
RAIRO-Inf. Theor. Appl. 39 (2005) 621-639

DOI: 10.1051/ita:2005032

THE ENTROPY OF �LUKASIEWICZ-LANGUAGES ∗

Ludwig Staiger
1

Abstract. The paper presents an elementary approach for the calcu-
lation of the entropy of a class of languages. This approach is based on
the consideration of roots of a real polynomial and is also suitable for
calculating the Bernoulli measure. The class of languages we consider
here is a generalisation of the �Lukasiewicz language.

Mathematics Subject Classification. 68Q30, 68Q45, 94A17.

Introduction

The �Lukasiewicz language (see [1]) is the language defined by the grammar
S → aSS | b. It is a deterministic one-counter language and a prefix-code. In
this paper we are going to generalise this concept in two ways: First we admit
languages generated by grammars S → aSn | b with a ∈ A0, b ∈ A1, where A0

and A1 are disjoint alphabets. The languages thus specified are also deterministic
one-counter prefix-codes. Secondly, we allow substitution of letters of A := A0∪A1

by codewords of a previously given code C̃ (for more details see Sect. 2). This
results in languages which are codes but – depending on the code C̃ – not neces-
sarily context-free and which will be called, in the sequel, generalised �Lukasiewicz
languages.

In the paper [11] a remarkable information-theoretic property of �Lukasiewicz’s
comma-free notation was developed. The languages of well-formed formulas of the
implicational calculus with one variable and one n-ary operation (n ≥ 2) in Polish
parenthesis-free notation have generative capacity h2(n−1

n) where h2 is the usual

Keywords and phrases. Entropy of languages, Bernoulli measure of languages, codes,
�Lukasiewicz language.

∗ A preliminary version appeared in: Developments in Language Theory (W. Kuich, G.
Rozenberg and A. Salomaa Eds.), Lect. Notes Comput. Sci. No. 2295, Springer-Verlag,
Berlin (2002) 155–165.
1 Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik, von-Seckendorff-
Platz 1, D–06099 Halle (Saale), Germany; staiger@informatik.uni-halle.de

c© EDP Sciences 2005

Article published by EDP Sciences and available at http://www.edpsciences.org/ita or http://dx.doi.org/10.1051/ita:2005032

http://www.edpsciences.org/ita
http://dx.doi.org/10.1051/ita:2005032

622 L. STAIGER

Shannon entropy, or, stated in other terms, the languages generated by grammars
S → aSn | b have generative capacity h2(n−1

n).
The main purpose of our investigations is to study the same information the-

oretic aspect of languages as in [3, 5, 9, 11, 14], namely the generative capacity of
languages. This capacity, in language theory called the entropy of languages re-
sembles directly Shannon’s channel capacity (cf. [8]). It measures the amount of
information which must be provided on the average in order to specify a particular
symbol of a word in a language. For a connection of the entropy of languages to
Algorithmic Information Theory see e.g. [12, 15]. In [7] an account of interesting
connections between the entropy of languages and data compression was presented.

After having investigated basic properties of generalised �Lukasiewicz languages
we first calculate their Bernoulli measures in Section 3. Here we derive and in-
vestigate in detail a basic real-valued equation closely related to the measure of
generalised �Lukasiewicz languages.

These investigations turn out to be useful not only for the calculation of the
measure but also for estimating the entropy of generalised �Lukasiewicz languages
which will be carried out in Section 4. In contrast to [11] we do not require the
powerful apparatus of the theory of complex functions utilised there for the more
general task of calculating the entropy of unambiguous context-free languages. We
develop a simpler apparatus based on augmented real functions. As announced
above, this approach applies also to languages which are not necessarily context-
free where the entropy is, in general, not computable [10]. We give also an exact
formula for the entropy of pure �Lukasiewicz languages with arbitrary numbers of
letters representing variables and n-ary operations (n fixed).

The final section deals with the entropy of the star languages (submonoids) of
generalised �Lukasiewicz languages.

Next we introduce the notation used throughout the paper. By N = {0, 1, 2, . . .}
we denote the set of natural numbers. Let X be an alphabet of cardinality # X =
r. By X∗ we denote the set (monoid) of words on X , including the empty word e.
For w, v ∈ X∗ let w ·v be their concatenation. This concatenation product extends
in an obvious way to subsets W,V ⊆ X∗. For a language W let W ∗ :=

⋃

i∈N
W i

be the submonoid of X∗ generated by W , and by Wω := {w1 · · ·wi · · · : wi ∈
W \{e}} we denote the set of infinite strings formed by concatenating words in W .
Furthermore |w| is the length of the word w ∈ X∗ and A(B) is the set of all finite
prefixes of strings in B ⊆ X∗ ∪Xω. We shall abbreviate w ∈ A(η) (η ∈ X∗ ∪Xω)
by w � η.

As usual a language V ⊆ X∗ is called a code provided w1 · · ·wl = v1 · · · vk
for w1, . . . , wl, v1, . . . , vk ∈ V implies l = k and wi = vi. A language V ⊆ X∗

is referred to as an ω-code provided w1 · · ·wi · · · = v1 · · · vi · · · where wi, vi ∈
V implies wi = vi. A code V is said to have a finite delay of decipherability,
provided for every w ∈ V there is an mw ∈ N such that w · v1 · · · vmw � w′ · u, for
v1, . . . , vmw , w

′ ∈ V and u ∈ V ∗, implies w = w′ (cf. [4,13]). As usual, V is called
a prefix code provided v � w implies v = w for v, w ∈ V , that is, V has a finite
delay of decipherability and mw = 0 for every w ∈ V .

THE ENTROPY OF �LUKASIEWICZ-LANGUAGES 623

Every code having a finite delay of decipherability is an ω-code (see [4, 13]). A
simple example of an ω-code having no finite delay of decipherability is the set
V := {a, c}∪{acib : i ∈ N} ⊆ {a, b, c}∗. Here, for the codeword a ∈ V , the number
ma is infinite, whereas mw = 0 for every other word w ∈ V .

1. Pure �Lukasiewicz-languages

In this section we consider languages over a finite or countably infinite alpha-
bet A. Let {A0, A1} be a partition ofA into two nonempty parts and let n ≥ 2. The
pure {A0, A1}-n-�Lukasiewicz-language is defined as the solution of the equation

�̃L = A0 ∪A1 · �̃L
n
. (1)

It is a simple deterministic language (cf. [1], Sect. 6.7) and can be obtained
as

⋃

i∈N
�̃Li where �̃L0 := ∅ and �̃Li+1 := A0 ∪A1 · �̃Li

n
.

{A0, A1}-n-�Lukasiewicz-languages have the following easily verified properties.
For the sake of completeness we give a proof.

Proposition 1.1.

1. �̃L is a prefix code.
2. If w ∈ A∗ and a0 ∈ A0 then w · a|w|·n

0 ∈ �̃L∗.
3. A(�̃L∗) = A∗

Proof.
1. Let v, w ∈ �̃L be a pair of words such that v � w, and |v| + |w| is minimal.

Since A0 ∩ A1 = ∅, we have v, w ∈ A1 · �̃Ln, that is, v = v0 · v1 · · · vn and
w = w0 · w1 · · ·wn where v0, w0 ∈ A1 and vi, wi ∈ �̃L for i ≥ 1. v0 = w0

follows readily. Let i, 1 ≤ i ≤ n, be the smallest index such that vi
= wi.
Hence, either vi is a prefix of wi or vice versa, a contradiction to the length
assumption.

2. We show by induction on i that the assertion holds for every w ∈ Ai.
If w ∈ A0 = {e} then w ∈ �̃L∗. Assume w ∈ Ai+1. Then w = a · u

for a ∈ A and u ∈ Ai. By the induction hypothesis, u · a|u|·n0 ∈ �̃Lm for
suitable m ∈ N. Consequently, u · a|w|·n

0 = u · a(|u|+1)·n
0 ∈ �̃Lm+n has a

decomposition u · a|w|·n
0 = v1 · · · vn · u′ where vj ∈ �̃L and u′ ∈ �̃Lm.

If a ∈ A0 then a · v1 · · · vn · u′ = w · a|w|·n
0 ∈ �̃Lm+n+1 and the assertion

is true. If a ∈ A1 then a · v1 · · · vn ∈ �̃L whence a · v1 · · · vn ·u′ = w ·a|w|·n
0 ∈

�̃Lm+1 and the assertion is also true.
3. Follows from 2. �

Along with �̃L it is useful to consider its derived language K̃ which is defined by
the following equation.

K̃ := A1 ·
⋃n−1

i=0
�̃Li. (2)

624 L. STAIGER

Proposition 1.2.
1. A(�̃L) \ �̃L = K̃∗.
2. Every w ∈ A∗ has a unique factorisation w = v · u where v ∈ �̃L∗ and

u ∈ K̃∗.

Proof.
1. We have A(�̃L) = {e} ∪A0 ∪A1 ·

⋃n−1
i=0 �̃Li ·A(�̃L).

Since �̃L is a prefix code,
⋃n−1
i=0 �̃Li · (A(�̃L) \ �̃L) is the disjoint union of the

sets �̃Li · (A(�̃L) \ �̃L), whence
⋃n−1
i=0 �̃Li · A(�̃L) =

⋃n−1
i=0 �̃Li · (A(�̃L) \ �̃L) ∪ �̃Ln.

Consequently, A(�̃L) \ �̃L = A(�̃L) \ (A0 ∪ A1 · �̃Ln) = {e} ∪ A1 · ⋃n−1
i=0 �̃Li ·

(A(�̃L) \ �̃L). Since e /∈ A1 · ⋃n−1
i=0 �̃Li, this equation has the unique solution

(A1 ·
⋃n−1
i=0 �̃Li)∗.

2. Follows from 1. because for a prefix code C every word in w ∈ A(C∗) has
a unique factorisation w = v · u with v ∈ C∗ and u ∈ A(C) \ C.

�
Proposition 1.3. K̃ is an ω-code having an infinite delay of decipherability.

Proof. Assume that there are subfamilies (wi)i∈N
, (vi)i∈N

of K̃ such that w0 ·
w1 · · · = v0 · v1 · · · and w0
= v0. W.l.o.g. assume w0 to be a proper prefix of v0.
Then, since �̃L and A1 are prefix codes, w0 = x · u0 · · ·uj and v0 = x · u0 · · ·uj′
where x ∈ A1, ui ∈ �̃L and n > j′ > j. Consequently, uj+1 is a prefix of v1 · · · vm
for a sufficiently large m ∈ N which contradicts Proposition 1.1.

The second assertion follows from Lemma 3.5 in [4], because K̃ω ∩ {ξ : ξ ∈
Aω ∧ A(ξ) ⊆ A(K̃)} ⊇ Aω1
= ∅. �

2. The definition of �Lukasiewicz languages

Generalised �Lukasiewicz-languages are constructed from pure �Lukasiewicz-lan-
guages via composition of codes (cf. Sect. I.6 of [2]) as follows. We start with a
code C̃, # C̃ ≥ 2, an alphabet A with # A = # C̃ and an bijective morphism
ψ : A∗ → C̃∗. Let C := ψ(A0) ⊆ C̃ and B := ψ(A1) ⊆ C̃. This partitions the
code C̃ into nonempty parts C and B.

Let �̃L be the {A0, A1}-n-�Lukasiewicz-language and �L := ψ(�̃L). Thus, �L is the
composition of the codes �̃L and C̃ via ψ, �L = C̃ ◦ψ �̃L . Analogously to the previous
section �L is called {C,B}-n-�Lukasiewicz-language. For the sake of brevity, we shall
omit the prefix “{C,B}-n-” when there is no danger of confusion. Throughout the
rest of the paper we suppose C and B to be disjoint nonempty sets for which
C ∪B is a code, and we suppose n to be the composition parameter described in
equation (1).

Utilising the properties of the composition of codes (cf. [2], Sect. 1.6) from
the results of the previous section one can easily derive that �L has the following
properties.

�L = C ∪B · �Ln. (3)

THE ENTROPY OF �LUKASIEWICZ-LANGUAGES 625

Proposition 2.1.
1. �L ⊆ (C ∪B)∗ · C ⊆ (C ∪B)∗.
2. �L is a code, and if C ∪B is a prefix code then �L is also a prefix code.
3. If w ∈ (B ∪ C)∗ and v ∈ C then w · v|w|·n ∈ �L∗.
4. A(�L∗) = A((C ∪B)∗).

It should be mentioned that �L might be a prefix code, even if B and hence C ∪B
are codes having no finite delay of decipherability.

Example 2.2. Let X = {a, b, c}, C := {ac2i+1b : i ∈ N}, B := {a, c} ∪ {ac2ib :
i ∈ N} and n ≥ 2. It is easily seen that C ∪ B as well as B are codes having no
finite delay of decipherability.

Moreover, �L ∩ {c}∗ = ∅ and A(�L∗) ∩ {c}∗ · b = ∅, because each nonempty word
u ∈ �L∗ contains a factor of the form ac2i+1b.

Assume �L to be no prefix code. Then there are w, v ∈ �L such that w =
a · w1 · · ·wn with wj ∈ �L and v has a prefix of the form acjb. Then w1 ∈ {c}∗ or
cjb � w1 which is impossible.

In the same way as above we define the derived language K as K := C̃ ◦ψ K̃,
and we obtain the following.

K := B ·
⋃n−1

i=0
�Li. (4)

Propositions 1.2.2 and 1.3 prove that the language K is related to �L via the fol-
lowing properties.

Theorem 2.3.
1. A(�L) = K∗ · A(C ∪B).
2. Every w ∈ (C ∪B)∗ has a unique factorisation w = v ·u where v ∈ �L∗ and

u ∈ K∗.
3. K is a code having an infinite delay of decipherability.

3. The measure of �Lukasiewicz languages

In this section we consider the measure of �Lukasiewicz languages. Measures of
languages were considered in Chapters 1.4 and 2.7 of [2]. In particular, we will
consider so-called Bernoulli measures.

3.1. Valuations of languages

As in [6] we call a morphism µ : X∗ → (0,∞) of the monoid X∗ into the
multiplicative monoid of the positive real numbers a valuation. A valuation µ
such that µ(X) =

∑

x∈X µ(x) = 1 is known as Bernoulli measure on X∗ (cf. [2],
Chap. 1.4).

A valuation is usually extended to a mapping µ : 2X
∗ → [0,∞] via µ(W) :=

∑

w∈W µ(w).

626 L. STAIGER

Now consider the measure µ(�L) for a valuation µ on X∗. Since the decomposi-
tion �L = C ∪B · �Ln is unambiguous, we obtain

µ(�L) = µ(C) + µ(B) · µ(�L)n.

The representation �L =
⋃∞
i=1 �Li where �L1 := C and �Li+1 := C ∪ B · �Li allows us

to approximate the measure µ(�L) by the sequence

µ1 := µ(C)
µi+1 := µ(C) + µ(B) · µin
µ(�L) = limi→∞ µi.

We have the following

Theorem 3.1. If the equation λ = µ(C) + µ(B) · λn has a positive solution then
µ(�L) equals its smallest positive solution, otherwise µ(�L) = ∞.

Proof. We have 0 < µ1 < · · · < µi < µi+1 < . . . Let λ0 be the minimal positive
solution of the equation µ(�L) = µ(C) + µ(B) · µ(�L)n. Then 0 < λ0 and if µi < λ0

then µi+1 := µ(C)+µ(B) ·µin < µ(C)+µ(B) ·λn0 = λ0. Consequently, µ(�L) ≤ λ0.
On the other hand, in view of limi→∞ µi+1 = limi→∞(µ(C) + µ(B) · µin) =

µ(C) +µ(B) · (limi→∞ µi)n, the limit limi→∞ µi is a solution of our equation, and
the assertion follows. �

In order to give a more precise evaluation of µ(�L), in the subsequent section we
take a closer look to our basic equation

λ = γ + β · λn, (5)

where γ, β > 0 are positive reals.
In order to estimate µ(K) we observe that the unambiguous representation of

equation (4) yields the formula µ(K) = µ(B) · ∑n−1
i=0 µ(�L)i. Then the following

connection between the valuations µ(�L) and µ(K) is obvious.

Proposition 3.2. It holds µ(�L) = ∞ iff µ(K) = ∞.

3.2. The basic equation λ = γ + β · λn

This section is devoted to a detailed investigation of the solutions of our basic
equation (5). As a result we obtain estimates for the Bernoulli measures of �L and K
as well as a useful tool when we are going to calculate the entropy of �Lukasiewicz
languages in the subsequent sections.

Let λ̄ be an arbitrary positive solution of equation (5). Then we have the
following relationship to the value γ + β.

λ̄ < 1 ⇔ λ̄ < γ + β ,

λ̄ = 1 ⇔ λ̄ = γ + β, and (6)
λ̄ > 1 ⇔ λ̄ > γ + β.

THE ENTROPY OF �LUKASIEWICZ-LANGUAGES 627

f(λ)

γ

γ
n·γ
n−1

λ0 λ̂λmin

λ
�

�

Figure 1. Plot of the function f(λ) in the case of two positive roots.

Proof. We prove only the last equivalence, the other proofs being similar. From
λ̄ = γ + β · λ̄n , in view of λ̄ > 1, we have immediately γ + β < λ̄. Conversely,
γ + β < λ̄ = γ + β · λ̄n implies λ̄ > 1. �

In order to study positive solutions it is convenient to consider the positive
zeroes of the function.

f(λ) = γ + β · λn − λ. (7)

The graph of the function f reveals that f has exactly one minimum at λmin, 0 <
λmin = 1

n−1√βn < ∞ on the positive real axis, the value of which is f(λmin) = γ −
n−1
n · 1

n−1√βn = n−1
n

(
n
n−1 · γ − λmin

)

. Thus it has at most two positive roots λ0, λ̂

which satisfy 0 < λ0 ≤ λmin ≤ λ̂.
We obtain the following necessary and sufficient condition for the existence of

a positive root λ0 and its further properties.

Proposition 3.3. Let γ, β > 0 and let f(λ) = γ + β · λn − λ. The function f has
a positive root if and only if γn−1 · β ≤ (n−1)n−1

nn , and its positive roots satisfy

γ < λ0 ≤ n · γ
n− 1

≤ λmin ≤ λ̂ . (8)

Moreover, f has a positive root provided γ+β ≤ 1, and in this case for its positive
roots λ0 and λ̂ the following equivalences are valid

γ + β < 1 ⇔ λ0 < γ + β < 1 < λ̂ , and
γ + β = 1 ⇔ λ0 = 1 ∨ λ̂ = 1.

(9)

628 L. STAIGER

Proof. As it was mentioned above, the function f has a positive root if and only
if f(λmin) = γ − n−1

n · 1
n−1√βn ≤ 0, that is, if γn−1 · β ≤ (n−1)n−1

nn ·
Since f(λ) > 0 for 0 ≤ λ ≤ γ and f(n·γn−1) = γ · (n

n−1)n ·
(

γn−1 · β − (n−1)n−1

nn

)

,
we have γ < λ0 ≤ n

n−1 · γ provided f has a positive root.
Now, f(1) = γ + β − 1 and f(γ + β) = β((γ + β)n − 1) imply that in case

γ + β ≤ 1 the function f has positive roots satisfying λ0 ≤ γ + β ≤ 1 ≤ λ̂, and in
view of equation (6) its positive roots satisfy equation (9). �

Next, we consider the case f(λmin) = 0, that is, when f has a positive root of
multiplicity two. It turns out that in this case we have some additional restrictions.

Lemma 3.4. Let γ, β > 0. Then the following conditions are equivalent.

(1) γ + β · λn − λ has a positive root of multiplicity two.
(2) γn−1 · β = (n−1)n−1

nn ·
(3) λmin = n

n−1 · γ.
Moreover, each one of the conditions implies γ+ β ≥ 1, and then γ+ β = 1 if and
only if β = 1

n or γ = n−1
n ·

Proof. It is obvious that λmin is a root of f iff f has a multiple positive root. The
condition γn−1 · β = (n−1)n−1

nn is equivalent to f(λmin) = 0.

Now, γn−1 · β = (n−1)n−1

nn iff λmin = 1
n−1√βn = n

n−1 · γ.

From the arithmetic geometric mean inequality we know that n

√

(γ
n−1)n−1 · β

≤ γ+β
n with equality if and only if γ

n−1 = β. Thus, Condition 2 implies γ+ β ≥ 1,

and if γ + β = 1 the identity γn−1 · β = (n−1)n−1

nn holds iff β = 1
n or γ = n−1

n · �

In connection with λ0 we consider the value κ0 := β · ∑n−1
i−0 λ

i
0. This value is

related to µ(K) in the same way as λ0 to µ(�L). In view of β(λn0 − 1) = β · λn0 +
γ − γ − β = λ0 − (γ + β), we have

κ0 =







n · β, if λ0 = 1 and
λ0 − (γ + β)

λ0 − 1
, otherwise.

(10)

As a corollary to equation (10) we obtain the following.

Corollary 3.5. (κ0 − 1) · (λ0 − 1) = 1 − (γ + β).

We obtain our main result on the dependencies between the coefficients of our
basic equation (5) and the values of λ0 and κ0.

Theorem 3.6. Let f(λ) = γ+β ·λn−λ. Then f(λ) has a positive root if and only
if one of the right hand side conditions in equation (11) to (16) holds. Moreover,
the values of its minimum positive root λ0 and the value κ0 := β ·∑n−1

i−0 λ
i
0 depend

THE ENTROPY OF �LUKASIEWICZ-LANGUAGES 629

in the following way from the coefficients γ and β.

λ0 < 1 ∧ κ0 < 1 ⇔ γ + β < 1 (11)

λ0 < 1 ∧ κ0 = 1 ⇔ γ + β = 1 ∧ β > 1
n

(12)

λ0 < 1 ∧ κ0 > 1 ⇔ γ + β > 1 ∧ β > 1
n
∧ f(λmin) ≤ 0 (13)

λ0 = 1 ∧ κ0 < 1 ⇔ γ + β = 1 ∧ β < 1
n

(14)

λ0 = 1 ∧ κ0 = 1 ⇔ γ + β = 1 ∧ β =
1
n

(15)

λ0 > 1 ∧ κ0 < 1 ⇔ γ + β > 1 ∧ β < 1
n
∧ f(λmin) ≤ 0. (16)

The remaining cases λ0 = 1 ∧ κ0 > 1 and λ0 > 1 ∧ κ0 ≥ 1 are impossible.

Proof. The function f has a positive root if and only if f(λmin) ≤ 0. Observe that,
in view of equation (9), γ + β ≤ 1 implies f(λmin) ≤ 0. Moreover, if γ + β > 1
and β = 1

n the function f has no positive root.
Consequently, the six cases on the right hand sides of our equivalences cover the

whole range when f has a positive root and, additionally, are mutually excluding
each other. Thus it suffices to prove the implications from right to left.

Equation (11). If γ + β < 1 then λ0 < 1 (cf. Eq. (9)). Hence, Corol-
lary 3.5 implies κ0 < 1.
Equations (12) and (13). β > 1

n is equivalent to λmin < 1 whence
λ0 < 1 if f(λmin) ≤ 0. Then κ0 = 1, in case of equation (12), and κ0 > 1,
in case of equation (13), follow from Corollary 3.5.
Equation (14). If β < 1

n we have λmin > 1. Thus equation (9) and shows
λ0 = 1. Now, κ0 < 1 follows from equation (10).
Equation (15).This implication is straightforward.
Equation (16). The right hand side is equivalent to f(1) > 0, λmin > 1
and f(λmin) ≤ 0, whence λmin > λ0 > 1. Again from Corollary 3.5 we
obtain κ0 < 1. �

From Theorem 3.6 and equation (6) we obtain the following.

Corollary 3.7. If λ0 > 1 then λ0 > γ + β > 1.

Comparing with the equivalences of Lemma 3.4 we observe that multiple posi-
tive roots are possible only in the cases of equations (13), (15) and (16), and that
in the case of equation (15) we have necessarily multiple positive roots.

3.3. The Bernoulli measure of �Lukasiewicz languages

The last part of Section 3 is an application of the results of the previous sub-
sections to Bernoulli measures. As is well known, a code of Bernoulli measure 1
is maximal (cf. [2]). The results of the previous subsection show the following
necessary and sufficient conditions.

630 L. STAIGER

Theorem 3.8. Let �L = C ∪ B · �L, C,B ⊆ X∗ be a �Lukasiewicz language, K its
derived language and µ : X∗ → (0, 1) a Bernoulli measure. Then µ(�L) = 1 iff
µ(C ∪B) = 1 and µ(B) ≤ 1

n , and µ(K) = 1 iff µ(C ∪B) = 1 and µ(B) ≥ 1
n ·

Thus Theorem 3.8 proves that pure �Lukasiewicz languages �̃L and their derived
languages K̃ are maximal codes.

Resuming the results of Section 3 one can say that in order to achieve maximum
measure for both �Lukasiewicz languages �L and K it is necessary and sufficient to
distribute the measures µ(C) and µ(B) as µ(C) = n−1

n and µ(B) = 1
n , thus

respecting the composition parameter n in the defining equation (1). A bias in
the measure distribution results in a measure loss for at least one of the codes �L
or K.

4. The entropy of �Lukasiewicz languages

In [11] Kuich introduced a powerful apparatus in terms of the theory of complex
functions to calculate the entropy of unambiguous context-free languages.

For our purposes it is sufficient to consider real functions admitting the value
∞. The coincidence of Kuich’s and our approach for �Lukasiewicz languages is
established by Pringsheim’s theorem which states that a power series s(t) =
∑∞

i=0 sit
i, si ≥ 0, with finite radius of convergence rad s has a singular point

at rad s and no singular point with modulus less than rad s. For a more detailed
account see [11], Section 2.

Here and in the subsequent section we show that our apparatus establishes a
general treatise of the entropies of �L, K and their star closures �L∗ and K∗ provided
sufficient information is known about the structure generating functions of the
codes C and B.

4.1. Definition and simple properties

The notion of entropy of languages is based on counting words of equal length.
Therefore, from now on we assume our alphabet X to be finite of cardinality
X = r, r ≥ 2.

For a language W ⊆ X∗ let sW : N → N where sW (n) := # W ∩ Xn be its
structure function, and let

HW = lim sup
n→∞

logr(1 + sW (n))
n

be its entropy (cf. [11]).
Informally, this concept measures the amount of information which must be

provided on the average in order to specify a particular symbol of a word in a
language.

THE ENTROPY OF �LUKASIEWICZ-LANGUAGES 631

The structure generating function corresponding to sW is

sW (t) :=
∑

i∈N
sW (i) · ti. (17)

sW is a power series with convergence radius

radW := lim inf
n→∞

1
n
√

sW (n)
,

and, considered as a real function on [0, radW), it is nondecreasing.
As it was explained above, it is convenient to consider sW also as a function

mapping [0,∞) to [0,∞) ∪ {∞}, where we set

sW (radW) := sup{sW (α) : α < radW} , and (18)
sW (α) := ∞, if α > radW. (19)

Equation (18) is in accordance with Abel’s Limit Theorem which states that for
ai ≥ 0 and r ≥ 0 one has lim

t→r, t<r

∑

i∈N
ai · ti =

∑

i∈N
ai · ri provided

∑

i∈N
ai · ti

converges at t = r.
Having in mind this variant of sW , we observe that sW is a nondecreasing

function which is continuous in the interval (0, radW) and continuous from the
left in the point radW . Moreover, sW is increasing whenever W
⊆ {e}.

If W
⊆ {e} we say that sW reaches the value s at t ∈ [0, radW] iff sW (t) ≤ s
and sW (t′) > s for all t′ > t, that is, for s ∈ [0, sW (radW)) there is a t such that
sW (t) = s and, if sW (radW) < ∞ any value s, sW (radW) ≤ s < ∞, is reached
at radW .

Then the entropy of languages satisfies the following property.

Proposition 4.1.

HW :=
{

0, if W is finite, and
− logr radW, otherwise.

Before we proceed to the calculation of the entropy of �Lukasiewicz languages we
mention still some properties of the entropy of languages which are easily derived
from the fact that sW is a positive series (cf. [5], Prop. VIII.5.5).

Proposition 4.2. Let V,W ⊆ X∗. Then 0 ≤ HW ≤ 1 and, if W and V are
nonempty, we have HW∪V = HW ·V = max{HW ,HV }.
Proof. In fact, 0 ≤ sW (n) ≤ rn, and if W and V are nonempty languages then

max{sV (t), sW (t)} ≤ sV ∪W (t) ≤ 2 · max{sV (t), sW (t)} and
max{sw·V (t), sW ·v(t)} ≤ sV ·W (t) ≤ sV (t) · sW (t)

when v ∈ V and w ∈ W .
Consequently, radV ∪W = radV ·W = min{radV, radW}. �
For the entropy of the star of a language we have the following (cf. [5, 11]).

632 L. STAIGER

Proposition 4.3. If V ⊆ X∗ is a code then

sV ∗(t) =
∑

i∈N
(sV (t))i = 1

1−sV (t) , and

HV ∗ =
{

HV , if sV (radV) ≤ 1, and
− logr inf{γ : sV (γ) = 1}, otherwise.

In general
∑

i∈N
(sW (t))i is only an upper bound to sW∗(t). Hence only in case

sW (t) < 1 one can conclude that sW∗(t) ≤ ∑

i∈N
(sW (t))i <∞ and, consequently,

t ≤ radW ∗. Thus we obtain a sufficient condition for the equality HW = HW∗

depending on the value of sW (radW).

Corollary 4.4. Let W ⊆ X∗. We have HW = HW∗ if sW (radW) ≤ 1, and if W
is a code W ⊆ X∗ it holds HW < HW∗ if and only if sW (radW) > 1.

Property 4.3 and Corollary 4.4 show that the value t1 for which sV (t1) = 1 is
crucial for the calculation of HV ∗ and yields an exact estimate of HV ∗ if V is a
code.

4.2. The calculation of the convergence radius

Property 4.1 showed the close relationship between HW and radW , and Corol-
lary 4.4 proved that the value of sW at the point radW is of importance for the
calculation of the entropy of the star language of W , HW∗ .

Therefore, in this section we are going to estimate the convergence radius of the
power series s�L(t) and simultaneously, the values s�L(rad �L) and sK(rad �L) (observe
that rad �L = rad K in view of (4) and Prop. 4.2). We start with the equation

s�L(t) = sC(t) + sB(t) · s�L(t)n (20)

which follows from the unambiguous representation in equation (3) and the ob-
servation that rad �L = sup{t : s�L(t) < ∞} = inf{t : s�L(t) = ∞}, because the
function s�L(t) is nondecreasing (even increasing on [0, rad �L]).

From Section 3.2 we know that, for fixed t, t < rad �L, the value s�L(t) is one of the
solutions of equation (5) with γ = sC(t) and β = sB(t). Similarly to Theorem 3.1
one can prove the following.

Theorem 4.5. Let t > 0. If equation (5) has a positive solution for γ = sC(t) and
β = sB(t) then s�L(t) = λ0, and if equation (5) has no positive solution then s�L(t)
diverges, that is, s�L(t) = ∞.

This yields an estimate for the convergence radius of s�L(t) as the point at which
the product sC(t)n−1 · sB(t) reaches the value (n−1)n−1

nn ·

rad �L = inf
{
rad (C ∪B)

} ∪
{

t : sC(t)n−1 · sB(t) >
(n− 1)n−1

nn

}

= sup
{

t : sC(t)n−1 · sB(t) ≤ (n− 1)n−1

nn

}

. (21)

THE ENTROPY OF �LUKASIEWICZ-LANGUAGES 633

s�L

sC∪B

1

�

s(t)

� t

t1 rad �L

Figure 2. A typical plot of the structure generating functions
of �L and C ∪B.

Proof. Clearly, s�L(t) converges only if sC(t) and sB(t) converge. If t ≤ rad (C ∪B)
then s�L(t) < ∞ if and only if our basic equation has a solution. This is the case
when f(λmin) ≤ 0, that is, if sC(t)n−1 · sB(t) ≤ (n−1)n−1

nn · �

As s�L(t) <∞ whenever sC(t)n−1 · sB(t) ≤ (n−1)n−1

nn we obtain

s�L(rad �L) <∞. (22)

Using Theorem 4.5 in connection with the results of Section 3.2 we can describe
the behaviour of s�L on [0, rad �L] as follows (see Fig. 2). Observe that sC∪B and s�L

are increasing on [0, radC∪B) and [0, rad �L], respectively. First equation (8) shows

sC(t) < s�L(t) <
n

n− 1
sC(t) for 0 < t < rad �L .

Moreover, from equation (9) we obtain that s�L(t) < sC(t) + sB(t) as long as
sC(t) + sB(t) < 1. The value t1 for which sC(t1) + sB(t1) = 1 is crucial for the
behaviour of s�L:

If s�L(t1) = 1 then s�L(t) > 1 for t1 < t ≤ rad �L and Corollary 3.5 implies that
then s�L(t) > sC(t) + sB(t). On the other hand, if s�L(t1) < 1 then s�L(t) < 1 in the
whole range 0 ≤ t ≤ rad �L, because s�L(t) = 1 implies sC(t) + sB(t) = 1 which is
impossible for t > t1.

We obtain two corollaries to Theorem 4.5 and equation (21) which allow us to
estimate rad �L. The first one follows from Lemma 3.4 and covers also the case
when rad (C ∪B) = ∞.

634 L. STAIGER

Corollary 4.6. If (n−1)n−1

nn ≤ sC(rad (C ∪B))n−1 · sB(rad (C ∪B)) then rad �L is

the solution of the equation sC(t)n−1 · sB(t) = (n−1)n−1

nn ·
In this case sC∪B(rad �L) ≥ 1 and s�L(rad �L) = n

n−1 · sC(rad �L). Moreover, then,
the following conditions are equivalent:

(1) sC∪B(rad �L) = 1;
(2) sB(rad �L) = 1

n ;
(3) sC(rad �L) = n−1

n ; and
(4) s�L(rad �L) = 1.

The second corollary covers the case when (n−1)n−1

nn > sC(t)n−1 · sB(t) for all
t ≤ rad (C ∪B). Here rad (C ∪B) <∞.

Corollary 4.7. We have rad �L = rad (C ∪B) if and only if rad (C ∪B) <∞ and
(n−1)n−1

nn ≥ sC(rad (C ∪B))n−1 · sB(rad (C ∪B)).

If C∪B is a finite prefix code then rad (C∪B) = ∞. In this case rad �L is defined
via sC(rad �L)n−1 · sB(rad �L) = (n−1)n−1

nn . Hence Corollary 4.6 applies. We give an
example that, depending on C and B, all three cases s�L(rad �L) < 1, s�L(rad �L) = 1
and s�L(rad �L) > 1 are possible.

Example 4.8. Fix m ≥ 1 and C ∪ B ⊆ Xm. Then sC(t)n−1 · sB(t) = (# C ·
t)n−1 · # B · t = (n−1)n−1

nn has the minimum positive solution

rad �L = m·n

√
(

n− 1
n · # C

)n−1

· 1
n · # B

,

and, utilising Corollary 4.6, we obtain

s�L(rad �L) =
n

n− 1
· sC(rad �L) =

n

n− 1
· # C · (rad �L)m = n

√

C

(n− 1) · # B
·

Choosing m := 1, X := {a, b, d}, C0 := {a, d} and B0 := {b} and n appropriately
we obtain the above mentioned three cases:

Define the �Lukasiewicz languages �Li (i = 1, 2, 3) via the equation

�Li = {a, d} ∪ {b} · �Li+1
i .

Then we have

i = 1 (n = 2) i = 2 (n = 3) i = 3 (n = 4)

rad �Li 1
2
√

2
1
3

3
8 · 4

√
2
3

s�Li(rad �Li)
√

2 > 1 1 4

√
2
3 < 1

H�Li
h3(1

2) = 3
2 log3 2 h3(2

3) = 1 h3(3
4) = 1

4 log3
2048
27

THE ENTROPY OF �LUKASIEWICZ-LANGUAGES 635

Here hr(p) = −(1 − p) · logr(1 − p) − p · logr
p
r−1 is the r-ary entropy function

well-known from information theory (cf. [8, Sect. 2.3]). This function satisfies
0 ≤ hr(p) ≤ 1 for 0 ≤ p ≤ 1 and hr(p) = 1 iff p = r−1

r ·
Remark 1. If we set m := 1, # B := 1, and C := X \ B, whence # C = r − 1,
we obtain a slight generalisation of Kuich’s example [11, Example 1] (see also [9],
Ex. 4.1) to alphabets of cardinality # X = r ≥ 2, yielding H�L = hr(n−1

n).

In the case of Corollary 4.7 when sC(rad �L)n−1 · sB(rad �L) < (n−1)n−1

nn the
value s�L(rad �L) is a single root of equation (20). Then the results of Section 3.2
show that sB(t) = 1

n and simultaneously sC(t) = n−1
n is impossible for t ≤ rad �L.

The other cases, except for equation (15), listed in Theorem 3.6 are possible. This
can be shown using the �Lukasiewicz languages �Li (i = 1, 2, 3) constructed in Ex-
ample 4.8 as basic codes �Li = C ∪B and splitting them appropriately.

Example 4.9. We let, generally, n := 2 and define our �Lukasiewicz languages
�Li (i = 4, . . . , 8) by

�Li = Ci ∪Bi · �L2
i where

Ci Bi ri := radCi ∪Bi
i = 4 b · {a, d}2 ⊆ �L1 �L1 \ C4 rad �L1 = 1

2
√

2

i = 5 B4 = �L1 \ C4 C4 = b · {a, d}2 rad �L1 = 1
2
√

2

i = 6 {a, d} ⊆ �L2 �L2 \ C6 rad �L2 = 1
3

i = 7 B6 = �L2 \ C6 C6 = {a, d} rad �L2 = 1
3

i = 8 {a, d} ⊆ �L3 �L3 \ C8 rad �L3 = 3
8 · 4

√
2
3

This yields the following values of sCi(ri), sBi(ri), sCi(ri) · sBi(ri) and sCi∪Bi(ri),
where the latter three are compared with the values of 1

n , (n−1)n−1

nn , and 1,
respectively.

sCi(ri) sBi(ri) sCi(ri) · sBi(ri) sCi∪Bi(ri)

i = 4 1
4
√

2

√
2 − 1

4
√

2
> 1/2 1

4 − 1
32 < 1/4

√
2 > 1

i = 5
√

2 − 1
4
√

2
1

4
√

2
< 1/2 1

4 − 1
32 < 1/4

√
2 > 1

i = 6 2
3

1
3 < 1/2 2

9 < 1/4 1

i = 7 1
3

2
3 > 1/2 2

9 < 1/4 1

i = 8 3
4 · 4

√
2
3

1
4 · 4

√
2
3

3
16 ·

√
2
3 < 1/4 4

√
2
3 < 1

636 L. STAIGER

By Corollary 4.7, rad �Li = radCi ∪Bi for i = 4, . . . , 8, and we obtain

s�L4(rad �L4) < 1 according to equation (13),
s�L5(rad �L5) > 1 according to equation (16),
s�L6(rad �L6) = 1 according to equation (14),
s�L7(rad �L7) < 1 according to equation (12), and
s�L8(rad �L8) < 1 according to equation (11).

4.3. The entropies of �L
∗

and K
∗

The previous part of Section 4 was mainly devoted to explain how to give
estimates on the entropy of �L on the basis of the structure generating functions
of the basic codes C and B. As a byproduct we could sometimes achieve some
knowledge about s�L(rad �L).

We are going to explore this situation in more detail in this section.
In particular, we derive estimates for the entropies H�L,HK,H�L∗ and HK∗ relative

to the entropies of the basic code C ∪ B and its star language (C ∪ B)∗. Using
elementary properties of the entropy established in Property 4.2 we obtain

HC∪B ≤ H�L = HK ≤ min{H�L∗ ,HK∗} ≤ max{H�L∗ ,HK∗} = H(C∪B)∗ . (23)

Proof. As C ∪ C · Bn ⊆ �L, B · �L ⊆ K and �L∗ ∪ K∗ ⊆ (C ∪ B)∗, we have HC∪B ≤
H�L ≤ HK ≤ min{H�L∗ ,HK∗} ≤ max{H�L∗ ,HK∗} ≤ H(C∪B)∗

The identity H�L = HK is a consequence of equation (4) and Property 4.2. For
a proof of the inequality max{H�L∗ ,HK∗} ≥ H(C∪B)∗ observe that Theorem 2.3.2
shows �L∗ · K∗ ⊇ (C ∪B)∗, whence Property 4.2 yields the assertion. �

As a byproduct of the subsequent estimates of H�L∗ and HK∗ we get the identity
H�L = HK = min{H�L∗ ,HK∗} (see Cor. 4.11 below), whereas we shall show in
Example 4.12 that the other inequalities in equation (23) are independent of each
other.

Since C ∪B is a code, Corollary 4.4 implies a necessary an sufficient condition
for the entropies in equation (23) to coincide.

Proposition 4.10. The equality HC∪B = H(C∪B)∗ holds if and only if sC∪B(t) < 1
for all t ∈ [0, radC ∪B).

Next we consider the case when sC∪B(t1) = 1 for some t1 ∈ [0, radC ∪B].
We know from the considerations in Section 4.3 and from Property 4.3 that this
value is closely connected to the entropy of the star language �L∗. In particular,
t1 = rad (C ∪B)∗ if t1 exists.

THE ENTROPY OF �LUKASIEWICZ-LANGUAGES 637

The following table shows the dependencies of the values related to the entropies
H�L = HK,H�L∗ and HK∗ from the value which takes on the function sB at our critical
point t1 = rad (C ∪B)∗.

sB(t1) < 1
n sB(t1) = 1

n sB(t1) > 1
n

s�L(t1) = 1 = 1 < 1

sK(t1) < 1 = 1 = 1

s�L(t) for t ∈ (t1, rad �L] > 1 — < 1

sK(t) for t ∈ (t1, rad �L] < 1 — > 1

rad �L = rad K ≥ rad (C ∪B)∗ = rad (C ∪B)∗ ≥ rad (C ∪B)∗

rad �L∗ = rad (C ∪B)∗ = rad (C ∪B)∗ = rad �L

rad K∗ = rad K = rad (C ∪B)∗ = rad (C ∪B)∗

We give some explanations.

Proof. The results of Rows 1 and 2 follow from equations (12), (14), (15), (20)
and the identity sK(t) =

∑n−1
i=0 sB(t) · (s�L(t))i.

Since sC∪B(t) > 1 for t ∈ (t1, rad �L] Rows 3 and 4 follow from equations (13)
and (16). Observe that sB(t1) = 1

n and sC∪B(t1) = 1 imply t1 = rad �L = rad K.
Finally, Properties 4.1 and 4.3 in connection with the preceding rows yield the

results for rad �L∗ and rad K∗. �

We rephrase our results in terms of entropies of the languages �L, K, �L∗ and K∗.

Corollary 4.11. Let sC∪B(t1) = 1. Then the following holds.

(1) If sB(t1) < 1
n then H�L = HK = HK∗ ≤ H�L∗ .

(2) If sB(t1) = 1
n then H�L = HK = HK∗ = H�L∗ .

(3) If sB(t1) > 1
n then H�L = HK = H�L∗ ≤ HK∗ .

In particular, we have always H�L = HK = min{H�L∗ ,HK∗}.

We conclude this section by computing the entropies H�Li
,HKi

,H�L∗
i

and HK∗
i

(i =
1, . . . , 8) for the �Lukasiewicz languages given in Examples 4.8 and 4.9 and their
counterparts Ki := b · ⋃i

j=0 �Lji (i = 1, 2, 3) and Ki := Bi ∪Bi · �Li (i = 4, . . . , 8).
These examples show that all possible cases in equation (23) really occur.

638 L. STAIGER

Example 4.12. We present our results in the table below. The value of t1 is
always 1

3 except for i = 8 when sC8∪B8(radC8 ∪B8) < 1.

n sB(t1) ≶ 1
n HC∪B H�L = HK H�L∗ HK∗ H(C∪B)∗

i = 1 2 1
3 < 1/2 0 h3(1

2) 1 h3(1
2) 1

i = 2 3 1
3 = 1/3 0 1 1 1 1

i = 3 4 1
3 > 1/4 0 h3(3

4) h3(3
4) 1 1

i = 4 2 23
27 > 1/2 h3(1

2) h3(1
2) h3(1

2) 1 1

i = 5 2 4
27 < 1/2 h3(1

2) h3(1
2) 1 h3(1

2) 1

i = 6 2 1
3 < 1/2 1 1 1 1 1

i = 7 2 2
3 > 1/2 1 1 1 1 1

i = 8 2 h3(3
4) h3(3

4) h3(3
4) h3(3

4) h3(3
4)

Observe that 0 < h3(1
2) < 1 and 0 < h3(3

4) < 1.

In conclusion, one should remark that in the case of entropy of �Lukasiewicz
languages a similar situation as in the case of their Bernoulli measures appears.
In order to achieve maximum possible entropy for both �Lukasiewicz languages �L
and K it is necessary and sufficient to choose basic codes C and B whose power
series sC(t) and sB(t) behave in agreement with the composition parameter n of
the �Lukasiewicz language.

Acknowledgements. My thanks are due to Jeanne Devolder who helped me in simplifying
my first rather lengthy proof of Proposition 1.3 and to the unknown referee for many
helpful comments.

References

[1] J.-M. Autebert, J. Berstel and L. Boasson, Context-Free Languages and Pushdown Au-
tomata, in Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa.
Springer-Verlag, Berlin 1 (1997) 111–174.

[2] J. Berstel and D. Perrin, Theory of Codes. Academic Press, Orlando (1985).
[3] N. Chomsky and G.A. Miller, Finite-state languages. Inform. Control 1 (1958) 91–112.
[4] J. Devolder, M. Latteux, I. Litovski and L. Staiger, Codes and Infinite Words. Acta Cyber-

netica 11 (1994) 241–256.
[5] S. Eilenberg, Automata, Languages and Machines, Vol. A. Academic Press, New York

(1974).
[6] H. Fernau, Valuations of Languages, with Applications to Fractal Geometry. Theoret. Com-

put. Sci. 137 (1995) 177–217.
[7] G. Hansel, D. Perrin and I. Simon, Entropy and compression, in STACS’92, edited by

A. Finkel and M. Jantzen. Lect. Notes Comput. Sci. 577 (1992) 515–530.
[8] R. Johannesson, Informations theorie. Addison-Wesley (1992).
[9] J. Justesen and K. Larsen, On Probabilistic Context-Free Grammars that Achieve Capacity.

Inform. Control 29 (1975) 268–285.

THE ENTROPY OF �LUKASIEWICZ-LANGUAGES 639

[10] F.P. Kaminger, The noncomputability of the channel capacity of context-sensitive languages.
Inform. Control 17 (1970) 175–182.

[11] W. Kuich, On the entropy of context-free languages. Inform. Control 16 (1970) 173–200.
[12] M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and its Applications.

Springer-Verlag, New York (1993).
[13] L. Staiger, On infinitary finite length codes. RAIRO-Inf. Theor. Appl. 20 (1986) 483–494.
[14] L. Staiger, Ein Satz über die Entropie von Untermonoiden. Theor. Comput. Sci. 61 (1988)

279–282.
[15] L. Staiger, Kolmogorov complexity and Hausdorff dimension. Inform. Comput. 103 (1993)

159–194.

Communicated by H.J. Hoogeboom.
Received August 7, 2002. Accepted August 5, 2004.

To access this journal online:
www.edpsciences.org

