
Theoretical Informatics and Applications
Theoret. Informatics Appl. 36 (2002) 229–247

DOI: 10.1051/ita:2002011

CHARACTERIZING THE COMPLEXITY OF BOOLEAN
FUNCTIONS REPRESENTED BY WELL-STRUCTURED

GRAPH-DRIVEN PARITY-FBDDS ∗, ∗∗

Henrik Brosenne1, Matthias Homeister1 and
Stephan Waack1

Abstract. We investigate well-structured graph-driven parity-FBDDs,
which strictly generalize the two well-known models parity OBDDs and
well-structured graph-driven FBDDs. The first main result is a charac-
terization of the complexity of Boolean functions represented by well-
structured graph-driven parity-FBDDs in terms of invariants of the
function represented and the graph-ordering used. As a consequence,
we derive a lower bound criterion and prove an exponential lower bound
for certain linear code functions. The second main result of this paper
is a polynomial time algorithm that minimizes the number of nodes in
a graph-driven parity-FBDD.

Mathematics Subject Classification. 68Q10, 68Q60, 68P05.

Introduction

Branching Programs or Binary Decision Diagrams are a well established model
for Boolean functions with applications both in complexity theory and in the
theory of data structures for hardware design and verification.

In complexity theory branching programs are a model of sequential space
bounded computations. Upper and lower bounds on the branching program size

Keywords and phrases: Well-structured graph-driven parity-FBDDs, lower bounds, minimiza-
tion algorithm, complexity theory, data structures for Boolean functions.

∗ Supported by DFG grant Wa766/4-1.
∗∗ This paper is the full version of [3].

1 Institut für Numerische und Angewandte Mathematik, Georg-August-Universität
Göttingen, Lotzestr. 16-18, 37083 Göttingen, Germany;
e-mail: {homeiste,waack}@math.uni-goettingen.de

c© EDP Sciences 2002



230 H. BROSENNE, M. HOMEISTER AND S. WAACK

for explicitly defined functions are upper and lower bounds on the sequential space
complexity of these functions.

Data structures for Boolean functions have to allow succinct representations
of as many Boolean functions as possible. They have to admit algorithms for
the most important operations. Among others, these are minimization, synthesis
and equivalence test (for a survey see [16]). Even if a data structure is of more
theoretical rather than of practical interest, minimization and equivalence test are
of structural significance.

Let Bn denote the set of all Boolean functions of n variables. We regard Bn as
an F2-algebra, where F2 is the prime field of characteristic 2. The product f ∧g or
fg of two functions f, g ∈ Bn is defined by componentwise conjunction. Their sum
f ⊕ g corresponds to the componentwise exclusive-or. (In line with this notation,
“⊕” is also used for the symmetric difference of sets.)

A (syntactically nondeterministic) binary decision diagram (BDD for short) B
on the Boolean variables {x1, . . . , xn} is a directed acyclic graph with the following
properties. Let N (B) be the set of nodes of B. There are two distinct nodes s
and t called the source and the target node. The outdegree of the target and the
indegree of the source are both equal to zero. The source s is joined to each node of
its successor set Succ (s) in B by an unlabeled directed edge. The nodes different
from the source and the target are called branching nodes. Each branching node
w is labeled with a Boolean variable var (w) ∈ {x1, . . . , xn}, its successor set falls
into two subsets Succ0 (w) and Succ1 (w), where, for b ∈ {0, 1}, the node w is
joined to each v ∈ Succb (w) by a directed edge labeled with b. For b ∈ {0, 1}, an
element of Succb (w) is called a b-successor of the node w. Moreover, we assume B
to be weakly connected in the following sense. For each branching node w, there
is a directed path from the source via this node to the target. The size of a BDD
B, denoted by SIZE (B), is the number of its nodes. A branching node w of a
BDD is called deterministic, if Succb (w) ≤ 1, for all b ∈ {0, 1}. The source s is
called deterministic, if #Succ (s) ≤ 1. The BDD B as a whole is defined to be
deterministic, if the source and all branching nodes are deterministic.

An input a ∈ {0, 1}n activates all edges labeled with ai outgoing from nodes
labeled with xi, for i = 1, 2, . . . , n. Moreover, the edges leaving the source are
activated by all elements of a ∈ {0, 1}n.

A computation path for an input a ∈ {0, 1}n in a BDD B on {x1, . . . , xn} is a
path in B from the source whose edges are activated by a. Such a path is called
an accepting one, if it leads to the target.

The variants of decision diagrams tractable in the theory of data structures of
Boolean functions as well as in complexity theory restrict the number and the kind
of read accesses to the input variables. A very popular model is the following one.
A BDD is defined to be a free BDD (FBDD for short), if each variable is tested
on each path from the source at most once.

There are several ways to let a BDD B on {x1, . . . , xn} represent a Boolean
function f ∈ Bn. A parity binary decision diagram (⊕-BDD for short) is a binary
decision diagram equipped with the parity representation mode. A ⊕-BDD B
represents a Boolean function f : {0, 1}n → {0, 1} defined as follows. f(a) = 1 if



WELL-STRUCTURED GRAPH-DRIVEN PARITY-FBDDS 231

and only if the number of accepting computation paths for a is odd. A ⊕-BDD is
defined to be a parity-FBDD (⊕-FBDD for short), if it is free.

From now on we speak about a BDD or a FBDD, only if the diagram is deter-
ministic.

Ordered binary decision diagrams (OBDDs), introduced by Bryant (see [5, 6]),
are the state-of-the-art data structure for Boolean functions in the logical synthesis
process, for verification and test pattern generation, and as a part of CAD tools.
They are FBDDs with the following additional property. There is a permutation σ,
a so-called variable ordering, of the set {1, 2, . . . , n} such that if node v labeled
with xσ(j) is a successor of node u labeled with xσ(i), then i > j. Perhaps the
most important fact about OBDDs for theory is that a size-minimal OBDD for
a function f and a fixed variable ordering σ is uniquely determined. It can be
efficiently computed by Bryant’s minimization algorithm. But many even simple
functions have exponential OBDD-size (see [2, 4]). For this reason models less
restrictive than OBDDs are studied.

First we mention ⊕-OBDDs. They are defined to be ⊕-FBDDs subject to
variable orderings in the above sense. Introduced by Gergov and Meinel in [9],
they have been intensively studied in [15].

Second FBDDs without any further restriction are considered as a data struc-
ture. The problem was to find a counterpart to the variable ordering of OBDDs. It
was independently solved by Gergov and Meinel in [8], and by Sieling and Wegener
in [14]. Roughly speaking, the characteristic feature of a FBDD in contrast
to OBDDs is that we may use different variable orderings for different inputs.

Definition 0.1. A graph ordering G on the set of Boolean variables {x1, . . . , xn}
is a FBDD which is complete in the following sense. The source s has exactly one
successor succ (s), each branching node u has exactly one 1-successor and exactly
one 0-successor, and on each path from the source to the target there is for each
variable xi exactly one node labeled with xi.

The relation between a graph ordering and a FBDD guided by it is given in
Definition 0.2. Informally spoken, depending on the Boolean variables tested so
far and the corresponding input bits retrieved, the graph ordering predicts the
next variable to be tested. For later use in this paper, we let not only FBDDs but
also ⊕-FBDDs be guided in that way.

Definition 0.2. Let G be a graph ordering on {x1, . . . , xn}. A ⊕-FBDD B is
defined to be a graph-driven ⊕-FBDD guided by G if the following condition is
satisfied. Let, for any input b ∈ {0, 1}n, π

(G)
b be the path in G and πb be an

arbitrarily chosen path in B for the input b. If xi is tested before xj when traversing
πb, then this is true when traversing π

(G)
b , too.

Note, that OBDDs and⊕-OBDDs can be regarded as guided by graph orderings,
the so-called line orderings. A more general example of a graph-driven ⊕-FBDD
is given in Figure 1.



232 H. BROSENNE, M. HOMEISTER AND S. WAACK

x1

x4x4

x2

x3

x3x2

x4

0 0 11

11 0

x2

1

x1

t
t

s s

0x3

x2

w1

w3w2

w4 w5

w7w6

v

1 1

x4

0

Figure 1. A graph ordering and a graph-driven⊕-FBDD guided
by this ordering.

Gergov and Meinel, and Sieling and Wegener were able to show, that graph-
driven FBDDs efficiently support most of the OBDD-operations.

A drawback of graph-driven FBDDs is, that they do not have “levels” defined
by the nodes of the guiding graph ordering such as OBDDs and ⊕-OBDDs have.
To enforce the existence of levels in the case of FBDDs, Sieling and Wegener [14]
introduced what they called well-structured graph-driven FBDDs. Extending this
notion in Definition 0.3 to the case of ⊕-FBDDs, we get the structure on which
this paper is mainly focused.

Definition 0.3. A graph-driven ⊕-FBDD B guided by G is defined to be well-
structured, if there is an additional level function level : N (B) → N (G) with the
following properties:

• level (s) = s, level (t) = t;
• for each branching node w ∈ N (B), level (w) is a branching node of G that

is labeled with the same Boolean variable as w: var (w) = var (level(w));
• for b ∈ {0, 1}n, let π

(G)
b be the path in G and let πb be an arbitrarily chosen

path in B for the input b. For each node w, if w is contained in πb, then
level (w) is contained in π

(G)
b .

Let B be a well-structured graph-driven ⊕-FBDD guided by G, then the set
of nodes of B is partitioned into levels as follows. For each node u of G, we



WELL-STRUCTURED GRAPH-DRIVEN PARITY-FBDDS 233

define the level Nu(B) = Nu of B associated with the node u to be the set
{w ∈ N (B) | level (w) = u}.

Figure 2 gives an example of a well-structured graph-driven ⊕-FBDD, whose
level structure is shown in Figure 3.

x1

x4x4

x2

x4

0 0 11

1

1

0 0

1 0

x1

t

s s

t

v1

x2 v2 x3

x2

v4
v6

v7

v3

v5

0

x3

w1

w4

w2

w6 w7

w3

w5

1 1

x3

x2

x4 x4

Figure 2. A well-structured graph-driven ⊕-FBDD guided by a
graph ordering representing the same function as the diagram in
Figure 1.

Note, that well-structured graph-driven⊕-FBDDs have a strictly larger descrip-
tive power than both graph-driven FBDDs and ⊕-OBDDs. This follows from re-
sults due to Sieling and the fact, that the size of graph-driven and well-structured
graph-driven FBDDs are polynomially related. Sieling has proved in [13], that
there is an explicitely defined function that has polynomial size ⊕-OBDDs but
exponential size FBDDs, whereas another function has polynomial size FBDDs
but exponential size ⊕-OBDDs.

The results of this paper can be summarized as follows. An algebraic charac-
terization (see Th. 1.7) of the well-structured graph-driven ⊕-FBDD complexity
serves as basis both for lower and for upper bounds.

Having derived a lower bound criterion (see Cor. 1.9), we are able to prove
exponential lower bounds on the size of well-structured graph-driven ⊕-FBDDs
for linear code functions. This extends an analogous result for ⊕-OBDDs due to
Jukna (see [11]).



234 H. BROSENNE, M. HOMEISTER AND S. WAACK

x4

1

1

1

x1

t

s

v1

x3

x2

v6

v7

v3

0

0

x2

1

0

0

0

w2 w3

w4 w5

w7

w1

w6

v4

v2

1
1

x4 v5x4

Figure 3. The level-structure of the well-structured graph-
driven ⊕-FBDD presented in Figure 2.

Moreover, we establish deterministic polynomial time algorithms for solving the
minimization problem for the number of nodes (see Th. 2.1), and the equivalence
test problem (see Cor. 2.2) for well-structured graph-driven ⊕-FBDDs.

Recently, Bollig et al. have proved in [1] strong exponential lower bound on
the size of well-structured graph-driven ⊕-FBDDs for integer multiplication by
another criterion, which follows from our Theorem 1.7, too.

1. Algebraic characterization and lower bounds

Throughout this section let us fix a graph-driven ⊕-FBDD B on the set of
Boolean variables {x1, . . . , xn} guided by a graph ordering G that represents a
Boolean function f ∈ Bn.

Recall, that we can identify the nodes of G with the levels of B. A level of
the diagram B is called a branching level if the corresponding node of the graph
ordering G is a branching node.

Our first problem is to determine which nodes of B can be joined together by a
directed edge without violating Definition 0.2. Lemma 1.4 gives the answer. But
we need a little more notation.

Definition 1.1. A level u1 is defined to be greater than another level u2 (u1 > u2

for short) if and only if any path from u1 to the target node passes through u2.



WELL-STRUCTURED GRAPH-DRIVEN PARITY-FBDDS 235

Recall, that an element b of a partially ordered set P (a poset for short) covers
another element a (abbreviation: b � a), if b is greater than a, but the open
interval (a, b) in P is empty.

The following lemma is obvious:

Lemma 1.2. The relation of Definition 1.1 is a partial ordering on G.
Moreover, each level w covers exactly one other level.

Definition 1.3. We call G equipped with the partial ordering defined in
Definition 1.1 the level poset associated with the graph ordering G.

Lemma 1.4. Let u be any node of B joined to a node v by a directed edge e.
If the node u is a branching node, and the edge e is labeled with b (b ∈ {0, 1}),

then level (u)’s b-successor is greater than or equal to level (v).
If the node u is equal to the source of B, then the source of G is greater than

level (v).

Proof. Let us fix an input a = (a1, . . . , an) ∈ {0, 1}n such that there is a path πa

in B from the source to the target that passes through the edge u
b−→ v. The

path π
(G)
a in G associated with a contains a subpath level (u) b−→ w

∗−→ level (v) .
Without loss of generality, let var (u) = x1, and let {x2, . . . , xk} be the set of
variables tested on the subpath w

∗−→ level (v) of π
(G)
a with the label of level (v)

being excluded. Let (a′
2, . . . , a′

k) be any assignment to the variables (x2, . . . , xk),
and let a′ := (a1, a

′
2, . . . , a′

k, ak+1, . . . , an). By Definition 0.2, the two paths π
(G)
a

and π
(G)
a′ may diverge at node w or at one of its successors, but they have to

converge at node level (v) at the latest. The first claim follows. The second claim
can be similarly proved.

Figure 4 illustrates the result of Lemma 1.4.
The Hasse diagram of a poset is a directed acyclic graph whose nodes are the

elements of the poset. An edge indicates, that the upper element covers the lower
one.

Since for each v 6= s in G there is exactly one u such that u � v, the Hasse
diagram of a level poset is always a tree.

The Hasse diagram of the level poset associated with the graph ordering of
Figure 4 can be seen in Figure 5.

Next we associate with each node u of the graph ordering G the following F2-
vector space.

Bu(f) := span
F2

⋃
v≤u

{f |α(π) | π is a path in G from s to v} , (1)



236 H. BROSENNE, M. HOMEISTER AND S. WAACK

x1

x2

0

s

10

1

x4

x3

x3

x4

w1

x2

x4

x3

t

w4

w3

w2

0

1

0

x5

G

Figure 4. Allowed and forbidden edges in a well-structured
graph-driven ⊕-FBDD guided by G.

where α(π) is defined to be the partial assignment to {x1, x2, . . . , xn} canonically
associated with the path π. It is obvious that

Bs(f) = Bu(f),

where s � u. Thus we are no longer interested in the source s as element of the
level poset.

Assume the level ub to be the b-successor of a branching level u in the graph
ordering G (b ∈ {0, 1}). Let x be the Boolean variable with which u is labeled.
Then the mapping

Bu(f) −→ Bub
(f) (2)

h 7→ h |x=b



WELL-STRUCTURED GRAPH-DRIVEN PARITY-FBDDS 237

x1

x2

x4

x3

x3

x4 x2

x4

x3

s

t

w4

w3

w1

w2

x5

Figure 5. The Hasse diagram of the level poset associated with
the graph ordering of Figure 4.

is an F2-vector space homomorphism onto Bub
(f). By Shannon’s decomposition

there is a canonical one-to-one homomorphism

Bu(f) −→ Bu0(f)⊕ Bu1(f) (3)

h 7→ (h |x=0 , h |x=1 ) ,

where here Bu0(f)⊕Bu1(f) denotes the direct sum of the spaces Bub
(f) (b ∈ {0, 1}).

There is an equivalent way of defining the function f ∈ Bn represented by a ⊕-
BDD B on {x1, x2, . . . , xn} as the one given in the introduction. For each node u
of the diagram B, we inductively define its resulting function Resu. The resulting
function of the target equals the all-one function. For a branching node u labeled
with the variable x,

Resu := (x⊕ 1) ∧
⊕

v∈Succ0(u)

Resv ⊕ x ∧
⊕

v∈Succ1(u)

Resv . (4)



238 H. BROSENNE, M. HOMEISTER AND S. WAACK

If s is the source, then

Ress :=
⊕

v∈Succ(s)

Resv . (5)

The function Res(B) : F
n
2 → F2 represented by the whole diagram is defined to be

Ress.

We have introduced the vector spaces of equation (1) with the intension of
characterizing the complexity of the function f in terms of their dimensions. The
following spaces are the connecting link to the diagram B representing f .

Bu(B) := span
F2


Resw

∣∣∣∣∣∣w ∈
⋃
v≤u

Nu(B)


 · (6)

Clearly, if both u and v cover w in the level poset, then

Nw(B) = Nu(B) ∩ Nv(B). (7)

Let u be any branching node of G, and let v be the unique node that is covered
by u in the level poset associated with G. According to the definition given by
equation (6), Bu(B) ⊇ Bv(B), and the factor space Bu(B)/Bv(B) is generated by
the elements Resw⊕Bv(B), where w ranges over all nodes of the level u. Conse-
quently,

#Nu(B) ≥ dimF2 Bu(B) − dimF2 Bv(B). (8)

If the level ub is a b-successor of a branching level u in the graph ordering G
(b ∈ {0, 1}), then we have for the vector spaces defined in equation (6) the same
situation as in the case of equation (1). The mapping

Bu(B) −→ Bub
(B) (9)

h 7→ h |x=b

is an F2-vector space homomorphism onto Bub
(B), where x be the Boolean variable

with which u is labeled. Moreover, it is plain that there is an embedding analogous
to equation (3):

Bu(B) −→ Bu0(B) ⊕ Bu1(f) (10)

h 7→ (h |x=0 , h |x=1 ) ,

where here again Bu0(f) ⊕ Bu1(f) denotes the direct sum of the spaces Bub
(f)

(b ∈ {0, 1}).



WELL-STRUCTURED GRAPH-DRIVEN PARITY-FBDDS 239

Lemma 1.5. Let u be any node of G. Then

Bu(f) ⊆ Bu(B). (11)

Proof. Let π be any path leading to the node u. Let α be the partial assignment
to the variables x1, x2, . . . , xn canonically associated with π. It suffices to show
that f |α belongs to Bu(B).

Since the ⊕-FBDD B is driven by G, it is possible to follow the partial assign-
ment α in B. Let v1, v2, . . . , vν be the nodes of B that can be reached that way.
Clearly, the subfunction fα of f is equal to

⊕ν
i=1 Resuν . The nodes v1, v2, . . . , vν

belong to the level u because of the fact that the graph-driven ⊕-FBDD B is a
well-structured one.

Lemma 1.6. Let u be any branching node of G, and let v be the unique node that
is covered by u in the level poset associated with G. Then

#Nu(B) ≥ dimF2 Bu(f) − dimF2 Bv(f). (12)

Proof. By Lemma 1.5 we have a canonical linear mapping

φ : Bu(f)→ Bu(B)/Bv(B)

g 7→ g ⊕ Bv(B).

Applying the dimension formula for linear mappings and equation (8), we get

dim Bu(f)/ kerφ ≤ dim Bu(B)/Bv(B) ≤ #Nu(B).

Thus it suffices to show that ker φ = Bv(f).
The inclusion kerφ ⊇ Bv(f) is an immediate consequence of Lemma 1.5. Let

g ∈ kerφ. Then g ∈ Bv(B), because kerφ = Bu(f) ∩ Bv(B) by definitions. Con-
sequently, g does not essentially depend on the set of variable Vu,v tested on any
path from u to v in G. Let α be an arbitrarily chosen partial assignment to
Vu,v. Concatenating the mappings defined by equation (2) for all pairs (x, α(x))
(x ∈ Vu,v), we obtain a F2-linear mapping

Bu(f) −→ Bv(f)

h 7→ h |α ,

that is invariant on all functions not depending on Vu,v. Consequently, g is mapped
onto itself. It follows that g ∈ Bv(f).

We are able to formulate and prove Theorem 1.7 that will prove useful both in
designing algorithms and in proving lower bounds.



240 H. BROSENNE, M. HOMEISTER AND S. WAACK

Theorem 1.7. Let B be a size-minimal well-structered graph-driven ⊕-FBDD on
the set of variables {x1, . . . , xn} guided by a graph ordering G representing f ∈ Bn.
Let u be any branching node of G, and let v be the node that is covered by u in the
level poset associated with G. Then

#Nu(B) = dimF2 Bu(f) − dimF2 Bv(f). (13)

Proof. By Lemma 1.6, it suffices to construct a graph-driven ⊕-BDD B guided by
G representing f such that the asserted equations hold.

First, let us turn to the set of nodes of B. We define Ns(B) to be the set
containing only f , Nt(B) to be the set containing only the all-one function, and
Nu(B) to be a set of representatives of a basis of the space Bu(f)/Bv(f), where u
is a branching node of G, and v is covered by u in the level poset of G.

Second, we have to inductively create edges in such a way that B represents the
Boolean function f . We do that in a bottom-up manner, such that for any node u
of the graph ordering G, and any h ∈ Nu(B), we have Resh = h. To this end, we
fix a topological ordering of the nodes of G with the least node being the target.

The claim is true for u = t. For the induction step, we assume that u 6= t,
var (u) = xl, for some l, and h ∈ Nu(B). For b ∈ {0, 1}, let ub be the b-successor
of the node u in the graph ordering G. For b = 0, 1, we conclude by Lemma 1.4
h|xl=b ∈ Bub

(f). By induction hypothesis, the functions h|xl=0 and h|xl=1 have
unique representations as sums of resulting functions of nodes defined so far. We
have to “hardwire” these representations in the decision diagram. For b = 0, 1,
the node h is joined to any other node h′ by a directed edge labeled b if and
only if h′ occurs in the sum that represents h|xl=b. Thus we have implemented
equation (3).

Theorem 1.7 implicitely contains a lower bound technique. We see that it does
not suffice to estimate from below the sum of dimensions of the spaces Bu(f),
where u traverses a fixed depth level of G. This is because of the fact, that if u1

and u2 are two of these levels both covering v in the level poset, then the space
Bv(f) is contained in Bu1(f) as well as Bu2(f). But if we are able to detect for
each such u a large subspace of Bu(f) that has trivial intersection with Bv(f),
where v is covered by u, we are done.

Taking pattern from [10], we define the following notion:

Definition 1.8. A function f ∈ Bn is called strongly k-mixed, for k < n, if for an
arbitrary k-subset V ⊂ {x1, x2, . . . , xn}, all nontrivial linear combinations∑

α is an
assignment to V

βα · f |α (βα ∈ {0, 1})

essentially depend on any variable taken from the set {x1, x2, . . . , xn} \ V .

Corollary 1.9 (Lower Bound Criterion). Let f(x1, x2, . . . , xn) be a strongly k-
mixed function, and let B be a well-structured graph driven ⊕-FBDD represent-
ing f . Then the number of nodes of B is greater than or equal to 2k.



WELL-STRUCTURED GRAPH-DRIVEN PARITY-FBDDS 241

Proof. Let B be any well-structured graph driven ⊕-FBDD guided by G repre-
senting f , let u be any level at distance k + 1 from the source, and let v be the
level covered by u.

If π1, π2, . . . , πν are the paths leading from s to u in G, then it suffices to show,
that

#Nu = dim Bu(f)/Bv(f) ≥ ν.

For deriving a contradiction, let us assume that this is not the case. Then there
is a nontrivial linear combination

φ :=
ν∑

i=1

βi · f
∣∣
α(πi) ∈ Bv(f) (βi ∈ {0, 1}),

where α(πi) is the partial assignment to {x1, x2, . . . , xn} canonically associated
with the path πi (i = 1, 2, . . . ν). In particular, φ does not essentially depend on
the variable with which u is labeled. Contradiction to the fact, that f is a strongly
k-mixed function.

We use Corollary 1.9 to prove exponential lower bounds on the size of graph-
driven ⊕-FBDDs for characteristic functions of linear codes.

A linear code C is a linear subspace of F
n
2 . We consider the characteristic

function fC : F
n
2 → {0, 1} defined by fC(a) = 1 ⇐⇒ a ∈ C. The Hamming

distance of two code words a, b ∈ C is defined to be the number of 1’s of a ⊕ b.
The minimal distance of a code C is the minimal Hamming distance of two distinct
elements of C. The dual C⊥ is the set of all vectors b such that bT a = 0, for all
elements a ∈ C. (Here bT a = b1a1⊕ . . .⊕ bnan is the standard inner product with
respect to F2.) A set D ⊆ F

n
2 is defined to be k-universal, if for any subset of k

indices I ⊆ {1, . . . , n} the projection onto these coordinates restricted to the set
D gives the whole space F

k
2 .

The next lemma is well-known. See [11] for a proof.

Lemma 1.10. If C is a code of minimal distance k + 1, then its dual C⊥ is
k-universal.

We shall prove a general lower bound on the size of graph-driven ⊕-FBDDs
representing fC .

Theorem 1.11. Let C ⊆ F
n
2 be a linear code of minimal distance d whose dual

C⊥ has minimal distance d⊥. Then any well-structured graph-driven ⊕-FBDD
representing fC has size greater than or equal to 2min{d,d⊥}−2.

Proof. Let k = min{d, d⊥} − 2. By Corollary 1.9 is suffices to show that the
function fC is strongly k-mixed. Without loss of generality, we assume the set V
of Definition 1.8 to be {x1, . . . , xk} and the additional variable to be xk+1. Let
A = {α1, α2, . . . α2k} be the set of all assignments of constants to the variables



242 H. BROSENNE, M. HOMEISTER AND S. WAACK

x1, . . . , xk. We have to show that each nontrivial linear combination

∑
i∈I

fC(αi, xk+1, xk+2, . . . , xn) (∅ ⊂ I ⊆ {1, 2, . . . , 2k})

essentially depends on any variable taken from {xk+1, xk+2, . . . , xn}.
Since the distance d⊥ of the dual code C⊥ is greater than k, by Lemma 1.10

the code C is k-universal. Consequently, there are assignments β1, β2, . . . , β2k to
the variables xk+1, xk+2, . . . , xn such that

fC(αi, βi) = 1, for i = 1, 2, . . . , 2k.

For i = 1, 2, . . . , 2k, let γi be the assignment to the variables xk+1, xk+2, . . . , xn

defined as follows:

γi(xj) :=

{
βi(xj)⊕ 1 if j = k + 1;
βi(xj) if j = k + 2, k + 3, . . . , n.

Since the distance of the code C is greater than or equal to k + 2, we have

fC(αi, γj) = 0, for i, j = 1, 2, . . . , 2k;

fC(αi, βj) = 0, for i, j = 1, 2, . . . , 2k, i 6= j.

For the sake of deriving a contradiction, let us assume, that there is a nonempty
subset I ⊆ {1, 2, . . . , 2k} such that

⊕
i∈I

fC(αi, xk+1, xk+2, . . . , xn) = g,

where the Boolean function g does not essentially depend on the variable xk+1.
Let us fix an index j ∈ I. Then g(βj) = 1, and consequently g(γj) = 1. The
latter equation implies, that there is an index i ∈ I, such that fC(αi, γj) = 1.
Contradiction.

In order to prove an explicit lower bound, recall that the r-th order binary Reed-
Muller code R(r, l) of length n = 2l is the set of graphs of all polynomials in l
variables over F2 of degree at most r. The code R(r, l) is linear and has minimal
distance 2l−r. It is known that the dual of R(r, l) is R(l − r − 1, l) (see [12]).

Corollary 1.12. Let n = 2l and r = bl/2c. Then every well-structured graph-
driven ⊕-FBDD representing the characteristic function of R(r, l) has size bounded
below by 2Ω(√n).

Proof. Taking the notation of Theorem 1.11, we have d = 2l−r = Ω (
√

n) and
d⊥ = 2r+1 = Ω (

√
n). The claim follows.



WELL-STRUCTURED GRAPH-DRIVEN PARITY-FBDDS 243

Corollary 1.13. Let n = 2l and r = bl/2c. Then any graph-driven ⊕-FBDD
guided by G representing the characteristic function of R(r, l) has size bounded
below by 2Ω(√n)/SIZE (G).

2. Minimizing the number of nodes

Let us define a feasible exponent ω of matrix multiplication over a field k to
be a real number such that multiplication of two square matrices of order h may
be algorithmically achieved with O (hω) arithmetical operations. It is well-known
that matrix multiplication plays a key role in numerical linear algebra. Thus the
following problems all have “exponent” ω: matrix inversion, L-R-decomposition,
evaluation of the determinant. Up to now, the best known ω is 2.376 (see [7]).
For practical reasons it might be best to use Gaussian elimination. Then we work
with the feasible matrix exponent 3.

It is the aim of this section to prove the following theorem:

Theorem 2.1. Let ω be any feasible exponent of matrix multiplication. Let G be
a fixed graph ordering on the set of Boolean variables {x1, . . . , xn}. Then there
is an algorithm that computes taking a well-structured graph-driven ⊕-FBDD B
guided by G as input a size-minimal one representing the same Boolean function
as B in time O (SIZE (G) · SIZE (B)ω) and space O

(
SIZE (G) + SIZE (B)2

)
.

Proof. Let f(x1, . . . , xn) be the Boolean function represented by the input BDD
B. We assume B to be represented in an object-oriented way, where each node
and each edge of the abstract diagram B is given by its own object.

For the sake of simplifying notations, we denote an abstract node, its resulting
function (see Eq. (4)), and the corresponding node-object by the same letter.
Moreover, we identify the nodes of G with the levels of B indexed.

The algorithm that proves the theorem falls into two phases. The first phase,
which we call the linear reduction phase, insures that the functions represented by
nodes of B are linearly independent, if they belong to a space Bw(B), for w ∈ G.
We use a bottom-up approach here, where we refer to the direction of the graph
ordering B. The second phase, called the semantic reduction phase, transforms
the input B in a top-down manner such that afterwards the spaces Bw(B) are
subspaces of the space Bw(f) (w ∈ G). Having performed these two phases, the
BDD B thus modified is size-minimal by Theorem 1.7.

Each phase consists of several global steps each of which associated with a level
w of the current version of B. As a rule, in such a global step the level w of B
is modified. At the very beginning of this modification we internally represent
B as two SIZE (B) × SIZE (B)-adjacency matrices A(0) and A(1) over F2, where
the columns of A(b) represent the b-successor sets of B’s branching nodes, and a
column vector R over F2 of length SIZE (B) that represents the successor set of
the source s. These matrices can be set up in linear time. In line with that, all
auxiliary subsets of non-source nodes are represented as column-vectors of length
SIZE (B). Again, we use the same letter for the set and the vector.



244 H. BROSENNE, M. HOMEISTER AND S. WAACK

We describe the linear reduction phase of the algorithm. Assume that we are
about to linearly reduce the level w, where all levels that can be reached from w in
G by a nontrivial directed path have already been linearly reduced. Let x be the
Boolean variable with which w is labeled, for b ∈ {0, 1}, let wb be the b-successor
of w in G, and let w′ be the level covered by w in the level poset of G.

We want to linearly reduce the level w by means of a matrix representation M of
the set

⋃
v≤wNv(B), which is different from the vector representation mentioned

above. The matrix M is computed on the basis of the mapping

Bw(B) → Bw0(B) × Bw1(B)
v 7→ (v|x=0, v|x=1)

(see Eq. (10)). There are two cases to distinguish.

Case 1. The two levels w0 and w1 coincide. Then w′ = w0 = w1. We have to
proceed exactly in the same way as in the case of ⊕-OBDDs (see [15]). We omit
this.

Case 2. The levels w0 and w1 are different. Then both w0 and w1 cover w′ in
the level poset and we can apply equation (7) as follows. Let u1, . . . , uµ be the
nodes that span the space Bw′(B), let uµ+1, . . . , uµ+µ′ be the nodes of level w,
and let v0

1 , . . . , v0
ν0

and v1
1 , . . . , v1

ν1
be the nodes that span the spaces Bw0(B) and

Bw1(B), respectively. For i = 1, 2, . . . , m, we can assume then that ui = v0
i = v1

i .
To define the matrix M , let 〈., .〉 denote the inner product in both spaces Bw0(B)

and Bw1(B) defined by
〈
vb

i , v
b
j

〉
= δij , for i, j = 1, . . . , νb, and b = 0, 1. Then the

matrix M = (Mij), where i = 1, . . . , ν0+ν1, j = 1, . . . , µ+µ′ is defined as follows.
For i = 1, . . . , ν0, j = 1, . . . , µ + µ′, let Mij :=

〈
v0

i , uj |x=0

〉
, and for i = 1, . . . , ν1,

let Mν0+i,j :=
〈
v1

i , uj |x=1

〉
. The columns M·1, . . . , M·µ represent the canonical

basis of the space Bw′(B), the columns M·µ+1, . . . , M·µ+µ′ the nodes of level w.
In the first step this matrix M is set up. This can be done by traversing the

graph B.
The second step is to find out which of the nodes of level w can be elimi-

nated. To this end, we select columns M·µ+j, j ∈ J , such that the columns
M·1, . . . , M·µ, M·µ+j , j ∈ J , form a basis of the space spanned by all columns of
M . We then represent the columns not selected in terms of those selected. We
assume the result of the second step to be presented as follows.

M·µ+l =
µ∑

k=1

αkM·k +
∑
j∈J

αµ+jM·µ+j, for l 6∈ J ,

Uµ+l := {uj |αj = 1} , for l 6∈ J .

The third step is to hardwire the results of the second step in the decision dia-
gram B. The problem is, to do so within the desired time bound. Having set up
the matrix H resulting from the SIZE (B)×SIZE (B)-identity matrix by replacing
the columns associated with uµ+l, for l 6∈ J , by the columns Uµ+l, we execute the



WELL-STRUCTURED GRAPH-DRIVEN PARITY-FBDDS 245

following three instructions.

A(b) ← H · A(b), for b = 0, 1,
R← H · R.

The first and the second one update the branching nodes of B, the third one the
source of B. Afterwards the nodes uµ+l, for l 6∈ J , have indegree zero.

In the last step we remove all nodes no longer reachable from a source. This
can be done by a depth-first-search traversal.

Now we describe the semantic reduction phase of the algorithm. It suffices
to consider the case, that B has a nonempty level different from s and t. By
Theorem 1.7 the BDD B has then a uniquely determined nonempty top level wtop

which is covered by G’s source in the level poset. Clearly, the level wtop is joined
to any other nonempty level by a directed path in G.

As in the case of the linear reduction phase, we assume that we are on the
point of semantically reducing level w, where all levels that precede w in a fixed
topological ordering of the nodes of G have already been reduced.

Case 1. The level w is equal to wtop. We have to transform w in such a way
that it contains afterwards a single node only. Let v1, . . . , vµ be the node of level
w that can be reached from the source of B by a directed edge. We merge these
nodes in such a way together that for the resulting node u holds: u =

⊕µ
i=1 vi.

For b = 0, 1, the b-successor set of node u is computed by executing the matrix
operation

V (b) ← A(b) ·M + L,

where here M = {v1, . . . , vµ} and L is the set of all nodes that can be reached
from the source of B by a directed edge and that do not belong to the level w.
Having computed this, the new node u can be created and connected to the nodes
of V (b) by an b-edge, for b = 0, 1.

Case 2. The level w is not equal to wtop.
In the first step of this case for each node u of B and each Boolean constant b

such that there is an b-edge leading from u to a node of level w we do the following.
We partition the b-successors of u into the three sets Ob

u, M b
u, and Lb

u, where M b
u

contains all nodes belonging to level w, Lb
u contains all nodes belonging to levels

that are properly less than w in the level poset, and Ob
u is the remaining set. (By

induction hypothesis we have already semantically reduced the levels to which
the nodes of Ob

u belong.) Having created a new node v(u, b) of level Nw(B), we
remove all b-edges from u to nodes of M

(b)
u ∪L

(b)
u , and join u to v(u, b) by a directed

b-edge. In order to compute the edges outgoing from v(u, b) in such a way that
v(u, b) =

⊕
v∈M

(b)
u ∪L

(b)
u

v holds, we set up two matrices M and L. The columns of

M and L are the sets M
(b)
u and L

(b)
u , respectively, we have just created. Then we

compute for each node v(u, b) its successor sets Succ0 (v(u, b)) and Succ1 (v(u, b))



246 H. BROSENNE, M. HOMEISTER AND S. WAACK

by means of the matrix operations

V (b) ← A(b) ·M + L, for b = 0, 1.

(Because of the induction hypothesis on the sets Ob
u, we are sure that v(u, b)

∈ Bw(f), for all u and b under consideration.)
In the second step we remove all nodes of B that are no longer reachable from

the source.
The new nodes of level w are not necessarily linearly independent from each

other and from other nodes belonging to a level less than or equal to w in the level
poset of G. In the last step we linearly reduce the space Bw(B) in the same way
as in the first phase.

The runtime of the algorithm is dominated by the O (|G|) multiplications of
SIZE (B)× SIZE (B)-matrices. The space demand is obvious.

Let B′ and B′′ be two graph-driven free parity BDDs on {x1, . . . , xn} guided
by G.

First, using standard techniques, for example the well-known “product construc-
tion”, and taking pattern from [14], one can easily perform the Boolean synthesis
operations in time O (SIZE (G) · (SIZE (B′) · SIZE (B′′))ω).

Second, we have the following:

Corollary 2.2. It can be decided in time O (SIZE (G) · (SIZE (B′) + SIZE (B′′))ω)
whether or not B′ and B′′ represent the same function.

Acknowledgements. The authors are indebted to Beate Bollig and the referees for their
helpful suggestions and comments.

References

[1] B. Bollig, St. Waack and P. Woelfel, Parity graph-driven read-once branching programs
and an exponential lower bound for integer multiplication, in Proc. 2nd IFIP International
Conference on Theoretical Computer Science (2002).

[2] Y. Breitbart, H.B. Hunt and D. Rosenkrantz, The size of binary decision diagrams repre-
senting Boolean functions. Theoret. Comput. Sci. 145 (1995) 45-69.

[3] H. Brosenne, M. Homeister and St. Waack, Graph-driven free parity BDDs: Algorithms and
lower bounds, in Proc. 26th MFCS. Springer Verlag, Lecture Notes in Comput. Sci. 2136
(2001) 212-223.

[4] R. Bryant, On the complexity of VLSI implementations of Boolean functions with applica-
tions to integer multiplication. IEEE Trans. Comput. 40 (1991) 205-213.

[5] R.E. Bryant, Symbolic manipulation of Boolean functions using a graphical representation,
in Proc. 22nd DAC. Piscataway, NJ (1985) 688-694.

[6] R.E. Bryant, Graph-based algorithms for Boolean function manipulation. IEEE Trans.
Comput. 35 (1986) 677-691.

[7] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions. J.
Symb. Comput. 9 (1990) 251-280.



WELL-STRUCTURED GRAPH-DRIVEN PARITY-FBDDS 247

[8] J. Gergov and Ch. Meinel, Frontiers of feasible and probabilistic feasible Boolean manipu-
lation with branching programs, in Proc. 10th STACS. Springer Verlag, Lecture Notes in
Comput. Sci. 665 (1993) 576-585.

[9] J. Gergov and Ch. Meinel, Mod-2-OBDDs – A data structure that generalizes exor-sum-of-
products and ordered binary decision diagrams. Formal Methods in System Design 8 (1996)
273-282.

[10] S. Jukna, Entropy of contact circuits and lower bounds on their complexit. Theoret. Comput.
Sci. 57 (1988) 113-129.

[11] S. Jukna, Linear codes are hard for oblivious read-once parity branching programs. Inform.
Process. Lett. 69 (1999) 267-269.

[12] E.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes. Elsevier
(1977).

[13] D. Sieling, Lower bounds for linear transformed OBDDs and FBDDs, in Proc. 19th FSTTCS.
Springer Verlag, Lecture Notes in Comput. Sci. 1738 (1999) 356-368.

[14] D. Sieling and I. Wegener, Graph driven BDDs – A new data structure for Boolean functions.
Theoret. Comput. Sci. 141 (1995) 238-310.

[15] St. Waack, On the descriptive and algorithmic power of parity ordered binary decision
diagrams. Inform. Comput. 166 (2001) 61-70.

[16] I. Wegener, Branching Programs and Binary Decision Diagrams – Theory and Applications.
SIAM, Philadelphia, SIAM Monogr. Discrete Math. Appl. (2000).

Communicated by H. Hromkovic.
Received November, 2001. Accepted September, 2002.

To access this journal online:
www.edpsciences.org


