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ON THE ANALYSIS OF PETRI NETS
AND THEIR SYNTHESIS FROM PROCESS LANGUAGES

Ludwik Czaja1

Abstract. Processes in Place/Transition (P/T) nets are defined in-
ductively by a peculiar numbering of place occurrences. Along with
an associative sequential composition called catenation and a neutral
process, a monoid of processes is obtained. The power algebra of this
monoid contains all process languages with appropriate operations on
them. Hence the problems of analysis and synthesis, analogous to those
in the formal languages and automata theory, arise. Here, the analysis
problem is: for a given P/T net with an initial marking find the set
of all processes the net may evoke. The synthesis problem is: given a
process language L decide if there exists a marked net whose evolutions
(represented by processes) are collected in L and, in the positive case,
find such net and its initial marking. The problems are posed and given
a general solution.

Mathematics Subject Classification. 68Q85.

1. Introduction with a notation of nets

Processes in a Petri net represent its possible evolutions. Intuitively, such a
“trace” of evolution stems from recording any transition at a time of its firing,
along with its neighbourhood, i.e. entry and exit arrows and places. In this
way a process is a structure of occurrences of net constituents. Thus, a net again,
though of a simplified structure: acyclic and, customarily, with no place-branching.
In the process construct proposed here, the latter restriction is partly abandoned,
by permitting forward but no backward place-branches. This is an effect of a
peculiar numbering of place occurrences, that is their identification. Any arrow
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leaving (entering) a place in a process represents removal (insertion) of a token
from (in) respective place in the underlying net. Many works on processes in nets
concern elementary (1-safe) nets, e.g. [5, 20, 26, 29, 30, 32] to mention a few. In
some papers, e.g. [1, 3, 12, 15–17, 24, 31], we find various definitions of process for
Place/Transition nets, that is nets with finite or infinite place capacity. In all of
these definitions a process is constructed for a given net. The approach admitted
here is different: processes are thought to constitute a semantic domain common
to all P/T nets. Their construction proceeds independently of any underlying net,
much in the way words are built from letters by juxtaposition, independently of
any generative device like automaton, grammar or fix-point equations (a similar,
in this respect, but more abstract construction of process is in [33]). The role of a
letter plays here atomic process, which is the earliest occurrence of a transition with
its pre and post places. The role of juxtaposition plays sequential composition of
processes, called catenation. In this way, our process is a sort of an occurrence net
rather than a process in the standard net theory. When extended to maximality,
it corresponds to the notion of unfolding in that theory.

The approach allows for collecting diverse processes into sets – process lan-
guages. Some of such collections, sometimes even single processes as that in
Figure 4.1, do not enjoy the existence of generative nets, while others do. Hence
the synthesis problem: given a process language L decide if there exists a marked
net whose evolutions are collected in L and, in the positive case, find such net and
its initial marking. The problem is given a general solution in Section 3 as well as
the analysis problem: for a given marked net find the set of all its evolutions. Note
that the term “analysis” is used in the sense analogous to the one encountered in
automata theory rather than in Petri nets theory, where it refers to proving prop-
erties. As usually, the motivation for analysis is to provide a formal framework for
discovering properties of dynamic systems by examination of objects they gener-
ate, process languages evoked by nets in particular. Many works are concerned
with this problem [14,22,23,25,27] are but a few examples. A computer aided tool
RELVIEW [2] transforms a given net into an algebraic relation (thus, performs
a sort of analysis), then derives some static and dynamic properties of the net
from this relation. On the other hand, the synthesis provides a mechanism for
construction of systems starting from atomic processes and a specification of their
permissible (partial) ordering by any measure of time. Here, such specification is
expressed by process languages. It should be noticed that there are a number of
other kinds of net synthesis, for instance, from incomplete specification given by
(pairs of) regular languages and from deterministic stack automata [11], from tran-
sition systems [4,14,28] from the so-called prexes (predicate expressions) [19], etc.
In fact, analysis and synthesis consist in moving between descriptive formalisms.

In this paper we limit our considerations to Place/Transition nets with un-
bounded capacity of places and arrow weights equal 1 and to moving between nets
and process languages. Extension of this approach to fully general P/T nets turns
out straightforward and has been shown in [18] as an exercise. This is achieved
by defining transition t as a pair of multisets •t, t• : X → N (instead of sets)
with X – a universe of places and •t(x) and t•(x) interpreted as weights of arrows
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x → t and t → x respectively. Then, accordingly redefining the concept of
process: atomic processes involve, in this case, weighted arrows. Catenation of
processes remains as it is here. For simplicity, we limit the considerations to the
usage of the elementary calculus of sets instead of multisets. In general case, some
results must be slightly redefined, e.g. the analysis remains correct for the pure
transitions only (with no self-loops). The approach is motivated by simplicity of
the proposed solution to the analysis and synthesis tasks, due to the non-standard
construction of process. It is not difficult to find examples of process languages
having no generating nets. A trivial example is any set of processes which is not
prefix-closed. Also, the set of processes in Figures 2.2–2.4 with all their prefixes
is not net-generable. A not so trivial example is the set of all finite prefixes of
the infinite process in Figure 4.1. Specific examples of non-net-generable process
languages may be provided by the aid of Theorem 3.3.

Further in this Introduction a notation of nets and its graphical presentation is
outlined. Section 2 exposes definition of finite process, catenation of processes, dis-
cusses their peculiarities and provides some properties of these concepts. Section 3
is the main one: its subject is nets with initial marking and analysis/synthesis
problems. Section 4 contains hints toward extension of the former results to infi-
nite processes and Section 5 – some remarks, possibly for further investigations.

Nets

Let X be a non-empty set (universe of net-places for all nets). A transition
over X is a pair t = (•t, t•) with the sets •t, t• ⊆ X, •t 6= ∅ 6= t•, called, respectively,
a pre-set and post-set of t. Transition t is pure iff •t∩ t• = ∅, which means it does
not involve any loop. By T the universe of all transitions is denoted, the set of all
finite (infinite) sequences of transitions, empty sequence λ including, is T∗ (Tω).
Let T∞ = T∗ ∪ Tω . Unmarked nets are subsets of T, denoted T, possibly with
indices. A marking is a function M : X → N where N is the set of all natural
numbers, 0 including. Markings will be treated as multisets over X and usual
operations +, - and comparison ≤ applied component-wise to them. The set NX

of all markings is denoted by M. A marked net is a pair N = (T, M) with T ⊆ T,
M ∈ M. Semantics of a transition t is a binary relation [[t]] ⊆ M × M defined
by: (M, M ′) ∈ [[t]] iff •t ≤ M ∧ M ′ = M− •t + t•. Semantics of a net T ⊆ T
is a binary relation [[T ]] =

⋃
t∈T

[[t]]. Additionally [[∅]] = ∅. The reflexive and

transitive closure [[T ]]∗ is a reachability relation in M. A sequence of transitions
U = t1t2t3... ∈ T∞ is a firing sequence if there are markings M0, M1, M2, ... such
that (Mj−1, Mj) ∈ [[tj ]]for j = 1, 2, 3, ... . Directly from these definitions we get:

Proposition 1.1. [[T1∪T2]] = [[T1]]∪ [[T2]], [[T1∩T2]] = [[T1]]∩ [[T2]], for any
unmarked nets T1, T2 ⊆ T.

A graphical representation of transitions and nets explains the following exam-
ple. Transitions t = ({b}, {a}), u = ({a}, {b, e}), v = ({d, e}, {c}), w = ({c}, {d}),
are drawn in Figure 1.1.
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Figure 1.1

Figure 1.2

Nets Tprod = {t, u}, Tcons = {v, w}, representing a system of producers and
consumers respectively, are drawn in Figure 1.2.

The set of transitions Tprodcons = Tprod ∪ Tcons = {t, u, v, w} representing
a producers/consumers system with unbounded buffer e is drawn as the net in
Figure 1.3.

Figure 1.3

2. Monoid of finite processes

Definition 2.1 (Atomic process. Set PR0). Let X be a set (net-places). An
atomic process is a singleton (one-element) set ε = {(A × {0}, B × {1})}, where
A, B ⊆ X, A 6= ∅ 6= B. Sets A × {0}, B × {1} are called a pre-set and post-set
of ε respectively. Denote •ε = A, ε• = B, Yε = A × {0} ∪ B × {1} and define a
function I ε : X → {0, 1} by:

Iε(x) =
{

1 if x ∈ ε•

0 if x /∈ ε•.

Say that ε corresponds to transition t = (A, B) ∈ T and, to stress this, write εt.
The set of all atomic processes, atoms in short, is denoted PR0.
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Example 2.1.

εt = {({〈b, 0〉}, {〈a, 1〉})}
εu = {({〈a, 0〉}, {〈b, 1〉, 〈e, 1〉})}
εv = {({〈d, 0〉, 〈e, 0〉}, {〈c, 1〉})}
εw = {({〈c, 0〉}, {〈d, 1〉})}·

Pictorially, these atoms, corresponding to transitions t, u, v, w from Figure 1.1,
are represented in Figure 2.1.

Figure 2.1

Definition 2.2 (Finite process. Set PRfin).
1. Atomic process ε and the empty set ∅ are finite processes. Assume Y∅ = ∅

and I ∅(x) = 0 for each x ∈ X.
2. Let α be a finite process already defined and ε an atomic process. Thus,

the set Yα and the function I α: X → N are defined. Then, the ε-successor
of α defined as sucε(α) = α∪εα is a finite process, where εα is ε with each
pair 〈x, k〉 ∈ Yε (k ∈ {0, 1}) replaced by 〈x, k + Iα(x)〉 (say: εα is a shift
of ε by α). Obviously, sucε(∅) = ε. Define:

α⊗ ε = sucε(α)

Yα⊗ε = Yα ∪ Yεα where Yεα is Yε with each pair 〈x, k〉 ∈ Yε (k ∈ {0, 1})
replaced by 〈x, k + Iα(x)〉

Iα⊗ε(x) = Iα(x) + Iε(x)

Yα is the set of process-places in α. If 〈x, k〉 ∈ Yα then the process-place
〈x, k〉 is an occurrence of the net-place x in α and k is an occurrence
number of x. Iα(x) is the greatest occurrence number of x in α, that is,
Iα(x) = sup{k|〈x, k〉 ∈ Yα}. The set of all finite processes is denoted PRfin.
Therefore, PRfin is the least set with PR0∪{∅} ⊆ PRfin and closed under
all the ε-successors.

Remarks. (1) This definition allows to unconditionally compute successors of
any finite process. This corresponds to the situation that processes from PRfin

represent evolutions of nets with unbounded place-capacity and infinite number of
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tokens in each place. Thus, the universe of processes PRfin plays similar part as
a set of all (finite) words over a given alphabet in the theory of formal languages.
Here, PR0 plays, obviously, part of the alphabet. This is not so with processes
generated by marked nets and with infinite processes – which will be considered
later.

(2) The computational features of the process construct are explained later, fol-
lowing a number of examples and simple formal properties.

(3) A different but equivalent definition of process is in [10]. It encompasses both
finite and infinite processes.

Examples of three finite processes composed of atoms from Figure 2.1 are in
Figure 2.2, Figure 2.3, Figure 2.4; obviously, these processes represent three dif-
ferent evolutions of the net in Figure 1.3.

Figure 2.2. This process requires initially at least one token in
places a and c.

Figure 2.3. This process requires initially at least one token in
places a and c.

Figure 2.4. This process requires initially at least three tokens
in place b and two in d.
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Definition 2.3 (Catenation ⊗ of finite processes. Neutral process 1). Let α, β ∈
PRfin and ε ∈ PR0. Catenation ⊗ is defined inductively by:

α⊗ ∅ = α

α⊗ ε = sucε(α)

α⊗ sucε(β) = sucε(α⊗ β).

Since ∅ ⊗ α = α, the empty set is neutral for ⊗. Thus, we use denotation 1 for ∅.
Remarks. Symbol ⊗ has been used for catenation in a number of papers (on
similar concept of process for various kind of nets) preceding the present one,
e.g. [8–10] among others. In [8,9], where processes (in 1-safe nets) with a norm have
been considered, the symbol � is used for a certain redefined sort of catenation.

Proposition 2.1. Catenation of finite processes is associative: α ⊗ (β ⊗ γ)
= (α⊗ β)⊗ γ.

For the proof, valid for finite and infinite processes, see Theorem 4.1.

Corollary 2.1. Mfin = (PRfin,⊗,1) is a monoid.

Definition 2.4 (Shift βα). For processes β, α let βα be β with each pair 〈x, k〉 ∈
Yβ replaced by 〈x, k+I α(x)〉. That is, βα is β with net-place occurrence numbers
incremented or shifted by values of I α.

Definitions 2.2–2.4 and Proposition 2.1 directly imply:

Proposition 2.2. Any finite process is either 1 or a catenation of a number of
atomic processes and:

(a) if m ≤ n then ε1 ⊗ ε2 ⊗ ... ⊗ εm ⊆ ε1 ⊗ ε2 ⊗ ... ⊗ εn for any atomic
processes εj;

(b)
n⋃

j=1

ε1 ⊗ ε2 ⊗ ...⊗ εj = ε1 ⊗ ε2 ⊗ ...⊗ εn;

(c) α⊗ β = α ∪ βα for any α, β ∈ PRfin.

Note that if εt, εu, εv, εw are atoms in Figure 2.1 then the process in Figure 2.2 is:
εu⊗ εw⊗ εt⊗ εv⊗ εu⊗ εw⊗ εv, the process in Figure 2.3 is: εu⊗ εt⊗ εw⊗ εu⊗ εv

and the process in Figure 2.4 is: εt ⊗ εt ⊗ εt ⊗ εu ⊗ εu ⊗ εv ⊗ εv.

Proposition 2.3. ε⊗ δ = δ ⊗ ε ⇔ ε = δ ∨ •ε ∩ δ• = ε•∩ •δ = ε• ∩ δ• = ∅ for
any ε, δ ∈ PR0.

Proof. For ε = δ it holds obviously, so let us assume ε 6= δ and prove ε⊗δ = δ⊗ε ⇔
•ε ∩ δ• = ε•∩ •δ = ε• ∩ δ• = ∅. Note that ε ⊗ δ = δ ⊗ ε ⇒ (ε = εδ ∧ δ = δε).
Indeed, ε ⊆ ε⊗ δ and δ ⊆ δ ⊗ ε, thus ε ∪ δ ⊆ ε⊗ δ ∪ δ ⊗ ε = ε ∪ δε, which implies
δ = δε (since both ε ∪ δ and ε ∪ δε are two-element sets). Similarly, ε = εδ. If
the two-element sets ε ∪ δε and δ ∪ εδ are distinct then obviously either ε 6= εδ

orδ 6= δε. Thus (ε = εδ ∧ δ = δε) ⇔ ε ⊗ δ = δ ⊗ ε. Equations ε = εδ and δ = δε

imply: •ε ∩ δ• = ∅ (x ∈ •ε ∩ δ• prevents ε = εδ), ε•∩ •δ = ∅ (x ∈ ε•∩ •δ
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prevents δ = δε) and ε• ∩ δ• = ∅ (x ∈ ε• ∩ δ• prevents both ε = εδ and δ = δε).
Therefore, ε ⊗ δ = δ ⊗ ε ⇒ •ε ∩ δ• = ε•∩ •δ = ε• ∩ δ• = ∅. Now, suppose
ε⊗ δ 6= δ ⊗ ε, that is either ε 6= εδ or δ 6= δε. If ε 6= εδ then either •ε ∩ δ• 6= ∅ or
ε•∩δ• 6= ∅, if δ 6= δε then either ε•∩ •δ 6= ∅ or ε•∩δ• 6= ∅. Therefore, •ε∩δ• = ε•∩
•δ = ε• ∩ δ• = ∅ ⇒ ε⊗ δ = δ ⊗ ε. �

Proposition 2.3 directly implies:

Theorem 2.1. If α = ε1 ⊗ ε2 ⊗ ... ⊗ εn = δ1 ⊗ δ2 ⊗ ... ⊗ δm where εj (j =
1, 2, ..., n) and δk (k = 1, 2, ..., m) are atomic processes, then sequence δ1, δ2, ..., δm

is a permutation of sequence ε1, ε2, ..., εn (hence n = m). Two consecutive atoms
εj, εj+1 may be swapped without affecting process α iff εj = εj+1 ∨ •εj∩ε•j+1 = ε•j∩
•εj+1 = ε•j ∩ ε•j+1 = ∅.

Let us discuss peculiarity of the notion of process formalised in Definition 2.2
and a relationship between processes and firing sequences.

Action (in)dependence – A general remark

Consider the net in Figure 2.5 with initial and final markings M0 and M respec-
tively, such that M0(a) = 4, M0(b) = M0(c) = 0, M(a) = 0, M(b) = M(c) = 2.

Figure 2.5
Figure 2.6

The net evolves into the process in Figure 2.6 and this one process is described
by each of the following six firing sequences: uuvv, uvuv, uvvu, vvuu, vuvu, vuuv.
Transitions u and v are independent in the sense that order of their firing is
irrelevant for any marking reachable from M0. This is so, however, only if the
notion of actions’ independence is understood with respect to the marking as the
system’s state. To clarify this point of view, let us consider the net in Figure 2.7,
interpreted by actions inscribed into transitions. Let the initial marking be M0

with M0(a) = M0(b) = 1, M0(c) = M0(d) = 0.

Figure 2.7
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Actions x := 0 and x := 2 are mutually independent with respect to the state
being the marking only, because any marking reachable from M0, in particular
the final marking M with M(a) = M(b) = 0, M(c) = M(d) = 1, does not depend
on the order of their execution. However, actions x := 0 and x := 2 are mutually
dependent with respect to the final state composed of M augmented by the value
of integer variable x, as shows the table in Figure 2.8.

Firing sequence Final state Process

x := 0; x := x + 1; x := 2 M, x = 2

x := 2; x := 0; x := x + 1 M, x = 1

x := 0; x := 2; x := x + 1 M, x = 3

x := 2; x := x + 1; x := 0 M, x = 0

Figure 2.8

Obviously, under a different interpretation, transitions ({a}, {c}) and ({b}, {c})
may become independent with respect to the final state (M, x). For instance, if
x := 0 is replaced by x := x and x := x + 1 by x := x2 − 2 then the final state
becomes always (M, 2).

Summarising, the net structure alone enforces (in)dependence of transitions
with respect to the state restricted to its marking component. Their (in)dependence
with respect to the whole state is subject, in general, to the net structure and in-
terpretation. Regarding the example in Figure 2.8, the reader is encouraged to
compare construction of P/T net process in [1, 3, 12, 15, 16] with that given in
Definition 2.2: with the obvious meaning of isomorphism between processes (e.g.
isomorphic are the first two processes as well as the last two), two isomorphism
classes of our processes correspond to processes presented in the mentioned refer-
ences.

Causal dependence in processes

Causal dependence and concurrency of events are directly inferred from the
process construct. Events are process constituents intended to be occurrences of
transitions of an underlying net. They are atomic processes suitably renumbered,
thus of the form {(A × NA, B × NB)} with A, B ⊆ X, NA, NB ⊆ N. Let a
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process α be factorised into atomic processes (Prop. 2.2): α = ε1 ⊗ ε2 ⊗ ...⊗ εn.
To each εj and number j there corresponds a representation ε

αj−1
j (w.r.t. the

factorisation) of an event where αj−1 is the prefix ε1 ⊗ ε2 ⊗ ...⊗ εj−1 (2 ≤ j ≤ n)
of α – recall Definition 2.2 (ε1 represents event {(•ε1 × {0}, ε•1 × {1})}). Thus,
for a fixed factorisation, ε1 ⊗ ε2 ⊗ ... ⊗ εn each event is uniquely determined by
a certain pair (εj , j). It follows from Theorem 2.1 that any other factorisation
determines the same set of events. Event ξ precedes η in a process α (ξ ≺α η) iff
for each factorisation ε1 ⊗ ε2 ⊗ ... ⊗ εn of α, if ξ and η are represented by (εi, i)
and (εj , j) respectively, then i < j. Events ξ and η are concurrent in a process
α iff ¬(ξ ≺α η ∨ η ≺α ξ) and ξ 6= η. For instance, in the process α in Figure 2.9
{({〈c, 0〉}, {〈d, 1〉})} ≺α {({〈d, 1〉}, {〈e, 1〉})}, while event {({〈a, 0〉}, {〈b, 1〉})} is
concurrent to both former events.

Figure 2.9

It should be noticed that sometimes a process may keep the information that one
of two events occurred first despite their appearance as concurrent. An example is
the process in Figure 2.4 where event ξ = {({〈d, 0〉, 〈e, 2〉}, {〈c, 1〉})} precedes η =
{({〈d, 0〉, 〈e, 2〉}, {〈c, 2〉})}, though it looks as if transition v in Figure 1.3 might
have fired twice “at the same time” (the so-called self-concurrence). Their time-
ordering is irrelevant from the computational point of view. This is an artefact
being an outcome of numbering of place occurrences. Obviously, interchanging
〈c, 1〉 and 〈c, 2〉 in Figure 2.4 does not affect the process, thus its graph. This
artefact is one of some features by which our construct of process differs from
other constructs known in the literature.

A correspondence between firing sequences and processes

As the forthcoming Theorem 2.2 states, although many firing sequences (thus
observations of a system activity) may correspond to one and the same process, a
given firing sequence corresponds to exactly one. This is not the case with (at least
some, known to me) standard models of processes. Consider, for instance, again
the table in Figure 2.8. Neglecting occurrence numbers of places in processes in the
second and third rows, two standard (i.e. constructed as in e.g. [1, 16] and many
other publications) distinct processes are obtained. But both processes correspond
to the firing sequence in the second row (as well as to the one in the third row).

Forward place-branching

The next feature of our processes is forward place-branching which is not at
all a nondeterminism: processes developed here are essentially deterministic. Let
us explain it in more detail. Recall again the inductive Definition 2.2. If α is a
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process constructed “so far” and εα – an event then a certain process-place 〈x, k〉
from the pre-set of εα (but not from its post-set!) may turn out identical with a
certain process-place occurring in the “interior” of α (i.e. such that one or more
arrows emanate from it in α). After attachment of εα to α, one more arrow will
emanate from 〈x, k〉 in the extended process α ∪ εα, because each process-place
〈x, k〉 should occur uniquely in the graphical presentation of process (notice that
this way of mapping a set of events onto a picture is exactly the same as mapping
a set of transitions – thus a net – onto a picture as shown in Sect. 1). An exam-
ple is in Figure 2.4: from the process-place 〈b, 0〉 three arrows emanate and from
each of process-places 〈a, 3〉, 〈d, 0〉 and 〈e, 2〉 two arrows emanate. This is inter-
preted as follows. If the net-place b in Figure 1.3 contains three tokens at least,
then transition t = ({b}, {a}) may fire three times; events {({〈b, 0〉}, {〈a, 1〉})},
{({〈b, 0〉}, {〈a, 2〉})} and {({〈b, 0〉}, {〈a, 3〉})} are three consecutive occurrences
(firings) of t; the occurrence numbers 1, 2 and 3 of the net-place a account for
the “time-order” of the firings. If the net-place a contains two tokens at least
then transition u = ({a}, {b, e}) may fire twice; events {({〈a, 3〉}, {〈b, 1〉, 〈e, 1〉})}
and {({〈a, 3〉}, {〈b, 2〉, 〈e, 2〉})} are two consecutive occurrences of u; the occur-
rence numbers 1 and 2 of the net-places b and e account for the “time-order”
of the firings. If the net-places d and e contain at least two tokens each then
transition v = ({d, e}, {c}) may fire twice; events {({〈d, 0〉, 〈e, 2〈}, {〈c, 1〉})} and
{({〈d, 0〉, 〈e, 2〉}, {〈c, 2〉})} are two consecutive occurrences of v; the occurrence
numbers 1 and 2 of the net-place c account for the “time-order” of the firings.

To sum up this peculiar feature deviating our processes from the standard ones,
let us note that although Definition 2.2 is independent of any underlying net, it
is motivated by the “token game” rules as follows. Each time a transition τ is
fired, new occurrences of its post-set places are generated as pairs of the form
〈x, k〉 where k accounts for how many times a token entered the net-place x until
the process reached a stage (“cut” – in the standard terminology) with 〈x, k〉.
In other words, a new process-place 〈x, k〉 (k > 0) is generated when a token
enters x. On the other hand, no new occurrence of a place x from the pre-set
of τ is generated if it has been generated “so far”, except for the case when x did
not take part in the net’s activity yet (〈x, 0〉 is then generated). In other words,
no new occurrence of a place x is generated when a token exits x – save for the
first exit. Therefore, to each process-place one arrow at the most may enter (no
backward process-place branching), while it may happen that more than one arrow
exits it (possible forward process-place branching).

Order of appending atoms

One may also ask why the two arrows emanate from 〈a, 3〉 but not from 〈a, 1〉
or 〈a, 2〉 in Figure 2.4? This is another artefact of the model. It stems from the
process construction: the successor sucε(α) is computed in such a way that the
occurrence numbers of places in the event εα become Iα(x) if x ∈ •ε and 1+Iα(x)
if x ∈ ε• where Iα(x) is the greatest occurrence number of the net-place x in α.
The meaning of this artefact might be seen as follows: to obtain process sucε(α),
among all occurrences 〈x, k〉 in α of the same net-place x, the latest is chosen to
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make the link between α and sucε(α). It is worth noting that occurrence number k
has nothing to do with an order of tokens’ entering or leaving net-place x (tokens
are indistinguishable) but reflects an order of appending atoms in the course of
process construction.

Firing sequences vs. processes

Now, let us, in general, compare P/T net’s behaviour represented by firing se-
quences and processes. The unbounded capacity of places with as many tokens as
needed (nets without initial marking, in fact) imply that the notions of firing se-
quence and arbitrary sequence of transitions coincide. That is why the ε-successor
(Def. 2.2) is unconditionally defined. One may, thus, correctly define a process
generated by a sequence of transitions as a function pr: T∗ → PRfin inductively
specified by:

pr(λ) = ∅, pr(Ut) = pr(U)⊗ {(•t× {0}, t• × {1})} for U ∈ T∗, t ∈ T.

Let two finite firing sequences U and V be given. Define a binary relation ∼ ⊆
T∗ × T∗: U ∼ V iff U = WuvW ′ ∧ V = WvuW ′ ∧ (u = v ∨ •u ∩ v• = u•∩
•v = u• ∩ v• = ∅) for some firing sequences W , W ′ and transitions u, v. Let ∗

∼
(equivalence) be the reflexive and transitive closure of ∼. Readers familiar with
Mazurkiewicz traces [13, 21] will recognise equivalence classes of ∗

∼ as his traces
with the independence relation ∼ \id (id – identity relation).

Theorem 2.2. For any firing sequences U, V ∈ T∗:
(a) pr(UV ) = pr(U)⊗pr(V ), that is, pr is a homomorphism from the monoid

(T∗, ., λ) into (PRfin,⊗, ∅);
(b) U

∗
∼ V ⇔ pr(U) = pr(V ), that is, the quotient monoid (T∗/ ∗

∼
, ., {λ}) and

(PRfin,⊗, ∅) are isomorphic.

Proof of (a). Base: for U and V being λ or a transition, (a) holds obviously.
Inductive hypotheses: V = V ′t, pr(UV ′) = pr(U) ⊗ pr(V ′), pr(V ′t) = pr(V ′) ⊗
pr(t). Then, pr(UV ) = pr(UV ′t) = (by pr definition) pr(UV ′) ⊗ {(•t × {0}, t• ×
{1})} =(by hypotheses and pr definition) pr(U)⊗pr(V ′)⊗pr(t) = pr(U)⊗pr(V ).

Proof of (b). (⇒)-part. Suppose U ∼ V, that is U = WuvW ′∧V = WvuW ′∧(u =
v ∨ •u∩v• = u•∩ •v = u•∩v• = ∅) for some firing sequences W , W ′ and transitions
u, v. By (a): pr(U) = pr(W )⊗ε⊗ δ⊗pr(W ′) and pr(V ) = pr(W )⊗ δ⊗ε⊗pr(W ′)
with ε = pr(u), δ = pr(v), ε, δ ∈ PR0. If u = v then pr(U) = pr(V ), so let u 6= v.
Since •ε = •u, ε• = u• for any atomic process ε = {(•u × {0}, u• × {1})}, with
u ∈ T, thus (by assumption U ∼ V ) •ε ∩ δ• = ε•∩ •δ = ε• ∩ δ• = ∅, hence, by
Proposition 2.3: ε⊗ δ = δ ⊗ ε, therefore, pr(U) = pr(V ). By inductive reasoning,
we get U

∗
∼ V ⇒ pr(U) = pr(V ).

(⇐)-part. Suppose pr(U) = pr(V ). Let U = u1u2...un and V = v1v2...vn, uj , vj ∈
T. By (a): pr(U) = ε1⊗ ε2⊗ ...⊗ εn, pr(V ) = δ1⊗ δ2⊗ ...⊗ δn where εj = pr(uj),
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δj = pr(vj), εj , δj ∈ PR0 and by pr definition: εj = {(•uj × {0}, u•j × {1})},
δj = {(•vj × {0}, v•j × {1})} (j = 1, 2, ..., n). By assumption pr(U) = pr(V ) and
Theorem 2.1, the sequence δ1, δ2, ..., δn is a permutation of ε1, ε2, ..., εn that is, a
composition of transpositions (swaps) of some adjacent ε′s occurring in the latter
sequence and every such transposition preserves the equation pr(U) = pr(V ). If,
ε1 ⊗ ε2 ⊗ ... ⊗ (εk ⊗ εk+1) ⊗ ... ⊗ εn = ε1 ⊗ ε2 ⊗ ... ⊗ (εk+1 ⊗ εk) ⊗ ... ⊗ εn then
εk ⊗ εk+1 = εk+1 ⊗ εk thus, by Proposition 2.3: εk = εk+1 ∨ •εk ∩ ε•k+1 = ε•k∩•εk+1 = ε•k ∩ ε•k+1 = ∅. This implies uk = uk+1 ∨ •uk ∩ u•k+1 = u•k∩ •uk+1 =
u•k ∩ u•k+1 = ∅, that is, u1u2...ukuk+1...un ∼ u1u2...uk+1uk...un. Therefore, by
composing such permitted transpositions, we get U

∗
∼ V. �

3. Marked net processes. Analysis and synthesis

The processes in Section 2 have been defined without relating them to a partic-
ular P/T net. The approach was like that in the theory of formal languages, where
words are defined regardless of their generative devices like automata, grammars or
fix-point equations. An example of this approach, closer to the field of concurrency,
is the trace theory [13]. Such mutual independence of processes and generative
nets, of their initial marking in particular, makes the ε-successor (Def. 2.2) oper-
ation unconditionally performable: it is always possible to attach an atom to a
finite process α. Note that this is as if a net whose evolution the process might
represent were marked with infinite number of tokens in each place. In fact, for any
net-place x the difference between the number of arrows going out of and coming
into each of its occurrence 〈x, k〉 ∈ Yα in each prefix of the process α must never
exceed the initial number of tokens in x in the underlying net. Before defining the
set of finite processes generated by marked P/T nets let us introduce denotations:

Let a finite process α = ε1 ⊗ ε2 ⊗ ... ⊗ εn, εj ∈ PR0, j = 1, 2, ..., n be given
(recall Prop. 2.2). Characteristic function of a set A is defined as χA(x) = 1 for
x ∈ A and χA(x) = 0 for x /∈ A. Denote:

Oα(x) =
n∑

j=1

χ•εj (x) number of arrows going out of all 〈x, k〉 in α

Iα(x) =
n∑

j=1

χε•j (x) number of arrows coming into all 〈x, k〉 in α.

For α =1 assume Oα(x) = Iα(x) = 0 for any x.

FOLD(α) =
n⋃

j=1

{(•εj , ε
•
j )}. Folding of α, that is, the set of projections of tran-

sitions of α (α is treated as a net over X × N) onto X. For instance, projection
of process transition ({〈a, 0〉}, {〈b, 1〉}) over X × N onto X is the net transition
({a}, {b}) over X.

For α =1 assume FOLD(α) = ∅.
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Functions Oα, Iα and FOLD are correctly defined since they do not depend on
factorisation of α into atoms. Oα, Iα are treated as multisets and operations +,
− and comparison ≤ on multisets will be applied to them.

A finite process β is a prefix of α iff α = β ⊗ γ for a certain finite process γ.
PREF (α) denotes the set of all prefixes of α and for L ⊆ PRfin : PREF (L) =⋃
α∈L

PREF (α). Let us recall that a marked net is N = (T, M) where T ⊆ T,

and M : X → N is an initial marking.

Definition 3.1 (Atomic and finite processes generated by a marked net). Let a
marked net N = (T, M) be given. The set of atomic and, respectively, finite
processes generated by N is:

PR0[N ] = {ε ∈ PR0| FOLD(ε) ⊆ T ∧Oε − Iε ≤ M}
PRfin[N ] = {α ∈ PRfin| FOLD(α) ⊆ T ∧ ∀β ∈ PREF (α) : Oβ − Iβ ≤ M}·

Remarks. (1) M(x) − (Oα(x) − Iα(x)) is a number of tokens collected in the
place x in effect of generating process α. M − (Oα − Iα) is a marking reached
from M in effect of generating process α.

(2) It should be noticed that Definition 3.1 would not be correct for nets with
arbitrary arrow weights. In that case it should be strenghten by assumig each
transition to be pure, i.e. •t ∩ t• = ∅.
For instance, consider the net Tprodcons in Figure 1.3 with marking

M =
a b c d e
1 0 1 0 0 . Let γ, δ, η be processes depicted in Figures 2.2, 2.3 and

2.4 respectively. Then γ, δ ∈ PRfin[Tprodcons, M ], but η /∈ PRfin[Tprodcons, M ].
Indeed, it may be checked that Oβ − Iβ ≤ M for each prefix β of γ and δ, but

e.g. Oη − Iη 
 M. For M ′ =
a b c d e
0 3 0 2 0

we have for each prefix β of η :

Oβ − Iβ ≤ M ′ thus η ∈ PRfin[Tprodcons, M
′].

Recall from the Petri net theory that for an unmarked net T (with all the arrow
weights equal 1), the incidence matrix T of T is a matrix with rows corresponding
to places, columns - to transitions (ordered in a fixed way) in T and

T [x, t] =




+1 if x ∈ t•\•t
−1 if x ∈ •t\t•
0 else.

Given a marked net N = (T, M), let α ∈ PRfin[N ] with α = ε1⊗ε2⊗...⊗εn, εj ∈
PR0[N ]. Let α denote a vector whose components α[t] correspond to transitions
t ∈ T ordered as in the matrix T and α[t] = number of indices j in ε1⊗ε2⊗...⊗εn

with (•εj , ε
•
j) = t. That is, α[t] is a number saying how many times the transition t

has been fired in effect of generating process α. Note that due to the Theorem 2.1,
α does not depend on factorisation of α into atoms.
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Example 3.1. For the net Tprodcons in Figure 1.3 and process α in Figure 2.2:

Tprodcons =

t u v w
a +1 −1 0 0
b −1 +1 0 0
c 0 0 +1 −1
d 0 0 −1 +1
e 0 +1 −1 0

α =
t u v w
1 2 2 2

Theorem 3.1. Let a marked net N = (T, M) and a process α ∈ PRfin[N ] be
given. Then T ·α = Iα −Oα.

Proof. Let α = ε1 ⊗ ε2 ⊗ ...⊗ εn ∈ PRfin[N ], for some εj ∈ PR0. By definition
of T : T [x, t] = χt•(x)− χ•t(x). Thus, the inner product

∑
t∈T T [x, t] · α[t] equals∑

t∈T χt•(x) · α[t] − ∑
t∈T χ•t(x) · α[t]. But

∑
t∈T χt•(x) · α[t] is the number of

tokens added to place x in effect of generating process α and
∑

t∈T χ•t(x)·α[t] is the
number of tokens removed from x in effect of generating α. Hence,

∑
t∈T χt•(x) ·

α[t] =
∑n

j=1 χε•j (x) = Iα(x) and
∑

t∈T χ•t(x) · α[t] =
∑n

j=1 χ•εj (x) = Oα(x).
Therefore (T .α)(x) = Iα(x)−Oα(x). �

Now, we are in a position to state and prove analysis and synthesis problems
for marked P/T nets and languages of finite processes. Let a monoid Mfin =
(PRfin,⊗,1) be given. Its power algebra Sfin = (P(PRfin),∪,⊗, ∅,1) (where
P(PRfin) is the powerset of PRfin) is induced by Mfin as usually, that is by
extending catenation of processes to their sets: A⊗B = {α⊗ β| α ∈ A ∧ β ∈ B}
for A, B ⊆ PRfin. Sets A, B are languages of (finite) processes. The algebra Sfin

is an ω-complete semiring and a number of its laws may be found e.g. in [7–10].
Let us mention the following:

Proposition 3.1. For any countable indexed family of process languages {Aj}j∈I

(I is an index set) and a process language B: B ⊗ ⋃
j∈I

Aj =
⋃

j∈I

B ⊗Aj .

As usually, the closure (a counterpart of the Klenee star) based on catenation ⊗
is defined: for a process language A ⊆ PRfin denote: A0 = {1}, Ak+1 = Ak⊗A,

A⊗ =
∞⋃

k=0

Ak.

The analysis problem is: given a marked net N find PRfin[N ].

Theorem 3.2 (Analysis). For a given marked net N = (T, M):

PRfin[N ] = {α ∈ PR0[T ]⊗| ∀β ∈ PREF (α) : −T · β ≤ M}

where PR0[T ] = {ε ∈ PR0| FOLD(ε) ⊆ T } is the set of atoms (see Def. 2.1
and Ex. 2.1) corresponding to transitions in the net T .

Proof. PRfin[N ] = {α ∈ PRfin| FOLD(α) ⊆ T ∧ ∀β ∈ PREF (α): Oβ − Iβ

≤ M} = (by Th. 3.1) {α ∈ PRfin| FOLD(α) ⊆ T ∧ ∀β ∈ PREF (α): −T · β
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≤ M}. Thus, it remains to check that PR0[T ]⊗ = {α ∈ PRfin| FOLD(α) ⊆ T }.
Indeed, PR0[T ]⊗ = {α ∈ PRfin| ∃ε1, ε2, ..., εn ∈ PR0[T ]: α = ε1 ⊗ ε2 ⊗ ... ⊗
εn} ∪ {1} = {α ∈ PRfin| FOLD(α) ⊆ T } because FOLD(α) =

n⋃
j=1

FOLD(εj)

and FOLD(εj) ⊆ T. �

Corollary. PRfin[T, M ] is the greatest set X of processes α satisfying:

FOLD(α) ⊆ T

X = PREF (X)

X = {α| − T · α ≤ M}·

For example, if N = (Tprodcons, M) with Tprodcons = {t, u, v, w} as in Figure 1.3

and M =
a b c d e
1 0 1 0 0

then PR0[Tprodcons] = {εt, εu, εv, εw} as in Figure 2.1

and PRfin[N ] = {α ∈ {εt, εu, εv, εw}⊗| ∀β ∈ PREF (α): −Tprodcons · β ≤ M}
where matrix Tprodcons is in Example 3.1.

The synthesis problem is: given a process language L ⊆ PRfin decide if there
exists a marked net N such that L = PRfin[N ] and in the positive case find this
net. Say then that L is net-definable.

Remark. Here, we leave aside a formal meaning of the sentence “given a process
language” (but see Sect. 5). The reader may assume any constructive specification
of L, e.g. by a graph grammar or fix-point equations like in [9,10]. What matters
is that the predicate α ∈ L should be decidable.

Proposition 3.2. For a given process language L define the marked net N =
(T, M): T =

⋃
α∈L

FOLD(α), M = inf{M ′| Mα ≤ M ′ for each α ∈ L} where

Mα = inf{M ′| − T .β ≤ M ′ for each prefix β of α} (inf means infimum of this
set, i.e. the greatest lower bound w.r.t. ≤). Then:

(a) L ⊆ PRfin[N ];
(b) the net N is minimal in the sense that T ⊆ T ′ and M ≤ M ′ for any

marked net N ′ = (T ′, M ′) such that L ⊆ PRfin[N ′].

Proof of (a). In accordance with Section 1, T is an unmarked net. If α ∈ L then
FOLD(α) ⊆ T. By Theorem 3.1: Mα = inf{M ′| Oβ − Iβ ≤ M ′ for each prefix β
of α}, hence, by Definition 3.1: α ∈ PRfin[T, Mα], thus α ∈ PRfin[T, M ] (because
Mα ≤ M). Therefore L ⊆ PRfin[N ].

Proof of (b). Evident by definition of N : removing a transition from T or a token
from any place in T (i.e. making T or M smaller than constructed) would exclude
from PRfin[N ] at least one process α ∈ L. �

In general L 6= PRfin[N ] for N defined in Proposition 3.2. For instance,
if L contains exactly the process in Figure 2.2 and all its prefixes then N =
(Tprodcons, M). But N generates much more processes than that in Figure 2.2.
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Theorem 3.3 (Synthesis). Let a process language L be given and let N = (T, M)
be a marked net constructed in Proposition 3.2. Then: L is net-definable iff
L = PRfin[N ].

Proof. If L = PRfin[N ] then L is net-definable by definition. Let L be net-
definable, that is L = PRfin[N ′] for a certain marked net N ′ = (T ′, M ′). By
Proposition 3.2(a): PRfin[N ′] ⊆ PRfin[N ]. By Proposition 3.2(b) N is minimal
among all N ′ such that L ⊆ PRfin[N ′], hence T ⊆ T ′ and M ≤ M ′. But (T ⊆
T ′ ∧ M ≤ M ′) ⇒ PRfin[N ] ⊆ PRfin[N ′]. Indeed, if α ∈ PRfin[N ] then, by
Definition 3.1: FOLD(α) ⊆ T ∧∀β ∈ PREF (α): Oβ−Iβ ≤ M. Thus FOLD(α) ⊆
T ′ ∧ ∀β ∈ PREF (α): Oβ − Iβ ≤ M ′, hence α ∈ PRfin[N ′] implying PRfin[N ] ⊆
PRfin[N ′]. Concluding, L = PRfin[N ′] = PRfin[N ], which ends the proof. �

For example, if L contains exactly processes in Figures 2.2–2.4 and all their
prefixes, then L is not net-definable, since the set PRfin[N ] with N constructed
in Proposition 3.2, contains much more processes than L does.

4. Monoid of finite and infinite processes

Recall Definition 2.2. and Proposition 2.2. Any atomic process is a singleton
set and any finite process is a union of atomic processes with occurrences of places
suitably renumbered. It is represented as a catenation (a total operation!) of
atomic processes. Given an infinite sequence of atomic processes ε1, ε2, ..., εn, ...,
define αn = ε1 ⊗ ε2 ⊗ ... ⊗ εn. Obviously αn ⊆ αn+1 for each n ≥ 1, thus we
have a non-decreasing chain of sets α1 ⊆ α2 ⊆ ... ⊆ αn ⊆ ... each being a finite
process. It is known that such chains have the least upper bounds in the universe
of objects the chains are composed of. For the above chain it is α =

⋃
n≥1

αn called

an infinite join. It is referred to as an infinite process provided that αn ⊂ αn+1

(strict inclusion) for all n. Define:
Yα =

⋃
n≥1

Yαn (this is the set of all pairs 〈x, k〉, i.e. process places in α)

Iα(x) =
∑
n≥1

Iεn(x) (note: this time Iα(x) may equal ∞).

For the infinite process in Figure 4.1 there is no generating Place/Transition net,
that is such, whose evolution this process might represent.

Figure 4.1
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Indeed, a minimal (see Prop. 3.2) marked net generating this process is depicted
in Figure 4.2.

Figure 4.2

However, to generate this process, place a would have to be marked with infin-
itely many tokens, which is not a marking of Place/Transition nets.

Before defining a catenation of arbitrary, also infinite processes, let us assume
some denotations:

For processes β, α let •β• = {x ∈ X| ∃k: 〈x, k〉 ∈ Yβ} (•β• is a projection of
Yβ onto X) and let βα be β with each pair 〈x, k〉 ∈ Yβ replaced by 〈x, k + Iα(x)〉
provided that ∀x ∈ •β•: Iα(x) < ∞. This guarantees a resonable catenating:
α ⊗ β. Note that Iα(x) = sup{k|〈x, k〉 ∈ Yα} (the greatest occurrence number
of x in α – if it is finite and ∞ otherwise). To make catenation ⊗ of arbitrary
processes always defined, let us introduce a “chaotic” process Ω = P(Y) × P(Y)
where Y = X×N. The set Ω is called chaos because some of its subsets are
processes, but, besides, arbitrary sets of pairs (A, B) with A ⊆ Y, B ⊆ Y, are
in Ω. Obviously YΩ = Y and IΩ(x) = ∞ for any x ∈ X. By PRΩ is denoted
the set of all finite and infinite processes along with the chaos Ω. Note that Ω
plays part of annihilating (zero) process for catenation: Ω⊗ α = α⊗Ω = Ω, i.e.
it absorbs any process which it is catenated with, since α ⊆ Ω for each α. On
the other hand, two non-Ω processes may result in Ω when catenated: it happens
when the left process contains infinitely many occurrences of a place and this place
occurs at least once in the right process. In this way the catenation is extended to
arbitrary processes and remains a total operation. Such construct of zero-process
Ω turned out beneficial to some techniques used in a calculus of process languages
developed e.g. in [6, 7, 9, 10]. So, we come to the following:

Definition 4.1 (Catenation of arbitrary processes). For α, β ∈ PR:

α⊗ β =
{

α ∪ βα if ∀x ∈ •β• : Iα(x) < ∞
Ω else.
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Example 4.1.

Figure 4.3

Note that β ⊗ α = Ω, because Iβ(c) = ∞ and c ∈ •α•.

Theorem 4.1. Catenation of arbitrary (finite or infinite) processes is associative.

Proof. Firstly, we show that α ⊗ (β ⊗ γ) = Ω ⇔ (α ⊗ β) ⊗ γ = Ω. It may be
assumed that α 6= Ω, β 6= Ω, γ 6= Ω, since otherwise the equivalence holds trivially.
If α⊗ (β⊗ γ) = Ω then β⊗ γ = Ω, which means that Iβ(x) = ∞ for a certain x ∈
•γ•. But then Iβ⊗γ(x) = ∞, hence (α ⊗ β) ⊗ γ = Ω. The reverse implication is
shown analogously. Therefore, let us assume α⊗(β⊗γ) 6= Ω, thus also (α⊗β)⊗γ 6=
Ω. Since α ⊗ (β ⊗ γ) = α ∪ βα ∪ (γβ)α and (α ⊗ β) ⊗ γ = α ∪ βα ∪ γα∪βα

, what
suffices to be verified is (γβ)α = γα∪βα

. If a pair 〈x, k〉 is in γ (i.e. 〈x, k〉 ∈ Yγ)
then, in effect of shifting γβ, it transforms into the pair 〈x, k + Iβ(x)〉 in γβ

and, further, into the pair 〈x, k + Iβ(x) + Iα(x)〉 in (γβ)α. On the other hand,
since 〈x, k〉 converts into 〈x, k + Iα∪βα(x)〉 in γα∪βα

, it remains to check whether
Iα∪βα(x) = Iβ(x) + Iα(x). If x does not occur either in α or β then the latter
equation holds obviously. Let x occur in α and in β. By definition of the shift βα

we get: Iα∪βα(x) = max(Iα(x), Iβα(x)) = Iβα(x) = Iβ(x) + Iα(x), which ends the
proof. �

Corollary. MΩ = (PRΩ,⊗,1) is a monoid.

With a certain caution for infinite objects, one may state some analogues to
Theorems 2.1 and 2.2 for arbitrary processes. Also, a trivial sort of analysis/synthe-
sis for unmarked P/T nets and arbitrary processes may be established as follows.
For a process language A ⊆ PR let:
A⊗ = {α ∈ PR| ∃n > 0, αj ∈ A (1 ≤ j ≤ n): α = α1 ⊗ α2 ⊗ ...⊗ αn} ∪ {1}
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A ω○ = {α ∈ PR| ∃αj ∈ A (1 ≤ j < ∞): α =
∞⋃

j=1

α1⊗α2⊗ ...⊗αj} (see Prop. 2.2)

A∞○ = A⊗ ∪ A ω○ and for an unmarked net T ⊆ T let PR0[T ] denote the set of
atomic processes as in Definition 2.1 with X restricted to net-places occurring in T
(see also Th. 3.2). Then the set PRΩ[T ] of all processes into which T may evolve is
PR0[T ]∞○. On the other hand, for a given process language L ⊆ PRΩ there exists
an unmarked net evolving into processes in L iff L = (L∩PR0)∞○ and this net is
computed as T =

⋃
α∈L

FOLD(α) (cf. [10]). However, the analysis/synthesis prob-

lems for marked nets and infinite processes require more complex logical means,
since in this case the matrices and vectors may contain ∞ as its entries. Likewise,
dealing with permutations of infinite sequences (recall Th. 2.2) requires stronger
logical means. One enters, in this case, considerations of effectivity (computabil-
ity) of some operations and relations (e.g. relation ∗∼). Moreover, firing sequence
U in Theorem 2.2 would have to be assumed finite, otherwise UV would not be
defined. This paper is limited to finite processes for these problems. Process lan-
guages for 1-safe (elementary) nets, along with analysis/synthesis, may be found
in [6, 7].

5. Concluding remarks

Process languages, i.e. subsets of PRΩ may be specified by various genera-
tive mechanisms, not only by nets. Consider, for instance, the set of all finite
(for simplicity) processes evoked by the net Tprodcons from Figure 1.3 with initial

marking M =
a b c d e
1 0 1 0 0

(see example following Th. 3.2). One may con-

struct a (non-regular) grammar G (with Tprodcons as the set of terminal symbols)
generating a certain set L(G) being the intersection of two sets:

(1) {u}{tu}∗{λ, t} ‖ {w}{vw}∗{λ, v} where ‖ is the shuffle (interleaving) op-
eration on; string languages;

(2) {X ∈ {t, u, v, w}∗| Y (u) ≥ Y (v) for each prefix Y of X} where Y (u) is the
number of occurrences of u in the string Y.

Each process α ∈ PRfin[T ∗
prodcons, M ] is represented by a string Z ∈ L(G)

such that α = pr(Z) and each string from L(G) represents a process from
PRfin[T ∗

prodcons, M ] (recall Th. 2.2 but also Th. 2.1). It follows from Theorem 3.2
that for any finite net T with places marked by infinitely many tokens, the set of
processes is PR0[T ]⊗, thus specifiable by a regular grammar. Some properties of
process languages specified by grammars (in the form of fix-point equations) are
in [9, 10].

The analysis/synthesis problems for nets consist in finding transformations be-
tween marked nets and a representation of corresponding process languages. Re-
sults of Section 3 gave a general outline of the solution only: representation of
process languages is not limited there to one constructive formalism. For instance,
notation for the outcome of analysis (Th. 3.2) was borrowed from semiring Sfin,
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linear algebra and set calculus. Furthermore, synthesis (Th. 3.3), which requires
decision for α ∈ L, was left without constructive specification of the language L.
A linguistic (or algebraic) constructive solution to the analysis/synthesis problems
would consist in providing algorithms of transformation (preserving process lan-
guages) between nets and grammars (or fix-point equations) with catenation ⊗.
This work is in progress. The literature on passing between various system descrip-
tion tools is quite rich – some references are cited in the Introduction. Another
direction of development of approach sketched in this paper is search for possibly
efficient algorithms for the reachability problem. Theorem 2.2 accounts for re-
duced set of processes in comparison with the set of firing sequences. This, along
with peculiar process construction is expected to provide some useful results in
algorithmic verification of reachability, that is of checking (M, M ′) ∈ [[T ]]∗ (see
Introduction), by exploitation of the so-called partial order reduction techniques.
This issue also enjoys rich literature, it is however outside the scope of this paper,
thus not mentioned in the References.

Acknowledgements. I am deeply indebted to the anonymous referees whose remarks made
the final version of this work essentially improved.
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