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THE INCLUSION STRUCTURE OF PARTIALLY LOSSY QUEUE

MONOIDS AND THEIR TRACE SUBMONOIDSI

Chris Köcher, Dietrich Kuske* and Olena Prianychnykova

Abstract. We model the behavior of a lossy fifo-queue as a monoid of transformations that are
induced by sequences of writing and reading. To have a common model for reliable and lossy queues, we
split the alphabet of the queue into two parts: the forgettable letters and the letters that are transmitted
reliably. We describe this monoid by means of a confluent and terminating semi-Thue system and then
study some of the monoid’s algebraic properties. In particular, we characterize completely when one
such monoid can be embedded into another as well as which trace monoids occur as submonoids.
Surprisingly, these are precisely those trace monoids that embed into the direct product of two free
monoids – which gives a partial answer to a question raised by Diekert et al. at STACS 1995.

Mathematics Subject Classification. 68Q70, 20M35

Received July 14, 2017. Accepted March 20, 2018.
Published online July 11, 2018.

1. Introduction

Queues (alternatively: fifo queues or channels) form a basic storage mechanism that allows to append items
at the end and to read the first item from the queue. Providing a finite state automaton with access to a queue
results in a Turing complete computation model [2] such that virtually all decision problems on such devices
become undecidable.

Situation changes to the better if one replaces the reliable queue by some unreliable version. The most studied
version are lossy queues that can nondeterministically lose any item at any moment [1, 4, 11, 23]: in that case
reachability, safety properties over traces, inevitability properties over states, and fair termination are decidable
(although of prohibitive complexity, see, e.g., [7]). A practically more realistic version are priority queues where
items of high priority can erase any previous item of low priority. Concretely, elements of even priority 2i can be
erased by all elements of priority at least 2i and the elements of odd priority 2i+ 1 can be erased by all elements
of priority strictly larger than 2i + 1. Then, if all items have even priority, safety and inevitability properties
are decidable. But if there is at least one item of non-minimal, but odd priority, then these problems become
undecidable (cf. [14]).

IThis paper provides complete and streamlined proofs of the results in C. Köcher et al. (2016) and C. Köcher et al. (2017). The
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In this paper, we study partially lossy queues that can be understood as a model between lossy and priority
queues. Seen as a version of lossy queues, their alphabet is divided into two sets of reliable and forgettable
letters where only items from the second set can be lost. Seen as a version of priority queues, partially lossy
queues use only two priorities (0 and 1).

We describe the behavior of such a partially lossy queue by a monoid as was done, e.g., for pushdowns in
[15] and for reliable queues in [13]:. A partially lossy queue is given by its alphabet A as well as the subset
X ⊆ A of letters that the queue will transmit reliably. Note that writing a symbol into a queue is always possible
(resulting in a longer queue), but reading a symbol is possible only if the symbol is at the beginning of the queue
(or is preceded by forgettable symbols, only). Thus, basic actions define partial functions on the possible queue
contents. The generated transformation monoid is called partially lossy queue monoid or plq monoid Q(A,X).
Then Q(A,A) models the behavior of a reliable queue with alphabet A [13] and Q(A, ∅) the fully lossy queue
that can forget any symbol [18].

The first part of this paper presents a complete infinite semi-Thue system for the monoid Q(A,X). The
resulting normal forms imply that two sequences of actions are equivalent if their subsequences of write and of
read actions, respectively, coincide and if the induced transformations agree on the shortest queue that they are
defined on.

This result is rather similar, although technically more involved, than the corresponding result on the monoid
Q(A,A) of the reliable queue from [13]. In that paper, it is also shown that Q(A,A) embeds into Q(B,B)
provided B is not a singleton. This is an algebraic formulation of the well-known fact that the reliable queue
with two symbols can simulate any other reliable queue. The second part of the current paper is concerned
with the embeddability relation between the monoids Q(A,X). Clearly, the monoid Q(A, ∅) of the fully lossy
queue embeds into Q(B, ∅) whenever |A| ≤ |B| by looking at A as a subset of B. Joining this almost trivial
idea with the (non-trivial) idea from [13], one obtains an embedding of Q(A,X) into Q(B, Y ) provided the
second queue has at least as many forgettable letters as the first and its number of non-forgettable letters is
at least the number of non-forgettable letters of the first queue or at least two (i.e., |A \ X| ≤ |B \ Y | and
min{|X|, 2} ≤ |Y |). We prove that, besides these cases, an embedding exists only in case the second queue has
precisely one non-forgettable letter and properly more forgettable letters than the first queue (i.e., |Y | = 1 and
|A \X| < |B \ Y |). As for the reliable queue, this algebraically mirrors the intuition that a partially lossy queue
can simulate another partially lossy queue in these cases, only. In particular, a reliable queue does not simulate
a fully lossy queue and vice versa and a fully lossy queue cannot simulate another fully lossy queue with more
(forgettable) letters. Hence, these results show that the class of submonoids of a plq monoid Q(A,X) depends
heavily on the number of forgettable and non-forgettable letters.

Another important class of monoids are the so-called trace monoids which were introduced into computer
science by Mazurkiewicz [24] to model the behavior of concurrent systems. From [6] we know that each trace
monoid can be embedded into the direct product of free monoids. A still open question is to ask for the exact
number of such factors to embed a given trace monoid. The strongest result in this respect is due to Kunc [21]:
Given a C3- and C4-free dependence alphabet (where Cn is the cycle on n vertices) and a number k, it is decidable
whether the trace monoid embeds into the direct product of k free monoids. Here, we extend this result to all
dependence alphabets but only for k = 2. More precisely, we give a complete and decidable characterization of
all independence alphabets whose generated trace monoid embeds into the direct product of two free monoids.
This is the case if all letters in the independence alphabet (Γ, I) have degree at most 1 or the independence
alphabet is a complete bipartite graph with some additional isolated vertices. The – at least for the authors –
surprising result is that these are exactly the trace monoids embedding into the plq monoid with at least one
non-forgettable and one further letter or at least three forgettable letters.

To complete the picture, we also provide a similar characterization for trace monoids embedding into
Q({a, b}, ∅): here, the complete bipartite component is replaced by a star graph. In any case, the direct product
of (N,+) and {a, b}∗ embeds into Q(A,X), but (N,+)3 is not a submonoid of Q(A,X) for arbitrary finite sets
A and X ⊆ A (a conjecture formulated in [13]).
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In summary, we study properties of the transformation monoid of a partially lossy queue that were studied for
the reliable queue in [13]. We find expected similarities (semi-Thue system), differences (embeddability relation),
and surprising similarities (trace submonoids).

2. Preliminaries

At first we need some basic definitions. So let A be an alphabet. A word u ∈ A∗ is a prefix of v ∈ A∗
iff v ∈ uA∗. Similarly, u is a suffix of v iff v ∈ A∗u. Furthermore u is a subword of v iff there are k ∈ N,
a1, a2, . . . , ak ∈ A and w1, w2, . . . , wk+1 ∈ A∗ such that u = a1a2 . . . ak and v = w1a1w2a2 . . . wkakwk+1, i.e., we
obtain u if we drop some letters from v. In this case we write u � v. Note that � is a partial ordering on A∗.
Let X ⊆ A. Then we define the projection πX : A∗ → X∗ on X by

πX(ε) = ε and πX(au) =

{
aπX(u) if a ∈ X

πX(u) otherwise
(2.1)

for each a ∈ A and u ∈ A∗. Moreover, u is an X-subword of v (denoted u �X v) if πX(v) � u � v, i.e., if we
obtain u from v by dropping some letters not in X. Since the projection πX is idempotent and monotone wrt.
the subword order, u �X v implies πX(v) = πX(πX(v)) � πX(u) � πX(v), i.e., πX(u) = πX(v).

Note that �∅ is the subword relation � since π∅(v) = ε and �A is the equality relation since πA(v) = v.

3. Definition and basic properties

We want to model the behavior of an unreliable queue that stores entries from the alphabet A. The unrelia-
bility of the queue stems from the fact that it can forget certain letters that we collect in the alphabet A \X.
In other words, letters from X ⊆ A are non-forgettable and those from A \X are forgettable. Note that this
unreliability extends the approach from [13] where we considered reliable queues (i.e., A = X).

Definition 3.1. A lossiness alphabet is a tuple L = (A,X) where A is an alphabet with |A| ≥ 2 and X ⊆ A.

So let L = (A,X) be a lossiness alphabet. Then A is the set of all possible queue entries. Hence, the states of
the queue are the words from A∗. Furthermore we have some basic controllable actions on these queues: writing
of a symbol a ∈ A (denoted by a) and reading of a ∈ A (denoted by a). Thereby we assume that the set A of all
these reading operations a is a disjoint copy of A. So ΣL := A ∪ A is the set of all operations on the partially
lossy queue. For a word u = a1a2 . . . an ∈ A∗ we write u for the word a1 a2 . . . an.

Formally, the action a ∈ A appends the letter a to the state of the queue. The action a ∈ A tries to cancel
the letter a from the beginning of the current state of the queue. If this state does not start with a then the
operation a is not defined. The lossiness of the queue is modeled by allowing it to forget arbitrary letters from
A \X of its content at any moment. These ideas lead to the following definition.

Definition 3.2. Let L = (A,X) be a lossiness alphabet. The set of transitions `L ⊆ (A∗ ×Σ∗L)2 of a partially
lossy queue is given by the following rules for each q, q′ ∈ A∗, a ∈ A, and u ∈ Σ∗L:

(i) (q, au) `L (qa, u)
(ii) (aq, au) `L (q, u)

(iii) if q′ �X q then (q, u) `L (q′, u)

Furthermore we define

∆L : A∗ ×Σ∗L → 2A
∗

: (q, u) 7→ {q′ ∈ A∗ | (q, u) `∗L (q′, ε)} .

Intuitively the set ∆L(q, u) is the set of all possible states that can be reached from state q by the execution
of the actions from the sequence u. Using rule (iii), one obtains that this set is downward closed under �X .
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Note that consecutive applications of the rule (iii) can be joint into a single application of this rule. In
particular (q, u) `∗L (q′, u) iff (q, u) `L (q′, u). The application of rule (iii) followed by rule (i) can be reordered,
i.e.,

(q, au) `L (q′, au) `L (q′a, u)⇒ (q, au) `L (qa, u) `L (q′a, u) ,

but not vice versa since, with a /∈ X and q /∈ A∗a, we have (q, au) `L (qa, u) `L (q, u), but not (q, au) `L
(q′, au) `L (q, u) for any q′ ∈ A∗. Symmetrically, the application of rule (ii) followed by rule (iii) can be reordered:

(aq, au) `L (q, u) `L (r, u)⇒ (aq, au) `L (ar, au) `L (r, u) ,

but not vice versa since, with a, b ∈ A, a 6= b, and q ∈ A∗, we have (baq, au) `L (aq, au) `L (q, u), but not
(baq, au) `L (q′, u) `L (q, u) for any q′ ∈ A∗. In summary, any sequence of applications of the rules (i)?(iii) can
be reordered and grouped such that sequences of applications of rules (i) alternate with sequences of applications
of rules (ii), always interspersed with a single application of a rule (iii).

This semantics is similar to the “standard semantics” from Appendix A in [7] where a lossy queue can lose
any message at any time. The main part of that paper considers the “write-lossy semantics” where lossiness
is modeled by the effect-less writing of messages into the queue. The authors show that these two semantics
are equivalent ([7], Appendix A) and similar remarks can be made about priority queues [14]. A third possible
semantics could be termed “read-lossy semantics” where lossiness is modeled by the loss of any messages
that reside in the queue before the one that shall be read. In that case, the queue forgets letters only when
necessary and this necessity occurs when one wants to read a letter that is, in the queue, preceded by some
forgettable letters. Thereby, if the letter cannot be read since it does not occur in the queue or it is preceded
by a non-forgettable letter, the queue will end up in an error state which we denote by ⊥.

Next, we will define this semantics and show afterwards that both are equivalent in a precise sense.

Definition 3.3. Let L = (A,X) be a lossiness alphabet and ⊥ /∈ A. Then the map ◦L : (A∗ ∪ {⊥}) × Σ∗L →
(A∗ ∪ {⊥}) is defined for each q ∈ A∗, a, b ∈ A, and u ∈ Σ∗L as follows:

(i) q ◦L ε = q
(ii) q ◦L au = qa ◦L u

(iii) bq ◦L au =


q ◦L v if a = b

q ◦L au if b ∈ A \ (X ∪ {a})
⊥ otherwise

(iv) ε ◦L au = ⊥ ◦L u = ⊥

We will say “q ◦L u is undefined” when q ◦L u = ⊥.

Consider the definition of q ◦L a. There, if the queue does not end up in the error state ⊥, the word a(q ◦L a)
is the smallest suffix of q that contains all the occurrences of the letter a and its complementary prefix consists
of forgettable entries, only. Hence, to apply a, the queue first “forgets” the prefix and then “delivers” the letter
a that is now at the first position.

Our first lemma proves that the function ◦L is monotone in the first argument. Formally, this is true if the
non-word ⊥ is considered as the minimal element of the image A∗ ∪ {⊥} of the function ◦L.

Lemma 3.4. Let L = (A,X) be a lossiness alphabet, q, q+ ∈ A∗, and u ∈ Σ∗L. If q �X q+ and q ◦L u 6= ⊥, then
q ◦L u �X q+ ◦L u (in particular, q+ ◦L u 6= ⊥).

Proof. The proof proceeds by induction on the length of the word u. If u = ε, then q ◦L u = q �X q+ = q+ ◦L u.
Next let u = a ∈ A. Then q ◦L u = qa �X q+a = q+ ◦L a.
Next let u = a ∈ A. Since q ◦L u 6= ⊥, there is p ∈ (A\ (X ∪{a}))∗ with q = pa(q ◦L u). Now pa(q ◦L u) = q �X

q+ implies the existence of words p+ ∈ (A \ {a})∗ and r ∈ A∗ such that q+ = p+ar, p �X p+, and q ◦L u �X r.
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From p �X p+, we obtain ε = πX(p) = πX(p+) and therefore p+ ∈ (A \ (X ∪ {a}))∗. Consequently, r = q+ ◦L u
implying q ◦L u �X q+ ◦L u.

Finally, let |u| ≥ 2. Then there exist words u1, u2 ∈ Σ∗L with u = u1u2 and |u1|, |u2| < |u|. Since |u1| < |u|,
the induction hypothesis implies q ◦L u1 �X q+ ◦L u1. Then we obtain

q ◦L u = (q ◦L u1) ◦L u2
�X (q+ ◦L u1) ◦L u2 (by the ind. hyp. since q ◦L u1 �X q+ ◦L u1 and |u2| < |u|)
= q+ ◦L u .

Let q ∈ A∗ and u ∈ Σ∗L such that q ◦L u 6= ⊥. Examining the above definition, one easily sees (q, u) `∗L
(q ◦L u, ε), i.e., q ◦L u ∈ ∆L(q, u). We next show that ∆L(q, u) equals the set of X-subwords of q ◦L u.

In other words, q ◦L u describes the set ∆L(q, u) completely which proves the equivalence of the “standard
semantics” and “read-lossy semantics” as described above.

Theorem 3.5. Let L = (A,X) be a lossiness alphabet, u, v ∈ Σ∗L, and q ∈ A∗. Then

∆L(q, u) = ∆L(q, v) ⇐⇒ q ◦L u = q ◦L v .

Proof. We prove that

r ∈ ∆L(q, u) ⇐⇒ r �X q ◦L u

holds for all q, r ∈ A∗ and u ∈ Σ∗L.
We start with the proof of the implication “⇒” which proceeds by induction on the length of the word u.

The case u = ε is obvious since then, ∆L(q, u) = {r ∈ A∗ | r �X q} and q ◦L u = q.
So let |u| ≥ 1, i.e., there are α ∈ ΣL and u′ ∈ Σ∗L such that u = αu′. Let r ∈ ∆L(q, u). Then there exist

r′, r′′ ∈ A∗ with

(q, αu) `∗L (r′, αu) `L (r′′, u) `∗L (r, ε) .

From the first part of this sequence, we obtain r′ �X q, the second implies r′′ = r′ ◦L α, the third one (by the
induction hypothesis) r �X r′′ ◦L u. Using Lemma 3.4, this implies

r �X r′′ ◦L u = (r′ ◦L α) ◦L u = r′ ◦L αu �X q ◦L αu .

This finishes the inductive proof of the implication “⇒”.
For the converse implication, note that r �X q ◦L u implies q ◦L u 6= ⊥. But then (q, u) `∗L (q ◦L u, ε) `∗L (r, ε)

implies r ∈ ∆L(q, u).

Given this equivalence of the two semantics considered, it makes sense to not distinguish sequences of actions
that behave the same on each and every queue. This identification leads to the central definition of this paper:

Definition 3.6. Let L = (A,X) be a lossiness alphabet and u, v ∈ Σ∗L. Then u and v act equally (denoted by
u ≡L v) if q ◦L u = q ◦L v holds for each q ∈ A∗.

Since q ◦L uv = (q ◦L u) ◦L v, the resulting relation ≡L is a congruence on the free monoid Σ∗L. Hence, the
quotient Q(L) := Σ∗L/≡L is a monoid which we call partially lossy queue monoid or plq monoid induced by L.
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Example 3.7. Let A = {a, b}. Then we have

ε ◦(A,∅) baa = ba ◦(A,∅) a = ε and ε ◦(A,∅) baa = ⊥

implying baa 6≡(A,∅) baa.
On the other hand,

ε ◦(A,A) baa = ba ◦(A,A) a = ⊥ = ε ◦(A,A) baa .

It can be verified that, even more, q ◦(A,A) baa = q ◦(A,A) baa holds for all q ∈ A∗ implying baa ≡(A,A) baa.

Remark 3.8. Let A = {a} be a singleton and X ⊆ A. Then (A,X) is not a lossiness alphabet (since we
required |A| ≥ 2). Nevertheless, the above results hold also in this case. Note that an+1 ◦L a = an for any n ≥ 0
(independent of whether X = A or X = ∅). Hence Q(A,A) = Q(A, ∅) is the bicyclic semigroup. Therefore, we
excluded this case in the definition of lossiness alphabets.

On the first sight, the equality of Q({a}, {a}) and Q({a}, ∅) seems to be counterintuitive. But it comes along
with the following simple observation: Let A be a partially blind one-counter automaton (i.e., A is a PDA with
a unary pushdown alphabet). Then A can be understood as a finite automaton with a queue over ({a}, {a}). Let
B be an extension of A by some ε-transitions that are decreasing the counter. Alternatively, we can understand
B as the automaton A where the lossiness alphabet is replaced by ({a}, ∅). Then both, A and B, accept the
same language.

3.1. Basic properties

Next we want to give basic properties of the equivalence ≡L. The following lemma lists some equations
that hold in the plq monoid (later, we will show that these equations characterize the plq monoid completely,
cf. Thm. 3.15).

Lemma 3.9. Let L = (A,X) be a lossiness alphabet, a, b ∈ A, x ∈ X, and w ∈ A∗. Then the following hold:

(i) ba ≡L ab if a 6= b
(ii) aab ≡L aab

(iii) xwaa ≡L xwaa
(iv) awaa ≡L awaa

At first we take a look at equations (i)–(iii) (with |w|a = 0 for simplicity). In order for a queue q ∈ A∗ to be
defined after execution of the actions, the letter a must already be contained in q preceded by forgettable letters
only. Since, in all cases, a is the first read operation, a reads this occurrence of a from q. Hence it does not matter
whether we write b (a, resp.) before or after this reading of a. In equation (iv) we are in the same situation
after execution of the leading write operation a. Therefore we can commute the read and write operations in
all these situations.

Consider the case X = A, i.e., a reliable queue. For this situation, Lemma 3.5 from [13] proves (i) and (ii).
Statement (iii) is only shown for the special case w = ε. But, provided X = A, the general case follows from
this special one. Thus, the above lemma generalizes Lemma 3.5 from [13].

Proof. At first, we show (i). So, let a, b ∈ A be distinct letters and q ∈ A∗. Consider q ◦L ab 6= ⊥. Then there
are words p ∈ (A \ (X ∪ {a}))∗ and r ∈ A∗ with q = par. Hence we obtain

q ◦L ab = par ◦L ab = r ◦L b = rb

= parb ◦L a = qb ◦L a = q ◦L ba .

Conversely, we consider now q ◦L ba 6= ⊥. Then there is a prefix pa of qb with p ∈ (A \ (X ∪ {a}))∗. Since a 6= b
this prefix is proper. Hence, there is r ∈ A∗ with qb = parb. Then, similarly we obtain q ◦L ba = q ◦L ab. So, we
proved q ◦L ba = q ◦L ab for any q ∈ A∗ and distinct a, b ∈ A implying (i).
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Now we prove (ii). Let a, b ∈ A (not necessarily distinct) and q ∈ A∗. First we consider q ◦L aab 6= ⊥. Then
there are words p ∈ (A \ (X ∪ {a}))∗ and r ∈ A∗ such that q = par. Hence we obtain

q ◦L aab = par ◦L aab = r ◦L ab = ra ◦L b
= para ◦L ab = par ◦L aab = q ◦L aab .

Now, consider q ◦L aab 6= ⊥. Again, there are words p ∈ (A \ (X ∪ {a}))∗ and r ∈ A∗ with qa = par. From

⊥ 6= q ◦L aab = qa ◦L ab = par ◦L ab = r ◦L b

we obtain that r 6= ε, i.e., there is r′ ∈ A∗ such that r = r′a and, hence, q = par′. Then we can infer

q ◦L aab = r ◦L b = r′a ◦L b
= r′ ◦L ab = par′ ◦L aab = q ◦L aab .

Hence we demonstrated (ii).
Finally, we show (iii) and (iv). Let x ∈ X ∪ {a} and q ∈ A∗. First consider the case q ◦L xwaa 6= ⊥. Then

there is a prefix pa of qxwa with p ∈ (A \ (X ∪ {a}))∗. Since x ∈ X ∪ {a}, the word pa is a prefix of qx. Hence
there exists r ∈ A∗ with qx = par. We obtain

q ◦L xwaa = qxwa ◦L a = parwa ◦L a
= rwa = rw ◦L a
= (parw ◦L a) ◦L a
= qxw ◦L aa = q ◦L xwaa .

Now, consider the case q ◦L xwaa 6= ⊥. Then also q ◦L xwa = qxw ◦L a 6= ⊥. Hence there exist p ∈ (A \ (X ∪
{a}))∗ and r ∈ A∗ with qxw = par. We obtain

q ◦L xwaa = qxw ◦L aa = par ◦L aa = r ◦L a = ra

= para ◦L a = qxwa ◦L a = q ◦L xwaa .

Since this holds for arbitrary a ∈ A, x ∈ X ∪ {a}, and w ∈ A∗, we demonstrated (iii) and (iv).

Note that the equations from Lemma 3.9 preserve the relative order of write resp. read operations. We
will next show that this holds for every equation u ≡L v. To do this we need the definition of the following
projections:

Definition 3.10. Let L = (A,X) be a lossiness alphabet. The projections wrt, rd : Σ∗L → A∗ on write and read

operations are defined for any u ∈ Σ∗L by wrt(u) = πA(u) and rd(u) = πA(u).

In a nutshell, the projection wrt deletes all letters from A from a word. Dually, the projection rd deletes all
letters from A from a word and then suppresses the overlines. For instance wrt(aab) = ab and rd(aab) = a.

Before we prove the preservation of projections in equivalence classes we need another simple lemma that
allows to separate the read and write operations provided q ◦L u is defined.

Lemma 3.11. Let L = (A,X) be a lossiness alphabet, q ∈ A∗, and u ∈ Σ∗L such that q ◦L u 6= ⊥. Then

q ◦L u = q ◦L wrt(u) rd(u) .
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Proof. Let a, b ∈ A such that q ◦L ab 6= ⊥. Then there are p ∈ (A \ (X ∪ {a}))∗ and r ∈ A∗ such that q = par.
Hence we have

q ◦L ab = r ◦L b = rb = parb ◦L a = q ◦L ba ,

i.e., we can commute a and b in this case. By induction on the (minimal) number of transpositions needed to
transform u into wrt(u) rd(u) we get our lemma.

Now we can prove the actual statement.

Proposition 3.12. Let L = (A,X) be a lossiness alphabet and u, v ∈ Σ∗L with u ≡L v. Then we have rd(u) =
rd(v) and wrt(u) = wrt(v).

Proof. We first prove rd(u) = rd(v). By symmetry, we can assume |rd(u)| ≤ |rd(v)|. If rd(v) = ε, then this implies
immediately rd(u) = rd(v). Hence it remains to consider the case rd(v) 6= ε. Then there is a letter a ∈ A with
rd(v) ∈ A∗ a. Since |A| ≥ 2, there is b ∈ A with a 6= b. Then we have

⊥ 6= b|v| wrt(u)

= rd(u) b|v| ◦L u
= rd(u) b|v| ◦L v (since u ≡L v)

= rd(u) b|v| ◦L wrt(v) rd(v) (by Lem. 3.11)

= rd(u) b|v| wrt(v) ◦L rd(v) =: q .

Since |rd(v)| ≥ |rd(u)|, the word q is a suffix of b|v| wrt(v). Suppose it is a proper suffix. When reading rd(v) from
the queue rd(u) b|v| wrt(v), the last letter read is a 6= b. It follows that the result q is a proper suffix of wrt(v).
But then |q| < |wrt(v)| ≤ |v| ≤ |b|v| wrt(u)|, which contradicts the above calculation leading to b|v| wrt(u) = q.
Hence q is not a proper suffix, i.e., q = b|v| wrt(v). But then rd(u) b|v| wrt(v) ◦L rd(v) = q = b|v| wrt(v) implies
rd(u) ◦L rd(v) = ε 6= ⊥. Since |rd(v)| ≥ |rd(u)|, this is only possible with rd(u) = rd(v).

Now the second claim follows easily:

wrt(u) = rd(u) ◦L u
= rd(v) ◦L v (since rd(u) = rd(v) and u ≡L v)

= wrt(v)

By Example 3.7, the converse implication of Proposition 3.12 does not hold in general. But from the state-
ments in the following subsection we can obtain a third property which ensures the reversal in combination with
these two properties.

3.2. A semi-Thue system for Q(L)

In this subsection, we prove that ≡L is the least congruence on the free monoid Σ∗L that satisfies the equations
from Lemma 3.9 (cf. Thm. 3.15 below). This is achieved by constructing a terminating and confluent semi-Thue
system from those equations and by showing that every equivalence class of ≡L contains a unique word in
normal form. Later we will often use this normal form instead of the corresponding equivalence class wrt. ≡L.

Ordering the equations from Lemma 3.9, the semi-Thue system RL consists of the following rules for a, b ∈ A,
x ∈ X, and w ∈ A∗:

(a) ba→ ab if a 6= b
(b) aab→ aab

(c) xwaa→ xwaa
(d) awaa→ awaa
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Hence the idea of this semi-Thue system is to pull read operations to the left as long as the equations from
Lemma 3.9 permit.

A word is irreducible wrt. this semi-Thue system if, and only if, it belongs to the set

NFL = A
∗
(⋃
a∈A

(A \ (X ∪ {a}))∗aa
)∗

A∗

since these are precisely those words that do not contain any rule’s left-hand side as a factor.

Lemma 3.13. Let L = (A,X) be a lossiness alphabet. The semi-Thue system RL is terminating and confluent.

Proof. To prove termination we order the alphabet ΣL such that a < b for each a, b ∈ A. Then we see that for
any rule l → r from RL the word l is length-lexicographically properly smaller than r (i.e., |l| < |r| or |l| = |r|
and there are p ∈ Σ∗L and α, β ∈ ΣL with l ∈ pαΣ∗L, r ∈ pβΣ∗L, and α < β). Since this ordering is well-founded
the semi-Thue system is terminating.

Due to termination of RL it suffices to show that it is locally confluent. The only overlaps of left-hand sides
are as follows (with a, b ∈ A and u, v, w ∈ A∗):

– xw(aab)← xw(aab) = (xwaa)b→ (xwaa)b for x ∈ {a} ∪X with rules of type (b) and (c) or (d), resp.
– (xuyvaa)← (xuyvaa) = xu(yvaa)→ xu(yvaa) for x, y ∈ {a} ∪X with rules of type (c) or (d), resp.

Hence RL is confluent.

Let u ∈ Σ∗L. Since the semi-Thue system is terminating and confluent, there is a unique irreducible word
nfL(u) ∈ NFL with u→∗ nfL(u), the normal form of u. Because of the shape of the irreducible word nfL(u) ∈
NFL, there are n ∈ N, letters ai ∈ A, and words x, z ∈ A∗ and yi ∈ (A \ (X ∪ {ai}))∗ (for 1 ≤ i ≤ n) such that

nfL(u) = x (y1a1a1) (y2a2a2) . . . (ynanan) z

(note that n, x, yi, z, and ai are unique). We define

rd1(u) = x and rd2(u) = a1a2 . . . an

such that rd(nfL(u)) = rd1(u) rd2(u). Since, by the form of the rules, rd(u) = rd(nfL(u)), this implies rd(u) =
rd1(u) rd2(u). Finally note that nfL(u) is completely determined by the triple

χ(u) := (wrt(u), rd(u), rd2(u))

that we call the characteristic of u.

Remark 3.14. While rd1(u) is defined using the semi-Thue system RL, it also has a natural meaning in terms
of ◦L: from the shape of nfL(u) we can infer that rd1(u) is the shortest word q ∈ A∗ such that q ◦L nfL(u) is
defined. By Lemma 3.9 we have u ≡L nfL(u). Hence, rd1(u) is also the shortest word q ∈ A∗ such that q ◦L u is
defined.

Now, as promised before we show the relation between ≡L and RL.

Theorem 3.15. Let L = (A,X) be a lossiness alphabet and u, v ∈ Σ∗L. Then we have

u ≡L v ⇐⇒ nfL(u) = nfL(v) .

Proof. First let u ≡L v. By Proposition 3.12 we have wrt(u) = wrt(v) and rd(u) = rd(v). Since the normal forms
of u and v are completely given by their characteristics and since rd2(u) is determined by rd(u) and rd1(u), it
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remains to prove rd1(u) = rd1(v). For the following calculation let

nfL(u) = rd1(u) (y1a1a1) . . . (ynanan) z .

Then we get

⊥ 6= z = ε ◦L z
= ynan ◦L an z (since yn ∈ (A \ (X ∪ {an}))∗)
= ε ◦L ynanan z

...

= ε ◦L (y1a1a1) . . . (ynanan) z

= rd1(u) ◦L rd1(u) (y1a1a1) . . . (ynanan) z

= rd1(u) ◦L nfL(u)

= rd1(u) ◦L u (since u ≡L nfL(u) by Lem. 3.9)

= rd1(u) ◦L v (since u ≡L v)

= rd1(u) ◦L nfL(v) (since v ≡L nfL(v) by Lem. 3.9)

Since rd1(v) is a prefix of nfL(v), this implies

⊥ 6= rd1(u) ◦L rd1(v) .

Since rd1(v) consists of read-actions, only, this implies |rd1(u)| ≥ |rd1(v)|. Now, by symmetry, these two words
have the same length. But then ⊥ 6= rd1(u) ◦L rd1(v) implies rd1(u) = rd1(v) and therefore nfL(u) = nfL(v).

The converse implication follows easily by two applications of Lemma 3.9:

u ≡L nfL(u) = nfL(v) ≡L v .

Remark 3.16. As a consequence, all words from [u] share the same characteristic. Hence, this theorem allows
us to speak of the characteristic of the equivalence class [u]. With this characteristic in mind we can also apply
the functions wrt, rd, rd1, and rd2 to equivalence classes instead of words.

Since we can compute the normal form of a word u (we can restrict RL to the rules of length at most |u|)
we can infer the following statement:

Corollary 3.17. Let L = (A,X) be a lossiness alphabet. Then the following word problem of Q(L) is decidable:
Given u, v ∈ Σ∗L, does u ≡L v hold?

In [19], the first author of this paper considers more questions in this direction. Namely, it is shown that
the rational membership problem (i.e., given u ∈ Σ∗L and an NFA A, is there v ∈ L(A) with u ≡L v?) is
NL-complete. On the negative side, it is also shown that universality, inclusion, and emptiness of intersection
for rational sets in Q(L) are undecidable.

Another consequence from Theorem 3.15 is the following: Recall that aab ≡L aab and aa 6≡L aa, i.e., in
general, we cannot cancel in the monoid Q(L). The above theorem allows to show that we can cancel read
operations from the left and write operations from the right:

Corollary 3.18. Let L = (A,X) be a lossiness alphabet, u, v ∈ Σ∗L, and x, y ∈ A∗. Then xuy ≡L xvy implies
u ≡L v.
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Proof. The rules of the semi-Thue system RL imply nfL(xu y) = x nfL(u) y and nfL(x v y) = x nfL(v) y. Hence
xu y ≡L x v y implies by Theorem 3.15

x nfL(u) y = nfL(xu y) = nfL(x v y) = x nfL(v) y

and therefore (by cancellation in the free monoid Σ∗L) nfL(u) = nfL(v). Again by the above theorem, this implies
u ≡L v.

For later use, we now describe the characteristic of the word uv for u, v ∈ A∗. We have wrt(uv) = u and
rd(uv) = v. It remains to describe rd2(uv).

Lemma 3.19. Let L = (A,X) be a lossiness alphabet. Then rd2(uv) is the longest suffix v2 of v that satisfies
πX(u1) � v2 � u1 for some prefix u1 of u.

Proof. Since rd1(uv)rd2(uv) = rd(uv) = v, the word rd2(uv) is a suffix of v. Note that nfL(uv) = rd1(uv)(y1a1a1)
(y2a2a2) . . . (ymamam)z for letters ai ∈ A with rd2(uv) = a1a2 . . . am, words yi ∈ (A \ (X ∪ {ai}))∗ and z ∈ A∗.
Consequently u1 := y1a1y2a2 . . . ymam is a prefix of wrt(uv) = u and πX(u1) � a1a2 . . . am � u1.

Now let v = v1v2 and u = u1u2 such that πX(u1) � v2 � u1. We can assume u1 to be the minimal prefix
of u satisfying πX(u1) � v2 � u1. Then there are letters a1, a2, . . . , an ∈ A with v2 = a1a2 . . . an and words
yi ∈ (A \ (X ∪ {ai}))∗ with u1 = y1a1 y2a2 . . . ynan. Then we obtain

⊥ 6= u2 = y1a1 y2a2 . . . ynan u2 ◦L a1a2 . . . an
= u1u2 ◦L v2
= v1u ◦L v
= v1 ◦L uv = v1 ◦L nfL(uv) .

Since rd1(uv) is a prefix of nfL(uv), this implies v1 ◦L rd1(uv) 6= ⊥ and therefore |rd1(uv)| ≤ |v1|. Now
rd1(uv)rd2(uv) = v = v1v2 implies |v2| ≤ |rd2(uv)|.

4. Injectivity of homomorphisms into plq monoids

The main result of this section is Theorem 4.6 that provides a necessary condition on a homomorphism ϕ
into Q(L) to be injective. This condition will prove immensely useful in our investigation of submonoids of
Q(L) in the following two sections. It states that if the images of x and y under an embedding ϕ perform the
same sequences of read and write operations, respectively, then x and y can be equated by putting them into a
certain context.

A trivial example for an injective homomorphism ϕ into some Q(L) is the identity of Q(A, ∅). We first
prove in Proposition 4.5 that this embedding satisfies the said condition and later we derive the general case.
Therefore, from now on until this proposition we consider the monoid Q(A, ∅), i.e., X = ∅. In other words, we
consider the so-called fully lossy queues where all letters are forgettable.

The following notion will be useful in the calculations performed in this monoid:

Definition 4.1. Let A be an alphabet and u, v ∈ A∗. The subword-suffix of u and v is the longest suffix sws(u, v)
of v that is a subword of u.

Example 4.2. Since ab is a subword of abba and cab is not, we have sws(abba, ab) = ab = sws(abba, cab) . In
general, by our assumption of X = ∅, Lemma 3.19 implies rd2(uv) = sws(u, v) for any words u, v ∈ A∗.

The first result of this section (Thm. 4.3) describes the normal form of the product of two elements from
Q(A, ∅) in terms of their normal forms. Lemma 3.19 solves this problem in case the first factor belongs to [A∗]

and the second to [A
∗
] for arbitrary sets X ⊆ A.
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Theorem 4.3. Let L = (A, ∅) be a lossiness alphabet, u, v ∈ Σ∗L, and w = sws(wrt(u), rd2(u)rd1(v)). Then

rd2(uv) = w rd2(v) and
rd(u)rd1(v) = rd1(uv) w .

It follows that the characteristics of uv can be expressed in terms of the characteristics χ(u) and χ(v) of the
two factors:

χ(uv) = (wrt(u)wrt(v), rd(u)rd(v), sws(wrt(u), rd2(u)rd1(v)) rd2(v)) .

Proof. There are letters ai and bi in A and words xi over A such that we have

nf(A,∅)(u) = rd1(u)(x1a1a1) . . . (xkakak)xk+1 and

nf(A,∅)(v) = ak+1 ak+2 . . . ak+`(y1b1b1) . . . (ymbmbm)ym+1 .

Then we obtain

uv ≡(A,∅) rd1(u) (x1a1a1) . . . (xkakak)xk+1 v

≡(A,∅) rd1(u)x1a1 . . . xkak xk+1 a1 . . . ak v (by Lem. 3.19)

= rd1(u) wrt(u)︸ ︷︷ ︸
=:u′

rd2(u) rd1(v)︸ ︷︷ ︸
=:v′

(y1b1b1) . . . (ymbmbm) ym+1 .

There are words zi ∈ A∗ such that

nf(A,∅)(u
′v′) = a1 . . . an (zn+1an+1an+1) . . . (zk+`ak+`ak+`) zk+`+1 .

Note that, by Lemma 3.19, w = sws(wrt(u), rd2(u)rd1(v)) = an+1 . . . ak+`. It follows that

uv ≡(A,∅) rd1(u)u′ v′ (y1b1b1) . . . (ymbmbm) ym+1

≡(A,∅) rd1(u) a1 . . . an (zn+1an+1an+1) . . . (zk+`ak+`ak+`) zk+`+1(y1b1b1) . . . (ymbmbm) ym+1

≡(A,∅) rd1(u) a1 . . . an (zn+1an+1an+1) . . . (zk+`ak+`ak+`) nf(A,∅)(zk+`+1(y1b1b1) . . . (ymbmbm) ym+1)

=: W .

Note that the normal form of zk+`+1(y1b1b1) . . . (ymbmbm) ym+1 belongs to

(A \ {b1})∗b1b1 (A \ {b2})∗b2b2 . . . (A \ {bm})∗bmbmA∗ .

Consequently, the word W above is the normal form of uv. From this normal form, we obtain rd2(uv) =
an+1 . . . ak+` b1 . . . bm which equals w rd2(v). Hence we proved the first equation.

For the second one, observe the following:

rd1(uv)w rd2(v) = rd1(uv) rd2(uv) = rd(uv) = rd(u) rd(v) = rd(u) rd1(v) rd2(v) .

The following lemma provides us with a similar statement for powers of an element of Q(A, ∅).

Lemma 4.4. Let L = (A, ∅) be a lossiness alphabet and u ∈ Σ∗L. For i ≥ 1 define words si and ti over A
inductively by
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s1 = ε , si+1 = sws
(
wrt(u)si, rd2(u)rd(ui−1)rd1(u)

)
,

t1 = ε , and ti+1 = sws
(
wrt(ui), tird2(u)rd1(u)

)
.

Then

rd2(ui) = sird2(u) , rd(ui−1)rd1(u) = rd1(ui) si , andsi = ti .

Proof. We first show the first two equations by simultaneous induction on i ≥ 1: The case i = 1 is obvious since
s1 = ε. Now let i ≥ 2. Then we have

rd2(ui) = rd2(uui−1)

= sws
(
wrt(u), rd2(u)rd1(ui−1)

)
rd2(ui−1) (by Thm. 4.3)

= sws
(
wrt(u), rd2(u)rd1(ui−1)

)
si−1rd2(u) (by ind. hyp.)

= sws
(
wrt(u)si−1, rd2(u)rd1(ui−1)si−1

)
rd2(u)

= sws
(
wrt(u)si−1, rd2(u)rd(ui−2)rd1(u)

)
rd2(u) (by ind. hyp.)

= sird2(u)

and

rd1(ui)si = rd1(ui) sws
(
wrt(u)si−1, rd2(u)rd(ui−2)rd1(u)

)
= rd1(ui) sws

(
wrt(u)si−1, rd2(u)rd1(ui−1)si−1

)
(by ind. hyp.)

= rd1(uui−1) sws
(
wrt(u), rd2(u)rd1(ui−1)

)
si−1

= rd(u)rd1(ui−1)si−1 (by Thm. 4.3)

= rd(u)rd(ui−2)rd1(u) (by ind. hyp.)

= rd(ui−1)rd1(u) .

To demonstrate the third equation, we prove rd2(ui) = tird2(u) by induction on i ≥ 1. It is trivial for i = 1.
For the induction step we have i ≥ 2 and therefore:

rd2(ui) = rd2(ui−1u)

= sws
(
wrt(ui−1), rd2(ui−1)rd1(u)

)
rd2(u) (by Thm. 4.3)

= sws
(
wrt(ui−1), ti−1rd2(u)rd1(u)

)
rd2(u) (by the ind. hyp.)

= tird2(u)

Now si = ti follows from sird2(u) = rd2(ui) = tird2(u).

We next infer that if u and v agree in their subsequences of read and write operations, respectively, then
they can be equated by multiplication with a large power of one of them.

Proposition 4.5. Let L = (A, ∅) be a lossiness alphabet and u, v ∈ Σ∗L with wrt(u) = wrt(v) and rd(u) = rd(v).
Then there is w ∈ u∗ ∪ v∗ with nf(A,∅)(wvw) = nf(A,∅)(wuw).

Proof. W.l.o.g., we can assume that rd1(u) is a prefix of rd1(v). If wrt(u) = ε or rd(u) = ε then the claim
holds with w = ε since u = v. So we can assume wrt(u), rd(u) 6= ε. Let si ∈ A∗ for any i ≥ 1 be defined as in
Lemma 4.4.



68 C. KÖCHER ET AL.

At first we suppose there is i ≥ 1 with |wrt(v)| ≤ |rd1(ui)|. Then we have

sws
(
wrt(v), rd2(v) rd1(ui)

)
si = sws

(
wrt(v), rd1(ui)

)
si (by |wrt(v)| ≤ |rd1(ui)|)

= sws
(
wrt(v), rd2(u) rd1(ui)

)
si (by |wrt(v)| ≤ |rd1(ui)|)

= sws
(
wrt(v)si, rd2(u) rd1(ui)si

)
= sws

(
wrt(v)si, rd2(u) rd(ui−1) rd1(u)

)
(by Lem. 4.4)

= si+1 .

Consequently,

rd2(vui) = sws
(
wrt(v), rd2(v) rd1(ui)

)
rd2(ui) (by Thm. 4.3)

= sws
(
wrt(v), rd2(v) rd1(ui)

)
sird2(u) (by Lem. 4.4)

= si+1 rd2(u)

= rd2(ui+1) (by Lem. 4.4) .

Note that rd(vui) = rd(ui+1) and wrt(vui) = wrt(ui+1) follow from rd(v) = rd(u) and wrt(v) = wrt(u). Hence
χ(vui) = χ(ui+1) and therefore vui ≡(A,∅) u

i+1.
Now we assume that |wrt(v)| > |rd1(ui)| for each i ≥ 1. Then there is i ≥ 1 such that |rd1(ui)| is maximal.

By the definition of rd1(ui) and rd1(ui+1), there are words x, y ∈ Σ∗L with

nf(A,∅)(u
i) = rd1(ui)x and nf(A,∅)(u

i+1) = rd1(ui+1) y .

But then

rd1(ui)xu = nf(A,∅)(u
i)u ≡(A,∅) u

iu ≡(A,∅) nf(A,∅)(u
i+1) = rd1(ui+1) y

implies

rd1(ui)xu→∗ rd1(ui+1) y

where→ is the derivation relation of the semi-Thue systemR(A,∅). Since the rules ofR(A,∅) move read operations
to the left, we obtain |rd1(ui)| ≤ |rd1(ui+1)|. By the choice of i, we have rd1(ui) = rd1(ui+1). Let ti, ti+1 ∈ A∗
be defined as in Lemma 4.4. Then we have

rd1(ui) ti rd2(u) rd1(u) rd2(u) = rd1(ui) rd2(ui) rd(u) (by Lem. 4.4)

= rd(ui) rd(u)

= rd(ui+1)

= rd1(ui+1) rd2(ui+1)

= rd1(ui) ti+1 rd2(u) (by Lem. 4.4) .
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i.e., ti+1 = tird2(u)rd1(u). Since rd1(v) is a prefix of rd1(u) we get

ti rd2(u) rd1(v) � ti rd2(u) rd1(u) = ti+1 � wrt(ui)

and therefore sws
(
wrt(ui), ti rd2(u) rd1(v)

)
= ti rd2(u) rd1(v). Consequently,

rd2(uiv) = sws
(
wrt(ui), ti rd2(u) rd1(v)

)
rd2(v) (by Thm. 4.3)

= ti rd2(u) rd1(v) rd2(v)

= ti rd2(u) rd1(u) rd2(u) (by rd(u) = rd(v))

= ti+1 rd2(u)

= rd2(ui+1) (by Lem. 4.4) .

Similar to the case above we get χ(uiv) = χ(ui+1) and therefore uiv ≡(A,∅) u
i+1.

Note that in both cases we have wvw ≡(A,∅) wuw for w = ui.

From this proposition, we can infer the announced necessary condition for a homomorphism into Q(L) to be
injective (where X ⊆ A is not necessarily empty).

Theorem 4.6. Let L = (A,X) be a lossiness alphabet, M be a monoid, ϕ : M ↪→ Q(L) be an embedding, and
x, y ∈M such that wrt(ϕ(x)) = wrt(ϕ(y)) and rd(ϕ(x)) = rd(ϕ(y)).

Then there is z ∈M with zxz = zyz.

Proof. For notational simplicity, let ϕ(x) = [u] and ϕ(y) = [v].
By Proposition 4.5, there is w ∈ u∗ ∪ v∗ such that wvw ≡(A,∅) wuw. Using Theorem 3.15, this implies

nf(A,∅)(wvw) = nf(A,∅)(wuw). As the semi-Thue systemRL contains all the rules fromR(A,∅) we get nfL(wvw) =
nfL(wuw) and therefore wvw ≡L wuw. Since w ∈ u∗ ∪ v∗ there is z ∈ x∗ ∪ y∗ ⊆M such that ϕ(z) = [w]. Then
we have ϕ(zyz) = ϕ(zxz). The injectivity of ϕ now implies zyz = zxz.

5. Embeddings between plq monoids

We now characterize when one plq monoid embeds into another plq monoid.

Theorem 5.1. Let LA = (A,X) and LB = (B, Y ) be two lossiness alphabets. Then Q(LA) ↪→ Q(LB) holds iff
all of the following properties hold:

(A) |A \X| ≤ |B \ Y |, i.e., LB has at least as many forgettable letters as LA.
(B) If Y = ∅, then also X = ∅, i.e., if LB consists of forgettable letters only, then so does LA.
(C) If |Y | = 1, then |A \X| < |B \ Y | or |X| ≤ 1, i.e., if LB has exactly one non-forgettable letter and exactly

as many forgettable letters as LA, then LA contains at most one non-forgettable letter.

In particular, Q(A,A) embeds into Q(B,B) whenever |B| ≥ 2, i.e., this theorem generalizes Corollary 5.4
from [13]. We prove it in Propositions 5.4 and 5.9.
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5.1. Preorder of embeddability

The embeddability of monoids is reflexive and transitive, i.e., a
preorder. Before diving into the proof of Theorem 5.1, we derive
from it an order-theoretic description of this preorder on the class
of all plq monoids (see the reflexive and transitive closure of the
graph on the right). The plq monoid Q(L) is, up to isomorphism,
completely given by the numbers m = |X| and n = |A \X| of non-
forgettable and of forgettable letters, respectively. Therefore, we
describe this preorder in terms of pairs of natural numbers. We
write (m,n)→ (m′, n′) if

Q([m+ n], [m]) ↪→ Q([m′ + n′], [m′])

where, as usual, [n] = {1, 2, . . . , n}. Then Theorem 5.1 reads as
follows: If m,n,m′, n′ ∈ N with m+ n,m′ + n′ ≥ 2, then (m,n)→
(m′, n′) iff all of the following properties hold:

(A) n ≤ n′
(B) If m′ = 0, then m = 0
(C) If m′ = 1, then m ≤ 1 or n < n′

Then we get immediately for all appropriate natural numbers
m,n, n′ ∈ N:

– if m ≥ 2, then (2, n)→ (m,n)→ (2, n)
– (2, n)→ (2, n′) iff n ≤ n′
– (1, n)→ (2, n′) iff n ≤ n′
– (0, n)→ (2, n′) iff n ≤ n′
– (2, n)→ (1, n′) iff n < n′

– (1, n)→ (1, n′) iff n ≤ n′
– (0, n)→ (1, n′) iff n ≤ n′
– (2, n) 6→ (0, n′)
– (1, n) 6→ (0, n′)
– (0, n)→ (0, n′) iff n ≤ n′

These facts allow to derive the graph on the right (where m stands for an arbitrary number at least 3). Note
that the nodes (1, 0), (0, 1), and (0, 0) represent the monoids Q({a}, {a}), Q({a}, ∅), and Q(∅, ∅), respectively
(that we do not formally consider as plq monoids).

First look at the nodes not of the form (0, n). They form an alternating chain of infinite equivalence classes
{(m,n) | m ≥ 2} and single nodes (1, n). The infinite equivalence class of all nodes of the form (m, 0) with
m ≥ 2 corresponds to the monoids of fully reliable queues considered in [13].

The nodes of the form (0, n) also form a chain of single nodes (these nodes depict the fully lossy queue
monoids from [18]). The single node number n (i.e., (0, 2 + n)) from this chain is directly below the single node
number 2 + n (i.e., (1, 2 + n)) of the alternating chain.

5.2. Sufficiency in Theorem 5.1

Let LA = (A,X) and LB = (B, Y ) be two lossiness alphabets. Suppose Conditions (A)–(C) from Theorem 5.1
hold.

First suppose |X| ≤ |Y |. By Condition (A), there exists an embedding ϕ′ : ΣLA → ΣLB mapping X into Y ,

A \X into B \ Y and satisfying ϕ′(a) = ϕ′(a) for each a ∈ A. We identify ϕ′ with the induced homomorphism
from Σ∗LA into Σ∗LB . For any rule u→ v with u, v ∈ A∗ from the semi-Thue system RLA , we get ϕ′(u) ≡LB ϕ′(v)
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by Lemma 3.9. Hence, by Theorem 3.15, we therefore get

u ≡LA v =⇒ ϕ′(u) ≡LB ϕ′(v)

for any u, v ∈ Σ∗LA . Since the injective homomorphism ϕ′ maps words over A in normal form to words over
B in normal form, we also have the converse implication. Hence ϕ′ : Σ∗LA ↪→ Σ∗LB induces an embedding
Q(LA) ↪→ Q(LB).

In the rest of this section, we assume |X| > |Y |. Then, the basic idea is as follows: the submonoids of Q(LA)
generated by X and A \X, respectively, are isomorphic to Q(X,X) and Q(A \X, ∅), respectively, and intersect
in the unit element [ε]. Since |A \X| ≤ |B \ Y | by (A), we find an embedding ϕ1 of Q(A \X, ∅) into Q(B \ Y, ∅).
If |Y | ≥ 2, then [13] provides an embedding ϕ2 from Q(X,X) into Q(Y, Y ). If |Y | ≤ 1, then we have the
problem that no such embedding ϕ2 exists. But we can, by (C), “borrow” a letter b2 from B \ Y to construct
an embedding ϕ2 from Q(X,X) into Q(Y ∪ {b2}, Y ) similar to [13]. To embed Q(LA) into Q(LB), we need a
joint extension of these two embeddings of submonoids.

Since it is easier to work with words than with elements of Q(LA), we construct an injective homomorphism
ϕ′ : Σ∗LA → Σ∗LB satisfying

u ≡LA v ⇐⇒ ϕ′(u) ≡LB ϕ′(v) (5.1)

for any words u, v ∈ Σ∗LA .

The construction of ϕ′

By Condition (A), there exists an injective mapping ϕ1 : A \X ↪→ B \ Y . Since |X| > |Y |, Condition (B)
implies Y 6= ∅. Let b1 ∈ Y be arbitrary. If |Y | > 1, then choose b2 ∈ Y \ {b1}. Otherwise, we have 1 = |Y | < |X|.
Hence, by Condition (C), the mapping ϕ1 is not surjective. Thus, we can choose b2 ∈ B \ (Y ∪ {ϕ1(a) | a ∈
A \X}). With X = {x1, x2, . . . , xn}, we set

ϕ′(a) =

{
ϕ1(a) if a ∈ A \X
b
|A|+i
1 b2b

|A|−i
1 b2 if a = xi

and ϕ′(a) = ϕ′(a) for a ∈ A .

It is easy to see that ϕ′ maps Σ∗LA , A∗, and A
∗

injectively into Σ∗LB , B∗, and B
∗
, respectively. The following

lemmas demonstrate the two implications in (5.1).

Lemma 5.2. If u, v ∈ Σ∗LA with u ≡LA v, then ϕ′(u) ≡LB ϕ′(v).

Proof. By Theorem 3.15, it suffices to show this for any of the equations u ≡LA v in Lemma 3.9.

(i) Let a1, a2 ∈ A be distinct. Let vi = ϕ′(ai) such that ϕ′(ai) = vi. We have wrt(ϕ′(a1 a2)) = v1 =
wrt(ϕ′(a2 a1)) and rd(ϕ′(a1 a2)) = v2 = rd(ϕ′(a2 a1)). Note that rd2(v1v2) = ε can be shown by Lemma 3.19
distinguishing four cases depending on whether ai ∈ X or not. We obtain

rd2(ϕ′(a1 a2)) = rd2(v1 v2)

= ε

= rd2(v2 v1) (since v2 v1 ∈ NFLB )

= rd2(ϕ′(a2 a1)) .

Hence χ(ϕ′(a1 a2)) = χ(ϕ′(a2 a1)) implying ϕ′(a1 a2) ≡LB ϕ′(a2 a1).
(ii) Let a1, a2 ∈ A be arbitrary (a1 = a2 is allowed). We have to show ϕ′(a1a1a2) ≡LB ϕ′(a1a1a2). As before,

let vi = ϕ′(ai) such that ϕ′(ai) = vi.
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First suppose |v1| ≤ |v2|. By Lemma 3.19, rd2(v1v1v2) is a suffix of v1v2 of length at most |v1| ≤ |v2|.
Hence we get

rd2(v1v1v2) = rd2(v1v2) .

Alternatively, |v1| > |v2| implies v1 ∈ {b1, b2}∗ and v2 ∈ B \ {b1, b2}. Hence, from Lemma 3.19, we get

rd2(v1v1v2) = ε = rd2(v1v2) .

Since all rules in the semi-Thue system RLB try to move read actions from B to the left, we get

nfLB (v1 v1 v2) = v1 nfLB (v1 v2)

and therefore

rd2(v1 v1 v2) = rd2(v1 v2) = rd2(v1v1 v2) .

Now wrt(v1v1v2) = v1 = wrt(v1v1v2) and rd(v1v1v2) = v1v2 = rd(v1v1v2) finish the proof of v1v1v2 ≡LB
v1v1v2. By the choice of v1 and v2, this implies ϕ′(a1a1a2) ≡LB ϕ′(a1a1a2).

(iii) Let a ∈ A and w ∈ A∗. Let va = ϕ′(a) ∈ B∗ and vw = ϕ′(w) ∈ B∗ such that, in particular, ϕ′(a) = va.
Lemma 3.19 implies

rd2(vavwvava) = va = rd2(vavwva) .

Since all rules in the semi-Thue system try to move read actions from B to the left, we get

nfLB (vavwvava) = nfLB (vavwva) va

and therefore

rd2(vavwvava) = rd2(vavwva) = rd2(vavwvava) .

Now wrt(vavwvava) = vavwva = wrt(vavwvava) and rd(vavwvava) = va = wrt(vavwvava) finish the proof
of vavwvava ≡LB vavwvava. By the choice of va and vw, this implies ϕ′(awaa) ≡LB ϕ′(awaa).

(iv) Let a ∈ A, x ∈ X, and w ∈ A∗. Since we want to prove ϕ′(xwaa) ≡LB ϕ′(xwaa), it suffices to consider
the case w ∈ (A \X)∗. If a = x, then ϕ′(xwaa) ≡LB ϕ′(xwaa) by the previous item. So assume from now
on a 6= x.
Let va = ϕ′(a) ∈ B+, vx = ϕ′(x) ∈ Y B∗, and vw = ϕ′(w) ∈ B∗ such that, in particular, ϕ′(a) = va. Note
that vx contains 2|A| occurrences of the non-forgettable letter b1 ∈ Y and va contains at most 2|A| such
occurrences. Hence Lemma 3.19 implies

rd2(vxvwvava) = rd2(vxvwva) .

Since all rules in the semi-Thue system try to move read actions from B to the left, we get

nfLB (vxvwvava) = nfLB (vxvwva) va

and therefore

rd2(vxvwvava) = rd2(vxvwva) = rd2(vxvwvava) .



THE INCLUSION STRUCTURE OF PARTIALLY LOSSY QUEUE MONOIDS AND THEIR TRACE SUBMONOIDS 73

Now wrt(vxvwvava) = vxvwva = wrt(vxvwvava) and rd(vxvwvava) = va = wrt(vxvwvava) finish the proof
of vxvwvava ≡LB vxvwvava. By the choice of vx, va, and vw, this implies ϕ′(xwaa) ≡LB ϕ′(xwaa).

Thus, we have the implication “⇒” in (5.1) and it remains to verify the implication “⇐”.

Lemma 5.3. If u, v ∈ Σ∗LA with ϕ′(u) ≡LB ϕ′(v), then u ≡LA v.

Proof. There are letters ai ∈ A and words yi ∈ (A \ (X ∪ {ai}))∗ for 1 ≤ i ≤ m and y0, ym+1 ∈ A∗ such that

nfLA(u) = y0(y1a1a1)(y2a2a2) · · · (ymamam)ym+1

and nfLA(v) = z0(z1c1c1)(z2c2c2) · · · (zncncn)zn+1

(with ci ∈ A and zi ∈ (A \ (X ∪{ci}))∗ for 1 ≤ i ≤ n and z0, zn+1 ∈ A∗). We first prove that the images of these
two words in normal form are “almost” in normal form.

We consider the blocks yiaiai for 1 ≤ i ≤ m: First note that yi is a word over A \ (X ∪ {ai}). Consequently,
ϕ′(yi) is a word over B \ (Y ∪ {ϕ1(ai), b1, b2}). If ai ∈ A \X, then ϕ′(ai) ∈ B \ (Y ∪ {b1, b2}). Hence the word

ϕ′(yiaiai) is in normal form. Next consider the case ai ∈ X. Then there exists j with ϕ′(ai) = b
|A|+j
1 b2b

|A|−j
1 b2

and therefore

nfLB (yiaiai) = ϕ′(y1) (b1b1)|A|+j b2b2 (b1b1)|A|−j b2b2 .

It follows that the word

ϕ′(y0) nfLB (ϕ′(y1a1a1)) nfLB (ϕ′(y2a2a2)) . . . nfLB (ϕ′(ymamam)) ϕ′(ym)

is in normal form. Since it is equivalent to ϕ′(u), it equals the normal form of ϕ′(u). Similarly, the normal form
of ϕ′(v) equals

ϕ′(z0) nfLB (ϕ′(z1c1c1)) nfLB (ϕ′(z2c2c2)) . . . nfLB (ϕ′(zncncn)) ϕ′(zn) .

Now Lemma 5.2 implies ϕ′(nfLA(u)) = ϕ′(u) = ϕ′(v) = ϕ′(nfLA(v)), i.e., the two words above are equal.
In particular, m = n, ϕ′(y0) = ϕ′(z0), nfLB (ϕ′(yiaiai)) = nfLB (ϕ′(zicici)) for all 1 ≤ i ≤ m = n, and
ϕ′(ym+1) = ϕ′(zn+1). Since ϕ′ is injective on A∗, this implies y0 = z0 and ym+1 = zn+1. The above calcu-
lation of nfLB (ϕ′(yiaiai)) yields yi = zi and ai = ci for all 1 ≤ i ≤ m = n. Hence, we get nfLA(u) = nfLA(v)
and therefore u ≡LA v.

By Lemmas 5.2 and 5.3 we can infer that ϕ′ induces an embedding of Q(LA) into Q(LB) which we conclude
in the following proposition.

Proposition 5.4. Let LA = (A,X) and LB = (B, Y ) be two lossiness alphabets such that Conditions (A)?(C)
from Theorem 5.1 hold. Then Q(LA) embeds into Q(LB).

5.3. Necessity in Theorem 5.1

Now we have to prove the other implication of the equivalence in Theorem 5.1. Recall the embedding ϕ we
constructed in the proof of Proposition 5.4. In particular, it has the following properties:

(1) If a ∈ A, then ϕ(a) ∈ [B+] and ϕ(a) = ϕ(a). In particular, the image of every write operation a performs
write operations, only, and the image of every read operation a is the “overlined version of the image of
the corresponding write operation” and therefore performs read operations, only.

(2) If a ∈ A \X, then ϕ(a) ∈ [B \ Y ]. In particular, the image of every write operation of a forgettable letter
writes exactly one letter and that letter is forgettable.
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(3) If x ∈ X, then ϕ(x) ∈ [B∗Y B∗]. In particular, the image of every write operation of a non-forgettable
letter writes at least one non-forgettable letter.

Of course, there are also embeddings that do not satisfy these three properties of ϕ. For example, the
homomorphism obtained from α 7→ αα for any α ∈ ΣL embeds Q(L) into Q(L) but violates (2). Hence, the
proof of the necessity in Theorem 5.1 first shows that any embedding satisfies slightly weaker properties.

The following two lemmas prepare the proof of the weakenings of properties (1) and (2) in Lemma 5.7.

Lemma 5.5. Let LA = (A,X) and LB = (B, Y ) be two lossiness alphabets, ϕ : Q(LA) ↪→ Q(LB) be an
embedding, and a ∈ A. Then rd(ϕ(a)) 6= ε and wrt(ϕ(a)) 6= ε.

Proof. Towards a contradiction suppose that ϕ(a) performs write operations, only, i.e., rd(ϕ(a)) = ε. Lemma 3.9
implies aaa ≡LA aaa and therefore ϕ(aa)ϕ(a) = ϕ(aa)ϕ(a). Since rd(ϕ(a)) = ε (i.e., ϕ(a) ∈ [B∗]), Corollary 3.18
yields ϕ(aa) = ϕ(aa). As ϕ is injective we have aa ≡LA aa which contradicts Theorem 3.15. Hence we showed the
first claim. The proof of the other equation is very similar to this, but starts from the equation aaa ≡LA aaa.

Recall that every word w over B is the power of some primitive word. Furthermore, if w is not empty, then
this primitive word is unique and called the primitive root of w. The following lemma shows that the sequences
of write operations in ϕ(α) and in ϕ(β) are powers of the same primitive word for any α, β ∈ A (and similarly
for the read operations).

Lemma 5.6. Let LA = (A,X) and LB = (B, Y ) be two lossiness alphabets, ϕ : Q(LA) ↪→ Q(LB) be an
embedding, α, β ∈ A, and p ∈ B+ be primitive. Then the following hold:

(i) If wrt(ϕ(α)) ∈ p+, then wrt(ϕ(β)) ∈ p∗.
(ii) If rd(ϕ(α)) ∈ p+, then rd(ϕ(β)) ∈ p∗.

Proof. To prove the first claim, suppose wrt(ϕ(α)) ∈ p+. By Lemma 3.9 we have ααβ ≡LA αβα. Since wrt and
ϕ are homomorphisms, this implies wrt(ϕ(α))wrt(ϕ(αβ)) = wrt(ϕ(α))wrt(ϕ(βα)). Since this equation holds in
the free monoid B∗, we get

wrt(ϕ(α))wrt(ϕ(β)) = wrt(ϕ(αβ)) = wrt(ϕ(βα)) = wrt(ϕ(β))wrt(ϕ(α)) .

In other words, wrt(ϕ(α)) and wrt(ϕ(β)) commute. Since p is the primitive root of wrt(ϕ(α)), this implies
wrt(ϕ(β)) ∈ p∗.

Replacing the homomorphism wrt by the homomorphism rd in the above argument, we get the proof of the
second claim.

Now we can prove the announced weakenings of properties (1) and (2). The first statement of the following
lemma is a weakening of (1) since it only says something about the letters in ϕ(a) and ϕ(a) but not that these
two elements are dual. Similarly the second statement is a weakening of (2) since it does not say anything about
the length of ϕ(a) but only something about the letters occurring in ϕ(a).

Lemma 5.7. Let LA = (A,X) and LB = (B, Y ) be two lossiness alphabets and ϕ be an embedding of Q(LA)
into Q(LB). Then the following hold:

(i) ϕ(a) ∈ [B+] and ϕ(a) ∈ [B
+

] for each a ∈ A.
(ii) ϕ(a) ∈ [(B \ Y )∗] for each a ∈ A \X.

Proof. To prove (i), let a ∈ A and suppose ϕ(a) /∈ [B∗]. From Lemma 5.5, we know ϕ(a) /∈ [B
∗
]. Let p, q ∈ B+

be the primitive roots of the non-empty words wrt(ϕ(a)) and rd(ϕ(a)), respectively.
Since |A| ≥ 2, there exist distinct letters a1, a2 ∈ A. With α = a and β = ai (for i ∈ {1, 2}),

Lemma 5.6 implies wrt(ϕ(ai)) ∈ p∗ and rd(ϕ(ai)) ∈ q∗. Consequently, wrt(ϕ(a1 a2)) = wrt(ϕ(a1))wrt(ϕ(a2)) =
wrt(ϕ(a2))wrt(ϕ(a1)) = wrt(ϕ(a2 a1)) and similarly rd(ϕ(a1 a2)) = rd(ϕ(a2 a1)). Since ϕ is an embedding, The-
orem 4.6 implies the existence of u ∈ Σ∗LA with ua1 a2u ≡LA ua2 a1u. It follows from Proposition 3.12 that
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these two words have the same sequence of read operations and therefore in particular a1 a2 = a2 a1. But this
implies a1 = a2 which contradicts our choice of these two letters. Hence, indeed, ϕ(a) ∈ [B∗] which proves the
first claim.

For the second claim, let a ∈ A and suppose ϕ(a) /∈ [B
∗
]. From Lemma 5.5, we know ϕ(a) /∈ [B∗]. Let

p, q ∈ B+ be the primitive roots of the non?empty words wrt(ϕ(a)) and rd(ϕ(a)), respectively.
Since |A| ≥ 2, there exist distinct letters a1, a2 ∈ A. With α = ai and β = a (for i ∈ {1, 2}), the contrapo-

sition of the two claims of Lemma 5.6 imply rd(ϕ(ai)) ∈ p∗ and wrt(ϕ(ai)) ∈ q∗. Consequently, rd(ϕ(a1 a2)) =
rd(ϕ(a2 a1)) and wrt(ϕ(a1 a2)) = wrt(ϕ(a2 a1)). Since ϕ is an embedding, Theorem 4.6 implies the existence
of u ∈ Σ∗LA with ua1 a2u ≡LA ua2 a1u. It follows from Proposition 3.12 that these two words have the same
sequence of write operations and therefore in particular a1 a2 = a2 a1. But this implies a1 = a2 which contradicts
our choice of these two letters. Hence, indeed, ϕ(a) ∈ [B

∗
] which proves the second claim.

Statement (ii) is shown by contradiction. Let a ∈ A \X with ϕ(a) /∈ [(B \ Y )∗]. Since |A| ≥ 2, there exists a
distinct letter b ∈ A \ {a}. By (i) and the assumption on ϕ(a), there exist words u, v, w ∈ B∗ and letters y ∈ Y
and b1, b2, . . . , bn ∈ B with n ≥ 1,

ϕ(a) = [uyv] , ϕ(b) = [w] , and ϕ(b) = [b1 b2 . . . bn].

We get

ϕ(anbb) = [(uyv)n w b1 b2 . . . bn]

= [uyb1v uyb2v uyb3v . . . w] (by Lem. 3.9)

= [(uyv)n b1 b2 . . . bn w] (by Lem. 3.9 again)

= ϕ(anbb) .

Due to the injectivity of ϕ, this implies anbb ≡LA anbb. Since these two words are in normal form, this contradicts
Theorem 3.15. Thus, indeed, ϕ(a) ∈ [(B \ Y )∗] for any a ∈ A \X.

We next come to property (3) that we prove for every embedding.

Lemma 5.8. Let LA = (A,X) and LB = (B, Y ) be two lossiness alphabets and ϕ an embedding of Q(LA) into
Q(LB). Then we have ϕ(x) ∈ [B∗Y B∗] for each x ∈ X.

Proof. Let x ∈ X. Since |A| ≥ 2, there is a distinct letter a ∈ A \ {x}. By Lemma 5.7(i), there are words
u, v, w ∈ B+ with

ϕ(a) = [u] , ϕ(a) = [v] , and ϕ(x) = [w] .

Since x ∈ X \ {a}, Lemma 3.9 implies

xaa ≡LA xaa ≡LA axa .

Hence we have ϕ(xaa) = ϕ(axa) and therefore wuv ≡LB vwu. Consequently

rd2(wuv) = rd2(vwu) = ε

since vwu ∈ NFLB . As aa and aa are two distinct words in normal form, we have aa 6≡LA aa by Theorem 3.15.
Due to the injectivity of ϕ, this implies ϕ(aa) 6= ϕ(aa) and therefore uv 6≡LB vu, i.e., χ(uv) 6= χ(vu). Since
wrt(uv) = wrt(vu) and rd(uv) = rd(vu), we consequently get
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rd2(uv) 6= rd2(vu) (since χ(uv) 6= χ(vu))

= ε (since vu ∈ NFLB ) .

By Lemma 3.19, there exist a non?empty suffix v′ 6= ε of v and a prefix u′ of u such that v′ �Y u′. It follows
that v′ is a subword of wu′, i.e., v′ � wu′. Since rd2(wuv) = ε, Lemma 3.19 implies πY (wu′) 6= πY (v′) = πY (u′),
i.e., w contains some letter from Y . Thus, we proved ϕ(x) = [w] ∈ [B∗Y B∗].

Finally we obtain the remaining implication in Theorem 5.1.

Proposition 5.9. Let LA = (A,X) and LB = (B, Y ) be two lossiness alphabets such that Q(LA) ↪→ Q(LB).
Then the Conditions (A)?(C) from Theorem 5.1 hold.

Proof. First suppose X 6= ∅. Then, Lemma 5.8 implies Y 6= ∅, i.e., we have (B).

Condition (A) is trivial if A \ X = ∅. If A \ X is a singleton, then Lemma 5.7(ii) implies B \ Y 6= ∅ and
therefore |A \X| ≤ |B \ Y |. So it remains to consider the case that A \X contains at least two elements. For

a ∈ A \X, we have ϕ(a) ∈ [B
+

] by Lemma 5.7(i). Hence there exist va ∈ B∗ and ba ∈ B with ϕ(a) = [va ba].
We will prove that the letters ba for a ∈ A \X are mutually distinct.

So let a1, a2 ∈ A \X be distinct. By Lemma 5.7(ii), there exists w ∈ (B \ Y )+ with ϕ(a1) = [w]. Then we
have

rd2(w va1 ba1) = rd2(ϕ(a1 a1))

6= rd2(ϕ(a1 a1)) (since ϕ is injective)

= rd2(va1 ba1 w)

= ε (since va1 ba1 w ∈ NFLB ) .

By Lemma 3.19, the non-empty word rd2(w va1 ba1) is a suffix of va1ba1 and a subword of w. In particular, ba1
is a subword of w.

On the other hand, we get

rd2(w va2ba2) = rd2(ϕ(a1 a2))

= rd2(ϕ(a2 a1)) (since a1 6= a2)

= rd2(va2ba2 w)

= ε (since va2ba2 w ∈ NFLB ) .

From Lemma 3.19, we therefore get in particular ba2 6�Y w. Since w ∈ (B \ Y )∗, this implies ba2 6� w and
therefore ba1 6= ba2 .

Thus, the mapping A \ X → B \ Y : a 7→ ba is injective implying |A \ X| ≤ |B \ Y |, i.e., we proved
Condition (A).

To prove Condition (C), suppose Y = {y} and |A \X| = |B \ Y |. We will prove |X| ≤ 1 by considering the
last letters of rd(ϕ(x)) for x ∈ X. So let x1, x2 ∈ X. By Lemma 5.7(i), there exist u ∈ B∗ and b ∈ B with
ϕ(x2) = [ub]. We distinguish the cases b = y and b ∈ B \ Y .
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First, let b = y, i.e., ϕ(x2) = [uy]. By Lemma 5.8, there exist v ∈ (B \ Y )∗ and w ∈ B∗ with ϕ(x1) = [vyw].
Then y �Y vyw implies

rd2(ϕ(x2x1)) = rd2([uy vyw])

= ε (since uy yvw ∈ NFLB )

6= rd2([vywuy]) (by Lem. 3.19 since y �Y vyw)

= rd2(ϕ(x1x2)) .

This implies ϕ(x2x1) 6= ϕ(x1x2). Now x2x1 6≡LA x1x2 follows from the injectivity of ϕ. Hence, Lemma 3.9
implies x1 = x2, i.e., |X| = 1.

Finally suppose b ∈ B \ Y . Recall that the mapping A \ X → B \ Y : a 7→ ba from the verification of
Condition (A) is injective. Since |A \ X| = |B \ Y |, there exists a ∈ A \ X with b = ba, i.e., ϕ(a) = [vb] for
some v ∈ (B \ Y )∗. Note that b is a subword of vb with πY (b) = ε = πY (vb), i.e., b �Y vb. We therefore get

rd2(ϕ(x2a)) = rd2([ub vb])

= ε (since ub bv ∈ NFLB )

6= rd2([vbub]) (by Lem. 3.19 since b �Y vb)

= rd2(ϕ(ax2)) .

This implies ϕ(x2a) 6= ϕ(ax2). Now x2a 6≡LA ax2 follows from the injectivity of ϕ. Thus, Lemma 3.9 implies
a = x2 but this contradicts a ∈ A \X and x2 ∈ X. Hence the case b ∈ B \ Y is not possible and therefore by
the case above |X| = 1.

6. Embeddings of trace monoids

Since, by Corollary 5.4 from [13] (alternatively, this follows from our generalization Thm. 5.1), all reliable
queue monoidsQ(A,A) with |A| ≥ 2 embed into each other, they all have the same submonoids. Our Theorem 5.1
shows that this is not the case for all plq monoids Q(L) (e.g., Q(A,A) and Q(A, ∅) are not submonoids of each
other). This final section demonstrates a surprising similarity among all these monoids, namely the trace monoids
contained in them.

These trace (or free partially commutative) monoids are used for modeling concurrent systems where the
concurrency is governed by the use of joint resources (cf. [24]). Formally such a system is a so called independence
alphabet, i.e., a tuple (Γ, I) of a non-empty finite set Γ and a symmetric, irreflexive relation I ⊆ Γ 2, i.e.,
(Γ, I) can be thought of as a finite, simple, undirected graph. The corresponding dependence alphabet (Γ,D)
is the complementary graph of (Γ, I), i.e., D = Γ 2 \ I. Given an independence alphabet (Γ, I), we define the
relation ≡I ⊆ (Γ ∗)2 as the least congruence satisfying ab ≡I ba for each (a, b) ∈ I. The induced trace monoid
is M(Γ, I) := Γ ∗/≡I . While there is a rich theory of trace monoids (see, e.g., [8, 9, 24]), here we only need the
following basic characterization of the congruence ≡I :

Proposition 6.1 (Projection lemma, [5, 6]). Let (Γ, I) be an independence alphabet and u, v ∈ Γ ∗. Then u ≡I v
iff π{a,b}(u) = π{a,b}(v) for each (a, b) ∈ Γ 2 \ I.

We consider, as usual in trace theory, the independence alphabet (Γ, I) as a graph and therefore use graph
theoretic terminology for its properties.

6.1. Large alphabets

The following theorem characterizes those trace monoids that embed into the plq monoid Q(L) provided
|A|+ |X| ≥ 3. It shows that all these plq monoids contain the same trace monoids as submonoids.
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Theorem 6.2. Let L = (A,X) be a lossiness alphabet with |A| + |X| ≥ 3. Furthermore let (Γ, I) be an
independence alphabet. Then the following are equivalent:

(A) M(Γ, I) embeds into Q(L).
(B) M(Γ, I) embeds into {a, b}∗ × {c, d}∗.
(C) One of the following conditions holds:
(C.a) All nodes in (Γ, I) have degree ≤ 1.
(C.b) The only non-trivial connected component of (Γ, I) is complete bipartite.

6.1.1. The implication “(B)⇒(A)” in Theorem 6.2

Let the independence alphabet (Γ, I) satisfy Condition (B), i.e., M(Γ, I) embeds into P = {a, b}∗ × {c, d}∗.
To show that then M(Γ, I) embeds into the plq monoid, it suffices to provide an embedding of P into the plq
monoid. Note that the condition |A| + |X| ≥ 3 is satisfied if and only if |A| ≥ 3 or |A| ≥ 2 and X 6= ∅. The
following lemmas handle these two cases separately.

Lemma 6.3. Let L = (A, ∅) be a lossiness alphabet with |A| ≥ 3. Then {a, b}∗ × {c, d}∗ embeds into Q(L).

Proof. Let a1, a2, a3 ∈ A be pairwise distinct letters. Then we define the homomorphism ϕ′ : {a, b, c, d}∗ → Σ∗L
by

ϕ′(a) := a1 , ϕ
′(b) := a2 , ϕ

′(c) := a1a3 , and ϕ′(d) := a2a3 .

Using Lemma 3.9, one can easily verify ϕ′(α)ϕ′(β) ≡L ϕ′(β)ϕ′(α) for all α ∈ {a, b} and β ∈ {c, d}. Hence ϕ′

induces a homomorphism ϕ : {a, b}∗ × {c, d}∗ → Q(L).
Since a1, a2, a3 are pairwise distinct, the homomorphisms

{a, b}∗ → A∗ : u 7→ wrt(ϕ(u, ε)) and {c, d}∗ → A∗ : v 7→ rd(ϕ(ε, v))

are injective. Hence ϕ is an embedding.

Lemma 6.4. Let L = (A,X) be a lossiness alphabet with X 6= ∅. Then {a, b}∗ × {c, d}∗ embeds into Q(L).

Proof. Let x ∈ X and a1 ∈ A \ {x}. Then we define the homomorphism ϕ′ : {a, b, c, d}∗ → Σ∗L by

ϕ′(a) := x , ϕ′(b) := xa1 , ϕ
′(c) := a1 , and ϕ′(d) := xa1a1 .

Note that, if A = X, then this is the embedding from Proposition 8.3 from [13]. Again by Lemma 3.9, we get
ϕ′(α)ϕ′(β) ≡L ϕ′(β)ϕ′(α) for all α ∈ {a, b} and β ∈ {c, d}. Hence ϕ′ induces a homomorphism ϕ : {a, b}∗ ×
{c, d}∗ → Q(L).

Since a1 6= x, the homomorphisms

{a, b}∗ → A∗ : u 7→ wrt(ϕ(u, ε)) and {c, d}∗ → A∗ : v 7→ rd(ϕ(ε, v))

are injective. Hence ϕ is an embedding.

From these two lemmas we can learn that {a, b}∗ × {c, d}∗ embeds into Q(L) whenever |A|+ |X| ≥ 3. Since
the embedding relation ↪→ is transitive, each trace monoid that embeds into {a, b}∗×{c, d}∗ embeds into Q(L),
too. Hence we get the following statement.

Proposition 6.5. Let L = (A,X) be a lossiness alphabet with |A| + |X| ≥ 3. Furthermore let (Γ, I) be an
independence alphabet such that M(Γ, I) embeds into {a, b}∗ × {c, d}∗. Then M(Γ, I) embeds into Q(L).
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6.1.2. The implication “(C)⇒(B)” in Theorem 6.2

Let (Γ, I) be an independence alphabet satisfying (C.a) or (C.b) of Theorem 6.2. We will prove that M(Γ, I)
embeds into the direct product of two free monoids in both these cases. The following lemma considers the
case that all nodes of (Γ, I) have degree at most one (the simpler case of (C.b) is considered in the proof of
Prop. 6.7).

Lemma 6.6. Let (Γ, I) be an independence alphabet such that all nodes in (Γ, I) have degree ≤ 1. Then M(Γ, I)
embeds into the direct product of two countably infinite free monoids.

Proof. It suffices the consider the case that all letters of (Γ, I) have degree 1, i.e., Γ = {ai, bi | 1 ≤ i ≤ N} and
I = {(ai, bi), (bi, ai) | 1 ≤ i ≤ N} for some N ∈ N.

We consider the direct product

M = {ci | 1 ≤ i ≤ N}∗ × {di | 1 ≤ i ≤ N}∗ .

Note that in this monoid (ci, di) and (ci, didi) commute. Hence there is a homomorphism η : M(Γ, I)→M with
η(ai) = (ci, di) and η(bi) = (ci, didi) for all 1 ≤ i ≤ N .

To show that this homomorphism is injective, we use lexicographic normal forms. So let ≤ be a linear order
on Γ with ai < bi for all 1 ≤ i ≤ N . Now let u ∈ Γ ∗ be in lexicographic normal form wrt. ≤ (i.e., u is the
(length-)lexicographic smallest word in [u]). Then the word u has the form

u = ak1i1 b
`1
i1
ak2i2 b

`2
i2
. . . aksis b

`s
is

where 1 ≤ ia ≤ N , ka + `a > 0 for all 1 ≤ a ≤ s and ia 6= ia+1 for all 1 ≤ a < s.
The image of u equals

η(u) =

(
ck1+`1i1

ck2+`2i2
· · · cks+`sis

dk1+2`1
i1

dk2+2`2
i2

· · · dks+2`s
is

)
.

Next let also v be a word in lexicographic normal form:

v = am1
j1
bn1
j1
am2
j2
bn2
j2
· · · amtjt b

nt
jt

where 1 ≤ ja ≤ N , ma + na > 0 for all 1 ≤ a ≤ t and ja 6= ja+1 for all 1 ≤ a < t.
The image of v equals

η(v) =

(
cm1+n1
j1

cm2+n2
j2

· · · cmt+ntjt

dm1+2n1
j1

dm2+22
j2

· · · dmt+2t
jt

)
.

Suppose η(u) = η(v). Since all the exponents of ci and di in the expressions for η(u) and for η(v) are positive and
consecutive ci and di have distinct indices, we obtain s = t, ia = ja, ka + `a = ma +na and ka + 2`a = ma + 2na
for all 1 ≤ a ≤ s. Hence ka = ma and `a = na for all 1 ≤ a ≤ s and therefore u = v. Hence η embeds M(Γ, I)
into M.

Proposition 6.7. Let (Γ, I) be an independence alphabet such that one of the following conditions holds:

(i) All nodes in (Γ, I) have degree ≤ 1.
(ii) The only non-trivial connected component of (Γ, I) is complete bipartite.

Then M(Γ, I) embeds into {a, b}∗ × {c, d}∗.
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Proof. Let (Γ, I) be such that the first condition holds, i.e., all nodes in (Γ, I) have degree ≤ 1. Then by
Lemma 6.6 there is an embedding of M(Γ, I) into a direct product of two finitely generated free monoids.

Now let (Γ, I) be such that the second condition holds, i.e., (Γ, I) has only one non-trivial connected com-
ponent and this component is complete bipartite. In other words, Γ = Γ1 ] Γ2 ] Γ3 with I = Γ1 × Γ2 ∪ Γ2 × Γ1.
Then the corresponding dependence alphabet (Γ,D) can be covered by the two cliques induced by Γ1 ∪ Γ3

and Γ2 ∪ Γ3. Consequently, Corollary 1.4.5 from [8] (General Embedding Theorem) implies that M(Γ, I) is a
submonoid of a direct product of two finitely generated free monoids.

Note that the finitely generated free monoid {ai | 1 ≤ i ≤ n}∗ embeds into {a, b}∗ via ai 7→ aib. Hence, in
any case, M(Γ, I) embeds into {a, b}∗ × {c, d}∗.

6.1.3. The implication “(A)⇒(C)” in Theorem 6.2

Recall that the general assumption in Theorem 6.2 was |A|+ |X| ≥ 3. We prove the implication “(A)⇒(C)”
for all lossiness alphabets.

So let L = (A,X) be a lossiness alphabet, let (Γ, I) be an independence alphabet, and let ϕ : M(Γ, I) ↪→ Q(L)
be an embedding. We partition the independence alphabet into the following three subsets:

Γ+ := {α ∈ Γ | rd(ϕ(α)) = ε,wrt(ϕ(α)) 6= ε} ,
Γ− := {α ∈ Γ |wrt(ϕ(α)) = ε, rd(ϕ(α)) 6= ε} , and

Γ± := Γ \ (Γ+ ∪ Γ−) .

The crucial steps of this proof are to verify the following properties of the induced subgraphs of (Γ, I):

(i) (Γ+ ∪ Γ−, I) is complete bipartite with the partitions Γ+ and Γ− (cf. Lem. 6.8).
(ii) All nodes from a ∈ Γ+ ∪ Γ− are connected to any edge in I (cf. Lem. 6.9).

(iii) All nodes from a ∈ Γ± have degree ≤ 1 in the undirected graph (Γ, I) (cf. Lem. 6.11).
(iv) (Γ, I) is P4-free, i.e., the path of four vertices is no induced subgraph (cf. Lem. 6.12).

Afterwards we can prove that graphs satisfying these four properties, also satisfy (C) in Theorem 6.2.

Lemma 6.8. (Γ+ ∪ Γ−, I) is complete bipartite with the partitions Γ+ and Γ−.

Proof. We first prove the discreteness of (Γ+, I):
Let a, b ∈ Γ+ and suppose (a, b) ∈ I. Then there are words u, v ∈ A+ with ϕ(a) = [u] and ϕ(b) = [v]. Then

ab ≡I ba implies uv ≡L vu and therefore uv = vu by Theorem 3.15. Hence there are a primitive word p and
m,n ∈ N with u = pm and v = pn. But then un = vm implying ϕ(an) = [un] = [vm] = ϕ(bm). Now the injectivity
of ϕ implies an ≡I bm and therefore a = b, contradicting (a, b) ∈ I. The proof of the discreteness of (Γ−, I) uses

words u, v ∈ A+
instead.

It remains to show (a, b) ∈ I for arbitrary a ∈ Γ+ and b ∈ Γ−. There are u, v ∈ A+ such that ϕ(a) = [u] and
ϕ(b) = [v]. Set

t = rd2(uv|u|+1) .

From Lemma 3.19, we obtain that t is a suffix of v|u|+1 with t �X u. Consequently |t| ≤ |u| ≤ |v|u||, i.e., t is
even a suffix of v|u|. Again by Lemma 3.19, this implies t = rd2(uv|u|).

Since all rules of the semi-Thue system RL move letters from A to the left, we get nfL(vuv|u|) = v nfL(uv|u|)
and therefore

rd2(vuv|u|) = rd2(uv|u|) = t = rd2(uv|u|+1) .

Since wrt(vuv|u|) = u = wrt(uv|u|+1) and rd(vuv|u|) = v|u|+1 = rd(uv|u|+1), we obtain vuv|u| ≡L uv|u|+1. The
injectivity of ϕ implies bab|u| ≡I ab|u|+1. Now Proposition 6.1 implies (a, b) ∈ I since a 6= b.
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Lemma 6.9. Let a ∈ Γ+ ∪ Γ− and b, c ∈ Γ with (b, c) ∈ I. Then (a, b) ∈ I or (a, c) ∈ I.

Proof. Since ϕ(bc) = ϕ(cb) there are primitive words p, q ∈ A+ and exponents mb,mc, nb, nc ∈ N with

wrt(ϕ(b)) = pmb , rd(ϕ(b)) = qnb , wrt(ϕ(c)) = pmc , and rd(ϕ(c)) = qnc .

According to the injectivity of ϕ we have mb + nb 6= 0 6= mc + nc. Assume now that a ∈ Γ+ (the other case is
symmetric).

We first show that there are natural numbers xb, xc, yb, yc not all zero such that the following holds:

mb · xb = mc · yc
mc · xc = mb · yb

nb · xb + nc · xc = nb · yb + nc · yc

 (6.1)

If mb = 0, then set xb = yb = 1 and xc = yc = 0. Symmetrically, if mc = 0, we set xb = yb = 0 and xc = yc = 1.
If mbnc = mcnb, then set xb = yb = mc + nc > 0 and xc = yc = mb + nb > 0.

Now consider the case mb 6= 0 6= mc and mbnc 6= mcnb. The system (6.1) has a non-trivial solution over
the field Q. Consequently, there are integers xb, xc, yb, yc (not all zero) satisfying these equations. We show
xb > 0 ⇐⇒ xc > 0: First note that xb 6= 0 iff yc 6= 0 and xc 6= 0 iff yb 6= 0. Since not all of the integers
xb, xc, yb, yc are zero, we get xb 6= 0 or xc 6= 0. Furthermore, since we have a solution, we get

yc =
mb

mc
xb and yb =

mc

mb
xc .

Substituting these into the third equation yields(
nb − nc

mb

mc

)
· xb =

(
nb
mc

mb
− nc

)
· xc =

(
nb − nc

mb

mc

)
· mc

mb
· xc .

From mbnc 6= mcnb, we get nb−nc mbmc 6= 0. Hence xb = mc
mb
·xc and therefore mbxb = mcxc follow. Now mb,mc >

0 imply xb > 0 ⇐⇒ xc > 0. Consequently, all of xb, xc, yb, yc are non-negative or all are non-positive. Hence
|xb|, |xc|, |yb|, |yc| is a solution to the system (6.1) in natural numbers as required.

Now we have

wrt(ϕ(bxbacxc)) = pmb·xbϕ(a)pmc·xc
(6.1)
= pmc·ycϕ(a)pmb·yb = wrt(ϕ(cycabyb))

and

rd(ϕ(bxbacxc)) = qnb·xb+nc·xc
(6.1)
= qnc·yc+nb·yb = rd(ϕ(cycabyb)) .

By Theorem 4.6, there is z ∈ Γ ∗ with zbxbacxcz ≡I zcycabybz. Now Proposition 6.1 implies (a, b) ∈ I or (a, c) ∈ I.

Lemma 6.12 below will show that (Γ, I) does not contain a path on four vertices as induced subgraph, i.e., that
with any four distinct letters a, b, c, d with (a, b), (b, c), (c, d) ∈ I, one of the pairs (a, c), (b, d), or (a, d) belongs
to the independence relation I. Note that (a, c) ∈ I implies that (Γ, I) contains three mutually independent
letters a, b, and c. The following lemma shows that this is not the case.

Lemma 6.10. The graph (Γ, I) is triangle-free.

Proof. Suppose, there are a, b, c ∈ Γ such that (a, b), (b, c), (c, a) ∈ I. Then Lemma 6.8 implies that at least one
of the letters a, b, and c belongs to Γ±. Furthermore there are primitive words p, q ∈ A+ and numbers mα, nα ∈ N
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with wrt(ϕ(α)) = pmα and rd(ϕ(α)) = qnα for each α ∈ {a, b, c}. Since {(ma, na), (mb, nb), (mc, nc)} is linearly
dependent, there are xa, xb, xc ∈ Q not all zero such that

xa ·
(
ma

na

)
+ xb ·

(
mb

nb

)
+ xc ·

(
mc

nc

)
=

(
0
0

)
.

We can assume xa, xb ≥ 0 and xc < 0 (if necessary, multiply all of xa, xb, xc with −1 and exchange c with a
or b). Multiplying all of xa, xb, xc with a large natural number, we obtain a non-trivial natural solution of the
following system:

xa ·ma + xb ·mb = xc ·mc

xa · na + xb · nb = xc · nc

}
Then we have:

wrt(ϕ(axabxb)) = wrt(ϕ(cxc)) and rd(ϕ(axabxb)) = rd(ϕ(cxc)) .

As in the previous proof, Theorem 4.6 implies the existence of z ∈ Γ ∗ with zaxabxbz ≡I zcxcz. As the left-hand
side of this equation contains less occurrences of c than the right-hand side, this contradicts Proposition 6.1.

Lemma 6.11. Let a ∈ Γ±. Then a has degree ≤ 1.

Proof. Let b, c ∈ Γ with (a, b), (a, c) ∈ I. We will prove b = c.
From ϕ(ab) = ϕ(ba), we get wrt(ϕ(a))wrt(ϕ(b)) = wrt(ϕ(b))wrt(ϕ(a)). Hence there is a primitive word

p ∈ A+ with wrt(ϕ(a)),wrt(ϕ(b)) ∈ p∗. Since ϕ(ac) = ϕ(ca), there is also a primitive word q ∈ A+ with
wrt(ϕ(a)),wrt(ϕ(c)) ∈ q∗. Hence wrt(ϕ(a)) ∈ p∗ ∩ q∗. Since p and q are primitive words and since wrt(ϕ(a)) 6= ε,
we infer p = q. Consequently, the words wrt(ϕ(b)) and wrt(ϕ(c)) are both powers of this word p = q. Hence
wrt(ϕ(bc)) = wrt(ϕ(cb)).

Similarly, we can show rd(ϕ(bc)) = rd(ϕ(cb)).
By Theorem 4.6, there is consequently z ∈ Γ ∗ with zbcz ≡I zcbz. Now Proposition 6.1 implies (b, c) ∈ I or

b = c. Since the former contradicts Lemma 6.10, we have b = c, i.e., the letter a ∈ Γ± has degree ≤ 1.

Recall that a graph (Γ, I) is P4-free if the path on four vertices is not an induced subgraph. If the graph is
triangle-free, this is equivalent to saying that for any four distinct vertices a, b, c, d ∈ Γ with (a, b), (b, c), (c, d) ∈ I
we have (a, d) ∈ I.

Lemma 6.12. (Γ, I) is P4-free.

Proof. Let a, b, c, d ∈ Γ be pairwise distinct letters with (a, b), (b, c), (c, d) ∈ I. Lemma 6.11 implies b, c ∈ Γ+ ∪
Γ−. We can assume that b ∈ Γ+ and c ∈ Γ− by Lemma 6.8. Then there are primitive words p, q ∈ A+ and
numbers ma,mb, nc, nd ∈ N such that wrt(ϕ(a)) = pma , wrt(ϕ(b)) = pmb , rd(ϕ(c)) = qnc , rd(ϕ(d)) = qnd .

First we note that there are natural numbers xa, xb, xc, xd ∈ N with xa, xd 6= 0 that satisfy the following
system of linear equations

xa ·ma = xb ·mb

xc · nc = xd · nd

}
(6.2)

Therefore we get

wrt(ϕ(cxcdaxadxdbxb)) = wrt(ϕ(d))pxa·mawrt(ϕ(dxd))pxb·mb

= wrt(ϕ(d))pxb·mbwrt(ϕ(dxd))pxa·ma (by (6.2))

= wrt(ϕ(dbxbdxdaxacxc)) ,
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and

rd(ϕ(cxcdaxadxdbxb)) = qxc·nc+ndrd(ϕ(axa))qxd·nd

= qxd·nd+ndrd(ϕ(axa))qxc·nc (by (6.2))

= rd(ϕ(dbxbdxdaxacxc)).

Hence, by Theorem 4.6, there exists z ∈ Γ ∗ with

z cxcdaxadxdbxb z ≡I z dbxbdxdaxacxc z .

Since xa, xd > 0, Proposition 6.1 implies (a, d) ∈ I. Consequently, the letters a, b, c, d do not induce P4 in
(Γ, I).

Proposition 6.13. Let L = (A,X) be a lossiness alphabet and (Γ, I) be an independence alphabet such that
M(Γ, I) embeds into Q(L). Then one of the following hold:

(i) All nodes in (Γ, I) have degree ≤ 1.
(ii) The only non-trivial connected component of (Γ, I) is complete bipartite.

Proof. Suppose (Γ, I) contains a node a of degree ≥ 2. Then, by Lemma 6.11, a ∈ Γ+ ∪ Γ−. From Lemma 6.9,
we obtain that a belongs to the only non-trivial connected component C of (Γ, I). Note that |C| ≥ 3 since
it contains a and its ≥ 2 neighbors. Hence the induced subgraph (C, I) contains at least one edge. Therefore
Lemma 6.9 implies Γ+ ∪ Γ− ⊆ C. Note that all nodes in C \ (Γ+ ∪ Γ−) have degree 1 by Lemma 6.11. Hence,
by Lemma 6.8, the connected graph (C, I) is a complete bipartite graph together with some additional nodes
of degree 1. It follows that (C, I) is bipartite. By Lemma 6.12, it is a connected and P4-free graph. Hence its
complementary graph (C,D) is not connected [26]. But this implies that (C, I) is complete bipartite.

6.2. The binary alphabet

In Theorem 6.2 we have only considered partially lossy queues with |A| > 2 or |X| 6= 0. For a complete
picture, it remains to consider the case |A| = 2 and |X| = 0. The following theorem implies in particular that
Q({α, β}, ∅) does not contain the direct product of two free 2-generated monoids, i.e., it contains properly less
trace monoids than Q(L) with |A|+ |X| ≥ 3.

Theorem 6.14. Let L = (A, ∅) be a lossiness alphabet with |A| = 2 and (Γ, I) be an independence alphabet.
Then the following are equivalent:

(A) M(Γ, I) embeds into Q(A, ∅).
(B) One of the following conditions holds:
(B.1) All nodes in (Γ, I) have degree ≤ 1.
(B.2) The only non-trivial connected component of (Γ, I) is a star graph.

The two implications of this theorem are demonstrated separately in Propositions 6.15 and 6.18, respectively.

Proposition 6.15. Let L = (A, ∅) be a lossiness alphabet with |A| = 2, (Γ, I) be an independence alphabet, and
ϕ : M(Γ, I) ↪→ Q(A, ∅). Then one of the following hold:

(i) All nodes in (Γ, I) have degree ≤ 1.
(ii) The only non-trivial connected component of (Γ, I) is a star graph.

Proof. Suppose (Γ, I) has a node of degree ≥ 2. Then, by Proposition 6.13, the only non-trivial connected
component C of (Γ, I) is complete bipartite and has at least 3 elements. Towards a contradiction, suppose
(C, I) is not a star graph. Since it is complete bipartite, all nodes of C have degree at least 2. Hence, by
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Lemma 6.11, C ⊆ Γ+ ∪ Γ− and |Γ+|, |Γ−| ≥ 2. Let a, b ∈ Γ+ with a 6= b and c ∈ Γ− such that, by Lemma 6.8,
we have (a, c), (c, b) ∈ I.

There are words ua, ub, uc ∈ A+ with

ϕ(a) = [ua] , ϕ(b) = [ub] , and ϕ(c) = [uc] .

From abc ≡I cab, we get

rd2(uaubuc) = rd2(ϕ(abc)) = rd2(ϕ(cab)) = rd2(ucuaub) = ε

since the word ucuaub is in normal form. Hence, by Lemma 3.19, no non-trivial suffix of uc is a subword of uaub.
With α ∈ A not the last letter of uc, this implies ua, uc ∈ α+ since |A| = 2. But this implies

ϕ(ab) = [uaub] = [ubua] = ϕ(ba)

and therefore ab ≡I ba since ϕ is injective. This implies (a, b) ∈ I, contradicting Lemma 6.8.

We prove the converse direction separately for the two cases from Condition (B).

Lemma 6.16. Let L = (A, ∅) be a lossiness alphabet with |A| = 2 and let (Γ, I) be an independence alphabet
such that each node has degree ≤ 1. Then M(Γ, I) embeds into Q(A, ∅).

Proof. Let A = {α, β}. It suffices to consider the case that all nodes of (Γ, I) have degree 1. So let Γ = {ai, bi |
1 ≤ i ≤ n} and I = {(ai, bi), (bi, ai) | 1 ≤ i ≤ n}. Then we define wi = αiβ for 1 ≤ i ≤ n.

Let ϕ′ : Γ ∗ → Σ∗L be the homomorphism with ϕ′(ai) = wiwi and ϕ′(bi) = wi wiwi.
It remains to be shown that u ≡I v ⇐⇒ ϕ′(u) ≡(A,∅) ϕ

′(v) for all u, v ∈ Γ ∗.
For the first implication “⇒”, it suffices to show ϕ′(aibi) ≡I ϕ′(biai) for all 1 ≤ i ≤ n. From Lemma 3.19, we

obtain

rd2(wiwiwi) = wi = rd2(wiwi) .

Since all rules of the semi-Thue system R(A,∅) try to move letters from A to the left, we also have

nf(A,∅)(wiwiwiwiwi) = wi nf(A,∅)(wiwiwi)wi and

nf(A,∅)(wiwiwiwiwi) = wiwi nf(A,∅)(wiwi)wi .

Hence

ϕ′(aibi) = wiwiwiwiwi ≡(A,∅) wiwiwiwiwi = ϕ′(biai)

follows from Theorem 3.15.
For the converse implication “⇐” suppose ϕ′(u) ≡(A,∅) ϕ

′(v). Then, by Proposition 3.12, we have wrt(ϕ′(u)) =
wrt(ϕ′(v)) and rd(ϕ′(u)) = rd(ϕ′(v)). For 1 ≤ i < j ≤ n, we therefore get

π{ai,aj}(u) = π{ai,aj}(v) , π{bi,bj}(u) = π{bi,bj}(v) , and π{ai,bj}(u) = π{ai,bj}(v) .

Hence Proposition 6.1 implies u ≡I v.

Lemma 6.17. Let L = (A, ∅) be a lossiness alphabet with |A| = 2 and let (Γ, I) be an independence alphabet
such that its only non-trivial connected component is a star graph. Then M(Γ, I) embeds into Q(A, ∅).
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Proof. Let A = {α, β}. Let c be the center of the star graph, si for 1 ≤ i ≤ m its neighbors, and ri for 1 ≤ i ≤ n
the isolated nodes of (Γ, I). Then I = {(c, si), (si, c) | 1 ≤ i ≤ m} and Γ = {c, si, rj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Then we define the homomorphism ϕ′ : Γ ∗ → (A ∪A)∗ by

ϕ′(c) = [α] , ϕ′(si) = [αiβ] , and ϕ′(rj) := [αjβ2β] .

The proof of u ≡I v ⇐⇒ ϕ′(u) ≡(A,∅) ϕ
′(v) is similar to the corresponding proof in Lemma 6.16.

Finally we can summarize the last two lemmas:

Proposition 6.18. Let L = (A, ∅) be a lossiness alphabet with |A| = 2 and (Γ, I) be an independence alphabet
such that one of the following hold:

(i) All nodes in (Γ, I) have degree ≤ 1.
(ii) The only non-trivial connected component of (Γ, I) is a star graph.

Then M(Γ, I) embeds into Q(A, ∅).

7. Further research and open problems

We think that our model of partially lossy queues helps to argue about properties of both, reliable and lossy
queues, at the same time. This could result in the unification of proofs which finally are cleaner and easier to
understand.

In [19], the first author gives some algorithmic properties on the rational subsets in the plq monoid.
Additionally, that paper contains Kleene- and Büchi-type characterizations of the recognizable subsets and
Schützenberger- and McNaughton & Papert-type characterizations of the aperiodic subsets in this monoid.

An open question is whether the plq monoid is automatic. From [13] we know that the reliable queue monoid
is neither automatic in the sense of Khoussainov-Nerode [17] nor in the sense of Thurston et al. [3] and we
think that this also holds for arbitrary plq monoids. Though it is still not clear whether the plq monoid (incl.
the reliable queue monoid) is automatic in the sense of [16], i.e., whether the plq monoid’s Cayley graph is
automatic.

Another open question concerns automata using plqs as their storage mechanism. Such automata can possibly
be studied as valence automata with target [12, 25].

Acknowledgements. We like to thank the reviewers of this paper for their helpful suggestions.
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