
Theoretical Informatics and Applications
Theoret. Informatics Appl. 36 (2002) 29–42

DOI: 10.1051/ita:2002003

RELATING AUTOMATA-THEORETIC HIERARCHIES
TO COMPLEXITY-THEORETIC HIERARCHIES

Victor L. Selivanov
,∗1

Abstract. We show that some natural refinements of the Straubing
and Brzozowski hierarchies correspond (via the so called leaf-languages)
step by step to similar refinements of the polynomial-time hierarchy.
This extends a result of Burtschik and Vollmer on relationship between
the Straubing and the polynomial hierarchies. In particular, this ap-
plies to the Boolean hierarchy and the plus-hierarchy.

Mathematics Subject Classification. 03D05, 03D15, 03D55.

1. Introduction

In complexity theory, the so called leaf-language approach to defining complex-
ity classes became recently rather popular. Let us recall some relevant definitions.
Consider a polynomial-time nondeterministic Turing machine M working on an
input word x over some alphabet X and printing a letter from another alphabet
A after finishing any computation path. These values are the leaves of the binary
tree defined by the nondeterministic choices of M on input x. An ordering of the
tuples in the program of M determines a left-to-right ordering of all the leaves. In
this way, M may be considered as a deterministic transducer computing a total
function M : X∗ → A∗ from the set of words X∗ over X to the set of words over
A. Now, relate to any language L ⊆ A∗ (called in this situation a leaf language)
the language M−1(L) ⊆ X∗. Denote by Leaf(L) the set of languages M−1(L),
for all machines M specified above. For a set of languages C, let Leaf(C) be the
union of Leaf(L), for all L ∈ C.

It turns out that many inportant complexity classes have natural and useful
descriptions in terms of leaf languages (see e.g. [3, 5, 9–12, 28]). In particular, a

1 Novosibirsk Pedagogical University, 28 Vilyniskaya Str., Novosibirsk 630126, Russia;
e-mail: vseliv@nspu.ru
∗ Supported by the Alexander von Humboldt Foundation, by the German Research Founda-
tion (DFG) and by the Russian Foundation for Basic Research Grant 00-01-00810.

c© EDP Sciences 2002

30 V.L. SELIVANOV

close relationship between some classes of regular leaf languages and complexity
classes within PSPACE was established in [9]. In [7], a close relationship between
the Straubing hierarchy {Ln} and the polynomial hiearachy {Σpn} was established:
Leaf(Ln) = Σpn, for any n > 0.

In this paper, we consider the possibility of extending the last result to some
natural refinements of the above-mentioned hierarchies (in the context of com-
plexity theory, these refinements were introduced and studied in [19–22]). Note
that for the important particular case of the Boolean hiearachy over NP a result
similar to ours was earlier established in ([26], Th. 6.3), and we actually use the
idea of proof of that theorem. We make also an essential use of a result from [17]
cited in Section 3.

In Section 2 we give the exact definitions of our hierarchies, in Section 3 we
consider some relevant notions from language theory, in Sections 4–6 we present
our main results, and further we give some examples and discussions.

2. Hierarchies

In different areas of mathematics, people consider a lot of hierarchies which
are typically used to classify some objects according to their complexity. Here we
define and discuss some hierarchies relevant to the topic of this paper.

We already mentioned the polynomial hierarchy {Σpn} which is one of the most
popular objects of complexity theory. Note that classes (or levels) of the polyno-
mial hierarchy are classes of languages over some finite alphabet X . In the context
of complexity theory, the cardinality of X is not important (provided that it is
at least 2), so it is often assumed that X is just the binary alphabet {0, 1}. For
detailed definition and properties of the polynomial hierarchy and other relevant
notions see any standard textbook on complexity theory, say [1, 2]. Sometimes it
is convenient to use more compact notation for the polynomial hierarchy, namely
PH ; hence PH = {Σpn}·

Let us define now two hierarchies which are rather popular in automata theory.
A word u = u0 . . . un ∈ A+ (A+ denotes the set of finite nonempty words over
an alphabet A, while A∗-the set of all finite words over A, including the empty
word ε) may be considered as a first-order structure u = ({0, . . . , n}; <,Qa, . . .),
where < has its usual meaning and Qa(a ∈ A) are unary predicates on {0, . . . , n}
defined by Qa(i) ↔ ui = a. By the theorem of McNaughton and Papert [15], the
so called star-free regular languages are exactly the sets of words u, for which u
satisfies a given first-order sentence of signature σA = {<,Qa}a∈A.

For any n > 0, let Ln denote the class of languages defined by Σn-sentences of
signature σA (i.e., sentences in prenex normal form starting with the existential
quantifier and having n − 1 quantifier alternations); the sequence SH = {Ln}
is known as the Straubing (or Straubing–Thérien) hierarchy. In cases when it is
important to specify the alphabet, we denote the n-th level as A+Ln, and the
whole hierarchy as A+SH . There is also a *-version of the Straubing hierarchy
which will be denoted as A∗SH = {A∗Ln}; the relationship between both versions

AUTOMATA AND COMPLEXITY-THEORETIC HIERARCHIES 31

is very easy: A∗Ln = A+Ln ∪A+Lεn (for any class X of subsets of A+ we denote
X ε = {X ∪ {ε}|X ∈ X}).

The Brzozowski hierarchy is defined in the same way, only in place of σA one
takes the signature σ′

A = σA∪{⊥,>, s}, where ⊥ and > are constant symbols and s
is a unary function symbol (⊥,> are assumed to denote the least and the greatest
element respectively, while s denotes the successor function). The Brzozowski
hierarchy will be denoted by BH = {Bn}, with the corresponding variations in
case when we need to mention the alphabet explicitely.

Note that in automata theory people usually define the Straubing and Brzo-
zowski hierarchies by means of regular expressions; the equivalence of those def-
initions to definitions used here is known from [16, 27]. For more information on
logical aspects of automata-theoretic hierarchies see also [23].

Next we would like to define some refinements of the introduced hierarchies.
In order to do this in a uniform way, we need a technical notion of a base. Let
(B;∪,∩,̄ , 0, 1) be a Boolean algebra (b.a.). Without loss of generality, one may
think that B is a class of subsets of some set. By a base in B we mean any
sequence L = {Ln}n<ω of sublattices of (B;∪,∩, 0, 1), satisfying the inclusions
Ln ∪ co(Ln) ⊆ Ln+1 (here co(Ln) denotes the dual set {x̄|x ∈ Ln} for Ln). Note
that levels of the hierarchies introduced above (as well as of many other popular
hierarchies) are bases (take in place of Ln respectively Σpn+1, Ln+1 and Bn+1).

With any base L = {Ln}n<ω one can associate a family of new subsets of B
as follows. Let T be the set of terms of the signature (∪,∩,̄ , 0, 1) with variables
vnk (k, n < ω). We call vnk (k < ω) variables of type n, and elements of T -typed
Boolean terms. Relate to any term t ∈ T the set t(L) of all its values when
variables of type n range over Ln. We call the family {t(L)}t the typed Boolean
hierarchy over L.

Let us state some easy properties of the introduced classes. The next lemma is
evident.

Lemma 2.1. (i) Typed Boolean hierarchy is a refinement of L, i.e. any class Ln
is among the classes t(L), t ∈ T .

(ii) If L is a base in B, L′ is a base in B′ and f : B → B′ is a homomorphism
of Boolean algebras such that f(Ln) ⊆ L′

n for all n < ω, then f(t(L)) ⊆ t(L′) for
any t ∈ T .

Now we prove a more subtle property useful for some considerations below. Let
L be a base in a b.a. B, and let B′ = B × {0, 1} be the cartesian product of
B and of the 2-element b.a. {0, 1}. Hence, B′ = {(b, c)|b ∈ B, c ≤ 1} and the
Boolean operations in B′ are componentwise. We will state a close relationship
between the typed Boolean hierarchies over L and over the base L′ in B′ defined
by L′

n = Ln × {0, 1}·
Let Bc = B × {c}, then B′ = B0 ∪ B1 and Bc may be considered as a b.a.

isomorpic to B (isomorphism is given of course by the function b 7→ (b, c); note
that symbols ∩,∪ have the same interpretations in Bc as they have in B′, while
the symbol ¯has slightly different interpretations in B0 and B1). Let Lc be the

32 V.L. SELIVANOV

base in Bc induced by L under this isomorphism, i.e. Lcn = Ln × {c}. Then
L′
n = L0

n ∪ L1
n.

We call a Boolean term t(x0, . . . , xk) nontrivial, if the function induced by this
term on {0, 1} is not constant, i.e. for any c ≤ 1 there are cj ≤ 1 satisfying
t(c0, . . . , ck) = c. As is well known, a term is nontrivial iff it is not equivalent to
the constant Boolean terms 0, 1 in the theory of Boolean algebras.

Lemma 2.2. (i) For any t ∈ T and c ≤ 1, t(Lc) = t(L) × {c}.
(ii) For any nontrivial t ∈ T , t(L′) = t(L0) ∪ t(L1).

Proof. (i) follows from Lemma 2.1.

(ii) Let t = t(x0, . . . , xk) for some typed variables xj , and let a ∈ t(L′), a = (b, c) ∈
B′. Then a = t((b0, c0), . . . , (bk, ck)) for some (bj, cj) ∈ B′ such that (bj , cj) ∈ L′

n

whenever xj is of type n. We have a = (t(b0, . . . , bk), t(c0, . . . , ck)), and bj ∈ Ln
whenever xj is of type n. Hence, b ∈ t(L) and a ∈ t(L) × {c} = t(Lc).

It remains to check the inclusion t(L) × {c} ⊆ t(L′). By nontriviality of t,
c = t(c0, . . . , ck) for some cj ≤ 1. Let a = (b, c) ∈ t(L)×{c}, then b = t(b0, . . . , bk)
for some b0, . . . , bk ∈ B such that bj ∈ Ln whenever xj is of type n. We have
a = t((b0, c0), . . . , (bk, ck)) and (bj , cj) ∈ L′

n whenever xj is of type n. Hence,
a ∈ t(L′) completing the proof.

Taking in place of L the base PH = {Σpn+1}n, we get the typed Boolean
hierarchy {t(PH)} over PH introduced and studied in [19–22]. In particular, the
following fact was established.

Lemma 2.3. All classes of the typed Boolean hierarchy over PH are closed down-
wards under the polynomial m-reducibility and contain polynomially m-complete
sets.

Taking in place of L the base SH (the base BH), we get the typed Boolean
hierarchy {t(SH)} (resp., {t(BH)}) over SH (resp., over BH). A study of these
hierarchies, as well as of fine hierarchies over SH and BH defined below was
initiated in [24]. If we want to specify the alphabet explicitly we again use notation
like t(A+SH).

The three examples of the typed Boolean hierarchy introduced above will be
the main objects of this paper. Let us state the following easy facts on the typed
Boolean hierarchies over SH and BH .

Lemma 2.4. (i) For any n > 0 and any alphabet A, A+Ln ⊆ A∗Ln and A+Ln ⊆
A+Bn.
(ii) For any t ∈ T and any alphabet A, t(A+SH) ⊆ t(A∗SH) and t(A+SH) ⊆
t(A+BH).

Proof. (i) is evident.

(ii) Follows from (i) and Lemma 2.1(ii), by taking the identity function in place
of f .

AUTOMATA AND COMPLEXITY-THEORETIC HIERARCHIES 33

Now we establish a relationship between the *- and +-versions of the typed
Boolean hierarchy over SH which informally means the equivalence of the two
versions for the purposes of this paper.

Lemma 2.5. (i) For any nontrivial t ∈ T and any alphabet A, t(A∗SH) =
t(A+SH) ∪ t(A+SH)ε.

(ii) For any t ∈ T and any alphabet A, Leaf(t(A∗SH)) = Leaf(t(A+SH)).

Proof. (i) Let B = P (A+) and L = A+SH . Then the b.a. P (A∗) is naturally
isomorphic to the b.a. B′ = B × {0, 1} (the isomorphism h : B × {0, 1} → P (A∗)
is defined by h(L, 0) = L and h(L, 1) = L∪{ε}). Using notation introduced before
Lemma 2.2, we have h(L′

n) = A∗Ln. Now the assertion follows from Lemma 2.2.

(ii) If t is equivalent (in the theory of Boolean algebras) to 0, then t(A∗SH) =
{∅} = t(A+SH), and the equation follows. If t is equivalent to 1, then t(A∗SH) =
{A∗} and t(A+SH) = {A+}. But Leaf(A∗) = X∗ = Leaf(A+), because the leaf
word is always nonempty. Finally, let t be nontrivial. Then the equation follows
from (i), because Leaf(t(A+SH)ε) = Leaf(t(A+SH)), again by the nonempty-
ness of the leaf word. This completes the proof of the lemma.

We will consider also another hierarchy called the fine hierarchy over L. It was
introduced by the author in the context of recursion theory and then considered
also in several other contexts. Let us briefly recall the definition of the fine hier-
archy over L. Its classes (or levels) Sα are numbered by ordinals α < ε0, where
ε0 = sup{ω, ωω, ωωω

, . . . } (for more information about the well-known ordinal ε0
and the ordinal arithmetic see e.g. [13]).

We define the classes Snα, where n is an auxiliary parameter, by induction on
α, considering the cases α = 0, α = ωγ for some γ > 0, α = β + 1 is a successor,
and α = δ + ωγ , δ = ωγ · δ′ for some δ′, γ > 0, as follows (simplifying notation we
write in this definition ab in place of a ∩ b):
Sn0 = 0; Snωγ = Sn+1

γ for γ > 0;
Snβ+1 = {u0x0 ∪ u1x1|ui ∈ Ln, x0 ∈ Snβ , x1 ∈ co(Snα), u0u1x0 = u0u1x1};
Snδ+ωγ = {u0x0 ∪ u1x1 ∪ ū0ū1y|ui ∈ Ln, x0 ∈ Snα, x1 ∈ co(Snα), y ∈ Snδ , u0u1x0 =
u0u1x1} for δ = ωγ · δ′ > 0, γ > 0.

To see that this definition is correct note that every nonzero ordinal α < ε0 is
uniquely representable in the form α = ωγ0 + · · · + ωγk for a finite sequence
γ0 ≥ · · · ≥ γk of ordinals < α. Applying the definition we subsequently get
Snωγ0 , S

n
ωγ0+ωγ1 , . . . , S

n
α. Finally, let Sα = S0

α.
Let us recall some simple properties of the fine hierarchy over any base L (for

more information and for proofs see e.g. [21]).

Lemma 2.6. (i) Sα ∪ co(Sα) ⊆ Sβ for all α < β < ε0.

(ii) Fine hierarchy is a refinement of L, i.e. any class Ln is among the classes
Sα(α < ε0).

34 V.L. SELIVANOV

(iii) If L is a base in B, L′ is a base in B′ and f : B → B′ is a homomorphism
of Boolean algebras such that f(Ln) ⊆ L′

n for all n < ω, then f(Sα) ⊆ S′
α for all

α < ε0 (here {S′
α} is of course the fine hierarchy over L′).

We will consider the fine hierarchy over all the three bases PH,SH,BH introduced
above, and we denote the corresponding hierarchies as {Sα(PH)}, {Sα(SH)},
and {Sα(BH)}, respectively. Again, to mention the alphabets explicitly we use
notation like Sα(A+BH).

3. Families of languages

By a +-class of languages [17] we mean a correspondence C which associates
with each finite alphabet A a set A+C ⊆ P (A+), where P (A+), as introduced
above, denotes the set of all subsets of A+. In this paper we need classes of
languages with some minimal closure properties as specified in the following:

Definition. By a +-family of languages we mean a +-class C = {A+C}A such
that

(1) for every semigroup morphism φ : A+ → B+, L ∈ B+C implies φ−1(L) ∈
A+C;

(2) if L ∈ A+C and a ∈ A, then a−1L = {v ∈ A+|av ∈ L} and La−1 = {v ∈
A+|va ∈ L} are in A+C.

This notion is obtained from the notion of a positive +-variety introduced in [17] by
omitting the condition that any A+C is closed under finite union and intersection.
The notion of a *-family of languages is obtained from the above definition by
using * in place of + and monoid morphism in place of the semigroup morphism
(as again in [17] for the notion of a positive *-variety).

There is a relationship of *-families of languages to a notion of reducibility
considered in [3]. For languages L,K ⊆ A∗, let L ≤oh K denote that for some
words y, z ∈ A∗ and some monoid morphism h : A∗ → A∗ we have L = {x ∈
A∗|yh(x)z ∈ K}·
Lemma 3.1. For any *-family of languages C and any alphabet A, the class A∗C
is closed downwards under ≤oh.
Proof. Let K ∈ A∗C and L ≤oh K, then L = {x ∈ A∗|yh(x)z ∈ K}. In other
words, L = h−1(y−1(Kz−1)), where Kz−1 = {u ∈ A∗|uz ∈ K}, and similarly for
y−1K. By definition of the *-family, L ∈ A∗C completing the proof.

The following evident fact will be of some use in the next section.

Lemma 3.2. Let C be a *-family of languages and A,B be any alphabets of the
same cardinality. Then Leaf(A∗C) = Leaf(B∗C).

Proof. By symmetry, it suffices to check the inclusion in one direction, say
Leaf(A∗C) ⊆ Leaf(B∗C). Let K ∈ Leaf(A∗C), then K = M−1(L) for an
L ∈ A∗C and a suitable machine M . Let φ : A → B be a one-one correspon-
dence between A and B, and φ1 : B∗ → A∗ be the monoid morphism induced

AUTOMATA AND COMPLEXITY-THEORETIC HIERARCHIES 35

by φ−1. Then L1 = φ−1
1 (L) ∈ B∗C and K = M−1

1 (L1), where M1 is a machine be-
having just as M with the only difference that it prints φ(a) whenever M prints a.
Hence, K ∈ Leaf(B∗C) completing the proof.

From results in [17] we easily deduce the following facts about classes of hier-
archies introduced in Section 2.

Lemma 3.3. (i) For any n > 0, {A+Ln}A and {A+Bn}A are positive +-varieties,
while {A∗Ln}A is a positive *-variety.

(ii) For any typed Boolean term t, {t(A+SH)}A and {t(A+BH)}A are +-families
of languages while {t(A∗SH)}A is a *-family of languages.

(iii) For any α < ε, {Sα(A+SH)}A and {Sα(A+BH)}A are +-families of lan-
guages while {Sα(A+SH)}A is a *-family of languages.

Proof. (i) is proved in [17] and plays a principal role for our paper.

(ii) Let φ : A+ → B+ be a semigroup morphism and let L ∈ t(B+L). By (i), the
preimage map φ−1 satisfies conditions of Lemma 2.2(ii). Hence, φ−1(L) ∈ t(A+L).
Property (2) from definition of the family of languages, as well as the remaining
assertions from (ii), are checked in the same way.

Note that typically {t(A+SH)}A is not a +-variety, because for many t the
class t(A+SH) is not closed under union and intersection.

(iii) Follows from Lemma 2.6(iii) and the fact that the operations φ−1(L), a−1L
and La−1 respect (according to (i)) all the classes A+Ln, A+Bn, A∗Ln. This com-
pletes the proof.

4. Typed Boolean hierarchy over SH

In this section we relate some hierarchies introduced in Section 2 via the leaf
language approach. First we consider languages from classes of the typed Boolean
hierarchy over SH as leaf languages.

Theorem 4.1. For any typed Boolean term t, ∪ALeaf(t(A∗SH)) = t(PH) =
∪ALeaf(t(A+SH)).

Proof. By Lemma 2.5, it suffices to prove the equality ∪ALeaf(t(A∗SH)) =
t(PH). First let us note that the result from [7] cited in the Introduction is
exactly formulated as the equality ∪ALeaf(A∗Ln) = Σpn, for any n > 0.

Now let us check the inclusion ∪ALeaf(t(A∗SH)) ⊆ t(PH). Let K ∈
Leaf(t(A∗SH)), then K = M−1(L) for some polynomially bounded nondetermin-
istic Turing machine M and some L ∈ t(A∗SH). The map M−1 : P (A∗) → P (X∗)
is a homomorphism of Boolean algebas satisfying (by the theorem of Burtschick
and Vollmer) the inclusionsM−1(A∗Ln) ⊆ Σpn. By Lemma 2.1(ii), K = M−1(L) ∈
t(PH), as desired.

For the converse inclusion, choose any K in t(PH) and let t = t(x0, . . . , xk),
where xj are typed variables. ThenK = t(K0, . . . ,Kk) for someK0, . . . ,Kk ⊆ X∗

36 V.L. SELIVANOV

such that Kj ∈ Σpn+1 whenever xj is of type n. By the theorem of Burtschik
and Vollmer, there exist alphabets A0, . . . , Ak and languages Lj ⊆ A∗

j such that
Kj ∈ Leaf(Lj) and Lj ∈ Ln+1 whenever xj is of type n. By Lemma 3.2, the
alphabets A0, . . . , Ak may be without loss of generality assumed pairwise disjoint.
Let A = A0 ∪ · · · ∪Ak. Now it suffices to show that K ∈ Leaf(t(A∗SH)).

Let M0, . . . ,Mk be nondeterministic polynomyal time Turing machines sat-
isfying Kj = M−1

j (Lj). Consider the nondeterministic polynomial time Tur-
ing machine M which behaves as follows: on input x ∈ X∗, it branches non-
deterministically into k + 1 computation paths, and on the j-th (from left to
right) path just mimicks completely the behavior of the machine Mj . Note that
the leaf string M(x) will be the concatenation of the leaf strings Mj(x), i.e.
M(x) = M0(x) · · ·Mk(x).

For any j ≤ k, let φj : A∗ → A∗
j be the morphism erasing all letters not in Aj .

Then, by Lemma 3.3, φ−1
j (Lj) ∈ Ln+1 whenever xj is of type n. Hence, the lan-

guage P = t(φ−1
0 (L0), . . . , φ−1

k (Lk)) is in t(A∗SH). Hence, it suffices to check that
K = M−1(P) = t(M−1(φ−1

0 (L0)), . . . ,M−1(φ−1
k (Lk)). But φj(M(x)) = Mj(x),

hence M−1(φ−1
j (Lj)) = M−1

j (Lj) and the desired equality follows immediately
from the equality K = t(K0, . . . ,Kk) = t(M−1

0 (L0), . . . ,M−1
k (Lk)). This con-

cludes the proof of the theorem.
In [7] the result was proved in a more exact form than it was formulated above.

It was proved also that for any n > 0 there is an alphabet A and a language
L ∈ A+Ln such that Leaf(L) = Σpn. This is also generalizable to the typed
Boolean hierarchy.

Theorem 4.2. For any t ∈ T there exist an alphabet A and a language L ∈
t(A+SH) such that Leaf(L) = t(PH).

Proof. By Lemma 2.3, there exists a language K ⊆ X∗ polynomially m-complete
in t(PH). By Theorem 4.1, there exist an alphabet A and a language L ∈
t(A+SH) such that K ∈ Leaf(L) ⊆ t(PH). It is well-known [5] that the
class Leaf(L) is closed downwards under the polynomial m-reducibility. Hence,
t(PH) ⊆ Leaf(L) completing the proof.

5. Typed Boolean hieararchy over BH

The next result is an analog of Theorem 4.1 for the Brzozowski hierarchy.

Theorem 5.1. For any t ∈ T , t(PH) = ∪ALeaf(t(A+BH)).

Proof. The inclusion from left to right follows from Theorem 4.1 and Lemma 2.1.
For the converse inclusion, one straightforwardly checks that the proof in [7] of
the inclusion Leaf(A∗Ln+1) ⊆ Σpn+1 is easily modified to the proof of inclusion
Leaf(A∗Bn+1) ⊆ Σpn+1 (see e.g. [4] for the proof for the first level). From the last
inclusion the desired inclusion ∪ALeaf(t(A+BH)) ⊆ t(PH) follows just in the
same way as above for the Straubing hierarchy. This completes the proof.

AUTOMATA AND COMPLEXITY-THEORETIC HIERARCHIES 37

The relationships between automata-theoretic hierarchies and the complexity-
theoretic ones established in Theorems 4.1 and 5.1 look dependent on the alphabet.
It seems that for the Straubing case the dependence is really essential (though we
have yet no formal proof of this). Our next result shows that for the Brzozowski
case one can get an alphabet-independent version of Theorem 5.1.

Theorem 5.2. For any t ∈ T and any alphabet A having at least two symbols,
Leaf(t(A+BH)) = t(PH).

The idea of proof is evident: to code symbols of a bigger alphabet by sequences
of symbols of a smaller alphabet using the presence of the successor function in
the signature σ′

A from Section 2. In the next few lemmas we collect observations
needed for the realization of this idea. For technical convenience, we will assume
in these lemmas that the alphabet A is a finite subset of ω.

Define a function f : ω → {0, 1}+ by f(n) = 01 . . . 10, where the sequence of 1’s
is of length n+ 1. With any alphabet A ⊆ ω we associate a semigroup morphism
f = fA : A+ → {0, 1}+ induced by the restriction of f to A. E.g., for A = {0, 1, 2}
and w = 0212 we get f(w) = 01001110011001110. In general, if w = a0 · · · ak for
aj ∈ A then f(w) is the superposition f(a0) · · · f(ak). For i ≤ k, let i′ denote the
position of the first letter of f(aj) (this letter is of course 0) in the word f(w). As
usual, the length of a word v is denoted by |v|, and for i ≤ |v| the i-th letter in v
is denoted by vi. The following assertion is evident.

Lemma 5.3. (i) For all i, j ≤ |w|, i < j iff i′ < j′.

(ii) For any l ≤ |f(w)|, l ∈ {i′|i ≤ |w|} iff (f(w))l = 0 and (f(w))l+1 = 1.

Let σA = {<,Qa}a∈A and σ′ = σ′
{0,1} = {<,Q0, Q1,⊥,>, s} be the signatures

discussed in Section 2. Relate to any formula φ of σA a formula φ′ of σ′ by the
following induction:

if φ is x = y or x < y then φ′ is φ;
if φ is Qa(x) then φ′ is Q0(x) ∧Q1(s(x)) ∧ · · · ∧Q1(sa+1(x)) ∧Q0(sa+2(x));
if φ is φ1 ∧ φ2 then φ′ is φ′1 ∧ φ′2;
if φ is ¬φ1 then φ′ is ¬φ′1;
if φ is ∀xφ1 then φ′ is ∀x(Q0(x) ∧Q1(s(x)) → φ′1).

The other connectives ∨,→, ∃ are expressed through ∧,¬, ∀ in the usual way.
Below we discuss structures of the form w related to words w as specified in
Section 2. When we want to stress the signature in which we consider the structure,
we use notation like (w;σA). For i0, . . . , ik ≤ |w|, (w;σA, i0, . . . , ik) denotes the
usual enrichment of the structure (w;σA) by constants ij .

Lemma 5.4. (i) Let φ = φ(x0, . . . , xk) be a formula of signature σA, w ∈ A+ and
i0, . . . , ik ≤ |w|. Then we have (w;σa, i0, . . . , ik) |= φ(x0, . . . , xk) iff (f(w);σ′,
i′0, . . . , i′k) |= φ′(x0, . . . , xk).

(ii) For any w ∈ A+ and any sentence φ of σA, we have (w;σA) |= φ iff (f(w);
σ′) |= φ′.

38 V.L. SELIVANOV

Proof. (i) is checked by a strightforward induction on φ; one should take into
account Lemma 5.3 and the definition of f .

(ii) is a particular case of (i). This completes the proof.
Let Φ be the set of all sentences of signature σA. For φ, ψ ∈ Φ, let Lφ = {w ∈

A+|w |= φ} and let φ ≡ ψ iff Lφ = Lψ. Let B be the quotient of the structure
(Φ;∧,∨,¬, true, false) under the congruence relation ≡. As is well-known, B is a
Boolean algebra; abusing (and simplifying) notation, we denote elements of B as
corresponding sentences. For n < ω, let Ln be the subset of B corresponding to
the set of Σn+1-sentences; then L = {Ln} is a base in B. When we want to stress
the alphabet, we denote this base by LA.

The construction from preceding paragraph applies also to sentences of σ′
A

in place of σA (as well as to sentences of any other signature). We denote the
corresponding base as L′ = L′

A.

Lemma 5.5. Let t ∈ T and A be any alphabet, A ⊆ ω.
(i) L ∈ t(A+SH) iff L = Lφ for some φ ∈ t(LA), and similarly for A+BH and
for the base L′

A.

(ii) If φ ∈ t(LA) then φ′ ∈ t(L′
{0,1}).

Proof. (i) By theorem of McNaughton and Papert cited in Section 2, the map
φ 7→ Lφ induces an isomorphism between b.a.’s B and {L ⊆ A+|L is star-free},
and φ ∈ Ln iff Lφ ∈ A+Ln+1. By Lemma 2.1(ii), the assertion (i) follows. The
same proof works also for the Brzozowski case.

(ii) By definition of the map φ 7→ φ′, it induces a homomorphism h : B → B′

satisfying h(Ln) ⊆ L′
n. By Lemma 2.1(ii), the assertion follows. This completes

the proof.

Now we are able to give a proof of the theorem.

Proof. Theorem 5.2 The inclusion Leaf(t(A+BH)) ⊆ t(PH) was already noticed
above. For the converse, it clearly suffices to check that t(PH) ⊆
Leaf(t({0, 1}+BH)). By Theorem 4.1 and Lemma 3.2, it suffices to check the
inclusion Leaf(t(A+SH)) ⊆ Leaf(t({0, 1}+BH)), for any alphabet A ⊆ ω. So
assume that K ∈ Leaf(t(A+SH)). Then K = M−1(L) for a suitable machine M
and for some L ∈ t(A+SH). By Lemma 5.5, L = Lφ for some φ ∈ t(LA). Again
by Lemma 5.5, φ′ ∈ t(L′

{0,1}) and Lφ′ ∈ t({0, 1}+BH). Hence, it remains to check
that M−1(Lφ) ∈ Leaf(Lφ′). In other words, it remains to find a suitable machine
M1 satisfying M−1(Lφ) = M−1(Lφ′).

Let M1 on the input x behaves exactly as M on input x, with the only ex-
ception that at the end of any computation path, whenever M prints a ∈ A, the
machine M1 “prints” the word f(a) ∈ {0, 1}+ (more exactly, M1 branches nonde-
terministically to |f(a)| paths and on these paths prints subsequently bits of the
word f(a)). In this way we get M1(x) = f(M(x)). By Lemma 5.4, M(x) |= φ iff
M1(x) |= φ′. In other words, x ∈ M−1(Lφ) iff x ∈ M−1

1 (Lφ′), for any x ∈ X∗.
Hence, M−1(Lφ) = M−1(Lφ′) completing the proof of the theorem.

AUTOMATA AND COMPLEXITY-THEORETIC HIERARCHIES 39

Remark. Our proof makes no use of the constant symbols in the signature σ′,
hence Theorem 5.2 is true also for the version of the Brzozowski hierarchy obtained
by using the signature {<,Q0, Q1, s} in place of σ′.

As in Section 4, we automatically get:

Corollary 5.6. For any t ∈ T there exists a language L ∈ t(({0, 1}∗BH)) satis-
fying Leaf(L) = t(PH).

6. Fine hierarchy

In two preceeding sections we have described the situation with the typed
Boolean hierarchy rather comprehensively. Here we discuss similar questions for
the fine hierarchy. The general question is to understand the relationships between
classes Leaf(Sα(A+SH)), Leaf(Sα(A+BH)) and Sα(PH), for any α < ε0. We
give some partial information relevant to this question.

Proposition 6.1. For any α < ε0 and any alphabet A, Leaf(Sα(A+SH)) ⊆
Leaf(Sα(A+BH)) ⊆ Sα(PH).

Proof. Obviously, A+Ln ⊆ A+Bn for any n > 0. By Lemma 3.1, this implies
Sα(A+SH) ⊆ Sα(A+BH), for any α < ε0. This proves the left inclusion of the
theorem.

Now let K ∈ Leaf(Sα(A+BH)), i.e. K = M−1(L) for a suitable machine M
and some L ∈ Sα(A+BH). As noted in the proof of Theorem 5.1, M−1 maps
A+Bn into A+Σpn, for any n > 0. By Lemma 2.6, M−1 maps also Sα(A+BH) into
Sα(PH). Hence, K = M−1(L) ∈ Sα(PH) completing the proof.

Unfortunately, till now we were unable to prove the remaining inclusion
Sα(PH) ⊆ Leaf(∪AA+Sα(SH)). The problem is that the fine hierarchy is de-
fined in terms of values of Boolean terms, values of whose variables satisfy some
constraints (see Sect. 2). It is not clear how to preserve those constraints under
transfer to another hierarchy.

The next result, which is reminscent of Theorem 5.2, shows that for the
Brzozowski case we again may “reduce” alphabets.

Proposition 6.2. For any α < ε0 and any alphabet A, Leaf(Sα(A+SH)) ⊆
Leaf(Sα({0, 1}+BH)).

Proof. is parallel to the proof of Theorem 5.2. We again assume A ⊆ ω and work
with f,B,B′ and other objects from the previous section. Similar to Lemma 5.5,
we first prove that L ∈ Sα(A+SH) iff L = Lφ for some φ ∈ Sα(LA), that the same
holds for the BH and σ′

A, and that φ ∈ Sα(LA) implies φ′ ∈ Sα(L′
{0,1}).

Now let K ∈ Leaf(Sα(A+SH)), then K = M−1(L) for a suitable machine M
and for some L ∈ Sα(A+SH). Choose φ ∈ Sα(LA) satisfying L = Lφ. Then
φ′ ∈ Sα(L′

{0,1}) and a fortiori Lφ′ ∈ Sα({0, 1}+BH). The machine M1 from the
proof of Theorem 5.2 again satisfies M−1(Lφ) = M−1

1 (Lφ′). This completes the
proof.

40 V.L. SELIVANOV

7. Examples and discussion

The typed Boolean hierarchy and the fine hierarchy are rather abstract and rich
structures. In this section we formulate and discuss some interesting particular
cases.

Let again B = (B;∪,∩,̄ , 0, 1) be a b.a. Define an operation of addition of
classes X,Y ⊆ B by the equality X + Y = {x4y|x ∈ X, y ∈ Y }, where x4y is
the symmetric difference of x and y. This operation is induced by the operation of
addition modulo 2, hence it is associative and commutative and we may a fortiori
freely use expressions like X0 + · · · +Xn.

Let L be a sublattice of (B;∪,∩, 0, 1). For any k > 0, let Dk = L+ · · · + L (k
summonds in the righthand side). In [14] it was shown that the sequence {Dk(L)}
coincides with the well-known Boolean (or difference) hierarchy over L.

Taking now NP in place of L, one gets the Boolean hiearachy overNP , a rather
popular object in complexity theory introduced in [29]. More generally, one could
consider the Boolean hierarchy {Dk(Σpn)} over the n-th level of the polynomial
hierarchy. It is natural to ask: is there a natural description of these classes in
terms of leaf languages? To answer the question, one has only to note that for
any base L in B the Boolean hierarchy over any class Ln is a fragment of the
typed Boolean hierarchy (as well as of the fine hierarchy), see [19]. E.g., we could
consider the Boolean hierarchy over any class Bn = {0, 1}+Bn of the Brzozowski
hierarchy and immediately get

Corollary 7.1. For all n, k > 0, Leaf(Dk(Bn)) = Dk(Σpn).

For the case of the Boolean hierarchy over NP and the Boolean hierarchy over
SH the corresponding result was earlier obtained in [26].

Another interesting example is the plus-hierarchy introduced implicitly in [19, 21]
and explicitely in [20,22]. The levels of the plus-hierarchy over any base L are ob-
tained when one applies the operation + introduced above to the levels Ln, for all
n < ω. Any finite nonempty string σ = (n0, . . . , nk) of natural numbers satisfy-
ing n0 ≥ · · · ≥ nk defines the level Pσ(L) = Ln0 + · · · + Lnk

of the plus-hierarchy
over L. One easily checks that in this way we get actually all the levels of the plus-
hierarchy, that the finite sequences specified above are ordered lexicographically
with the order type ωω, and that Pσ ∪ co(Pσ) ⊆ Pτ whenever σ < τ .

Taking PH in place of L, we get the plus-hierarchy over PH . Though not so
important as the Boolean hierarchy over NP , this hierarchy seems also potentially
useful (e.g., in [8,18] it was implicitly used to estimate exactly the collapse of the
PH from the collapse of the Boolean hierarchy over NP). Hence, one may like
to look at the description of the levels of this hierarchy in terms of leaf languages.
Again, such descriptions are contained in the results of Sections 4 and 5. Note
that the classes Pσ are again among the classes of the typed Boolean hierarchy (as
well as of the fine hierarchy) over L, see [19]. Taking now e.g. the plus-hierarchy
over {0, 1}+BH , we get

Corollary 7.2. For any sequence σ as above, Leaf(Pσ({0, 1}+BH)) = Pσ(PH).

AUTOMATA AND COMPLEXITY-THEORETIC HIERARCHIES 41

What is the aim of proving results of this type? In our opinion, the existence of
nontrivial connections between automata-theoretic and complexity-theoretic hier-
archies is interesting in its own right and is somewhat unexpected. Maybe, some
time results of this type may be even of use. E.g., assume for a moment that the
Brzozowski hierarchy collapses. By the theorem of Burtschik and Vollmer, the
polynomial hierarchy would then collapse too. This is of course unlikely, hence
the Brzozowski hierarchy should not collapse. And this is actually a proven fact of
automata theory [6]. From [Ka85] we know that the Boolean hierarchy over any
Σpn does not collapse, provided that PH does not collapse. Hence, the Boolean
hierarchy over any level of BH also should not collapse. And this was indeed
proved in [24, 25], though the proofs are rather involved.

From [19, 20, 22] we know that the plus-hierarchy over PH does not collapse,
provided that the PH does not collapse. Hence, the plus-hierarchy overBH should
also not collapse. This result is not yet published but hopefully we have a proof of
this fact (as well as of the fact that the fine hierarchy over BH does not collapse).
But this is another story.

Acknowledgements. This work was started at RWTH Aachen in spring of 1999 and fin-
ished 2 years later at the University of Würzburg. I am grateful to Wolfgang Thomas
and Klaus Wagner for hospitality and for making those visits possible. I thank also both
of them, as well as Heribert Vollmer, for helpfull discussions.

References

[1] J.L. Balcázar, J. Dı́az and J. Gabarró, Structural Complexity I, Vol. 11 of EATCS Mono-
graphs on Theoretical Computer Science. Springer-Verlag (1988).

[2] J.L. Balcázar, J. Dı́az and J. Gabarró, Structural Complexity II, Vol. 11 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag (1990).

[3] B. Borchert, On the acceptance power of regular languages. Theoret. Comput. Sci. 148
(1995) 207-225.

[4] B. Borchert, D. Kuske and F. Stephan, On existentially first-order definable languages
and their relation to NP . RAIRO: Theoret. Informatics Appl. 33 (1999) 259-269.

[5] D.P. Bovet, P. Crescenzi and R. Silvestri, A uniform approach to define complexity
classes. Theoret. Comput. Sci. 104 (1992) 263-283.

[6] J.A. Brzozowski and R Knast, The dot-depth hierarchy of star-free languages is infinite.
J. Comput. Systems Sci. 16 (1978) 37-55.

[7] H.-J. Burtschick and H. Vollmer, Lindström Quatifiers and Leaf Language Definability.
Int. J. Found. Comput. Sci. 9 (1998) 277-294.

[8] E. Hemaspaandra, L. Hemaspaandra and H. Hempel, What’s up with downward col-
lapse: Using the easy-hard technique to link Boolean and polynomial hierarchy collapses.
Compl. Theory Column 21, ACM-SIGACT Newslett. 29 (1998) 10-22.

[9] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer and K.W. Wagner, On the
power of polynomial time bit-reductions, in Proc. 8th Structure in Complexity Theory
(1993) 200-207.

[10] U. Hertrampf, H. Vollmer and K.W. Wagner, On the power of number-theoretic oper-
ations with respect to counting, in Proc. 10th Structure in Complexity Theory (1995)
299-314.

42 V.L. SELIVANOV

[11] U. Hertrampf, H. Vollmer and K.W. Wagner, On balanced vs. unbalanced computation
trees. Math. Systems Theory 29 (1996) 411-421.

[12] B. Jenner, P. McKenzie and D. Therien, Logspace and logtime leaf languages. Inform.
and Comput. 129 (1996) 21-33.

[13] K. Kuratowski and A. Mostowski, Set Theory. North Holland (1967).
[14] J. Köbler, U. Shöning and K.W. Wagner, The difference and truth-table hierarchies for

NP. Dep. of Informatics, Koblenz, Preprint 7 (1986).
[15] R. McNaughton and S. Papert, Counter-free automata. MIT Press, Cambridge,

Massachusets (1971).
[16] D. Perrin and J.-E. Pin, First order logic and star-free sets. J. Comput. Systems Sci. 32

(1986) 393-406.
[17] J.-E. Pin and P. Weil, Polynomial closure and unambiguous product. Theory Computing

Systems 30 (1997) 383-422.
[18] S. Reith and K.W. Wagner, On Boolean lowness and Boolean highness, in Proc. 4-

th Ann. Int. Computing and Combinatorics Conf. Springer, Berlin, Lecture Notes in
Comput. Sci. 1449 (1998) 147-156.

[19] V.L. Selivanov, Two refinements of the polynomial hierarchy, in Proc. of Symposium
on Theor. Aspects of Computer Science STACS-94. Springer, Berlin, Lecture Notes in

Comput. Sci. 775 (1994) 439-448.
[20] V.L. Selivanov, Refining the polynomial hierarchy, Preprint No. 9. The University of

Heidelberg, Chair of Mathematical Logic (1994) 20 p.
[21] V.L. Selivanov, Fine hierarchies and Boolean terms. J. Symb. Logic 60 (1995) 289-317.
[22] V.L. Selivanov, Refining the polynomial hierarchy. Algebra and Logic 38 (1999) 456-475

(Russian, there is an English translation).
[23] V.L. Selivanov, A logical approach to decidability of hierarchies of regular star-free

languages, in Proc. of 18-th Int. Symposium on Theor. Aspects of Computer Science
STACS-2001 in Dresden, Germany. Springer, Berlin, Lecture Notes in Comput. Sci.
2010 (2001) 539-550

[24] V.L. Selivanov and A.G. Shukin, On hierarchies of regular star-free languages (in Rus-
sian). Preprint 69 of A.P. Ershov Institute of Informatics Systems (2000) 28 p.

[25] A.G. Shukin, Difference hierarchies of regular languages. Comput. Systems 161 (1998)
141-155 (in Russian).

[26] H. Schmitz and K.W. Wagner, The Boolean hierarchy over level 1/2 of the Straubing–
Therien hierarchy, Technical Report 201. Inst. für Informatik, Univ. Würzburg available
at http://www.informatik.uni-wuerzburg.de.

[27] W. Thomas, Classifying regular events in symbolic logic. J. Comput. Systems Sci. 25
(1982) 360-376.

[28] N.K. Vereshchagin, Relativizable and non-relativizable theorems in the polynomial the-
ory of algorithms. Izvestiya Rossiiskoi Akademii Nauk 57 (1993) 51-90 (in Russian).

[29] G. Wechsung and K. Wagner, On the Boolean closure of NP, in Proc. of the 1985 Int.
Conf. on Fundamentals of Computation theory. Springer-Verlag, Lecture Notes in Com-
put. Sci. 199 (1985) 485-493.

Communicated by J.-E. Pin.
Received March 27, 2001. Accepted June 14, 2002.

To access this journal online:
www.edpsciences.org

