
RAIRO-Theor. Inf. Appl. 52 (2018) 219–234 RAIRO - Theoretical Informatics and Applications
https://doi.org/10.1051/ita/2018016 www.rairo-ita.org

REGULAR AND LINEAR PERMUTATION LANGUAGES

Grzegorz Madejski*

Abstract. A permutation rule is a non-context-free rule whose both sides contain the same multiset
of symbols with at least one non-terminal. This rule does not add or substitute any symbols in the
sentential form, but can be used to change the order of neighbouring symbols. In this paper, we consider
regular and linear grammars extended with permutation rules. It is established that the generative
power of these grammars relies not only on the length of the permutation rules, but also whether we
allow or forbid the usage of erasing rules. This is quite surprising, since there is only one non-terminal in
sentential forms of derivations for regular or linear grammars. Some decidability problems and closure
properties of the generated families of languages are investigated. We also show a link to a similar
model which mixes the symbols: grammars with jumping derivation mode.

Mathematics Subject Classification. 68Q42, 68Q85.

Accepted November 21, 2018.

1. Introduction

Permutation languages (PL) were introduced in [12, 13] to fill in the gap between context-free (CFL) and
context-sensitive (CSL) language classes. Indeed, many phenomena of the world are described by strings of
information that cannot be parsed by context-free grammars. On the other hand, in many cases context-
sensitive languages are too broad and complex to be of practical use. Therefore, families of mildly context-
sensitive languages are often investigated and PL was an interesting candidate for such an attempt. In [12, 13],
permutation grammars were defined by extending context-free grammars with interchange rules of the form
XY → Y X where X, Y are non-terminal symbols. This class was shown to be strictly between CFL and CSL.

In [14], the definition of permutation rules was extended to arbitrarily many neighbouring symbols. Generative
power of such grammars was analysed, as well as closure properties of the generated language classes. An
interchange lemma was also presented and it was used to prove that if we allow to permute three neighbouring
symbols, we obtain a class of languages strictly greater than when only permutations of length 2 are allowed.
In [7], an infinite hierarchy with respect to the length (span) of the rules was established.

It was noted, in [13], that regular grammars extended with permutation rules would be an interesting class
to consider. Such languages have only one non-terminal symbol in a derivation and permutation rules must
contain this symbol. Some basic properties of such grammars were considered in [15]. It was shown that some
non-context-free languages can be generated in this way. Linear and regular permutation languages were also

Keywords and phrases: Permutation languages, interchange rules, context-free grammars, linear grammars, regular grammars,
closure properties, decidability, generative power.

Institute of Informatics, Faculty of Mathematics, Physics, and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland.

* Corresponding author: gmadejsk@inf.ug.edu.pl

Article published by EDP Sciences c© EDP Sciences, 2019

https://doi.org/10.1051/ita/2018016
https://www.rairo-ita.org
mailto:gmadejsk@inf.ug.edu.pl
http://www.edpsciences.org

220 G. MADEJSKI

studied in [8] with respect to their membership problem complexity. It was shown that membership problem
for these classes is, in most cases, NP-hard.

As there was no thorough research done on these classes, we took on this task and studied them from different
perspectives. The results were presented at NCMA 2016 in Debrecen [10]. This version of the article is slightly
longer than the proceedings version. It includes some proof corrections and also provides a connection between
this model of grammars and jumping grammars. Actually, some of the results on jumping grammars included
here were also presented as a short paper at NCMA 2016 by the author [9].

In Section 2, we provide all the necessary definitions and illustrate some of them with examples. In Section 3,
the results of this paper are presented. We study the generative power of linear and regular permutation
grammars (Sect. 3.1) and we establish an infinite hierarchy of languages with respect to the length of permutation
rules (Sect. 3.2). In Section 3.3, we investigate some closure properties and in Section 3.4, we present some
decidability results. Next, in Section 3.5, we recall jumping grammars and show that this model bears some
similarity to our permutation-based model. We conclude the paper with Section 4, where we point out some
open problems and prospects for future research.

Although this paper presents a theoretical oriented study, we present some remarks and suggestions for
possible future applications. Permutation languages can describe phenomena where pieces of information can
permute or the order in which they are parsed is not important. Such a free-order behaviour can be found in
the research area of many disciplines.

– Relation with concurrent programming: permutation languages are similar to the family of partially
commutative context-free languages (PCCFLs) which were presented in [2]. PCCFLs are generated by
context-free grammars in Greibach normal form which use the left-most derivation for context-free rules
and are additionally equipped with a binary relation that allows swapping of two neighbouring non-
terminal symbols in the sentential form. This relation, called independence relation, can be simulated by
permutation rules of the form XY → Y X. PCCFLs induce a class of partially commutative context-free
processes (BPC) which is an alternative for other abstract models of concurrent and recursive programs,
such as Process Algebra. The study of permutation languages could provide more insight into the research
of PCCFLs and other models using the reordering of symbols.

– Natural language processing: as it was noted in some previous papers on permutation languages (see
[12, 13]), permutation grammars can be used to parse natural languages with a relatively free word order,
like Hungarian, Finnish or Polish. Indeed, the words in a Polish sentence “Jan naprawia komputery”
(Jan repairs computers) could be permuted. The sentences “Komputery naprawia Jan”, “Jan komputery
naprawia” and “Komputery Jan naprawia” are all correct.

– Multisets: multisets, which are used for some biologically inspired computation models, can be viewed as
strings for which the order of letters is not important, i.e. can be arbitrarily reordered using permutations.

2. Preliminaries

We assume the reader is familiar with the basic concepts of the formal language theory (see [4]). Let T =
{t1, t2, . . . , tn} be the set of terminal symbols (or alphabet) and w ∈ T ∗ a word. The length of w is denoted by
|w| and the number of occurrences of letter t in w by |w|t. The Parikh vector is a function Ψ : T ∗ → N|T | given
by the formula Ψ(w) = (|w|t1 , . . . , |w|tn). For example, for T = {a, b, c}, Ψ(ccabac) = (2, 1, 3). In many cases,
we will extend this definition to Ψ : (T ∪N)∗ → N|T∪N |, where N is a set of non-terminal symbols (to construct
the vector, first, we order lexicographically the letters, then the non-terminals). For two words u, v ∈ T ∗, the
shuffle operation � is defined as follows u � v = {u1v1u2v2 · · ·uk, vk : v1, . . . vk, u1, . . . , uk ∈ T ∗, u1u2 · · ·uk =
u, v1v2 · · · vk = v}.

Grammars are quadruples G = (N,T, P, S) where N is the set of non-terminal symbols, T is the set of
terminal symbols (alphabet), P ⊆ (N ∪ T)∗N(N ∪ T)∗ × (N ∪ T)∗ – a finite relation, S – the start symbol.
The elements of P are called rules and are denoted by x → y instead of (x, y). For brevity, we write x ↔ y if

REGULAR AND LINEAR PERMUTATION LANGUAGES 221

x → y, y → x ∈ P . The derivation step relation =⇒ is defined in a standard way and the language generated
by G is the set L(G) = {w ∈ T ∗ : S =⇒∗ w}, where =⇒∗ is the transitive-reflexive closure of =⇒.

Definition 2.1. We say that a grammar G = (N,T, P, S) is a permutation grammar (PG, for short) if all the
non-context-free rules are of the form α → β where α, β ∈ (N ∪ T)∗N(N ∪ T)∗, Ψ(α) = Ψ(β) (we call them
permutation rules). The languages generated by PGs are called permutation languages and denoted as PL.

If a permutation rule was used in a derivation step, we may mark it as =⇒
Perm

. Similarly, we can mark the usage

of context-free, linear or regular rules by =⇒
CF

, =⇒
Lin

, =⇒
Reg

, respectively.

It has been noted above that the context-free rules in a permutation grammar can be restricted to linear or
regular ones to form some subclasses. We give a formal definition.

Definition 2.2. Let G = (N,T, P, S) be a PG and let X,Y ∈ N , a ∈ T , u, v, z ∈ T ∗, w ∈ T+. A rule is:

– non-erasing regular if it is of the form X → aY | Y | a,
– regular if it is of the form X → aY | Y | a | λ,
– non-erasing right-linear if it is of the form X → uY | w,
– right-linear if it is of the form X → uY | v,
– non-erasing linear if it is of the form X → uY v | w.
– linear if it is of the form X → uY v | z.

Grammar Allowed type Generated
of CF rules language family

Non-erasing regular Non-erasing regular∗ RPL

permutation grammar (neRPG)
Regular permutation Regular RPLλ
grammar (RPG)
Non-erasing right-linear Non-erasing right-linear∗ RLPL

permutation grammar (neRLPG)
Right-linear permutation Right-linear RLPLλ
grammar (RLPG)
Non-erasing linear Non-erasing linear∗ LPL

permutation grammar (neLPG)
Linear permutation Linear LPLλ
grammar (LPG)

∗Erasing rule S → λ is allowed if S is not in the right-hand side of any rule.

To complete the notation, we denote the family of context-free, linear and regular languages by CFL, LL,
RL, respectively.

It is quite interesting to see that the difference between RPGs, LPGs and their non-erasing counterparts
seems small. The derivations in these families of grammars may only differ in the last step of the derivation,
which is done by using an erasing or non-erasing rule.

Definition 2.3. Let G = (N,T, P1 ∪ P2, S) be a PG generating a language L, where P1 contains only context-
free rules and P2 only permutation rules. The language generated by the grammar G′ = (N,T, P1, S) is called
the basis language of L with respect to G.

Let us illustrate the above definitions with the following example.

Example 2.4. Consider a neRPG G = ({S,X, Y, Z}, {a, b, c}, P, S) where P contains the following rules: S →
λ | aX; X → bY ; Y → cZ | c; Z → aX, Xa↔ aX, Xb↔ bX, Xc↔ cX, Y a↔ aY, Y b↔ bY, Y c↔ cY ,
Za↔ aZ, Zb↔ bZ, Zc↔ cZ.

222 G. MADEJSKI

We see that the basis language is (abc)∗. The permutation rules allow the non-terminal symbol to change its
position in the sentential form, e.g.

S ⇒ aX ⇒ abY ⇒ aY b⇒ Y ab⇒ cab.

Therefore, it is easy to see that the generated language is

L = {w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c}.

Notice that with a slight change in the rules, e.g. Y → Zc instead of Y → cZ, we obtain neLPG with a different
basis language: {(ab)ncn : n ≥ 0}, but also generating L.

Next, we define the notion of span.

Definition 2.5. A rule x→ y is of span m if |x| ≤ m and |y| ≤ m. A grammar is of span m if all its rules are
of span m. We may also say that a language generated by such grammar is of span m.

The classes of languages of span m are denoted by adding the span in the brackets to the abbreviation of the
name of the class, e.g. PL(m), LPLλ(m). We see that the language L from Example 2.4 is in RPL(2).

The final definition establishes the notion of closure of a grammar with respect to permutation rules.

Definition 2.6. A permutation grammar G = (N,T, P, S) is m-permutation-closed if for all possible α, β ∈
(N ∪ T)∗N(N ∪ T)∗, such that Ψ(α) = Ψ(β) and 2 ≤ |α|, |β| ≤ m, we have α↔ β ∈ P .

A family of languages generated by m-permutation-closed grammars will be denoted using an additional
superscript m− pc attached the symbol of the family, e.g. PLm−pc, LPLm−pcλ .

3. Results

3.1. Generative power

We start this section by showing that right-linear permutation languages are the same as regular permutation
languages. This is analogous to the standard classes of languages, without permutation rules.

Proposition 3.1. RLPL = RPL, RLPLλ = RPLλ.

Proof. The proof is similar to the one for standard classes. Every right-linear rule can be transformed into a
number of regular rules using additional symbols.

From now on, we do not consider the classes of right-linear permutation languages: RLPL, RLPLλ, as they
coincide with the regular ones.

Lemma 3.2. Let L ∈ LPLλ (or L ∈ RPLλ). If w ∈ L and the statement (Ψ(u) = Ψ(w)⇒ u = w) is satisfied
for any u ∈ L, then L ∈ LL (or L ∈ RL, correspondingly).

Proof. If w ∈ L, then it is derived using rules of some linear permutation grammar. If permutations were used,
we remove them from the derivation. We then get a word u ∈ L. By the assumptions of the lemma, we have
u = w. We conclude that permutations are not needed in any derivation, so L ∈ LL.

We see that the lemma characterises languages generated by grammars which always produce the same basis
language.

The lemma is a useful tool for showing that certain languages are not in LPLλ or RPLλ. Indeed, by showing
that a language is linear or regular and applying a standard pumping lemma for regular or linear languages
(see [4, 5]), we reach a contradiction.

Corollary 3.3. L1 = {anbn : n ≥ 1} /∈ RPLλ, L2 = {anbnckdk : n, k ≥ 1} /∈ LPLλ.

REGULAR AND LINEAR PERMUTATION LANGUAGES 223

Another language important for the study of generative power of the grammar classes is presented in the
example below.

Example 3.4. Consider an RPG G = ({S,X, Y, Z}, {a, b, c, d}, P, S) where P contains the rules:

S → abX | abY, X → abX | cdY, Y → cdY | Z, Z → λ

tZ ↔ Zt, where t ∈ {a, b, c, d}, aZb↔ bZa, cZd↔ dZc.

An example derivation:

S ⇒ abX ⇒ ababX ⇒ ababcdY ⇒ ababcdZ ⇒ . . .⇒

⇒ abZabcd⇒ aaZbbcd⇒ aabbcd.

We see that L(G) = {w ∈ {a, b}+ : |w|a = |w|b} · {w ∈ {c, d}+ : |w|c = |w|d}.

The language from Example 3.4 will be denoted as L3 throughout the paper.
Before we study L3, we present a useful lemma. The lemma characterises RPGs with permutations that are

of the form uX → vX, where X ∈ N , u, v ∈ T+, Ψ(u) = Ψ(v). We shall call them right-symbol permutations.

Lemma 3.5. Let G = (N,T, P, S) be a RPG of span m with right-symbol permutation rules. Then:

– All sentential forms can be described by an expression uX or u where u ∈ T ∗, X ∈ N .
– Let v1v2X be a sentential form with |v2| = m− 1. If v1v2X ⇒∗ w, then w = v1z where z ∈ T ∗.

Proof. Regular rules and right-symbol permutation rules have the non-terminal symbol always at the rightmost
end. Therefore, sentential forms can have the non-terminal symbol only at the last position.

If v1v2X is a sentential form such that v1, v2 ∈ T ∗, |v2| = m− 1, X ∈ N , then indeed all the words derived
from it are of the form v1z, z ∈ T ∗. This follows from the fact that the permutations are of span m, so they can
mix letters in v2, but not in v1.

We use the above results in the proof of the next lemma.

Lemma 3.6. Let G = (N, {a, b}, P, S) be an RPG of span m such that L = L(G) ⊆ {w ∈ {a, b}+ : |w|a = |w|b}
and am|N |bm|N | ∈ L. Then, P contains at least one permutation rule which is not a right-symbol permutation.

Proof. Let T = {a, b}. We assume that P has only regular rules and right-symbol permutations. We consider a
word w = am|N |bm|N | which is definitely in L. By Lemma 3.5, all sentential forms in the derivation of w have
the non-terminal symbol at the rightmost end. By Lemma 3.5, we also know that

S =⇒∗ am|N |vX =⇒∗ w

where X ∈ N , v = bm−1, vX ⇒∗ bm|N |. We remove the right-symbol permutations from the whole derivation.
Then, it is of the form:

S =⇒∗
Reg

u1u2 · · ·umv′X =⇒∗
Reg

w′

where u1, u2, . . . , um are words of length |N |, v′ is a word of length m− 1 and u1, . . . , um, v
′ altogether consist

of m|N | letters a and m− 1 letters b. Since the number of b’s is m− 1 and the number of u-words is m, it means

224 G. MADEJSKI

that one word, say ui where 1 ≤ i ≤ m, consists solely of letters a.

S =⇒∗
Reg

u1u2 · · ·ui−1Y =⇒∗
Only a’s

u1u2 · · ·ui−1uiZ =⇒∗
Reg

u1u2 · · ·umv′X =⇒∗
Reg

w′

for some Y, Z ∈ N . To generate ui we need at least |N | steps, each one adding a letter a. So the part of derivation
u1u2 · · ·ui−1Y =⇒∗

Only a’s
u1u2 · · ·ui−1uiZ consists of |N | + 1 sentential forms. Since there are |N | non-terminal

symbols, at least two sentential forms contain the same non-terminal symbol. The subword derived between
them can be pumped an arbitrary number of times, producing additional letters a. After pumping, we get on
output a word w′′ /∈ L, but derived using the rules of G. A contradiction is due to the false assumption that G
has only regular rules and right-symbol permutations.

We now go back to studying L3.

Proposition 3.7. L3 /∈ LPL.

Proof. We assume that L3 ∈ LPL. Let G = (N, {a, b, c, d}, P, S) be an neLPG of span m generating L3 and
n = m|N |. We consider a word w = anbncndn ∈ L3 and its derivation in G.

Firstly, notice that every sentential form must be of the form (a+ b)∗(c+ d)∗ �X where X ∈ N . Indeed, if
the first part of the word, with letters a and b, was mixed into the second part with c’s and d’s, then by applying
no permutation rules, we would obtain a word not in L3.

There are two cases to consider: the last rule has at least one letter a or b in the right-hand side or it has at
least one letter c or d. We investigate only the second case because the first one is analogous.

If the last used rule is Y → utv where u, v ∈ {a, b, c, d}∗, t ∈ {c, d}, then the derivation is of the form

S =⇒ α1 =⇒ α2 =⇒ . . . =⇒ αk︸ ︷︷ ︸
of the form (a+b)∗(c+d)∗X(c+d)∗

=⇒ w

where X ∈ N .
We use an erasing homomorphism h(a) = a, h(b) = b, h(c) = λ, h(d) = λ, h(X) = X where X ∈ N , on the

left-hand and right-hand sides of the rules of G. Then, we remove all rules that were not used to generate w.
We obtain a grammar G′ = (N, {a, b}, P ′, S). Let us make some important observations.

(1) The derived word w becomes h(w) = anbn and its derivation under homomorphism looks as follows

S =⇒ h(α1) =⇒ h(α2) =⇒ . . . =⇒ h(αk)︸ ︷︷ ︸
of the form (a+b)∗X

=⇒ anbn.

We see that the non-terminal symbol is always on the right-hand side. This leads us to the second
observation below.

(2) G′ has only regular rules and right-symbol permutation rules.
(3) L(G′) ⊆ {w ∈ {a, b}+ : |w|a = |w|b}, anbn ∈ L(G′) where n = m|N |. Indeed, every word of L(G) has

to have the same number of a’s and b’s, and the words of L(G′) as well. By observation 1, we see that
h(w) = anbn ∈ L(G′).

By Lemma 3.6, we see that it is not possible to derive anbn where n = m|N | in G′ when it has only right-symbol
permutations.

The above results lead us to the following theorem.

REGULAR AND LINEAR PERMUTATION LANGUAGES 225

Theorem 3.8. RPLλ and LPL are incomparable.

We now show that RPLλ ∪ LPL are strictly contained within the class LPLλ, by establishing some results
on the following language.

Example 3.9. Consider an LPG G = ({S,X, Y, Z}, {a, b, c, d}, P, S) where P contains the rules S →
abScd | abXcd, X → λ, tX ↔ Xt, where t ∈ {a, b, c, d}, aXb↔ bXa, cXd↔ dXc.

We see that the basis language is {(ab)n(cd)n : n > 0}. Similarly to the Example 3.4, the symbol X is used
to mix letters.

S ⇒ abScd⇒ ababXcdcd⇒ ababcXdcd⇒ ababdXccd⇒ . . .⇒

⇒ abXabdccd⇒ aaXbdccd⇒ aabbdccd.

We see that L(G) = {uw : u ∈ {a, b}+, w ∈ {c, d}+, |u|a = |u|b = |w|c = |w|d}.

From now on, we denote this language as L4.

Proposition 3.10. L4 /∈ LPL.

Proof. The proof is analogous to the one of Proposition 3.7.

Proposition 3.11. L4 /∈ RPLλ.

Proof. Suppose that L4 ∈ RPLλ and it is generated by an RPG G. Let n > 0. We consider a word w =
anbncndn ∈ L4. We remove all permutation rules from its derivation and get a word w′ = uv, where u ∈ {a, b}+,
v ∈ {c, d}+, |u|a = |u|b = |v|c = |v|d = n. All the rules used in its derivation are regular. We use standard
pumping lemma for regular languages. We pump the number of letters a and b so that their number is bigger
than that of c’s and d’s: wi = u1u

i
2u3v where i > 0, u1u2u3 = u, u2 6= λ.

We conclude this section with the following theorem.

Theorem 3.12. RPLλ ∪ LPL (LPLλ.

Proof. The inclusion follows from the definition of all classes. The strictness is a consequence of Proposi-
tions 3.10, 3.11.

All the results are summarised in Figure 1.

3.2. Infinite hierarchy

It is interesting to analyse the generative power not only with respect to the context-free rules but also
permutations. A simple restriction is to consider only permutation rules of span m. Then, an obvious question
arises: are there linear permutation languages of span m that are not of span m− 1? This problem was partially
solved in [7] for the class PL, where it was shown that PL(4m− 2) (PL(4m− 1) for m ≥ 1. Although we now
establish a result only for the subclass of PL, it is stronger, as there are no gaps in the hierarchy.

We present now a special kind of lemma, which plays a crucial role in the proof of the hierarchy theorem. It
is a variation on the interchange lemma presented in [14]. The idea of the lemma is this: if a word is derived
using at least one permutation rule, then by removing the last permutation rule from the derivation, we obtain
a different word which is also in the language.

Lemma 3.13 (Interchange lemma for LPLλ(m)). Let G = (N,T, P, S) be a linear permutation grammar of
span m. For an arbitrary word w ∈ L(G) not in the basis language, there exist words u, v, u′, v′ ∈ T ∗ such that:

(1) 0 < |uv| < m, Ψ(uv) = Ψ(u′v′), uv 6= u′v′,
(2) w = xuyvz, for some x, y, z ∈ T ∗,

226 G. MADEJSKI

Figure 1. The studied classes with the marked languages: L1 = {anbn : n ≥ 1} (Cor. 3.3),
L2 = {anbnckdk : n, k ≥ 1} (Cor. 3.3), L3 = {w ∈ {a, b}+ : |w|a = |w|b} · {w ∈ {c, d}+ : |w|c =
|w|d} (Ex. 3.4, Prop. 3.7) and L4 = {uw : u ∈ {a, b}+, w ∈ {c, d}+, |u|a = |u|b = |w|c = |w|d}
(Ex. 3.9, Prop. 3.10, 3.11).

(3) w′ = xu′yv′z ∈ L.

Proof. We see that if a word w ∈ L(G) is not in the basis language, at least one permutation rule is used
in the derivation. We consider the last permutation rule, which is of the form u′Xv′ → uXv, for some words
u, v, u′, v′ ∈ T ∗, 0 < |uv| < m, Ψ(uv) = Ψ(u′v′) and a non-terminal X. The derivation is S =⇒∗ xu′Xv′z =⇒

Perm

xuXvz =⇒∗
Lin

xuyvz = w. If we omit the last permutation rule, we get: S =⇒∗ xu′Xv′z =⇒∗
Lin

xu′yv′z.

The lemma is used to disprove that a language belongs to LPLλ(m), the same way as classical pumping
lemmas. We now consider an important language, which is used to establish the hierarchy result.

Example 3.14. Let m > 0. Consider an LPG G = ({S,X, Y }, {a, b, c}, P, S) where P contains the rules
S → amX, X → bmY, Y → cmS| cm, Sam ↔ amS, Sbm ↔ bmS, Scm ↔ cmS, Xam ↔ amX, Xbm ↔
bmX, Xcm ↔ cmX, Y am ↔ amY, Y bm ↔ bmY, Y cm ↔ cmY .

The right-linear rules produce the same number of m-segments am, bm, cm while the permutation rules allow
them to be mixed in any order. Note, that the construction of the rules forbids putting one m-segment in
between letters of another m-segment. An example derivation:

S =⇒
Lin

amX =⇒
Perm

Xam =⇒
Lin

bmY am =⇒
Lin

bmcmam.

Clearly, Lm+1 = L(G) = {w ∈ (am + bm + cm)+ : |w|a = |w|b = |w|c} ∈ LPL(m+ 1).

Proposition 3.15. Lm+1 /∈ LPLλ(m).

Proof. Suppose Lm+1 ∈ LPLλ(m). Then, there exists an LPG G = (N, {a, b, c}, P, S) of span m, such that
Lm+1 = L(G). Let n = |N | and w = amnbmncmn ∈ Lm+1 (we can use pumping lemma for linear languages to
prove that w does not lie in the basis language). We see that the word uv from the Interchange Lemma 3.13 is
of length at most m− 1. Then, |u|+ |v| ≤ m− 1. Each of the words u, v can lie inside an m-segment, but not
containing it or on the boarder of two m-segments.

Let us consider one of a few possible cases where u lies on the border of an m-segment of a’s and b’s and v
lies the border of an m-segment of b’s and c’s. First part (including y):

x︷ ︸︸ ︷
am(n−1)(aaa · · ·

u︷ ︸︸ ︷
aa · · · aaa︸ ︷︷ ︸

u1

)(bbb · · · bb︸ ︷︷ ︸
u2

y︷ ︸︸ ︷
· · · bbb)bm(n−2)(bbb · · ·.

REGULAR AND LINEAR PERMUTATION LANGUAGES 227

Second part (also including y):
y︷ ︸︸ ︷

· · · bbb)bm(n−2)(bbb · · ·
v︷ ︸︸ ︷

bb · · · bbb︸ ︷︷ ︸
v1

)(ccc · · · cc︸ ︷︷ ︸
v2

z︷ ︸︸ ︷
· · · ccc)cm(n−1) .

Since u = u1u2, v = v1v2, we see |u1|+ |u2|+ |v1|+ |v2| ≤ m− 1. We observe that u1 must consist of letters a.
If swapped with other letters, the last m-segment of a’s would be destroyed. Similarly, v2 must consist of c’s.
What is left, are letters b in u2 and v1. Mixing these letters with each other does not produce anything other
than what was before permuting. We come to a conclusion that uv = u′v′ from Interchange Lemma 3.13. In
other cases, we would obtain a similar result which contradicts our assumption that Lm+1 ∈ LPLλ(m).

Theorem 3.16. LPLλ(m) (LPLλ(m+ 1) for any m ≥ 2.

Proof. The inclusion follows from the definition of span and the strictness from Proposition 3.15.

3.3. Closure properties

In this subsection, we study some closure properties of linear and regular permutation languages. All results
are presented in Table 1. The results are not exhaustive. There are some open problems presented at the end
of the section and in conclusion of this paper.

Theorem 3.17. The classes RPL, LPL, RPLλ, LPLλ are closed under union, but are not closed under
intersection, intersection with a regular language and complement.

Proof. Closure under union is proven the same way as for standard classes of the Chomsky hierarchy. For the
two regular permutation languages L = {w ∈ {a, b, c}+ : |w|a = |w|b = |w|c} and K = a∗b∗c∗, the language
L ∩K = {anbncn : n ≥ 1} is not in LPLλ. The lack of closure under complement follows from the fact that
L ∩K = (Lc ∪Kc)

c
.

Theorem 3.18. The classes RPL, LPL, LPLλ are not closed under concatenation.

Proof. Consider languages L = {w ∈ {a, b}+ : |w|a = |w|b} and K = {w ∈ {c, d}+ : |w|c = |w|d}, both of which
are in RPL. We have already proven that L3 = LK /∈ RPL (Prop. 3.7). We proceed similarly for the linear
permutation languages. If L = {anbn : n ≥ 1} and K = {cndn : n ≥ 1}, then L2 = LK /∈ LPLλ.

Theorem 3.19. The classes LPL, LPLλ are not closed under Kleene star.

Proof. We take the languages L = ${anbn : n ≥ 1} ∈ LPL and K = ${cndn : n ≥ 1} ∈ LPL and construct a
language L∗ = (L+K)∗. Notice that L and K have a $-sign concatenated at the beginning of each word. These
signs serve as counters i.e. by looking at the number of $, we know how many times the concatenation by Kleene
star occurred.

We assume that L∗ ∈ LPLλ. For T = {a, b, c, d}, let G = (N,T, P, S) be an LPG of span m such that
L∗ = L(G). Let n ≥ m|N |. The word w = $anbn$cndn ∈ L∗, but w is not in the basis language. Indeed, words
of this form cannot be in any linear language which is easy to prove using a pumping lemma for linear languages
(see [5]). By the Interchange Lemma 3.13, there exist words u, v, u′, v′, x, y, z ∈ T ∗ such that 0 < |uv| < m,
Ψ(uv) = Ψ(u′v′), uv 6= u′v′, w = xuyvz and w′ = xu′yv′z ∈ L∗. The only possible w′ such that Ψ(w) = Ψ(w′)
is the word $cndn$anbn, but it would require |uv| > m, which leads to a contradiction.

We believe that RPL is also not closed under Kleene star. The idea would be to use languages L = ${w ∈
{a, b}+ : |w|a = |w|b} ∈ RPL and K = ${w ∈ {c, d}+ : |w|c = |w|d} ∈ RPL and, similarly to the linear permu-
tation languages, to consider a language L∗ = (L+K)∗. The proof that L∗ /∈ RPL would be probably similar
to the one of Proposition 3.7. We leave it, however, as an open problem.

It is also an open problem to establish closure results under concatenation and Kleene star for the class
RPLλ. This probably requires some additional techniques not presented in this paper.

228 G. MADEJSKI

Table 1. Summary of closure properties.

RPL RPLλ LPL LPLλ

Union Yes Yes Yes Yes
Intersection No No No No
Intersection with Reg. No No No No
Complement No No No No
Concatenation No ? No No
Kleene star ? ? No No
Commutative closure Yes Yes Yes Yes

Table 2. Decidable (D) and undecidable (UD) results for the investigated classes.

RPL RPLλ LPL LPLλ

Membership D D D D
Emptiness D D D D
Disjointness UD UD UD UD

The closure under letter-mixing operations such as shuffle and shuffle closure would be interesting to study,
but we also leave it as an open problem. Instead, we establish a result for the commutative closure operation.

Theorem 3.20. The classes RPL, LPL, RPLλ, LPLλ are closed under commutative closure.

Proof. We can assume that the regular or linear rules of the given grammar generate only one letter. We modify
the grammar by adding all possible permutation rules of span 2. They allow the non-terminal symbol to freely
move to any position in the sentential form. If a word w is in the language generated by the modified grammar,
then every word u satisfying the condition Ψ(u) = Ψ(w) is also in this language.

3.4. Decidability results

We now present some decidability results (see Tab. 2). We analyse only three decision problems and leave
other for future study.

First, we study the membership problem which has a grammar G and a word w on input, and answers the
question ”w ∈ L(G)?”.

Theorem 3.21. The membership problem for RPL, RPLλ, LPL, LPLλ is decidable.

Proof. It is easy to see that all types of grammars considered in this paper can be simulated by a linear bounded
automaton and the membership problem for context-sensitive languages is known to be decidable.

We move to the next problem. The disjointness problem has two grammars G1, G2 on input and answers
the question ”L(G1)∩L(G2) = ∅?”. To prove that this problem is undecidable, we use the Post correspondence
problem (PCP).

Let α1, . . . , αk ∈ {a, b}∗, β1, . . . , βk ∈ {a, b}∗, for some k > 0, be an instance of PCP. We construct grammars
over alphabet T = {a, b, 0, 1, $}.

Let Gα = ({S,X}, T, P, S) be an neRPG with P consisting of the following rules:

S → α1101S | α21001S | . . . | αk−110k−11S | αk10k1S | X,

X10i1↔ 10i1X,Xαi ↔ αiX where 1 ≤ i ≤ k,

REGULAR AND LINEAR PERMUTATION LANGUAGES 229

10i1αjX10l1→ αjX10i110l1 where 1 ≤ i, j, l ≤ k,

X → $.

Similarly, we construct an neRPG Gβ = ({S,X}, T, P ′, S) with P ′ consisting of the following rules:

S → β1101S | β21001S | . . . | βk−110k−11S | βk10k1S | X,

X10i1↔ 10i1X,Xβi ↔ βiX where 1 ≤ i ≤ k,

10i1βjX10l1→ βjX10i110l1 where 1 ≤ i, j, l ≤ k,

X → $.

These grammars generate languages Lα, Lβ , correspondingly.

Lemma 3.22. If PCP has a solution (i1, i2, . . . , in) where i1, i2, . . . , in ∈ {1, 2, . . . , k}, then a word w =
αi1αi2 · · ·αin$10i1110i21 · · · 10in1 is in Lα and Lβ.

Proof. The derivation of w in Gα is as follows. We start off with generating all the alphas and their numbers
using right-linear rules.

S ⇒ αi110i11S ⇒ . . .⇒ αi110i11 · · ·αin10in1X.

We then use the permutations to move X in the sentential form and use it to move all numbers (the parts of
the form 10∗1) to the right of the word.

αi110i11αi2X10i21 · · ·αin10in1⇒ αi1αi2X10i1110i21 · · ·αin10in1⇒ . . .⇒

αi1αi2 · · ·αinX10i1110i21 · · · 10in1.

Finally, we use the ending rule X → $ to get w.
If PCP has a solution, then αi1αi2 · · ·αin = βi1βi2 · · ·βin and the derivation of w in Gβ is analogous.

Lemma 3.23. If PCP has no solution, then Lα ∩ Lβ = ∅.

Proof. We assume that Lα ∩ Lβ 6= ∅. Let w ∈ Lα ∩ Lβ . It is easy to see that if a sequence with numbers 10i11,
10i21,. . . , 10in1 was used in the derivation of w in Gα, then it must also be used in the derivation of w in Gβ .
Indeed, the form of 10∗1-subwords and a strict fashion in which they are handled (e.g. they cannot change their
order) does not leave any other option.

We also see that the letters a and b cannot be mixed. So under the homomorphism h(a) = a, h1(b) = b, h1(0) =
λ, h1(1) = λ, h1($) = λ, we obtain h(w) = αi1αi2 · · ·αin , h(w) = βi1βi2 · · ·βin . Since, the 10∗1-subwords can be
moved right in derivation in both grammars, we get αi1αi2 · · ·αin = βi1βi2 · · ·βin , which is a solution to PCP.

230 G. MADEJSKI

Theorem 3.24. Disjointness problem for RPL is undecidable.

Proof. The proof follows from Lemmas 3.22 and 3.23 and undecidability of PCP.

3.5. A link to jumping grammars

A different approach to mixing symbols in the sentential form is jumping. Lately, it acquired much attention
and was studied in several papers [3, 6, 11].

A jumping derivation mode works in a discontinuous way. By applying a rule α→ β, we remove α from the
sentential form and place β in an arbitrary position in the string.

Definition 3.25. We call G = (N,T, P, S) a jumping grammar if in derivation of words, it uses a jumping mode
defined as follows. Let u, v ∈ (N ∪T)∗, u /∈ T ∗. u⇒ v if and only if there exists x→ y ∈ P, w, z, w′, z′ ∈ (N ∪T)∗

such that u = wxz, v = w′yz′ and wz = w′z′.

We denote by JRL, JRLL, JLL and JCFL languages generated by jumping regular, right-linear, linear and
context-free grammars, respectively.

Intuitively, we notice that jumping in an arbitrary position in sentential form is like moving the non-terminal
symbol to the specified place by some permutation rules. Indeed, if we allow any permutation rules of length 2,
that allow the non-terminal to swap places, then we could simulate the jumping mode. Therefore, we use the
formerly defined m-permutation-closed grammars with m = 2. This leads us to the following theorem.

Theorem 3.26. JRL = RPL
2−pc
λ , JRLL = RLPL

2−pc
λ , JLL = LPL

2−pc
λ , JCFL = PL2−pc.

Proof. For all the families of languages presented above, the proof is analogous. We prove that JLL = LPL
2−pc
λ .

If we consider a jumping linear grammar G = (N,T, P, S), then we can construct a 2-permutation-closed linear
permutation grammar: G′ = (N,T, P ′, S) where P ′ = P ∪ {Xt ↔ tX : t ∈ T,X ∈ N}. We can also do it the
other way around. Having a 2-permutation-closed grammar G′, we remove all permutation rules and change the
derivation mode to jumping. We then obtain a linear jumping grammar G. It is always important to remember,
that G uses the jumping derivation mode and G′ uses the classical derivation mode.

We prove that w ∈ L(G)⇔ w ∈ L(G′).
If w ∈ L(G), then each step of the derivation in jumping mode can be simulated by a number of permutations.

We use the rules Xt↔ tX where t ∈ T,X ∈ N , to move the non-terminal symbol to the position where it jumps,
and then use the linear rule to add the terminal symbols. Therefore w ∈ L(G′).

If w ∈ L(G′), then we remove all permutation steps from its derivation. The pruned output is a proper
jumping derivation of w in G, so w ∈ L(G).

Using a similar technique, we could prove that JCFL = PL2−pc, but due to space constraints of this paper,
we leave it as an open problem.

Having established a connection between permutation languages and jumping languages, we can move to solv-
ing an interesting problem. In the previous chapter, we have already studied generative power of the permutation
grammars. It would be interesting to prove similar results for jumping grammars.

In an attempt to establish a hierarchy of jumping classes similar to the Chomsky hierarchy, it was already
shown in [6] that JRL (JLL = JRLL. By definition, they are subsets of JCFL, but it was an open problem,
whether the inclusion is proper. In this subsection, we formulate a jumping lemma and use it to show that
JRLL (JCFL.

For convenience, we show that we can eliminate rules of the form X → Y (X,Y are non-terminals) from any
jumping right-linear grammar. We shall call them unit rules.

Lemma 3.27. Let G = (N,T, P, S) be a jumping right-linear grammar. There exists a jumping right-linear
grammar G′ = (N,T, P ′, S) such that L(G) = L(G′) and P ′ have no unit rules.

REGULAR AND LINEAR PERMUTATION LANGUAGES 231

Proof. The construction of grammar G′ based on G is done in the same as in the algorithm for eliminating unit
rules, used to acquire grammars in Chomsky normal form (see [4]). Despite having a different derivation mode,
proving that L(G) = L(G′) is also analogous.

Example 3.28. LetG = ({S,X, Y, Z}, {a, b, c, d}, P, S) be a jumping right-linear grammar of spanm = 3, where
P contains the rules S → aaX, X → aaY, Y → bbZ, Z → ccY, Z → ddd. We derive a word w = bbaabbaaccddd
in G: S ⇒ aaX ⇒ aaaaY ⇒ ⇒ aabbZaa⇒ aabbaaccY ⇒ bbZaabbaacc⇒ bbaabbaaccddd = w.

It is easy to see that if the number of derivation steps is greater than the number of non-terminals, then there
are two sentential forms containing the same non-terminal symbol. In our example, we have n = |{S,X, Y, Z}| =
4. Our derivation of w consists of 7 steps and contains two sentential forms with Y : aaaaY , aabbaaccY . There
are two rules used between them Y → bbZ, Z → ccY , that added subwords w1 = bb, w2 = cc to the derived
word. Similarly to the pumping lemma for regular languages, we can copy the words w1, w2 any number of
times. The jumping derivation mode lets us put them in any position in the derived string, for example at the
end:

S ⇒ aaX ⇒ aaaaY ⇒ aabbZaa⇒ aabbaaccY ⇒ aabbaaccbbZ ⇒ aabbaaccbbccY

⇒ bbZaabbaaccbbcc⇒ bbaabbaaccdddbbcc = ww1w2,

Pumping for words derived in 4 steps may be impossible, for example:

S ⇒ aaX ⇒ aaaaY ⇒ aabbZaa⇒ aabbaaddd.

We see that the maximal length of the words generated in 4 steps is 3 · 2 + 3 = 9. For an arbitrary grammar
of span m and n non-terminal symbols, this number is (n − 1)(m − 1) + m = n(m − 1) + 1. Words of greater
length must contain a loop in derivation.

We now extend the above investigations to any jumping right-linear languages.

Lemma 3.29 (Jumping and pumping lemma for JRLL(m)). Let G = (N,T, P, S) be a jumping right-linear
grammar of span m without unit rules and |N | = n. Let w ∈ L(G), |w| > r where r = n(m− 1) + 1. Then:

– The derivation of w in G consists of at least n+ 1 steps.
– Let X0 → w1X1, X1 → w2X2, . . . , Xn−1 → wnXn, Xn → wn+1 be the rules used in the last n+ 1 steps of

the derivation of w (in the given order), where 0 < |wi| < m for all 1 ≤ i ≤ n and 0 < |wn+1| ≤ m. Then,
there exist indices 1 ≤ k ≤ l ≤ n such that for any permutation

σ =

(
k k + 1 · · · l

σ(k) σ(k + 1) · · · σ(l)

)
words w1 = wσ(k)wσ(k+1) · · ·wσ(l)w and w2 = wwσ(k)wσ(k+1) · · ·wσ(l) are also in L(G).

Proof. The first point of the lemma is easy to prove, see Example 3.28. If there are at least n + 1 steps, then
let the rules used in the last n+ 1 steps be the following (in the given order):

X0 → w1X1, X1 → w2X2, . . . , Xn−1 → wnXn, Xn → wn+1.

Among the n+ 1 non-terminal symbols X0, . . . , Xn there exist two which are the same. Let Xk−1 = Xl for some
1 ≤ k ≤ l ≤ n. Then, the rules Xk−1 → wkXk, . . . , Xl−1 → wlXk−1 allow us to pump the words wk, . . . , wl.
Due to the jumping derivation mode, we can put them at the beginning or the end of the word, in any order
represented by a permutation σ (see Fig. 2).

232 G. MADEJSKI

Figure 2. An example derivation of a pumped word. The steps where jumping and pumping
was used are marked with J&P . A permutation σ(i) = l+ k− i was used to order the pumped
words wk, . . . , wl at the end of the derived word (after w).

The lemma can be generalised. We see that we use pumping only once, but the loop could be repeated any
number of times. We also give a big restriction on the jumping, as we only consider jumps to the beginning or
the end. However, such a restricted version of the lemma suffices for the purpose of this paper.

We now consider an important language and show that it contains words of a specific form.

Example 3.30. Let L be a language generated by the following jumping context-free grammar

G = ({S,X}, {a, b, c, d}, {S → adSX, S → adX,X → bc}, S).

By definition L ∈ JCFL.

We state and briefly prove some important properties of language L from the above example.

Lemma 3.31. L has the following properties:

(1) Words from L have the same number of letters a, b, c and d.
(2) Words of the form arbrcrdr where r > 0 are in L.
(3) Words from L cannot contain any letter a after the last letter d.
(4) Words from L cannot contain any letter d before the first letter a.

Proof. (1) We see that in an arbitrary derivation a pair ad always comes with a symbol X, which is later
substituted by bc.

(2) We use the jumping rule S → adSX r − 1-times, always jumping in between a and d. Then we use
S → adX, acquiring S ⇒ adSX ⇒ aadSXdX ⇒ . . . ⇒ ar(dX)r. After that, we use the rule X → bc
r-times firstly jumping between a and d, and afterwards between b and c.

S ⇒ . . .⇒ ar(dX)r ⇒ arbcd(dX)r−1 ⇒ arbbccdd(dX)r−2 ⇒ . . .⇒ arbrcrdr.

(3, 4) This is due to the form of the rules, in which the letter a is accompanied by letter d to the right.

We are now ready to prove the following.

Proposition 3.32. L /∈ JRLL.

Proof. We assume L ∈ JRLL. Then, there exists a jumping right-linear grammar G = (N,T, P, S) of span m,
with no unit rules, such that L = L(G). Let n = |N | and r = n(m− 1) + 1. From property 2 from Lemma 3.31,
we know that w = arbrcrdr ∈ L.

REGULAR AND LINEAR PERMUTATION LANGUAGES 233

Let wk, wk+1, . . . , wl be the words from Lemma 3.29, from the derivation of w. We consider the following
four cases:

– ∀v∈{wk,wk+1,...,wl} |v|a = 0 ∧ |v|d = 0.
In this case, by pumping and jumping we violate the property 1 from Lemma 3.31. The number of b and
c is greater than the number of a and d.

– ∃v∈{wk,wk+1,...,wl} |v|a 6= 0 ∧ |v|d = 0.
We put the pumped v at the end of the word, which leads to a contradiction with the property 3 from
Lemma 3.31.

– ∃v∈{wk,wk+1,...,wl} |v|a = 0 ∧ |v|d 6= 0.
We violate the property 4 from Lemma 3.31 by putting the pumped v at the beginning of the derived
word.

– ∃v∈{wk,wk+1,...,wl} |v|a 6= 0 ∧ |v|d 6= 0.
Note that a should be before d in v, otherwise it is possible to destroy property 3. Before the application of
the rule containing v, no letter b or c is derived. Otherwise, w would contain a subword with b or c appearing
either before both a and d, or after. Thus, all 2r letters b and c must be derived during and after the
application of the rule with v. This is not possible, as in the last n+ 1 steps, only n(m−1) +m = r+m−1
letters can be derived and that is strictly smaller than 2r.

In all cases, we reached a contradiction which is due to a false assumption that L ∈ JRLL.

Theorem 3.33. JRLL (JCFL.

Proof. The inclusion of the classes follows from their definition. The strictness of the inclusion follows from
Example 3.30 and Proposition 3.32.

4. Conclusions

In this article, we defined regular and linear grammars extended with permutation rules. These rules allow
the non-terminal symbol and the neighbouring terminal symbols to permute. We investigated the generative
power of these grammars. It was shown that by adding an erasing rule we obtain classes of languages strictly
greater than those not using it: RPL (RPLλ, LPL (LPLλ. This result can be quite surprising, as the erasing
rule is always used once, at the end of the derivation. We also studied the generative power with respect to the
span of the rules of grammars and established an infinite hierarchy LPLλ(m) (LPLλ(m+ 1) for any m ≥ 2.

We investigated some basic closure properties of these classes (union, intersection and concatenation). Many
other operations (shuffle, shuffle closure and homomorphism) were not considered and proving or disproving
closure under these operations remains an open problem.

We studied the decidability of some problems. The membership problem and emptiness problem were proven
to be decidable and the disjointness problem is undecidable. There are several other classical decision problems
not considered in this paper: equality, universality, inclusion, etc. Some of them are undecidable for linear
languages [1].

Finally, a connection between permutation grammars and jumping grammars was established and some
results on jumping grammars were presented.

References

[1] B.S. Baker and R.V. Book, Reversal-bounded multipushdown machines. J. Comput. Syst. Sci. 88 (1974) 315–332.
[2] W. Czerwinski and S. Lasota, Partially-commutative context-free languages, in Proceedings Combined 19th International

Workshop on Expressiveness in Concurrency and 9th Workshop on Structured Operational Semantics, EXPRESS/SOS 2012,
Newcastle upon Tyne, UK, September 3, 2012, edited by B. Luttik and M.A. Reniers. Vol. 89 of EPTCS, Open Publishing
Association, Waterloo (2012) 35–48.

[3] H. Fernau, M. Paramasivan, M.L. Schmid and V. Vorel, Characterization and complexity results on jumping finite automata.
Theor. Comput. Sci. 679 (2017) 31–52.

234 G. MADEJSKI

[4] J.E. Hopcroft, R. Motwani and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, 2nd edn.
Addison-Wesley Series in Computer Science. Addison-Wesley-Longman, MA (2001).

[5] G. Horváth and B. Nagy, Pumping lemmas for linear and nonlinear context-free languages. Acta Univ. Sapientiae, Informatica
2 (2010) 194–209.

[6] Z. Krivka and A. Meduna, Jumping grammars. Int. J. Found. Comput. Sci. 26 (2015) 709–732.

[7] G. Madejski, Infinite hierarchy of permutation languages. Fundam. Inform. 130 (2014) 263–274.

[8] G. Madejski, The membership problem for linear and regular permutation languages, in Implementation and Application
of Automata – 20th International Conference, CIAA 2015, Ume̊a, Sweden, August 18–21, 2015, Proceedings, edited by
F. Drewes. Vol. 9223 of Lecture Notes in Computer Science. Springer, Cham (2015) 211–223.

[9] G. Madejski, Jumping and pumping lemmas and their applications, in Eighth Workshop on Non-Classical Models of Automata
and Applications, NCMA 2016, Debrecen, Hungary, August 29–30, 2016. Short Papers, edited by H. Bordihn, R. Freund,
B. Nagy and G. Vaszil. TU Wien, Vienna (2016) 25–33.

[10] G. Madejski, Regular and linear permutation languages, in Eighth Workshop on Non-Classical Models of Automata and
Applications, NCMA 2016, Debrecen, Hungary, August 29–30, 2016. Proceedings, edited by H. Bordihn, R. Freund, B. Nagy
and G. Vaszil, Vol. 321 of books@ocg.at. Österreichische Computer Gesellschaft, Wien (2016) 243–258.

[11] A. Meduna and P. Zemek, Jumping finite automata. Int. J. Found. Comput. Sci. 23 (2012) 1555–1578.
[12] B. Nagy, Languages generated by context-free grammars extended by type AB -> BA rules. J. Autom. Lang. Comb. 14

(2009) 175–186.
[13] B. Nagy, Permutation languages in formal linguistics, in Bio-Inspired Systems: Computational and Ambient Intelligence,

10th International Work-Conference on Artificial Neural Networks, IWANN 2009, Salamanca, Spain, June 10–12, 2009.
Proceedings, Part I, edited by J. Cabestany, F.S. Hernández, A. Prieto and J.M. Corchado. Vol. 5517 of Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg (2009) 504–511.

[14] B. Nagy, On a hierarchy of permutation languages, in Automata, Formal Languages and Algebraic Systems. Proceedings of
AFLAS 2008, Kyoto, Japan, September 20–22, 2008, edited by M. Ito, Y. Kobayashi and K. Shoji. World Scientific, Singapore
(2010) 163–178.

[15] B. Nagy, Linguistic power of permutation languages by regular help, in Bio-Inspired Models for Natural and Formal Languages,
edited by G. Bel-Enguix and M.D. Jiménez-López. Cambridge Scholars, Cambridge (2011) 135–152.

	Regular and linear permutation languages
	1 Introduction
	2 Preliminaries
	3 Results
	3.1 Generative power
	3.2 Infinite hierarchy
	3.3 Closure properties
	3.4 Decidability results
	3.5 A link to jumping grammars

	4 Conclusions

	References

