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TRANSLATION OF A DIGITAL LINE INTO ANOTHER

ACCORDING TO VARIOUS DIGITIZATION PROCESSESI

Jean-Pierre Borel*

Abstract. We introduce unusual methods for the digitization process of a line. A square pixel of
the computer screen is blackened when the line crosses a special part of this pixel, called the active
pixel. The shape of this active pixel is discussed, in the following sense: can we obtain the new Freeman
Code of the line, using of a mechanical transformation of the initial Freeman Code, which is the
classical Cutting Sequence? Our choice is to limit mechanical transformations to the existence of a
given transducer, so that everytime we put in (a power of) the classical Freeman Code of a line, the
output recovers the new Freeman Code. Then we prove that such a transducer exists if and only if the
active pixel is a polygon with rational vertices and big enough. The same result can be proved if we
introduce several grey levels in the representation of the line. Then we get some antialising effects.
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1. Introduction: Drawing lines on a screen

Drawing a curve, a line, or more practically a finite segment on a computer screen amounts to blacken or
enlight some pixels, for example those crossed by the curve in question. Each pixel P can be viewed as a small
square on the screen, translated copy of the unit square [0, 1] × [0, 1] (see Sect. 2.1 later), these pixels being
organized following the lattice of integer points in the plane.

We look at this curve in a dynamic way, so we can describe the sequence of blackened pixel as follows:

– blacken the first pixel, which contains the starting point of the curve;
– move to the next pixel, by some integer translation, and blacken the new pixel;
– and so on till the end of the curve.

In this way, the curve is encoded by its starting point and the sequences of translations, which is a finite
word on the infinite alphabet of integer vectors.

The most natural way is to darken all the pixels crossed by the line. It corresponds to the classical Cutting
Sequence. For various reasons, another choice has been made, following a proposition due to Bresenham [6].
The main objective is to avoid three consecutive connected black pixels in the drawing. Thus, unlike Cutting
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Sequence, only one pixel must be blackened in each column (when the slope is between 0 and 1). Many strategies
are possible, see [8, 10, 13] for three of them, and algorithms, such as the surprising one given in [14].

2. The cutting sequences

2.1. Segments and half lines

We consider lines which are either segments or half-lines in the plane, starting from the origin (0, 0) (see
Convs. A and B below) and ending (for segments) to another integer point. This is the first of the two reasonnable
choices below.

Convention A. The integer points are on the node of the grid.

Convention B. The integer points are in the center of the squares of the grid.

We will limit ourselves to positive slopes, the negative ones being handled in a similar manner. As men-
tioned before, the drawing can be described by its Freeman Code, namely the word describing the sequence
of successive blackened pixels. Each letter corresponds to an elementary geometric translation. When we use
Convention B, the Freeman Code is *Freeman Code to avoid confusion. Convention A is the simplest one, due
to the self-similarity properties (Sect. 6), whereas Convention B is more realistic for an effective drawing. This
last convention is used for the classical Bresenham algorithm (Fig. 1).

2.2. Possible movements

Here we meet the classic question of the neighboring pixels, the 4-neighborhood case corresponding to the
horizontal or vertical movements N (for north), S, E and W, as it is the case for The Freeman Code when it
was introduced in [9] or 8-neighborhood case as the corresponding diagonal movements NE NW SE SW are also
allowed, as in [16]. Our hypothesis of positive slopes implies that among these possibilities only E and N are
useful, and NE for the diagonal movement, in these two classical methods. However, we shall use below the five
letters a, b, c, d, e for the five movements E, N, NE, ENE, NNE respectively, as shown in Figure 4.

Similar approaches can be found in [7] or [17], and also in [4] for higher dimensional situations. In each
case, the geometrical object is described by a coding word. It corresponds to the discrete lines in the sense of
Réveilles, see [15].

2.3. Cutting sequences

Therefore this amounts to looking at the billiard words, or Cutting Sequences, associated with half-lines or
segments. These words may be finite (segments) or infinite (half-lines). They have been widely studied, the
reader will find overviews in [1] or [3] as examples. Some connections between these notions and the drawing of
lines have been studied, see [2] and others authors.

The question of overlapping pixels is crucial. Many choices can be made to avoid overlapping or not.

Convention 1. P is the closed unit square.

Convention 2. P is the closed unit square, except the N and E sides.

Convention 3. P̃ is the closed unit square except the two NW and SE vertices

Convention 1 avoids any overlapping, it implies the introduction of the three translations or letters for the
Cutting Sequences: a for E, b for N and c for NE as said above. Only the lines of rational slope use the letter c,
and we encode segments by adding a final letter c at the usual Cutting Sequence, due to Convention 2. Unlike
Convention 2, Convention 3 keeps the diagonal symmetry.

In the sequel we choose Conventions A and 2. Then P = [0, 1[×[0, 1[. The main theorem can be adapted to
each convention.
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Figure 1. The digitized segments in Convention A (left panel) and Convention B (right panel)
associated to the rational number 3

5 .

As an example, the usual Cutting Sequence of the segment joining the two points (0, 0) and (5, 3) is equal to
abaaba, which is encoded here by abaabac. Its representation consists in eight pixels, the first one corresponding
to the starting point and the following seven are associated with the seven movements indicated by the seven
letters of the Cutting Sequence. If we use Convention B, the *Cutting Sequence is equal to abacaba and the
digitized segment also has eight pixels. Convention A has some drawbacks, including the asymmetry of the
drawing. On the other hand, we get simple formulas: if u is the word encoding the rational number p

q , un

encodes np
nq and u∞ encodes of the half-line with slope p

q .

Notice that the Cutting Sequence encoding the rational number p
q can be easily and rapidly computed,

starting with the initial word aq−1bp−1c, (see e.g. [11] or [5]).

3. A new coding method for lines: The active pixel

3.1. The active pixel

Our choice is to introduce an active pixel A, which is the same (translated) part of any pixel P, and to use
a positive principle, i.e., the whole square pixel is blackened whenever the half-line (or the segment) crosses its
active part. Hence less pixels are blackened, and the sequence of blackened pixels can be described in two ways:

– either by its Freeman Code, using a new alphabet which corresponds to all the possible movements from
a blackened pixel to the next one;

– or by encoding the sequence of grey levels for each letter of the CS. It is a sequence denoted Grey-Level
Code on the alphabet whose letters are the two grey levels (black and white), which indicates for any pixel
in the Cutting Sequence the corresponding level of grey. We consider here only two levels 0 for white and
1 for black. Nevertheless our results also work with several levels of grey, if we use a new kind of active
pixel with many parts, each one corresponding to a level of grey, except white. It produces results which
can be compared to those of antialiasing methods.

More precisely, A is the intersection of some variation P of the square pixel, see Conventions 1-2-3 above, and
of a closed connected set which is denoted also by A for simplicity reason. In the sequel we choose Convention A
and 2 as said before.

3.2. Diameters

Definition 3.1. The diameter seen under the angle θ of the active pixel is the length of its orthogonal projection
on the line of polar angle θ + π

2 . It is denoted by δθ.

When A is a disk, δθ is constant; when A = P is the whole square δθ = sin θ + cos θ with 0 ≤ θ ≤ π
2 , then:

1 = δ0 = δπ
2
≤ δθ ≤ δπ

4
=
√

2.
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Figure 2. An example of active pixel. Left panel Active pixel, Center panel Convex hull and
Right panel Positive convex hull.

Figure 3. Four equivalent active pixels.

3.3. Equivalent active pixels

Remark that the Freeman Code is associated with the positive convex hull of A, as we only consider half-lines
or segments with positive slope. The positive convex hull is the intersection of all closed half-planes containing
A, whose border line has a positive slope. In practice, that is to add two rectangular corners SW and NE to the
usual convex hull as shown below (Fig. 2).

Two active pixels are called equivalent whenever their positive convex hull is the same. As we look at segments
or lines with positive slopes, the Freeman Code or *Freeman Code are the same for equivalent pixels. In the
same way, equivalent pixels have the same diameters for 0 ≤ θ ≤ π

2 .
Looking at the shapes in Figure 3, the second one corresponds to the well-known diamond (see [12]) and

the fourth one is its positive convex hull. It corresponds to the classical Rosenfeld digitization [16], and to the
Bresenham algorithm [6]. For this active pixel, δθ = max(sin θ, cos θ) and:

1√
2

= δπ
4
≤ δθ ≤ δ0 = δπ

2
= 1

for 0 ≤ θ ≤ π
2 .

4. The finiteness of the alphabet

4.1. Characterization

We are interested in finding a quick and automatic way to compute the Freeman Code or Grey Level Code,
starting from the Cutting Sequence. We will express this as a transducer. This implies that the alphabet for
the output word of any lines is built on a fixed finite alphabet, which is obviously the case for the Grey Level
Code, but not for the Freeman Code.

Proposition 4.1. The Freeman Code is a word on a fixed finite alphabet if and only if the diameters δθ of the
positive convex hull of the active pixel A satisfy:

– δ−π
4

=
√

2, i.e., the active pixel touches the four sides of the unit square;

– δπ
4
≥
√
2
2 , i.e., this diameter is greater or equal to the half of the length of the diagonals of the unit square.

Then the Freeman Code can be written on a five-letter alphabet {a, b, c, d, e}, corresponding to the elementary
moves E, N, NE, ENE, NNE respectively (see Fig. 4).
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Figure 4. The five elementary movements corresponding to the five visible active pixels.

Notice that the first condition simply means that both points (0, 0) and (1, 1) belong to the positive convex
hull, which is equivalent to say that A reaches the four sides of the unit square.

Notice also that five-letter alphabet breaks the connexity and induces some discontinuities for the drawing,
so it seems to have no practical interest. However, black pixels are not contiguous in general, if we look at
drawing of lines with many levels of grey: such a phenomenon appears using antialiasing methods.

4.2. Some examples

For the whole square active pixel we only need the three letters a, b, c, and c is not used for any half-line
with irrational slope. For a rational segment from (0, 0) to (Dq,Dp) with p and q coprime integers, the letter
c appears D times, whenever the segment crosses an integer point except the origin (Conv. A), and it only
appears D − 1 times if pq is odd (Conv. B).

Likewise for the classical diamond active pixel, we only need the three letters a, b, c corresponding to the
classical 8-neighborhood. The same is true when the pixel is the disk of diameter one. In these two cases, we use
only letters a and c when the slope is less than 1 and only b and c otherwise.

If we consider the pixel given in Figure 4, we need the five letters:

Definition 4.2. A visible active pixel is an active pixel which can be reached starting from some point in the
initial pixel in black, by a segment that does not cross another active pixel path before.

In the example given in Figure 4, the visible active pixels are striped, others simply greyed out.

4.3. Proof of Proposition 4.1

We have to look at the visible active pixels. We denote by O the origin, and for any point A, Af is the image
of A by the translation associated with the generic letter f . So the unit square at the origin can be written
OObOcOa as seen in Figure 5.

If the closed set A does not intersect the segment ObOc then all the translated active pixels A +
−−−→
(n, 1) are

visible, and the same is true if A does not intersect the segment OOa. If the closed set A does not intersect the

segment OaOc then all the translated active pixels A +
−−−→
(1, n) are visible, and the same is true if A does not

intersect the segment OOb. Thus the finiteness of the alphabet implies that A intersects the four sides of the
unit square. It means that the positive convex hull contains both O and Oc or equivalently that δ−π

4
=
√

2.

In the same way, if δπ
4
<
√
2
2 , then all the translated active pixels A+

−−−−−−→
(n, n+ 1) are visible. Thus the conditions

given in Proposition 4.1 are necessary for finiteness.

Suppose now that these two conditions are satisfied. It implies that the active pixel at the origin contains
the following points:

– O and Oc;
– some points A and B such that the distance between their orthogonal projections on the direction θ = π

4
is equal to 1√

2
.
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Figure 5. The possible moves from the initial pixel.

Thus the active pixel contains the area OBOcA.
Using the translations corresponding to the five letters a, b, c, d, e we see that the three points Ab, Bc, Ae are

on the same line whose slope is equal to 1, and the same holds for the three points Ba, Ac, Bd. It implies that
any half-line starting anywhere into the unit square at the origin crosses one of the eight thick segments (see
Fig. 5) composing ObAbOeAe, BcOcAc and OaBaOdBd. Then this half-line necessarily crosses one of the five
active pixels A + a, A + b, A + c, A + d or A + e. This proves Proposition 4.1. �

5. The main result

We consider the two following hypothesis:

Hypothesis 5.1. [Hform] A is a polygon with rational vertices.

Then we denote by D a common denominator of the coordinates of these vertices.

Hypothesis 5.2. [Hsize] δ−π
4

=
√

2 and δπ
4
≥
√
2
2 , i.e., the alphabet is finite, according to Proposition 4.1.

Then we get a characterization of our active pixels for which there exists a transducer.

Theorem 5.3. The Grey Level Code is the image of the Cutting Sequence by some transducer T if and only if
[Hform] is satisfied.

Theorem 5.4. The Freeman Code is the image of the Cutting Sequence by some transducer T if and only if
[Hform] and [Hsize] are both satisfied

In these two theorems T = TA is a letter-to-letter deterministic transducer which depends only on the chosen
pixel A, and the input words in T are:

– for any half-line its Cutting Sequence u;
– for any segment the word uD, where u is the Cutting Sequence of the segment.

Both proofs are very close, we shall see how the proof of Theorem 5.4 works. It will be done in Section 7
(sufficient condition) and Section 8 (necessary condition) (Figs. 9–11).
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Figure 6. The digitized segments in Convention A for 3
5 , initial grid (left) and small grid with

D = 2 (right).

Figure 7. The four shapes: whole square, NW or SE triangle, diagonal.

6. The self-similarity properties for cutting sequences

6.1. Small grids

Let D be a given positive integer, and consider the D-grid, which is the grid of small squares of size 1
D . The

original size squares split in D2 small squares, whose vertices are rational points with denominator D. Then
any line has a new Freeman Code in the D-grid, in the 8-neighbourhood classical sense, which is called its
D-Freeman Code or D-*Freeman Code depending on Convention A or B (Fig. 6).

6.2. Self-similarity

We denote by u and v respectively the Freeman Code or *Freeman Code of some segment or half-line starting
from the origin.

Proposition 6.1. (1) Using Convention A
– for any half-line, u is also its D-Freeman Code;
– for any segment, uD is its D-Freeman Code.

(2) Using Convention B
– for any half-line, v is also its D-Freeman Code when D is odd, and u is its D-*Freeman Code when D

is even;
– for any segment, vD is its D-*Freeman Code when D is odd, and uD is its D-*Freeman Code when D

is even.

These properties are easy consequences of the self-similarity of half-lines with ratio 1
D , simply remark that a

given segment can be cut in D sub-segments homothetic in the same ratio to the original one, and that centers
of squares are also centers of small squares when D is odd, but become vertices when D is even. �

7. Proof of the main result: How to build the transducer?

The sufficient condition is shown by a hand-made construction of the transducer in each case. It is based on
two results.

7.1. D-digital polygons

A part of the unit square is called positive D-digital polygon if it is a connected set and a union of parts of
small (i.e., in the small D-grid) squares, each one having one of the four possible forms given in Figure 7:



176 J.-P. BOREL

Figure 8. Two polygonal active pixels and their equivalent positive 5-digital polygons.

Figure 9. The six states and the output of a new letter.

These shapes put in the small grid are called the elementary forms.

Proposition 7.1. Let A be a polygonal active pixel whose vertices have rational coordinates, let D be a common
denominator of their coordinates. Then A is equivalent to a positive D-digital polygon.

It can be easily seen that for any polygonal active pixel A whose vertices have rational coordinates with
denominator D, its positive convex hull Ã is equivalent to the union of all elementary forms it contains. �

Proposition 7.2. Let A be a positive D-digital polygon. Then there exists a transducer T with the properties
of Theorems 5.3 and 5.4.

We prove the Proposition in the diamond case, the construction of the transducer T is the same in any
case. The active pixels 3 and 4 in Figure 3 are positive 2-digital polygons, and the first one gives the simplest
construction.

The states of the transducer T are those small squares in the 2-grid either in the original unit square, or
visible from this square, i.e.,:

– are empty (or partially empty) for the corresponding active pixel;
– are reachable by some segment that starts from the original square and does not intersect another active

pixel.

In the diamond case we get four states representing the four small squares in the unit square (the SW square
is the initial state), and two others representing the other small squares that can be achieved. As soon as one
crosses a thick black line in the right part of Figure 9, i.e., one encounters a new active pixel, it generates a
new letter in the Freeman Code.

The input state is the SW one, and arrows correspond to the elementary movements E, N and NE associated
with the letters a, b and c respectively, as shown in Figure 10. The final state of an arrow is:

– either the state achieved by moving from the original one, when it exists. Then there is no output;
– or this achieved state retained by translation in the unit square at the origin. It means that a thick black

line is crossed (right part of Fig. 9) and the corresponding letter is the output.
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Figure 10. The transducer Tdiamond. Left panel Input a, Center panel Input b and Right panel
Input c.

Then we get the following transducer (Fig. 10): letters at the end of the arrows are the outputs (if not there is
no corresponding output) and whose initial state is at the SW corner.

This proves Proposition 7.2 in the diamond case. �

In the general case, when the small squares are of a different shape and are visible, they are represented by
one state in the transducer (for empty triangle part) or two different states (for each of the two empty triangles
in the case of the single diagonal), and the mechanism is similar. However the description of the transducer is
a little bit more complicated.

So we get the sufficient part of Theorem 5.3: if the active pixel is equivalent to a polygon with rational vertices,
we let D be a common denominator of all these coordinates. The active pixel is equivalent to a D-digital polygon,
and we can built the transducer T . �

The construction of the transducer in Theorem 5.3 can be deduced from the preceding case:

– if we look only at half-lines with irrational slopes, the Cutting Sequence uses only the two letters a and b,
and it suffices to replace a, b, c, d, e in the output by 1, 1, 01, 001, 011 respectively;

– when the letter c appears in the Cutting Sequence u, letters a, b, c, d, e in the output have to be replaced
by 1, 1, 01, 001, 001 as before, except for one case: the output letter c must be replaced by 1 when it arises
from a letter c in the input whose rank among the c’s in the input u or uD is a multiple of D. So we have
to count this rank mod D of the c’s in the input, and this can be done by an adapted articulation of D
copies of the former transducer, which gives also a transducer. This new transducer obviously works also
in the former case.

8. Proof of the main theorem: The use of geometrical
constraints

Consider now a given active pixel A and its positive convex hull Ã. We need two steps in the proof.

Proposition 8.1. Suppose that there exists some transducer with the following property: input the Cutting
Sequence of any half-line with positive slope, and get its Freeman Code as output. Then there exists some
constant N such that any half-line ∆ starting form the origin O and tangent in some point T to any active pixel

A (or its positive convex hull Ã) contains an integer point B such that
−−→
OB = λ

−→
OT , with 1 ≤ λ ≤ N .

This result contains two kinds of information.

– the first one is qualitative: all lines ∆ have a rational slope, which means that they pass through infinitely
many integer points, as they start at the origin. It can be easily proven that such a property is false if the
active pixel is the disk with radius 1

2 . However it is possible to build active pixels Ã with various shapes
and satisfying this qualitative property, even without any angular vertex;

– the second one is quantitative: the first integer point met cannot be too far away. It constitutes the major
constraint.
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The proof of Proposition 8.1 is easy: the transducer turns infinite word in another infinite word, so any sufficiently
long word has a non-empty picture. The length ratio between a finite word u and its image is therefore between
two absolute positive constant values:

0 < C1 ≤
|T (u)|
|u|

≤ C2 < +∞.

The half-line ∆ starts form the origin O and is tangent in some point T to some active pixel Ã. Let θ be the
polar angle of the tangent ∆, and take two half-lines ∆+ et ∆− starting at the origin, and with polar angle
θ ± ε. As one of these lines is crossing Ã and the other is not, the two FC differ due to Ã, hence on a letter
whose rank r can be compared to the length OA. Their Cutting Sequence cannot have the same prefix of length
r
C1

. It implies the existence of an integer point in the angular sector between ∆+ and ∆−, whose distance at
the origin is less than r

C1
. As ε decreases to 0 we get the existence of an integer point B, and λ = O(C1) is

bounded.

Proposition 8.2. Let Ã be a positive convex active pixel satisfying the condition given in Proposition 8.1. Then
Ã is a convex polygon with rational vertices.

Proof of Proposition 8.2. Let ∆ be the tangent half-line starting from the origin, to some given active pixel
(we suppose that the active pixel is below, the argument is the same as above). Proposition 8.1 implies that ∆
has a rational slope. Let B be the first integer point on ∆. Let T be the nearest from the origin contact point
of ∆ with this active pixel. We can suppose that T is between O and B, otherwise we change the pixel using

translation of vector −
−−→
OB.

The lattice of integer points belongs to an infinite discrete set of parallel lines, parallel to OB. Let C = C0 be
a given point on the first parallel line below OB which contains integer points, with negative integer coordinates.

So
−−→
OB,

−−→
OC is a new basis of the integer points lattice.

We introduce the following new points:

– Ck = C − k
−−→
OB for any k ≥ 1;

– Tk the first contact point of the active pixel with its tangent half-line starting from Ck;
– Mk the intersection point of the two lines CkTk and OB.

So we get:

– the points Mk belong to the segment [OT ] and become closer to T as k increases. We denote by M their
limit point;

– the slope of the half-line CkTk is a rational number according to Proposition 8.1. Hence starting from Ck
it passes through a first integer point Bk;

– the point Bk belongs to one of the N first lines parallel to OB and above OB (Prop. 8.1). This is the
key-point of the proof.

Thales Theorem implies that vectors N !
−−−→
OMk have integer coordinates, so the points Mk belong to a discrete

grid. But Mk tends to M . Hence we have a stationary sequence and Mk = M for large k, Mk = Tk for these k
(the slope of the tangent line decreases as k increases), and T = M is an angular vertex of the active pixel Ã,
with rational coordinates whose denominators divide N !.

So all the points of contact of tangents are on a discrete grid, there is therefore a finite number of
such points, and the active pixel Ã is a polygon whose vertices have rational coordinates with the common
denominator N !.

We get immediately the necessary condition in Theorem 5.4 by combining Propositions 8.1 and 8.2. �
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Figure 11. The two first tangent lines to an active pixel, with magnification of the intersection.

9. Variations due to conventions

The choice between Conventions 1-2-3 (see Sect. 2.3) does not affect the proof, as it changes the active pixel
only on the frontier of the unit square. It may only modify the effective construction of the transducer T .

On the other hand Conventions A-B have an important effect on the main theorems. This is due to the
different forms of the self-similarity properties detailed in Section 6. We give here a version of Theorem 5.4 if
we choose Convention B, i.e., look at the *Freeman Codes and *Cutting Sequence.

Theorem 9.1. The *Freeman Code is the image of the *Cutting Sequence by some transducer T if and only if
[Hform] with an odd D and [Hsize] are both satisfied.

The construction of the transducer T is similar, using Part.2 of Proposition 6.1 as D is odd. The main
change concerns the geometric argument used in Section 8 to prove that the active pixel satisfies [Hform], i.e.,
is a polygon with rational vertices. In Figure 11, the point O must be translated to the center I of the initial
square, whose coordinates are ( 1

2 ,
1
2 ).

We multiply the coordinates by 2, to get integer points for simplicity reason. Then the new points O and
Ck have odd coordinates, and the points B and Bk have even coordinates, as they were integer points before
multiplication. Then Thales Theorem implies that the intersection points Mk have rational coordinates with odd
(and bounded) denominators, and the same holds for their limit M = T (see Sect. 8). But these points T are
exactly the extremal points of the polygon A, so the property [Hform] is satisfied with an odd number D. �

It implies that the Bresenham Code, i.e., the Freeman Code associated with the diamond pixel and with
Convention B, cannot be deduced automatically via some transducer from its Cutting Sequence: it corresponds
to a polygonal pixel whose vertices have rational coordinates, but with D = 2.

The same kind of proof goes for Convention B for the Bresenham Code and Convention A for the Cutting
Sequence. Such a choice does not make sense.

10. Some remarks and possible developments

The techniques described here allow to work in other contexts although technical complications appear. This
is the case of:
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(1) several levels of grey, corresponding to pitted active pixels

An ⊂ An−1 ⊂ · · · ⊂ A1

and the grey level of the square pixel is the ratio k
n where k is the maximal index such that Ai is crossed

by the line we consider. It gives an antialiasing effect for the drawing;
(2) a negative principle: we take a passive pixel and the square pixel in the Cutting Sequence is blackened

when the line does not cross the passive pixel;
(3) active pixels larger than the square pixel P.

The combination of (1) and (3) provides the most fertile generalizations.
The same work can also be done for dimension greater than 2. But there are infinitely many tangents issued

from the origin to a given active pixel, and the qualitative part of Proposition 8.1 the slope of any tangent line
is a rational number becomes hard to fulfil. Therefore, even if the active pixel is a polyhedron with rational
vertices, such a transducer does not exist in general: the active pixel must be equivalent to a positive digital
polyhedron, namely the analog in this dimension of positive digital polygons, and Proposition 7.1 becomes false
in this context.
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