate of x in this field.

Theorem 1.1 (Crisp et al. [14]). Let 0 < α < 1 be an irrational number. Then
the following two conditions are equivalent:

(i) the characteristic word sα,α is substitution invariant;
(ii) α is a quadratic irrational with α′ �∈ [0, 1].

A quadratic number α with 0 < α < 1 and α′ �∈ [0, 1] is called a Sturm number
according to [2]. Let us note that the simplification of Condition (ii) in Theorem 1.1
to its present form is due to [2]. Furthermore, the expression of substitutions which
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fix sα,α can be explicitly obtained from the continued fraction expansion of α (see
[14]).

For more results on the homogeneous case (i.e., the case ρ = {nα} for n ∈ Z,
where {x} stands for the fractional part of x), see for instance [7, 8, 11, 16, 21, 23];
for results in the non-homogeneous case, see [6,22,26]. Some variants of Question 1
are also considered in [10, 27].

Yasutomi has given a complete answer to Question 1 in [35]. Its characterization
involves the conjugate of the quadratic real number x and can be compared to
Galois’ theorem for simple continued fractions describing numbers having a purely
periodic continued fraction expansion.

Theorem 1.2 (Yasutomi [35]). Let 0 < α < 1 and 0 ≤ ρ ≤ 1. Then sα,ρ is
substitution invariant if and only if the following two conditions are satisfied:

(i) α is an irrational quadratic number and ρ ∈ Q(α);
(ii) α′ > 1, 1 − α′ ≤ ρ′ ≤ α′ or α′ < 0, α′ ≤ ρ′ ≤ 1 − α′.

Remark 1.3. Let us note the symmetry between both cases in Assertion (ii)
of Theorem 1.2. Indeed, let E : 1 �→ 2, 2 �→ 1 be the substitution exchanging
letters; then sα,ρ (resp. sα,ρ) is substitution invariant if and only if s1−α,1−ρ

(resp. s1−α,1−ρ) which is equal to E(sα,ρ) (resp. E(s1−α,1−ρ)); furthermore,
(α, ρ) satisfies α′ > 1, 1 − α′ ≤ ρ′ ≤ α′ if and only if (1 − α, 1 − ρ) satisfies
1 − α′ < 0, α′ ≤ 1 − ρ′ ≤ 1 − α′.

As a corollary of Theorem 1.2, we easily obtain:

Corollary 1.4. Let α be a Sturm number. Then
(i) for any ρ ∈ Q ∩ (0, 1), sα,ρ = sα,ρ is substitution invariant;
(ii) let ρ ∈ [0, 1). The Sturmian word sα,{nα} (resp. sα,{nα}) is substitution

invariant if and only if n = −1, 0, 1. In total we obtain exactly five substi-
tution invariant Sturmian words

{21sα,α, 12sα,α, 2sα,α, 1sα,α, sα,α}

in the homogeneous case.

Note that (ii) is also proven in [35] and in [16].

Proof.
(i) Since ρ is a rational number, we have ρ′ = ρ. Hence condition (ii) of

Theorem 1.2 is fulfilled if α′ > 1 or α′ < 0;
(ii) let us first assume that α′ > 1. Let n, p ∈ Z such that ρ = {nα} = nα− p.

One has p = [nα].
For n = −1, 0, 1, we have ρ = 1 − α, 0, α, respectively, so that ρ′ = 1 − α′, 0, α′.
Hence ρ′ ∈ [1 − α′, α′]. Therefore sα,ρ and sα,ρ are substitution invariant.

For n ≥ 2, ρ′ = nα′ − p > α′ since p = [nα] ≤ n − 1; for n ≤ −2, one has
p = [nα] > nα − 1 ≥ n − 1. Hence p + 1 ≥ n + 1 and ρ′ = nα′ − p < 1 − α′.
Therefore, sα,ρ and sα,ρ are not substitution invariant.

We deduce the case α′ < 0 by applying Remark 1.3. �
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1.2. Invertible substitutions

Let σ be a substitution over {1, 2} and let Mσ = (mij) be its incidence matrix,
where mij counts the number of occurrences of the letter i in σ(j). We assume
that detMσ = ±1 (the substitution is said to be unimodular) and Mσ is primitive
(Mn

σ has only positive entries for some non-negative integer n).
A substitution is said to be invertible if it is an automorphism of the free group

generated by the alphabet {1, 2}. Note that if σ is an invertible substitution, then
its incidence matrix is unimodular.

Theorem 1.5 (Wen and Wen [34]). Every invertible substitution over {1, 2} is a
composition of the following three invertible substitutions:

1 �→ 2, 2 �→ 1; 1 �→ 12, 2 �→ 1; 1 �→ 21, 2 �→ 1. (1)

Question 1 is related to invertible substitutions according to the following well-
known result (see for instance [23]).

Theorem 1.6. A word is a Sturmian substitution invariant word if and only if it
is a fixed point of some primitive and invertible substitution.

Let us illustrate the main idea of the proof of Theorem 1.2 in [35]. According
to the three substitutions in Theorem 1.5, Ito and Yasutomi [21] define three
transformations from [0, 1]2 to [0, 1]2, namely:

T1(α, ρ) =
(

α

1 + ρ
,

ρ

1 + α

)
, T2(α, ρ) =

(
1

2 − α
,

ρ

2 − α

)
,

T3(α, ρ) = (1 − α, 1 − ρ).
Then it is proven that a Sturmian word sα,ρ is substitution invariant if and only
if there exists a sequence S1, . . . , Sn with Si ∈ {T1, T2, T3} such that (α, ρ) =
S1 ◦ · · · ◦ Sn(α, ρ). Since there are three transformations, the task of determining
such (α, ρ) is tedious. Yasutomi’s original proof of Theorem 1.2 in [35] is somewhat
technical and lengthy.

Since Theorem 1.2 is a key elementary result, it is worth giving a proof that is
more transparent and accessible. Let us note that a geometric proof based on the
use of cut-and-project schemes has also been given in [4]. The proof we present
here is based on Rauzy fractals.

1.3. Rauzy fractals

Rauzy fractals (first introduced in [30] in the Tribonacci case) are compact
attractors of a graph-directed iterated function system associated with primitive
substitutions with some prescribed algebraic properties. For more details, see
for instance Chapter 7 in [28]. Rauzy fractals have numerous applications in
number theory, ergodic theory, dynamical systems, fractal geometry and tiling
theory (see for instance [3, 18–20, 30, 32], and Chap. 7 in [28]). The main purpose
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of the present paper is to describe a new application of Rauzy fractals to Sturmian
words and more precisely, to study Rauzy fractals associated with invertibe two-
letter substitutions according to [15].

Let us first describe an intuitive approach to Rauzy fractals for two-letter sub-
stitutions. We give a more formal definition in Section 2. Let σ be a primitive
and unimodular substitution over {1, 2}. If σ does not admit a fixed point, that
is, if the image of 1 (resp. 2) begins with 2 (resp. 1), then σ2 admits a fixed point.
Otherwise, a fixed point of σ is still a fixed point of σ2. Let s = s0s1s2 . . . be a
fixed point of σ2. Let (1−α, α) be the eigenvector with positive entries of Mσ cor-
responding to the Perron-Frobenius eigenvalue. We shall call α the characteristic
length of the matrix Mσ or of the substitution σ, according to the context.

We define an oriented walk on the real line as follows. We start from the origin;
in the nth step, if sn−1 = 1, we move to the right side by α; if sn−1 = 2, we move
to the left side by 1 − α. Taking the closure of the orbit of the origin under this
transformation, we obtain

X = closure {|s0s1 . . . sk−1|1 · α + |s0s1 . . . sk−1|2 · (α − 1); k ≥ 0},

where |s0s1 . . . sn−1|j stands for the number of occurrences of the letter j in the
word s0s1 . . . sn−1. Furthermore, we define

X1 = closure {|s0s1 . . . sk−1|1 · α + |s0s1 . . . sk−1|2 · (α − 1);
k ≥ 0, sk = 1},

X2 = closure {|s0s1 . . . sk−1|1 · α + |s0s1 . . . sk−1|2 · (α − 1);
k ≥ 0, sk = 2}.

(2)

The Rauzy fractals of σ are defined as the set X = X1 ∪ X2, X1, X2 in (2). (To
be more precise, we shall see in Sect. 2 that X, X1, X2 are an affine image of the
Rauzy fractals.)

A central property for our study is that the fixed points of an invertible sub-
stitution are Sturmian (see Th. 1.6), and hence the associated Rauzy fractals are
intervals.

Theorem 1.7 [12]. Let σ be a primitive unimodular substitution over {1, 2}. Then
the Rauzy fractals X1, X2 and X1 ∪X2 are intervals if and only if σ is invertible.

A simple proof of this result is given in Section 2.4. Let us note that we only
use here in the present paper the following easy implication: the Rauzy fractals of
an invertible substitution are intervals.

Let us give a sketch of our proof of Theorem 1.2. By Theorems 1.6 and 1.7, if a
Sturmian word is substitution invariant, then it is a fixed point of some primitive
substitution with connected Rauzy fractals.

Let σ be an invertible substitution with characteristic length α. Then α is a
Sturm number, and the Rauzy fractals X1, X2 are intervals with length 1−α and
α, respectively. Suppose s = sα,ρ or s = sα,ρ is a fixed point of σ2. (According
to Prop. 2.3 below, we can indifferently consider any of these two words.) One
checks that ρ = 1 − α − h, where {h} = X1 ∩ X2.
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Let V ′ be the line y = 1−α′
α′ x, where α′ is the algebraic conjugate of α. A

broken line in R2, the so-called stepped surface, is associated with line V ′, defined
as a discretization of V ′ (see Fig. 3).

The sets X1,X2 have a self-similar structure: indeed they satisfy a set equation
which is controlled by the stepped surface of V ′ (see Lem. 3.1 and Th. 3.2). Hence,
by connectedness and self-similarity of Rauzy fractals, we express the intersection
X1 ∩ X2 in terms of the stepped surface (see Th. 4.2).

Then we show that the stepped surface is associated with the rotation Rγ with
γ = α′−1

2α′−1 , which may be considered as the dual rotation of Rα. An arithmetic
characterization of the stepped surface is obtained (see Th. 5.1). This allows us
to get an algebraic description of the intersection set X1 ∩ X2 for an invertible
substitution σ, which yields a proof of Theorem 1.2.

This paper is organized as follows. We first review in Section 2 some basic
facts on Rauzy fractals. We then discuss in Section 2.4 the connectedness of
Rauzy fractals for a two-letter alphabet. Theorem 1.7 is proven in this section.
In Section 3, we study set equations of Rauzy fractals, especially in the invertible
case. The intersection set X1 ∩ X2 for invertible substitutions is determined in
Section 4. In Section 5, an algebraic characterization of the stepped surface is
given. A proof of Theorem 1.2 is given in Section 6.

2. Rauzy fractals

In this section we review some basic facts on Rauzy fractals. We present here all
definitions that apply to a two-letter alphabet, which is sufficient for our purpose.
Note that the notation, which is adapted from [19], is slightly different from [3].

2.1. Sturm numbers

Let σ be a primitive unimodular substitution over {1, 2}. Let β be the max-
imal eigenvalue of its incidence matrix Mσ. Its algebraic conjugate β′ is also
an eigenvalue of Mσ. By the Perron-Frobenius’ theorem, we have β > 1. Now
ββ′ = detMσ = ±1 implies |β′| < 1. Therefore β is a Pisot number and the
substitution σ is said to be of Pisot type.

It is well-known that the densities of letters exist in fixed points of primitive
substitutions (see [29]). Furthermore, the vector of densities of the letters 1 and
2 denoted by (1 − α, α), with 0 ≤ α ≤ 1, is easily proven to be an expanding
eigenvector, i.e., an eigenvector associated with the expanding eigenvalue β. Let
us recall that α is called the characteristic length of Mσ. The characteristic length
α is (irrational) quadratic; the vector (1−α′, α′) is an eigenvector associated with
the eigenvalue β′. Still by Perron-Frobenius’ theorem, coordinates 1−α′, α′ cannot
both be positive, hence α′(1 − α′) ≤ 0, which implies that α′ �∈ ]0, 1[. Hence α is
a Sturm number.

Conversely, any Sturm number is the characteristic length of a primitive uni-
modular matrix M of size 2 × 2. Indeed, if α is a Sturm number, then sα,α is a
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fixed point of an invertible primitive substitution σ following Theorem 1.1, and
hence α is the characteristic length of Mσ. We thus have proven the lemma below.

Lemma 2.1. A number α ∈ (0, 1) is a Sturm number if and only if there exists a
2 × 2 primitive unimodular matrix M with non-negative integral entries such that
(1 − α, α) is an expanding eigenvector of M . Consequently, if the Sturmian word
sα,ρ is substitution invariant, then this implies that α is a Sturm number.

Example 1. Let σ be the substitution 1 �→ 121, 2 �→ 12, i.e., the square of
the Fibonacci substitution. This substitution admits as a unique fixed point the
Fibonacci word sα,α, with α = 3−√

5
2 , whose first terms are

121121211211212112121

One has Mσ =
[

2 1
1 1

]
, β = 3+

√
5

2 , and β′ = 3−√
5

2 = α = 1
β > 0.

We will also need the following lemma.

Lemma 2.2 ([8, 24, 34]). Let σ be a non-trivial substitution over {1, 2}. The
following three conditions are equivalent:

(i) σ is primitive invertible;
(ii) for any Sturmian word s, σ(s) is still a Sturmian word;
(iii) there exists a Sturmian word s such that σ(s) is a Sturmian word.

The equivalence between (i) and (ii) is due to [24] and [34], the equivalence with (iii)
is proven in [8]. For more details, see [23].

2.2. Upper and lower Sturmian sequences

In this subsection, we show that sα,ρ is substitution invariant if and only if sα,ρ

is also substitution invariant.

Proposition 2.3. Let 0 < α < 1 be an irrational number and 0 ≤ ρ ≤ 1. Then
sα,ρ is substitution invariant if and only sα,ρ is also substitution invariant.

Proof. Suppose sα,ρ = s0s1s2 . . . is a fixed point of the non-trivial substitution σ.
According to Lemma 2.2, σ is primitive invertible. By primitivity, one has

|σ2(1)| ≥ 2 and |σ2(2)| ≥ 2. (3)

Note that sα,ρ = s0s1s2 . . . is also a fixed point of the non-trivial substitution σ2.
Let us prove that sα,ρ is a fixed point of σ2.

Let us assume that sα,ρ �= sα,ρ (otherwise, there is nothing to prove). One has
either

sα,ρ = s0 . . . sn−121sn+2 · · · = s0 . . . sn−121sα,α,
sα,ρ = s0 . . . sn−112sn+2 · · · = s0 . . . sn−112sα,α

(4)

or
sα,ρ = 1sα,α,
sα,ρ = 2sα,α.

(5)
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Let s = sα,ρ and s′ = sα,ρ. We assume that we are in case (4); case (5) can be
handled in the same way.

It is shown in [33] (as a consequence of Th. 1.5) that if τ is an invertible
substitution over a two-letter alphabet, then there exist two words u and v such
that either τ(12) = u12v, τ(21) = u21v, or τ(12) = u21v, τ(21) = u12v. By
applying twice this result, one deduces that there exist a finite word w and an
infinite word t, such that

σ2(s) = w21t, σ2(s′) = w12t. (6)

One first deduces that t = sα,α. Indeed, 12t and 21t are two Sturmian words with
the same angle α. Second, we deduce from σ2(s0s1 . . . sn−1) = s0s1 . . . sn−1u = w
and (3) that w and s0s1 . . . sn−1 are equal to the empty word. Again by (4) and (6),
we have

σ2(s) = 21t, σ2(s′) = 12t = s′.
Hence s′ is a fixed point of σ2. �

2.3. Definition of Rauzy fractals

Let �e1, �e2 be the canonical basis of R2. Let f : {1, 2}∗ → Z2 be the Parikh
map, also called abelianization homomorphism, defined by f(w) = |w|1�e1 + |w|2�e2,
where |w|i denotes the number of occurrences of the letter i in w.

Let V be the expanding eigenspace of the matrix Mσ corresponding to the
eigenvalue β, and V ′ the contracting eigenspace corresponding to β′. The expand-
ing subspace is generated by the vector �v = (1 − α, α), therefore the contracting
subspace is generated by the vector �v′ = (1−α′, α′). Then V ⊕V ′ = R2 is a direct
sum decomposition of R2. According to this direct sum, two natural projections
are defined:

π : R2 → V ′ and π′ : R2 → V.

We define the Rauzy fractal associated with σ as the closure of the projection
according to π of the vertices of the broken line (illustrated in Fig. 1) obtained by
applying map f to the prefixes of a given fixed point of σ2. (We recall that σ2

always admits a fixed point since we work on a two-letter alphabet.)
More precisely, let s = (sk)k≥0 be a fixed point of σ2. We first define

Y = {f(s0 . . . sk−1); k ≥ 0},

where the notation s0 . . . sk−1 stands for the empty word when k = 0. We then
divide Y into two parts:

Y1 = {f(s0 . . . sk−1); sk = 1}, Y2 = {f(s0 . . . sk−1); sk = 2}.

Projecting Y1, Y2 onto the contracting eigenspace V ′ and taking the closures, we get

�X1 = π(Y1), �X2 = π(Y2).
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VV ’ 

Figure 1. The broken line.

We call �X1 and �X2 the Rauzy fractals of the substitution σ. It is shown in [19]
that the Rauzy fractals are independent of the choice of the fixed point in the
definition.

Clearly, Rauzy fractals �X1 and �X2 are one-dimensional objects. One has

�e1 = − α′

α − α′�v +
α

α − α′�v
′ and �e2 =

1 − α′

α − α′�v +
α − 1
α − α′�v

′. (7)

Hence an easy computation shows that

X1 = φ( �X1), X2 = φ( �X2),

where X1, X2 are defined in (2) and φ is the linear map defined by

φ : V ′ → R, φ(
x�v′

α − α′ ) = x. (8)

By abuse of language, we also call X , X1 and X2 the Rauzy fractals of the
substitution σ.
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Barge and Diamond showed in [5] that every Pisot substitution over a two-letter
alphabet satisfies a certain combinatorial condition, called the strong coincidence
condition. Thanks to this, one can show that

Lemma 2.4 ([19]). Let σ be a primitive Pisot substitution over two letters. Then

µ(X1) = 1 − α, µ(X2) = α,

where µ is the Lebesgue measure and α is the characteristic length of Mσ.

2.4. Connectedness of Rauzy fractals

It is generally hard to decide whether Rauzy fractals are connected (see for in-
stance [1,12]). However, in the two-letter case we have a complete characterization
given by Theorem 1.7. We provide an elementary proof of this folklore result.

Proof of Theorem 1.7. Let σ be a primitive invertible substitution. Let s be a
fixed point of σ2. By Theorem 1.6, s is a Sturmian word. Indeed, if s′ is any
Sturmian word with the same initial letter as s, then the sequence of Sturmian
words (according to Lem. 2.2) (σ2n(s′))n≥1 converges to s. Hence s has at most
n + 1 factors of length n. Since σ is both unimodular and primitive, we infer that
the density of the letter 1 in s is irrational, which implies that s is aperiodic and
thus, a Sturmian word.

Let α, ρ such that s = sα,ρ (which means indifferently either sα,ρ or sα,ρ).
Let us first prove that the points f(s0 · · · sk−1), for k ∈ N, stay at a bounded
distance of the line V ; more precisely, they stay between the lines y = α

1−αx+ ρ−1
1−α

and y = α
1−αx + ρ

1−α , which directly implies that µ(X1 ∪ X2) ≤ 1. Indeed, the
broken line defined by the vertices f(s0...sk−1), for k ∈ N, is a cutting sequence
(see for instance [23]), that is, it corresponds to the approximation of the line
y = α

1−αx+ ρ
1−α−1 by the broken line with integer vertices obtained by progressing

by unit segments, either up or to the right, always going in the direction of the line,
and starting from the origin point (0, 0): one first notes that s0 = 1 if and only if

ρ
1−α − 1 < 0; furthermore, if α < 1/2 (resp. α > 1/2), the vertex f(s0 · · · sk−1)
is below (resp. above) the line y = α

1−αx + ρ
1−α − 1 if and only if sk = 2 (resp.

sk = 1).
Moreover, by (7), φ ◦ π ◦ f(1) = α, and φ ◦ π ◦ f(2) = α − 1. This implies that

{
φ ◦ π ◦ f(s0 · · · sk) = φ ◦ π ◦ f(s0 · · · sk−1) + α when sk = 1
φ ◦ π ◦ f(s0 · · · sk) = φ ◦ π ◦ f(s0 · · · sk−1) + α − 1 when sk = 2.

(9)

Hence
∀k ∈ N, φ ◦ π ◦ f(s0 · · · sk−1) ≡ kα mod 1. (10)

By irrationality of α, we deduce that Rauzy fractals are intervals.
Conversely, let σ be a primitive unimodular substitution over {1, 2}. We first

assume that the Rauzy fractals of σ, namely X1, X2, and X = X1 ∪ X2, are
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intervals. Let s = (sk)k≥0 be a fixed point of σ2 which defines X1 and X2. Let α
stand for the characteristic length of Mσ. Equations (9) and (10) still hold.

According to Lemma 2.4, µ(X1 ∩ X2) = 0, µ(X1) = 1 − α and µ(X2) = α.
Furthermore, X1 + α ⊂ X = X1 ∪ X2, by (9). Hence there exists h ∈ R such that
X1 = [−1 + α + h, h] and X2 = [h, h + α].

If the sequence (φ◦π◦f(s0 · · · sk−1))k≥1 never takes as value one of the endpoints
of X1 and X2, then one has according to (9)

{ ∀k ∈ N, sk = 1 if and only if φ ◦ π ◦ f(s0 · · · sk−1) ∈ (−1 + α + h, h)
∀k ∈ N, sk = 2 if and only if φ ◦ π ◦ f(s0 · · · sk−1) ∈ (h, h + α).

We deduce from (10) that s = sα,1−α−h = sα,1−α−h.
If there exists k ≥ 1 such that φ ◦ π ◦ f(s0 · · · sk−1) = −1 + α + h, then

s = sα,1−α−h. Similarly, if there exists k ≥ 1 such that φ◦π◦f(s0 · · · sk−1) = h+α,
then s = sα,1−α−h.

We assume now that there exists k ≥ 1 such that φ ◦ π ◦ f(s0 · · · sk−1) = h.
If sk = 1, then φ ◦ π ◦ f(s0 · · · sk) = h + α, and s = sα,1−α−h. If sk = 2, then
φ ◦ π ◦ f(s0 · · · sk) = h + α − 1, and s = sα,1−α−h.

We thus have proved that s is a Sturmian word. According to Lemma 2.2, this
implies that σ2, and thus σ, are invertible. �

We deduce from the previous proof the following:

Corollary 2.5. Let σ be a primitive invertible substitution. Then there exists
h ∈ Z such that the Rauzy fractals satisfy

X1 = [−1 + α + h, h], X2 = [h, α + h],

where α is the characteristic length of σ. Furthermore, if sα,ρ or sα,ρ is a fixed
point point of σ2, then ρ = 1 − α − h.

Example 2. Let us continue Example 1. One has X1 = [−α, 1 − 2α], X2 =
[1 − 2α, 1 − α], h = 1 − 2α.

3. Self-similarity of Rauzy fractals

In this section, we discuss the self-similar structure of Rauzy fractals X1 and
X2, while paying special attention to the case σ invertible. The stepped surface is
shown to play an important role.

3.1. Set equations of Rauzy fractals

Let σ be a primitive substitution over {1, 2} and let β be the Perron-Frobenius
eigenvalue of Mσ.

It is well-known [3, 19, 32]) that �X1 and �X2, and thus X1 and X2, have a self-
similar structure, i.e., both 1

β′ X1 and 1
β′ X2 are unions of translated copies of X1
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and X2. (We recall that |β′| < 1.) In order to describe the corresponding set
equations, we introduce the following notation: let D1 (resp. D2) be the set of
these (a, i) ∈ R × {1, 2} such that Xi + a ⊂ 1

β′ X1 (resp. Xi + a ⊂ 1
β′ X2), that is,

1
β′ X1 =

⋃
(a,i)∈D1

Xi + a,
1
β′ X2 =

⋃
(b,i)∈D2

Xi + b.

For the explicit form of D1, D2, we refer to [3] for the general case, and to Section
3.4, in the present case. To give an intuitive flavour of the explicit form, let us just
note that any vertex f(s0 · · · sk−1) of the broken line has form f(σ(s0 · · · sq−1)) +
f(p), for a prefix p of σ(sq). Its projection yields the multiplication by 1/β′, and
thus belongs to Xsk

/β′. The first part f(σ(s0 · · · sq−1)) contributes by projection
to an interval Xsq and f(p) induces a translation of this interval.

Example 3. We continue Example 2. One checks that

X1

β′ = [−1, 1/α− 2] = [−1, 1 − α] = (X1 + α − 1) + X1 + X2,

X2

β′ = [1/α − 2, 1/α − 1] = [1 − α, 2 − α] = (X1 + 1) + (X2 + 1).

One has D1 = {(α − 1, 1), (0, 1), (0, 2)} and D2 = {(1, 1), (1, 2)}.

3.2. The stepped surface

Recall that V ′ is the contracting eigenline of Mσ. We denote the upper closed
half-plane delimited by V ′ as (V ′)+, and the lower open half-plane delimited by
V ′ as (V ′)−. We define

S = {[z, i∗]; z ∈ Z2, z ∈ (V ′)+ and z − �ei ∈ (V ′)−},

where the notation [z, i∗], for z ∈ Z2 and i∗ ∈ {1∗, 2∗}, endows the point z in
Z2 with color i∗ = 1∗, 2∗. Intuitively S consists of the collection of these colored
points [z, i∗] which are close to the contracting eigenline V ′.

We now define [z, 1∗] (resp. [z, 2∗]) as the closed line segment from z to z + �e2

(resp. to z + �e1) (see Fig. 2). Then the stepped surface S of V ′ is defined as the
broken line consisting of the following segments

S =
⋃

[z,i∗]∈S

[z, i∗].

It is easily seen to be connected. A piece of a stepped surface is depicted in Figure 3
for the example of Example 1. By abuse of language, the formal set S will also be
called the stepped surface of V ′.
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[0,2*]

[0,1*]

Figure 2. The segments [0, 1∗] and [0, 2∗].

Figure 3. A piece of the stepped surface for 1 �→ 121, 2 �→ 12.

It turns out that the set equations of the Rauzy fractals are controlled by the
stepped surface. An explicit expression of sets D1 and D2 is given in [3], from
which one immediately deduces the following facts:

Lemma 3.1 [3, 19]. Using the notation above:
(i) for any (a, i) ∈ D1 ∪ D2, there exists an element [z, i∗] ∈ S such that

φ ◦ π(z) = a;
(ii) (0, 1), (0, 2) ∈ D1 ∪ D2;
(iii) (nij)1≤i,j≤2 = tMσ, where nij counts the number of elements (a, i) in the

set Dj.

3.3. Tiling associated with the stepped surface

Projecting the stepped surface S onto V ′, we first obtain a tiling J ′ of V ′:

J ′ = {π([z, i∗]); [z, i∗] ∈ S}.

Applying the linear transformation φ (see (8)), we then get a tiling J of the
real line:

J = {φ ◦ π([z, i∗]); [z, i∗] ∈ S}.
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Tiling J is a tiling with two prototiles. Indeed

J = {φ ◦ π(z) + Ji; [z, i∗] ∈ S},
where

J1 = φ ◦ π[0, 1∗] = [−1 + α, 0], J2 = φ ◦ π[0, 2∗] = [0, α].
We label the tiles of J on the right side of the origin by the sequence T0, T1, T2, . . . ,
where Tn+1 is the rightside neighbour of Tn. Likewise we label the tiles of J on the
left side of the origin by T−1, T−2, . . . One has J = {Tk; k ∈ Z}. We furthermore
define the two-sided sequence (gk)k∈Z as the sequence of left endpoints of tiles Tk

(one has g0 = 0). An arithmetic description of the sequence (gk)k∈Z is given in
Section 5.

Example 4. We continue Example 3. One has g−2 = 2(α − 1), g−1 = α − 1,
g0 = 0, g1 = α, g2 = 1.

3.4. Set equations of connected Rauzy fractals

According to Corollary 2.5, if σ is a primitive invertible substitution, then there
exists a real number h such that X1 = [−1 + α + h, h], X2 = [h, h + α], that is,

X1 = J1 + h, X2 = J2 + h,

where J1 = [−1 + α, 0] and J2 = [0, α] are the two prototiles of tiling J .
Let (a, i) ∈ D1. There exists an element [z, i∗] ∈ S such that φ ◦ π(z) = a by

Lemma 3.1. Let k ∈ Z such that φ ◦ π[z, i∗] = Tk; then

Xi + a = Ji + h + a = Tk + h.

We thus can introduce two subsets D1 and D2 of J such that

X1

β′ =

( ⋃
T∈D1

T

)
+ h,

X2

β′ =

( ⋃
T∈D2

T

)
+ h.

On the one hand, the tiles in D1 ∪D2 do not overlap according to [5] and [3]. On
the other hand, these tiles must form a connected patch of J since X1, X2, X1∪X2

are intervals according to Theorem 1.7. Hence we have proven that

Theorem 3.2. Let X1 = [−1 + α + h, h], X2 = [h, h + α] be the Rauzy fractals of
the primitive invertible substitution σ. Then

X1

β′ =

( ⋃
T∈D1

T

)
+ h,

X2

β′ =

( ⋃
T∈D2

T

)
+ h,

where D1,D2 and D1 ∪ D2 are connected patches of the tiling J .

Example 5. We continue Example 4. One has D1 = {T−2, T−1, T0}, D2 =
{T1, T2}, X1

β′ = h + T−2 + T−1 + T0,
X2
β′ = h + T1 + T2.
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4. Invertible substitutions with a given incidence matrix

In this section, we give a more detailed description of the Rauzy fractals of
invertible substitutions with a given incidence matrix.

4.1. A list of invertible substitutions with a given incidence matrix

Let M =
(

a b
c d

)
be a primitive unimodular matrix. A very interesting result

on invertible substitutions is given in [31]:

Theorem 4.1 (Séébold [31]). Let M =
(

a b
c d

)
be a primitive unimodular

matrix with non-negative entries. The number of invertible substitutions with in-
cidence matrix M is equal to a + b + c + d − 1.

Let σ be an invertible substitution with incidence matrix Mσ = M . According
to Lemma 3.1, (0, 1), (0, 2) ∈ D1 ∪ D2, hence we have

T−1, T0 ∈ D1 ∪ D2. (11)

By Lemma 3.1iii, we have

Card D1 = Card D1 = a + b, Card D2 = card D2 = c + d. (12)

Let us assume that the determinant of M is equal to 1. (We will not need to subse-
quently consider the case det(M) = −1, but a similar study can be conducted.) In
this case, 1/β′ = β > 0 so that X1

β′ is on the left side of X2
β′ . Hence by Theorem 3.2,

the patch D1 is on the left side of D2. By Theorem 3.2, (11), and (12), we infer
that there exists k with 1 ≤ k ≤ a + b + c + d − 1 such that

D1 = {T−k, T−k+1, . . . , T−k+a+b−1},
D2 = {T−k+a+b, T−k+a+b+1, . . . , T−k+a+c+b+d−1}. (13)

Hence there are at most a + b + c + d − 1 invertible substitutions with incidence
matrix M , and their set equations are deduced from (13). On the other hand,
Theorem 4.1 asserts that there are exactly a + b + c + d − 1 such substitutions.
Since the set equations for different substitutions are distinct, we conclude that
there is a one-to-one correspondence between the invertible substitutions with
incidence matrix M and the set equations determined by (13). We denote these
substitutions by σk, 1 ≤ k ≤ a + b + c + d − 1.

4.2. Intersection point of Rauzy fractals

For each of the substitutions σk defined in the previous section, there exists ρk

such that sα,ρk
(which means indifferently either sα,ρk

or sα,ρk
) is a fixed point of

σ2
k according to the proof of Proposition 2.3.
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Let 1 ≤ k ≤ a + b + c + d − 1. Let X1 = [−1 + α + hk, hk], X2 = [hk, α + hk]
be the Rauzy fractals of σk. One has ρk = 1 − α − hk according to Corollary
2.5. Below we use the connectedness and the self-similarity of Rauzy fractals to
determine hk and thus ρk. Let us recall that (gk)k∈Z stands for the sequence of
left endpoints of tiles Tk in J .

Theorem 4.2. Let M be a 2× 2 primitive matrix with non-negative entries such
that detM = 1. Let σk, 1 ≤ k ≤ a + b + c + d − 1, be the invertible substitutions
with incidence matrix M , and let X1 = [−1 + α + hk, hk], X2 = [hk, α + hk] be
the Rauzy fractals of σ2

k. Let β be the maximal eigenvalue of M . Then

hk =
g−k+a+b

β − 1
·

Proof. On the one hand, X1
β′ ∩ X2

β′ = {(β′)−1hk} = {βhk}. On the other hand,
this intersection point is the left endpoint of the interval ∪{T + hk; T ∈ D2},
i.e., the left endpoint of T−k+a+b + hk. So we get g−k+a+b + hk = βhk, and
hk = g−k+a+b

β−1 . �

Theorem 4.3. Let M be a 2× 2 primitive matrix with non-negative entries such
that det M = 1. Let σ1, σ2, . . . , σa+b+c+d−1 be the invertible substitutions with
incidence matrix M . Let G := {gk; k ∈ Z}. Then the Sturmian word sα,ρ is a
fixed point of the substitution σ2

k if and only if

0 ≤ ρ ≤ 1 and (ρ + α − 1) ∈ G

1 − β
·

Proof. By Theorem 4.2, one has ha+b+c+d−1 < · · · < h2 < h1. Hence a real
number h belongs to the set {h1, h2, . . . , ha+b+c+d−1} if and only if

h ∈ G

β − 1
and ha+b+c+d−1 ≤ h ≤ h1. (14)

The values h1 and ha+b+c+d−1 remain to be determined. For the substitution σ1,
the set D1 is equal to {T−1, T0, . . . , Ta+b−2}. By Lemma 3.1iii, the numbers of
tiles in D1 of length 1 − α and α are a and b, respectively. Since |T−1| = 1 − α,
we have

ga+b−1 = (a − 1)(1 − α) + bα = (β − 1)(1 − α).

Here we use the equality a(1 − α) + bα = β(1 − α), which follows from the fact
that (1−α, α) is an expanding eigenvector of M . Therefore h1 = 1−α. A similar
argument shows that ha+b+c+d−1 = −α.

Remember now that ρk = 1 − α − hk. The theorem follows from (14). �
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5. The stepped surface

In this section, we give an arithmetic description of the stepped surface S.
We first define the two-sided word (tn)n∈Z as:

∀n ∈ Z, tn =
{

1, if |Tn| = 1 − α
2, if |Tn| = α.

It is well known that Sturmian words can also be described as cutting sequences
(see for instance [23]). One checks according to [3] that (tn)n∈Z is the upper
two-sided cutting sequence of the line V ′ : y = 1−α′

α′ x. Hence

t−1t−2t−3 · · · = 1sγ,γ, t0t1t2 · · · = 2sγ,γ, (15)

where

γ =
α′ − 1
2α′ − 1

· (16)

Let Rγ : x �→ x+γ be the rotation of angle γ of the torus T1. We deduce from (15)
that for all positive k

|t−1t−2 . . . t−k|1 · γ + |t−1t−2 . . . t−k|2 · (γ − 1) = Rk
γ(0)

|t0t1 . . . tk−1|1 · γ + |t0t1 . . . tk−1|2 · (γ − 1) = −R−k
γ (0).

By definition of (gk)k∈Z , one has for every nonnegative k

g−k = |t−1t−2 . . . t−k|1 · (α − 1) + |t−1t−2 . . . t−k|2 · (−α),

gk = |t0t1 . . . tk−1|1 · (1 − α) + |t0t1 . . . tk−1|2 · α.

Hence

∀k ∈ Z,
g′k

2α′ − 1
= R−k

γ (0), (17)

where g′k denotes the conjugate of gk. This thus provides an arithmetic description
of the stepped surface.

Theorem 5.1. One has

G = {g ∈ Z[α]; 0 ≤ g′ < 2α′ − 1} when α′ > 1,
G = {g ∈ Z[α]; 2α′ − 1 < g′ ≤ 0} when α′ < 0.

Proof. We assume that α′ > 1. The case α′ < 0 can be handled similarly.
Note that

{Rk
γ(0); k ∈ Z} = {mγ + n; 0 ≤ mγ + n < 1}.

This together with (17) imply that

G = {g; g′ = m(α′ − 1) + n(2α′ − 1); m, n ∈ Z, 0 ≤ g′ < 2α′ − 1}
= {g; g = m(α − 1) + n(2α − 1); m, n ∈ Z, 0 ≤ g′ < 2α′ − 1}
= {g ∈ Z[α]; 0 ≤ g′ < 2α′ − 1}.
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�

Remark 5.2. For a Sturm number α, it is easy to check that γ = α′−1
2α′−1 is also a

Sturm number. We say that γ is the dual of α. One checks that γ and α are duals
of each other. In some sense, rotation Rγ is the dual rotation of Rα.

6. Proof of Theorem 1.2

In this section, we prove Theorem 1.2.

Theorem 1.2 (Yasutomi [35]). Let 0 < α < 1 and 0 ≤ ρ ≤ 1. Then sα,ρ is
substitution invariant if and only if the following two conditions are satisfied:

(i) α is an irrational quadratic number and ρ ∈ Q(α);
(ii) α′ > 1, 1 − α′ ≤ ρ′ ≤ α′ or α′ < 0, α′ ≤ ρ′ ≤ 1 − α′.

6.1. An algebraic lemma

We first need a preliminary lemma.

Lemma 6.1. Let β be a quadratic algebraic unit, and α be an irrational number
in Q(β). Then for any ρ ∈ Q(β), there exists an arbitrary large even number n
such that ρ(βn − 1) ∈ Z[α].

Proof. Let A stand for the ring of algebraic integers in Q(β). First we claim that
for any ρ ∈ Q(β), there exists an arbitrary large number n such that ρ(βn −
1) ∈ A. Indeed, let δ ∈ A such that δρ ∈ A. Then at least two terms in the
sequence (δρβn)n≥0 belong to the same residue class modulo the principal ideal of
A generated by δ. Hence δρ(βn1 − βn2) is divisible by δ in A for some n1 > n2.
Since β is an algebraic unit, δρ(βn − 1) is also divisible by δ for n = n1 − n2, and
ρ(βn − 1) ∈ A. This proves our claim. Note furthermore that obviously we can
decide that n is an even number. We thus have proven that for every N > 0,

Q(β) =
⋃

n≥N

A
β2n − 1

·

We then prove that there is a rational number K such that A ⊂ KZ[α]. Indeed,
let d be the square-free integer such that Q(β) = Q(

√
d). Then there are integers

a, b and c �= 0 such that α = a+b
√

d
c . Note that b �= 0 since α is irrational. It is

well known that any element in A must have the form (m
√

d + n)/2. Since

(m
√

d + n)/2 =
mcα − ma + nb

2b

is an element of Z[α]
2b , our assertion is true by taking K = 1

2b .
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Therefore for any N > 0, we have

Q(β) =
⋃

n≥N

A
β2n − 1

⊂ K
⋃

n≥N

Z[α]
β2n − 1

⊆ Q(β).

Multiplying every term of the above formula by K−1, we obtain

Q(β) =
⋃

n≥N

Z[α]
β2n − 1

· �

6.2. Proof of Theorem 1.2

Now we are in a position to prove Theorem 1.2.
Necessity. Let us suppose that sα,ρ is a fixed point of the non-trivial primitive
invertible substitution σ. Let β be the maximal eigenvalue of Mσ. We may assume
that detM = 1, for otherwise we consider σ2 instead of σ.

By Lemma 2.1, α must be a Sturm number. From Theorem 4.3, we deduce

1 − α − ρ = h ∈ G

β − 1
⊆ Z[α]

β − 1
⊆ Q(β).

Hence ρ ∈ Q(β) = Q(α), so condition (i) is necessary.
Concerning (ii), we need only to consider the case α′ > 1 according to Re-

mark 1.3. Note that sα,ρ is also a fixed point of σn, for any n ≥ 1, and in
particular for any even number n; furthermore, substitutions σn share the same
stepped surface. Hence

ρ + α − 1 ∈ G

1 − βn
,

ρ′ + α′ − 1 ∈ {g′; g ∈ G}
1 − (β′)n

·

By Theorem 5.1, we have

0 ≤ ρ′ + α′ − 1 <
2α′ − 1

1 − (β′)n
·

Note that the above formula holds for every even number n. By letting n tend to
infinity, (β′)n vanishes, and we conclude that 1 − α′ ≤ ρ′ ≤ α′.

Sufficiency. Suppose that (α, ρ) satisfies (i) and (ii). According to Remark 1.3,
we may assume here again that α′ > 1, so ρ′ + α′ − 1 ∈ [0, 2α′ − 1]. Since α is
a Sturm number, there exists a primitive substitution σ such that sα,α is a fixed
point of σ (Th. 1.1). Let β be the maximal eigenvalue of the incidence matrix Mσ.
We may assume that det Mσ = 1, otherwise we consider σ2 instead of σ.
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Obviously α ∈ Q(β). Condition (i) implies that ρ ∈ Q(α) = Q(β). Hence
ρ + α − 1 ∈ Q(β), so by Lemma 6.1, there exist an even number n and g ∈ Z[α]
such that

ρ + α − 1 =
g

1 − βn
·

Let us prove that g is actually an element of G. Assumptions α′ > 1 and 1−α′ ≤
ρ′ ≤ α′ imply that 0 ≤ ρ′ + α′ − 1 ≤ 2α′ − 1. Now 0 < 1 − (β′)n < 1 since n is
even. Hence

g′ = (ρ′ + α′ − 1)(1 − (β′)n) ∈ [0, 2α′ − 1)
so g ∈ G by Theorem 5.1. We thus have proven that ρ + α − 1 ∈ G

1−βn . This
together with 0 ≤ ρ ≤ 1 implies that sα,ρ is substitution invariant (by Th. 4.3). �
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