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A PERIODICITY PROPERTY OF ITERATED
MORPHISMS

Juha Honkala
1

Abstract. Suppose f : X∗ −→ X∗ is a morphism and u, v ∈ X∗. For
every nonnegative integer n, let zn be the longest common prefix of
fn(u) and fn(v), and let un, vn ∈ X∗ be words such that fn(u) = znun

and fn(v) = znvn. We prove that there is a positive integer q such that
for any positive integer p, the prefixes of un (resp. vn) of length p form
an ultimately periodic sequence having period q. Further, there is a
value of q which works for all words u, v ∈ X∗.

Mathematics Subject Classification. 68Q45, 68R15.

1. Introduction

In the theory of D0L systems many deep decidability results are proved by
showing that certain D0L systems or pairs of D0L systems have some kind of
regular behavior. In this paper we investigate a regularity property encountered
when we compare the iteration of a morphism on two different words. More
precisely, let f : X∗ −→ X∗ be a morphism and let u, v ∈ X∗ be words. For every
nonnegative integer n, let zn be the longest common prefix of the words fn(u) and
fn(v), and let un and vn be words such that fn(u) = znun and fn(v) = znvn.
Hence, the words un and vn give the words fn(u) and fn(v) from the first position
where the latter words differ. In [4] it was shown that for any positive integer p the
prefixes of length p of un (resp. vn) form an ultimately periodic sequence. This
result plays a key role in the solution of the DF0L language equivalence problem in
[4]. In this paper we study this periodicity result in more detail. In particular, we
prove that there is a period which works simultaneously for prefixes of any length
and does not depend on the words u and v.
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We assume that the reader is familiar with the basics concerning iterated mor-
phisms (see [5–7]). Notions and notations that are not defined are taken from
these references.

2. Definitions and results

Suppose X = {x1, . . . , xm} is an alphabet with m ≥ 1 letters. If w ∈ X∗, then
#xi(w) is the number of occurrences of the letter xi in w. The Parikh mapping
ψ : X∗ −→ Nm is defined by

ψ(w) = (#x1(w), . . . ,#xm(w)), w ∈ X∗.

The length of a word w ∈ X∗ is denoted by |w|. The length of the empty word ε
equals zero. The first letter of a nonempty word w ∈ X∗ is denoted by first(w).

If u, v ∈ X∗ are words and there is a word w ∈ X∗ such that uw = v, we say
that u is a prefix of v. If u ∈ X∗ and p is a positive integer, we denote by prefp(u)
the prefix of u having length p. If |u| < p, it is understood that prefp(u) = u. This
notation is extended in a natural way for pairs of words. Hence, if (u, v) ∈ X∗×X∗

we denote
prefp(u, v) = (prefp(u), prefp(v)).

Two words u, v ∈ X∗ are called comparable (with respect to the prefix order) if u
is a prefix of v or vice versa. The longest common prefix of u and v is denoted by
u ∧ v. Further, we denote

u ∗ v =
{

(ε, ε) if u and v are comparable,
((u ∧ v)−1u, (u ∧ v)−1v) otherwise.

Next, let (an)n≥0 be a sequence and let q be a positive integer. We say that q is
a period of (an)n≥0 if there is an integer n0 such that

an+q = an whenever n ≥ n0.

A sequence is called ultimately periodic if it has a period.
The following theorem gives a basic result concerning periodicities in D0L se-

quences (see [2, 3]).

Theorem 2.1. Suppose X is an alphabet, f : X∗ −→ X∗ is a morphism and
u ∈ X∗. There is a positive integer q such that for any positive integer p, q is a
period of the sequence

(prefp(f
n(u)))n≥0.

In this paper we study the iteration of a given morphism on two different words.
If f : X∗ −→ X∗ is a morphism, u, v ∈ X∗ are words and p is a positive integer,
we consider the sequence (prefp(fn(u)∗ fn(v)))n≥0. It was shown in [4] that these
sequences are ultimately periodic. (In [4] it is assumed that ψ(u) = ψ(v).) In this
paper we will study these sequences in more detail. In particular, we will prove
the following result.
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Theorem 2.2. Suppose X is an alphabet and f : X∗ −→ X∗ is a morphism.
There is a positive integer q such that whenever u, v ∈ X∗ are words and p is a
positive integer, then q is a period of the sequence

(prefp(f
n(u) ∗ fn(v)))n≥0. (1)

The proof of Theorem 2.2 is given in the following section. The proof uses two
lemmas from [4], but otherwise we do not assume familiarity with [4].

Let now f : X∗ −→ X∗ be a morphism and let u, v ∈ X∗ be words. For every
nonnegative integer n, define zn = fn(u) ∧ fn(v) and let un, vn ∈ X∗ be words
such that fn(u) = znun and fn(v) = znvn. Then there is a positive integer q such
that for any positive integer p, q is a period of the sequences

(prefp(un))n≥0 and (prefp(vn))n≥0.

To deduce the existence of q from Theorem 2.2, choose a new letter $, extend f
by f($) = $ and consider the words u$ and v$.

3. Proofs

We will prove Theorem 2.2 in two steps. The first subsection contains the main
part of the proof. Without loss of generality we assume that X contains at least
two letters.

3.1. Proof of Theorem 2.2 – a special case

If f : X∗ −→ X∗ is a morphism, a letter a ∈ X is called bounded (with respect
to f) if the length sequence (|fn(a)|)n≥0 is bounded above by a constant. If a ∈ X
is not bounded, then a is called growing. A word w ∈ X∗ is called bounded if no
letter of w is growing.

In this subsection we assume that f : X∗ −→ X∗ is a morphism which has the
following additional properties:

(i) There is a positive integer K such that if x, y ∈ X∗ are nonempty words
and first(x) �= first(y) then |f(x) ∧ f(y)| ≤ K.

(ii) If a ∈ X is a bounded letter, then f(a) = a.
(iii) If a ∈ X is a growing letter, then |f(a)| ≥ 2.

In this subsection we prove Theorem 2.2 for morphisms which share properties
(i)–(iii). To proceed we fix such a morphism f : X∗ −→ X∗.

Let a ∈ X be a growing letter and let an be the first growing letter of fn(a)
for n ≥ 0. Then the sequence (an)n≥0 is ultimately periodic. Hence we can find a
positive integer n0 such that if a, b ∈ X are growing letters and an = bn for some
n ≥ 0, then an0 = bn0 . Denote

M = max
x∈X

|fn0(x)|.
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Lemma 3.1. If a, b ∈ X are growing letters and z ∈ X∗ is a bounded word with
|z| ≥M then fn(a) ∧ fn(zb) is a bounded word for all n ≥ 0.

For the proof of Lemma 3.1 we refer to [4].
Next we define a family of mappings needed for the proof of Theorem 2.2. Let

M be as above. Denote N = K(M + K) where K is as in (i). First, define
the mapping τ1 : X∗ −→ X∗ as follows. If w ∈ X∗ contains M + K consecutive
bounded letters, then τ1(w) is the shortest prefix of w ending with M+K bounded
letters. Otherwise, τ1(w) = w. Next, the mapping τ2 : X∗ −→ X∗ is defined by

τ2(w) = prefN (w), w ∈ X∗.

Then, define τ : X∗ −→ X∗ as follows. If w ∈ X∗ has a prefix of length M
consisting of bounded letters, τ(w) = prefM (w). Otherwise τ(w) = τ2τ1(w).

Next, we consider pairs of words and extend the mapping τ in a natural way
by setting

τ(u, v) = (τ(u), τ(v)), (u, v) ∈ X∗ ×X∗.
Finally, if (u, v) ∈ X∗ ×X∗, define the mapping ρu,v : N −→ X∗ ×X∗ by

ρu,v(n) = τ(fn(u) ∗ fn(v)), n ≥ 0.

Denote
Λu,v = {ρu,v(n) | n ∈ N}.

Define the set R ⊆ X∗ × X∗ as follows. Let (u, v) ∈ X∗ × X∗ and denote
(un, vn) = fn(u) ∗ fn(v) for n ≥ 0. Then (u, v) ∈ R if and only if ψ(u) = ψ(v)
and for all n ≥ 0 the word un (resp. vn) contains a growing letter and |un| ≥ N
(resp. |vn| ≥ N).

Let (u, v) ∈ R and let n ≥ 0. Write ρu,v(n) = (w1, w2). Then the words wi,
i = 1, 2, satisfy the following conditions:

(1) M ≤ |wi| ≤ N ;
(2) if |wi| = M , then wi is a bounded word;
(3) if M < |wi| < N , then wi ends with M +K bounded letters;
(4) if |wi| = N , either wi does not have a bounded factor of length M + K

or the suffix of wi of length M + K is the only bounded factor of length
M +K of wi.

A pair (u, v) ∈ X∗ ×X∗ is called special if |u| = M or |v| = M .

Lemma 3.2. Suppose (u, v) ∈ R and (x, y) ∈ Λu,v. If w1, w2 ∈ X∗ and (x, y) is
not special, then

τ(f(x) ∗ f(y)) = τ(f(x)w1 ∗ f(y)w2).

For the proof of Lemma 3.2 we again refer to [4].

Lemma 3.3. Suppose (u, v) ∈ R and write ρu,v(n) = (xn, yn) for n ≥ 0. If none
of the pairs (xn, yn), n ≥ 0, is special, then

ρu,v(i+ t) = τ(f t(xi) ∗ f t(yi)) (2)
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for all i ≥ 0 and t ≥ 0.

Proof. If (w1, w2) ∈ X∗ ×X∗, we have τ(w1, w2) = τ(τ(w1 , w2)). Hence

ρu,v(i) = τ(f i(u) ∗ f i(v)) = τ(τ(f i(u) ∗ f i(v))) = τ(xi, yi)

for all i ≥ 0. Consequently, (2) holds for all i ≥ 0 if t = 0.
Suppose then that (2) holds for a fixed pair t ≥ 0, i ≥ 0. In other words

(xi+t, yi+t) = τ(f t(xi) ∗ f t(yi)).

Hence there exist words α, β1, β2 ∈ X∗ such that

f t(xi) = αxi+tβ1, f t(yi) = αyi+tβ2.

Because τ(f i+t(u)∗f i+t(v)) = (xi+t, yi+t), there are words γ, δ1, δ2 ∈ X∗ such that

f i+t(u) = γxi+tδ1, f i+t(v) = γyi+tδ2.

Now we get

ρu,v(i+ t+ 1) = τ(f i+t+1(u) ∗ f i+t+1(v))
= τ(f(γxi+tδ1) ∗ f(γyi+tδ2))
= τ(f(xi+t) ∗ f(yi+t))
= τ(f(α)f(xi+t)f(β1) ∗ f(α)f(yi+t)f(β2))
= τ(f t+1(xi) ∗ f t+1(yi)).

Here the third and fourth equations follow by Lemma 3.2. Consequently, (2) holds
for all i ≥ 0 and t ≥ 0. �

By Theorem 2.1 there is a positive integer q1 such that q1 is a period of the
sequence

(prefp(f
nt(a)))n≥0

for all p ≥ 1, a ∈ X and t < card(X)2N+2. Fix such an integer q1. Then q1 is also
a period of

(prefp(f
nt(w)))n≥0

for all p ≥ 1, w ∈ X∗ and t < card(X)2N+2.

Lemma 3.4. Let (u, v) ∈ R and write ρu,v(n) = (xn, yn) for n ≥ 0. Suppose
none of the pairs (xn, yn), n ≥ 0, is special. Then q1 is a period of (1) for any
positive integer p.

Proof. Because the set Λu,v has less than card(X)2N+2 elements, there are positive
integers i and t such that t < card(X)2N+2 and

ρu,v(i) = ρu,v(i+ t).
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By Lemma 3.3 we have

(xi, yi) = (xi+t, yi+t) = τ(f t(xi) ∗ f t(yi)).

Hence there exist words α, γ1, γ2 ∈ X∗ such that

f t(xi) = αxiγ1, f t(yi) = αyiγ2.

Let w1, w2 ∈ X∗ be words such that

f i(u) ∗ f i(v) = (xiw1, yiw2).

Then

f i+nt(u) ∗ f i+nt(v) = fnt(xiw1) ∗ fnt(yiw2)

= (xiγ1f
t(γ1) . . . f (n−1)t(γ1)fnt(w1), yiγ2f

t(γ2) . . . f (n−1)t(γ2)fnt(w2))

for n ≥ 1. This implies that q1 is a period of

(prefp(f
i+nt(u) ∗ f i+nt(v)))n≥0

for any p ≥ 1. Because the morphism f has property (i), it follows that q1 is also
a period of (1) for any p ≥ 1. �

Next, define

q2 = max{1, |β| | there are a growing letter c ∈ X, a positive integer
s ≤ card(X)2 and a word γ ∈ X∗ such that fs(c) = βcγ}

and define
q3 = q2! q1.

Lemma 3.5. Let (u, v) ∈ R and write ρu,v(n) = (xn, yn) for n ≥ 0. If there is an
integer n such that (xn, yn) is special, then q3 is a period of (1) for any positive
integer p.

Proof. Suppose that k is a nonnegative integer such that ρu,v(k) = (xk, yk) is
special. Without loss of generality assume that |xk| = M . Hence xk is a bounded
word. Let

fk(u) = αβ1aγ1, fk(v) = αβ2bγ2

where β1, β2 ∈ X∗ are bounded words, a, b ∈ X are growing letters and α, γ1, γ2 ∈
X∗. Furthermore, xk is a prefix of β1 and yk is a prefix of β2bγ2.

If β2 is not empty, then

fk+n(u) ∗ fk+n(v) = fn(β1aγ1) ∗ fn(β2bγ2) = (β1f
n(aγ1), β2f

n(bγ2))

for n ≥ 0. Hence q1 and q3 are periods of (1).
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To proceed assume that β2 is the empty word. Then Lemma 3.1 implies that
fn(β1a)∧ fn(b) is a bounded word for all n ≥ 0. Now, there exist integers k1 ≥ 0,
k2 ≥ 1, growing letters c, d ∈ X , bounded words β3, β4, β5, β6 ∈ X∗ and words
γ3, γ4, γ5, γ6 ∈ X∗ such that k2 ≤ card(X)2 and

fk1(a) = β3cγ3, f
k1(b) = β4dγ4, f

k2(c) = β5cγ5, f
k2(d) = β6dγ6.

(Here we may have c = d.) Hence

fk+k1+nk2(u) ∗ fk+k1+nk2(v) =

β1β3β
n
5 cγ5f

k2(γ5) . . . fnk2−k2(γ5)fnk2(γ3)fk1+nk2(γ1)

∗ β4β
n
6 dγ6f

k2(γ6) . . . fnk2−k2(γ6)fnk2(γ4)fk1+nk2(γ2)

for n ≥ 1. Furthermore, the words β1β3β
n
5 c and β4β

n
6 d are not comparable.

Consequently the sequence

(prefp(f
k+k1+nk2(u) ∗ fk+k1+nk2(v)))n≥0 (3)

has period q3. In fact, if there is an integer n such that β1β3β
n
5 and β4β

n
6 are not

comparable, (3) has period q3. Otherwise, without loss of generality assume that
β1β3β

n
5 is a prefix of β4β

n
6 for all large n, say, if n ≥ n0. Then the sequence

(prefp((β1β3β
n
5 )−1β4β

n
6 ))n≥n0

has period q2! for any p ≥ 1. Because the sequences

(prefp(cγ5f
k2(γ5) . . . fnk2−k2(γ5)fnk2(γ3)fk1+nk2(γ1)))n≥0

and
(prefp(dγ6f

k2(γ6) . . . fnk2−k2(γ6)fnk2(γ4)fk1+nk2(γ2)))n≥0

have period q1 for any p ≥ 1, it follows that (3) has period q3. Because f has
property (i) it again follows that (1) has period q3. �

We have now shown that if f satisfies conditions (i)–(iii) then q3 is a period of
(1) for all p ≥ 1 and for all (u, v) ∈ R.

To proceed, let $ be a new letter. Define X1 = X ∪ {$} and let f1 : X∗
1 −→ X∗

1

be the extension of f defined by f1($) = $. Then f1 satisfies (i)–(iii) and we know
that there are positive integers q and N1 such that q is a period of

(prefp(f
n
1 (u1) ∗ fn

1 (v1)))n≥0 (4)

for all p ≥ 1 and for all u1, v1 ∈ X∗
1 such that ψ(u1) = ψ(v1) and each component

of fn
1 (u1)∗fn

1 (v1) contains a growing letter and has length at least N1 for all n ≥ 0.
Let now u, v ∈ X∗. If there is an integer n such that fn(u) and fn(v) are

comparable, then (1) has period one for all p ≥ 1. Also, if neither u nor v contains
a growing letter, (1) has period one for all p ≥ 1. Assume that fn(u) and fn(v)
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are incomparable for all n ≥ 0 and assume that u or v contains a growing letter.
Now, define

u1 = u$v(uv)N1 , v1 = v$u(vu)N1 .

Then q is a period of (4) for all p ≥ 1. Consequently (1) has period q for all p ≥ 1.
This concludes the proof of Theorem 2.2 for a morphism f which satisfies con-

ditions (i)–(iii).

3.2. Proof of Theorem 2.2 – the general case

We assume that the reader is familiar with elementary morphisms (see [1, 5]).
In particular, recall that an elementary morphism permutes the set of bounded
letters.

Let f : X∗ −→ X∗ be a morphism. Then there exist a positive integer j1, an
alphabet Y and morphisms g1 : X∗ −→ Y ∗, g2 : Y ∗ −→ X∗ such that

f j1 = g2g1

and the morphisms g2 and g1g2 are elementary (see Th. III 2.2 in [5]). Consider
the morphism g1g2 : Y ∗ −→ Y ∗. There exists a positive integer j2 such that

(g1g2)j2(y) = y

if y ∈ Y is a bounded letter with respect to g1g2 and

|(g1g2)j2(y)| ≥ 2

if y ∈ Y is a growing letter with respect to g1g2. Define g = (g1g2)j2 and j = j1j2.
Then

fnj+j1 = g2g
ng1

for n ≥ 0.
Because g satisfies conditions (i)-(iii) of the previous subsection, there is a

positive integer q such that q is a period of

(prefp(g
ng1f

i(u) ∗ gng1f
i(v)))n≥0

for all p ≥ 1, i = 0, 1, . . . , j − 1 and u, v ∈ X∗. Because g2 is elementary, q is also
a period of

(prefp(g2g
ng1f

i(u) ∗ g2gng1f
i(v)))n≥0

for all p ≥ 1, i = 0, 1, . . . , j− 1 and u, v ∈ X∗. In other words, q is also a period of

(prefp(f
nj+j1+i(u) ∗ fnj+j1+i(v)))n≥0

for all p ≥ 1, i = 0, 1, . . . , j − 1 and u, v ∈ X∗. Hence jq is a period of (1) for all
p ≥ 1 and u, v ∈ X∗.

This concludes the proof of Theorem 2.2 in the general case.
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