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RETURNING AND NON-RETURNING PARALLEL
COMMUNICATING FINITE AUTOMATA

ARE EQUIVALENT

Ashish Choudhary1, Kamala Krithivasan2

and Victor Mitrana3, 4

Abstract. A parallel communicating automata system consists of
several automata working independently in parallel and communicating
with each other by request with the aim of recognizing a word. Rather
surprisingly, returning parallel communicating finite automata systems
are equivalent to the non-returning variants. We show this result by
proving the equivalence of both with multihead finite automata. Some
open problems are finally formulated.

Mathematics Subject Classification. 68Q45, 68Q68.

1. Introduction

The idea of considering several automata which work independently in parallel
and cooperate with each other following different strategies with the aim of rec-
ognizing a word, has been considered in many papers. We mention here some of
them: multihead automaton [6, 7], multiprocessor automata [1], parallel communi-
cating automata systems [3,8] and cooperating multi-stack pushdown automata [4].
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Grammar systems introduced as grammatical approaches to some models in the
problem solving theory are based on the same idea, see [2,5] and their references.

We continue in this note the investigation of parallel communicating finite au-
tomata systems introduced in [8] by studying the relationships between return-
ing and non-returning variants. In [8], it is already proved that the families of
languages accepted by multihead finite automata and parallel communicating au-
tomata systems (pcfa for short) are equal. Furthermore, the equality is preserved
with respect to the number of heads and components, respectively. Here we show a
rather unexpected result: for every multihead finite automaton, we can construct
an equivalent returning parallel communicating finite automata system (rpcfa for
short) which accepts the same language as that one accepted by the given multi-
head finite automaton. Again, the relation is invariant with respect to the number
of heads and components, respectively. By the above result, we conclude that pcfa
and rpcfa are equivalent to each other.

The paper is organized as follows. The next section starts with the definitions of
parallel communicating finite automata systems and their cooperation protocols.
Then we recall some already existing results from [8] regarding parallel communi-
cating automata systems and their relationships with multihead finite automata.
Then we give our main result which proves the equivalence of rpcfa and multihead
finite automata. Finally we discuss some open problems.

2. Parallel communicating finite automata systems

We assume the reader to be familiar with the fundamental concepts of formal
language theory and automata theory, particularly the notions of grammars and
finite automata [9].

An alphabet is always a finite set of letters. The set of all words over an alphabet
V is denoted by V ∗. The empty word is written as ε; moreover, V + = V ∗ − {ε}.
For a finite set A we denote by card(A) the cardinality of A.

A parallel communicating finite automata system (PCFA) of degree n is a
construct

A = (V, A1, A2, . . . , An, K)

where:

• V is the input alphabet.
• Each Ai = (Qi, V, fi, qi, Fi), 1 ≤ i ≤ n, is a finite automaton with the set

of states Qi, qi ∈ Qi (the initial state of the automaton Ai), Fi ⊆ Qi (the
set of final states of the automaton Ai) and fi is the transition mapping
of the automaton Ai defined as follows:

fi : Qi × (V ∪ {ε}) → 2Qi .

Note that Qi are not necessarily disjoint sets.
• K = {K1, K2, . . . , Kn} ⊆ ∪n

i=1Qi is the set of query states.
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The automata A1, A2, . . . , An are called the components of the system A. If there
exists just one 1 ≤ i ≤ n such that K ⊆ Qi, then the system is said to be
centralized, the master of this system being the component i. For the sake of
simplicity, whenever a system is centralized, the first component is its master.
If the following conditions

(i) card(fi(s, a)) ≤ 1 for all s ∈ Qi and a ∈ V ∪ {ε};
(ii) if card(fi(s, ε)) �= 0 for some s ∈ Qi, then card(fi(s, a)) = 0
for all a ∈ V ,

are fulfilled for all 1 ≤ i ≤ n, then the automata system is deterministic.
By a configuration of a parallel communicating automata system as above, we

mean a 2n−tuple
(s1, x1, s2, x2, . . . , sn, xn)

where
– si is the current state of the component i;
– xi is the remaining part of the input word which has not been read yet by

the component i, 1 ≤ i ≤ n.
We define two binary relations on the set of all configurations of A in the following
way:

(I) (s1, x1, s2, x2, . . . , sn, xn) � (p1, y1, p2, y2, . . . , pn, yn)

iff one of the two conditions holds:
• K ∩ {s1, s2, . . . , sn} = ∅ and xi = aiyi, ai ∈ V ∪ {ε}, pi ∈ fi(si, ai),

1 ≤ i ≤ n,
• for all 1 ≤ i ≤ n such that si = Kji and sji �∈ K put pi = sji , pr = sr, for

all the other 1 ≤ r ≤ n, and yt = xt, 1 ≤ t ≤ n.

(II) (s1, x1, s2, x2, . . . , sn, xn) �r (p1, y1, p2, y2, . . . , pn, yn)

iff one of the following two conditions holds:
• K ∩ {s1, s2, . . . , sn} = ∅ and xi = aiyi, ai ∈ V ∪ {ε}, pi ∈ fi(si, ai),

1 ≤ i ≤ n,
• for all 1 ≤ i ≤ n such that si = Kji and sji �∈ K put pi = sji , pji = qji , as

well as pr = sr, for all the other 1 ≤ r ≤ n, and yt = xt, 1 ≤ t ≤ n.
The difference between the two relations defined above may be easily noticed when
the current states of some components are query states: these components get into
communication with those components identified by the query states, which are
forced to send their current states, if they are not query states, these states be-
coming the new states of the receiver components. The next states of the sender
components remain the same in the case of relation � whereas they become the
initial states when the relation �r has been applied. A parallel communicating au-
tomata system whose moves are all based on the relation �r is said to be returning.

Informally, the languages accepted by a PCFA A (in the non-returning and
in the returning way), consist of all strings x ∈ V ∗ such that the system starts
in an initial configuration (q1, x, q2, x, . . . , qn, x) and reaches a final configuration,
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that is a configuration of the form (s1, ε, s2, ε, . . . , sn, ε), where si ∈ Fi. Formally

Rec(A) = {x ∈ V ∗|(q1, x, q2, x, . . . , qn, x) �∗ (s1, ε, s2, ε, . . . , sn, ε),
si ∈ Fi, 1 ≤ i ≤ n},

Recr(A) = {x ∈ V ∗|(q1, x, q2, x, . . . , qn, x) �∗
r (s1, ε, s2, ε, . . . , sn, ε),

si ∈ Fi, 1 ≤ i ≤ n}.
We shall denote by:

– rcpcfa(n) - the class of returning centralized parallel communicating finite
automata systems of degree n;

– rpcfa(n) - the class of returning parallel communicating finite automata sys-
tems of degree n;

– cpcfa(n) - the class of centralized parallel communicating finite automata
systems of degree n;

– pcfa(n) - the class of parallel communicating finite automata systems of
degree n.
We add the prefix d in order to denote deterministic variants. If x(n) denotes
a class of automata systems, then X(n) is the class of all languages accepted by
automata systems in the class x. For example, RCPCFA(n) is the class of all
languages accepted by rcpcfa(n) automata systems.

3. Previous results

In this section we recall some of the already existing results related to the
comparison of the computational power of parallel communicating finite automata
and multihead automata from [8]. For technical reasons, we shall use here the
following definition of multihead finite automaton. A (non-deterministic) k−head
finite automaton is a quintuple

A = (k, Q, V, f, q0, F ),

where Q, V, q0, F have the same meaning as for a usual finite automaton, and f
is a mapping from Q × (V ∪ {ε})k into the subsets of Q. The above definition
is essentially similar to that found in [6] and [7]. Thus, q ∈ f(s, a1, a2, . . . , ak)
indicates that the automaton in state s each head i reading ai may enter state q.
The input heads are idealized in the sense that they pass over one another freely
and they are prevented from going off the right end of the input. Moreover, if a
head reads ε, it does not move to right and if it reads a symbol in V , it moves to
the right one square. Acceptance is defined as follows: a string is accepted if the
automaton starts in the initial state with the string on the input tape, all heads
being positioned on the leftmost symbol of the input, and enters, after finitely
many moves, in a final state, the input being completely read by all heads. In all
other cases the input string is rejected. For a multihead finite automaton A as
above denote by Rec(A) the set of all strings accepted by A.
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We denote the class of (deterministic) n-head finite automata by fa(n) (dfa(n))
and the corresponding family of languages by FA(n) (DFA(n)). The following
two theorems are taken from [8].

Theorem 1. Let n ≥ 1.
1. X(n) ⊆ FA(n) for all X ∈ {RCPCFA, RPCFA, CPCFA, PCFA}.
2. X(n) ⊆ DFA(n) for all X ∈ {DRCPCFA, DRPCFA, DCPCFA, DPCFA}.

Theorem 2. Let n ≥ 1.
1. PCFA(n) = FA(n).
2. DPCFA(n) = DFA(n).

4. Equivalence of returning parallel communicating
finite automata systems and multihead finite

automata

In this section we prove the main result of our note. We show that any n-head
automaton can be simulated by an automata system in rpcfa(n).

Theorem 3. FA(n) ⊆ RPCFA(n) for all n ≥ 1.

Proof. Let A = (n, Q, V, f, q0, F ) be an n−head finite automaton (obviously, we
may restrict ourselves to the case n ≥ 2). Construct the rpcfa(n) A = (V, A1, A2,

. . . , An, K), with Ai = (Qi, V, fi, q
(i)
0 , Fi) and K = {Ki | 1 ≤ i ≤ n}. For each i,

1 ≤ i ≤ n, the parameters of Ai are defined by

Qi = Q ∪ Xi ∪ Yi ∪ Zi,

Xi =

⎧⎪⎨
⎪⎩

{Kn}, if i = 1,

{Kn, Ki−1}, if 2 ≤ i ≤ n − 1,

{Kn−1}, if i = n,

Yi =

⎧⎪⎨
⎪⎩

Q × (V ∪ {ε}), if i = 1,

(Q × (V ∪ {ε})i−1) ∪ (Q × (V ∪ {ε})i), if 2 ≤ i ≤ n − 1,

(Q × (V ∪ {ε})n−1) ∪ {p0}, if i = n,

Zi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅, if (1 ≤ i ≤ 2 = n) or (n = 3 ∧ i = 2),

{s(n)
2 }, if i = n = 3,

{s(i)
2 , s

(i)
3 , . . . , s

(i)
n−i}, if n ≥ 3, 1 ≤ i ≤ r,

{s(i)
2 , s

(i)
3 , . . . , s

(i)
i−1}, if n > 3, r < i ≤ n,

where p0 /∈ Q and

r =

{
n
2 , if n is even,
n−1

2 , if n is odd.
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Further on,

q
(i)
0 =

{
q0, if 1 ≤ i ≤ n − 1,
p0, if i = n,

Fi =
{

F, if 1 ≤ i ≤ n − 1,
{p0}, if i = n,

and the transition mappings fi are defined as follows:
• i = 1

f1(q, a) =

⎧⎨
⎩

{(q, a)}, if a ∈ V ∪ {ε}, q ∈ Q,

{(q, a), s(1)
2 }, if a = ε, q ∈ Q, n > 2,

{(q, a), K2}, if a = ε, q ∈ Q, n = 2,

f1(s
(1)
j , ε) =

{
{s(1)

j+1}, if 2 ≤ j ≤ n − 2,

{Kn}, if j = n − 1.

• 2 ≤ i ≤ n − 1

fi((q, a1, a2, . . . , ai−1), b) = {(q, a1, a2, . . . , ai−1, b)}, q ∈ Q,

aj ∈ V ∪ {ε}, 1 ≤ j ≤ i − 1, b ∈ V ∪ {ε}.

We distinguish the following four cases:
Case 1. (i = 2) ∧ (n = 3)

f2(q, ε) = {K1, K3}, q ∈ Q.

Case 2. 2 ≤ i ≤ r, n ≥ 4

fi(q, ε) =

{
{s(i)

2 }, if i > 2, q ∈ Q,

{s(i)
2 , K1}, if i = 2, q ∈ Q,

fi(s
(i)
j , ε) =

{
{s(i)

j+1}, if j ≤ n − i − 1, j �= i − 1,

{s(i)
j+1, Ki−1}, if j = i − 1,

fi(s
(i)
n−i, ε) = {Kn}.

Case 3. (r < i ≤ n − 1) ∧ (n ≥ 4) ∧ (n is even) or (r + 1 < i ≤ n − 1) ∧ (n ≥
4) ∧ (n is odd), where r is defined as above.

fi(q, ε) =

{
{s(i)

2 }, if i < n − 1, q ∈ Q,

{s(i)
2 , Kn}, if i = n − 1, q ∈ Q,

fi(s
(i)
j , ε) =

{
{s(i)

j+1}, if j ≤ i − 2, j �= n − i,

{s(i)
j+1, Kn}, if j = n − i,

fi(s
(i)
i−1, ε) = {Ki−1}.
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Case 4. (i = r + 1) ∧ ((n ≥ 4) ∧ (n is odd))

fr+1(q, ε) = {s(r+1)
2 }, q ∈ Q,

fr+1(s
(r+1)
j , ε) =

{ {s(r+1)
j+1 }, if j ≤ r − 1,

{Kr, Kn}, if j = r.

• i = n

fn((q, a1, a2, . . . , an−1), b) = f(q, a1, a2, . . . , ai−1, b), q ∈ Q,

aj ∈ V ∪ {ε}, 1 ≤ j ≤ n − 1, b ∈ V ∪ {ε},

fn(p0, ε) =
{

{s(n)
2 }, if n ≥ 3,

{K1}, if n = 2,

fn(s(n)
j , ε) =

{
{s(n)

j+1}, if 2 ≤ j ≤ n − 2,

{Kn−1}, if j = n − 1.

In all the other cases not mentioned above each mapping fi, 1 ≤ i ≤ n, returns
the empty set.

We give some explanations about the working mode of the system. The first
component being in a state from Q, either effectively reads an input symbol or ε
and “stores” this symbol or ε in the current state. This state is sent to the second
component which has just asked for it. Since this is a rpcfa(n), after sending its
current state to the second component, the first component goes back to its initial
state. We now force the first component to go from its initial state to the waiting
state s

(1)
2 through an ε− move, otherwise the system will get stuck into a deadlock.

Indeed, the second component cannot continue its work being in a state from Q1

other than a state of the form (q, a) for some state q ∈ Q and a ∈ V ∪ {ε}. On
the other hand, if the second component has not issued its query to the first one,
the system is blocked since the first component cannot continue its work in a state
from Q × (V ∪ {ε}). It remains one more possibility, namely the first component
enters the state s

(1)
2 and the second one has not issued any query. This case will

be analyzed later. Note that this case cannot hold for n = 2. The beginning of a
computation in the case n = 2 looks as follows:

(q0, ax, p0, ax) �r ((q0, a), x, K1, ax) �r (q0, x, (q0, a), ax) �r

(K2, x, f(q0, a, a), x) �r (f(q0, a, a), x, p0, x) �r . . .

The second component, in its turn, does the same, namely stores, the symbol read
by its reading head in the current state, besides the symbol stored by the first
component, and sends this new state to the third component which has just asked
for it. After sending its state to the third component, the second component goes
to the initial state as this is a rpcfa(n). We now force the second component to
go from its initial state to the waiting state s

(2)
2 through an ε−move, otherwise the
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system will get stuck again into a deadlock. The remaining case from above can
be continued in only one way: the second component enters s

(2)
3 while the third

one enters s
(3)
2 .

The process goes on this way until the last component receives the state which
encodes the state of the first component when the process started as well as all
symbols read, in turn, by all the other components so far. Now, according to the
transition mapping of the n−head finite automaton the last component enters a
state from Q which is sent to all the other components at the same time. Since this
is a rpcfa(n), after sending this state, the last component goes to its initial state.
Consequently, this is the way in which the system simulates a move in the n−head
finite automaton. Let us now consider the special case. More precisely, since we
are forcing the ith component to go from its initial state to the waiting state s

(i)
2 ,

it may be possible that in the beginning all the components except the last one
may directly go to their corresponding waiting states, but by doing this the system
will get blocked as the last component is expecting a state from Q× (V ∪ {ε})n−1

rather than a waiting state. From the construction itself, we can conclude that
Recr(A) = Rec(A). �

Since RPCFA(n) ⊆ FA(n) (by Th. 1) and by using the first statement of
Theorem 2, we can conclude the following theorem.

Theorem 4. RPCFA(n) = PCFA(n).

5. Conclusion

In this note we have shown that the class of languages accepted by rpcfa(n)
is the same as the class of languages accepted by n−head finite automata. This
result is an extension of the results concerning the comparison of the computa-
tional power of parallel communicating finite automata and multihead automata
from [8]. As a direct consequence of this result as well as some results form [8] we
have shown that the computational power of returning and non-returning parallel
communicating finite automata systems is the same.

We list here some open problems which appear attractive to us.
1. Can the statement of Theorem 3 be extended to deterministic variants?

Remember that DPCFA(n) = DFA(n).
2. What is the relationship between CPCFA(n) and RCPCFA(n)?
3. Can an n−head finite automaton be simulated by an automata system in

cpcfa(n) or rcpcfa(n)?
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