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A UNIFORM CUBE-FREE MORPHISM IS k-POWER-FREE FOR

ALL INTEGERS k ≥ 4

Francis Wlazinski∗

Abstract. In the study of k-power-free morphisms, the case of 3-free-morphisms, i.e., cube-free
morphisms, often differs from other k-power-free morphisms. Indeed, cube-freeness is less restrictive
than square-freeness. And a cube provides less equations to solve than any integer k ≥ 4. Anyway,
the fact that the image of a word by a morphism contains a cube implies relations that, under some
assumptions, allow us to establish our main result: a cube-free uniform morphism is a k-power-free
morphism for all integers k ≥ 4.
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1. Introduction

For an integer k ≥ 2, a k-power is a repetition of k consecutive and identical sequences. A square and a cube
respectively correspond to k = 2 and k = 3. An overlap is a word of the form xuxux where x is a letter and u
is a word. An infinite word without squares over a three-symbol alphabet and an infinite word without overlaps
over a two-symbol alphabet were given by Thue [19, 20] (see also Berstel’s translation [3]). These words are
obtained by iteration of morphisms.

To find morphisms that generate k-power-free words, a method is to consider k-power-free morphisms. By
definition, a k-power-free morphism maps a k-power-free word to a k-power-free word. Starting with a letter (so
k-power-free), the word generated by the iteration of a k-power-free morphism is thus k-power-free. But non-
k-power-free morphisms can generate k-power-free words. For instance, the Fibonacci morphism ϕ : {a, b} →
{a, b}; a 7→ ab; b 7→ a generates the word abaababaabaababaababa..., which is 4-power-free [8]. Although ϕ is not
4-power-free since ϕ(b3a) = a4b.

Even if we know different ways to verify whether a morphism generates a k-power-free word [2, 6, 8, 16] and
also whether a morphism is k-power-free [5, 7, 10, 11, 17, 18, 21], a simple question remains unanswered:

“Is a k-power-free morphism also a (k + 1)-power-free morphism?” (1)
It is difficult to give a general answer to this question. Some examples of morphisms are available. For instance,

in [1], Bean, Ehrenfeucht, and McNulty gave the morphism h defined by h(a) = abacbab, h(b) = cdabcabd,
h(c) = cdacabcbd and h(d) = cdacbcacbd that is square-free but not cube-free. An another example is given by
the Thue-Morse morphism, µ : {a, b} → {a, b}; a 7→ ab; b 7→ ba. It is k-power-free for every integer k > 2 [4].
In restricted situations, some partial results have been given for k = 2 [12], for binary morphisms [10] and for
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binary uniform morphisms [9]. In [22] and in this paper, we are interested in uniform morphisms from A∗ to B∗

for every A and B. When k ≥ 4, we proved in [22] that a k-power-free uniform morphism is (k + 1)-power-free.
But one of the properties required to prove this result (Lem. 2.10) does not hold for k = 3. In this paper, we
give a new result (Lem. 3.4) that allows us to conclude for cube-free uniform morphisms (Thm. 4.3): a cube-free
uniform morphism from A∗ to B∗ is k-power-free for all integers k ≥ 4. This gives a final answer to question
(1) for uniform morphisms.

2. Preliminaries

We assume the reader is familiar (if not, see for instance [14, 15]) with basic notions on words and morphisms.
Our notations largely come from [22].

2.1. Words

Let w be a non-empty word. For all 1 ≤ i ≤ j ≤ |w|, we denote by w[i..j] the factor of w such that w = pw[i..j]s
for two words s and p with |p| = i − 1. When i = j, we also denote by w[i] the factor w[i..i], which is the ith

letter of w. In particular, w[1] and w[|w|] are respectively the first and the last letter of w. We denote by Fcts (w)
the set of all factors of the word w.

Powers of a word u are defined inductively by u0 = ε and un = uun−1 for all integers n ≥ 1. Given an integer
k ≥ 2, we call a k-power any word uk with u 6= ε (since the case εk is of little interest). Given an integer k ≥ 2,
a word is k-power-free if it does not contain any k-power as a factor. A primitive word is a word that is not a
k-power of an another word whatever the integer k ≥ 2. A (non-empty) k-power vk is called pure if any proper
factor of vk is k-power-free.

The following proposition gives the well-known solutions (see [13]) to two elementary equations on words and
will be widely used in the following sections:

Proposition 2.1. Let A be an alphabet and u, v, w three words over A.

1. If vu = uw and v 6= ε, then there exist two words r and s over A, and an integer n such that u = r(sr)n,
v = rs and w = sr.

2. If vu = uv, then there exist a word w over A, and two integers n and p such that u = wn and v = wp.

We also need a property on words that is an immediate consequence of Proposition 2.1(2).

Lemma 2.2. [10, 12] If a non-empty word v is an internal factor of vv, i.e., if there exist two non-empty words
x and y such that vv = xvy, then there exist a non-empty word t and two integers i, j ≥ 1 such that x = ti,
y = tj, and v = ti+j.

We also use the following result which is a corollary of a result of Fine and Wilf [13, 14].

Corollary 2.3. [10] Let x and y be two words. If a power of x and a power of y have a common factor of length
at least equal to |x|+ |y| − gcd(|x|, |y|), then there exist two words t1 and t2 such that x is a power of t1t2 and
y is a power of t2t1 with t1t2 and t2t1 primitive words. Furthermore, if |x| > |y| then x is not primitive.

2.2. Morphisms

Let A and B be two alphabets. A morphism f from A∗ to B∗ is a mapping from A∗ to B∗ such that
f(uv) = f(u)f(v) for all words u, v over A.

Let k ≥ 2 be an integer. A morphism f on A is k-power-free if f(w) is k-power-free for all k-power-free words
w over A.

A morphism f on A is called prefix (resp. suffix ) if, for all letters a and b in A, the word f(a) is not a prefix
(resp. not a suffix) of f(b). A prefix (resp. suffix) morphism f is non-erasing that is f(a) 6= ε for all letters a. A
morphism is bifix if it is prefix and suffix.



A UNIFORM CUBE-FREE MORPHISM IS K-POWER-FREE FOR ALL INTEGERS K ≥ 4 207

A morphism f from A∗ to B∗ is a ps-morphism if the equalities f(a) = ps, f(b) = ps′, and f(c) = p′s with
a, b, c ∈ A (possibly c = b) and p, s, p′, and s′ ∈ B∗ imply b = a or c = a.

Let us recall some definitions and properties that will be used in the sequel. Lemma 2.4 derives directly from
the definitions of a prefix or a suffix morphism. A detailed proof is left to the reader.

Lemma 2.4. Let f be a bifix morphism on an alphabet A and let u, v, w, and t be words over A.
The equality f(u) = f(v)p where p is a prefix of f(w) implies u = vw′ for a prefix w′ of w such that f(w′) = p.
Symetrically, the equality f(u) = sf(v) where s is suffix of f(t) implies u = t′v for a suffix t′ of t such that
f(t′) = s.

Lemma 2.5. [10, 12] If f is not a ps-morphism then f is not a k-power-free morphism for all integers k ≥ 2.

Lemma 2.6. [22] Let f be a ps-morphism from A∗ to B∗ and let u, v and w be words over A such that
f(u) = δβ, f(v) = αβ, and f(w) = αγ for some non-empty words α, β, γ, and δ over B. Then v = v1av2,
u = u1bv2, and w = v1cw2 for some words v1, v2, u1, and w2, and some letters a, b, and c. Moreover, we have
either b = a or c = a.

Furthermore, if |δ| < |f(u[1])|, then u1 = ε and, if |γ| < |f(w[|w|])|, then w2 = ε.

Assuming that f(w) = puks for a factor w of a word w and a non-empty word u, and assuming that w
contains a factor w0 such that |f(w0)| = |u|, Lemma 2.8 states that w necessarily contains a k-power w′k such
that f(w′) is a conjugate of u. We will say that f(w) contains a synchronised k-power uk. More precisely:

Definition 2.7. Let k ≥ 2 be an integer. Let f be a morphism from A∗ to B∗, w be a word over A, and u be a
non-empty word over B such that f(w) contains the k-power uk. Let w be a shortest factor of w whose image
by f contains uk, i.e., f(w) = puks with |p| < |f(w[1])| and |s| < |f(w[|w|])|.

We say that f(w) and uk are synchronised if there exist three words w0, w1, and w2 such that |f(w0)| = |u|
and w = w1w0w2 with p = ε if w1 = ε, and s = ε if w2 = ε.

For instance, let f be the morphism from {a, b, c}∗ to {a, b, c, d}∗ defined by f(a) = abcd, f(b) = ac and
f(c) = d. If w is the word abcbcbaa, then we have f(w) = ab(cda)3 c abcd abcd. Taking u = cda, w = abcbcb,
w0 = bc, we get that f(w) and u3 are synchronised.

The two following results, which will be used in this paper, were proved in [22].

Lemma 2.8. Let k ≥ 2 be an integer, let f be a ps-morphism, and let w be a word such that f(w) = puks
with |p| < |f(w[1])| and |s| < |f(w[|w|])|. If f(w) contains a synchronised k-power then w starts or ends with a
k-power wk0 such that f(w0) and u are conjugated.

The second recalled result is the main result in [22]:

Proposition 2.9. Let A and B be two alphabets and let k ≥ 4 be an integer. A k-power-free uniform morphism
is a (k + 1)-power-free morphism.

The first goal is to give, for k = 3, a similar lemma to the one given in [22] for k ≥ 4 that is:

Lemma 2.10. Let k ≥ 4 be an integer. Let f be a ps-morphism from A∗ to B∗. Let v and T be non-empty
words over A such that vk is a pure k-power. Let us assume that f(T ) = π1f(v)kσ2 with |π1| < |f(T [1])| and
|σ2| < |f(T [|T |])|. Then one of the following holds:
• (P.1) : There exist a pure k-power xk, a word y over A, and a word Z over B such that

(P.1.1) : T = xky, |y| ≤ 1, f(y) = π1σ2, f(x) = π1Z, and f(v) = Zπ1
(P.1.2) : or T = yxk, |y| = 1, f(y) = π1σ2, f(x) = Zσ2, and f(v) = σ2Z.

• (P.2) : There exist a pure k-power xk and a non-empty word y over A such that
(P.2.1) : T = xky with |f(xk−1)| < |π1f(v)|
(P.2.2) : or T = yxk with |f(xk−1)| < |f(v)σ2|.

• (P.3) : f is not k-power-free.
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Figure 1. Image of f(q1qq2).

3. About cube-free-morphisms

As mentioned in the introduction and in Section 2, Lemma 2.10 is no longer valid for k = 3. Even if parts of
its proof can be extended to this case, some new problems appear. The following lemma is one of the situations
we can obtain:

Lemma 3.1. Let f be a ps-morphism from A∗ to B∗. Let us assume that there exist ρ, µ, α, β, and θ words
over B and q1, q2, and q words over A such that q 6= ε, ρ = αβ is not the image of a word by f , θ = µρρµρρµ,
f(q) = ρµρ, f(q1) ends with βθ, f(q2) starts with θα, and the words q1[2..|q1|] q and q q2[1..|q2| − 1] are cube-free.
Then f is not cube-free.

The proof of Lemma 3.1 is simply done using iteratively Lemma 3.2. By induction, if f was not cube-free, we
could find an infinite sequence (χi)i≥0 of non-empty words starting with χ0 = q such that |f(χi)| > |f(χi+1)| > 0;
this is impossible.

Lemma 3.2. Let f be a ps-morphism from A∗ to B∗. Let us assume that there exist ρ, µ, α, β, and θ words
over B and q1, q2, and q words over A such that q 6= ε, ρ = αβ is not the image of a word by f , θ = µρρµρρµ,
f(q) = ρµρ, f(q1) ends with βθ, f(q2) starts with θα, and the words q1[2..|q1|] q and q q2[1..|q2| − 1] are cube-free.

Then either f is not cube-free or there exist ρ′, µ′, α′, β′, and θ′ words over B and q′1, q′2, and q′ words over
A such that q′ 6= ε, ρ′ = α′β′ is not the image of a word by f , θ′ = µ′ρ′ρ′µ′ρ′ρ′µ′, f(q′) = ρ′µ′ρ′, f(q′1) ends
with β′θ′, f(q′2) starts with θ′α′, and the words q′1[2..|q′1|] q′ and q′ q′2[1..|q′2| − 1] are cube-free.

Moreover, we have |f(q′)| < |f(q)|.

Proof. Let us first remark that the condition q 6= ε is simply a consequence of the fact that ρ is not the image
of a word by f . Indeed, it implies ρ 6= f(ε) = ε. Therefore, f(q) = ρµρ 6= ε and so q 6= ε. Moreover, the fact
that f is a ps-morphism implies that f is bifix and non-erasing.

We can write f(q1) = π1βθ and f(q2) = θασ2 for two words π1 and σ2 over B. Let ϕ = µρ and ψ = ρµ so
θ = ϕf(q)ψ.

Let Q1 be the smallest suffix of q1 whose image by f ends with ψ and Q2 be the smallest prefix of q2 whose
image by f starts with ϕ. Since ρ 6= ε, Q1 and Q2 are not empty. There exist two words Π1 and Σ2 such that
f(Q1) = Π1ψ, f(Q2) = ϕΣ2, |Π1| < |f(Q1[1])| and |Σ2| < |f(Q2[|Q2|])|.

We have that f(Q1qQ2) = Π1ψf(q)ϕΣ2 = Π1(ρµ)3ρΣ2 and that Q1qQ2 is a factor of q1qq2.
The situation can be summed up by Figure 1.
If Q1qQ2 is cube-free, then f is not cube-free. Otherwise, Q1qQ2 contains a shortest cube q′3; any proper

factor of q′3 is cube-free, i.e., q′3 is a pure cube. So we can write Q1qQ2 = q′1q
′3q′2 for some words q′1 and q′2.

Let us remark that Q1q is necessarily cube-free. Indeed, if Q1 6= q1 then Q1q is a suffix of q1[2..|q1|]q which is
cube-free by assumption. If Q1 = q1, by definition of Q1, ψ is not a suffix of f(q1[2..|q1|]) and so |f(q1[2..|q1|])| <
|ρµ|. It implies that |f(Q1[1])| = |f(q1[1])| > |π1βϕf(q)| ≥ |f(q1[2..|q1|]q)|. In particular, it means that the first
letter of q1, i.e., q1[1] = Q1[1] is not a letter of q1[2..|q1|]q. Since no cube appears in q1[2..|q1|]q, it follows that
q1q = Q1q is cube-free.

In the same way, we obtain that qQ2 is cube-free.
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Figure 2. Case 1.

So q′3 is neither a factor of Q1q nor a factor of qQ2. It follows that |q′1q′3| > |Q1q| and |q′3q′2| > |qQ2|, that
is, |q′2| < |Q2| and |q′1| < |Q1|.

Let ϕ′ be the greatest prefix of ϕ = µρ such that f(Q1q)ϕ
′ is a prefix of f(q′1q

′3). Let ψ′ be the greatest suffix
of ψ = ρµ such that ψ′f(qQ2) is a suffix of f(q′3q′2).

With these definitions, the word ψ′f(q)ϕ′ = ψ′ρµρϕ′ is a common factor (not necessarily the greatest)
of f(q′)3 and (ρµ)4. In order to use Corollary 2.3, we have to study |ψ′f(q)ϕ′|. Note that the inequality
|ψ′f(q)ϕ′| ≥ |f(q′)|+ |ρµ| is equivalent to |f(q′)| ≤ |ψ′|+ |ϕ′|+ |ρ|.

Case 1: |f(q′)| ≤ |ψ′|+ |ϕ′|+ |ρ|.
By Corollary 2.3, there exist two words t1 and t2, and two integers i and j such that f(q′) = (t1t2)i and

ψ = ρµ = (t2t1)j where t1t2 and t2t1 are primitive words. If j ≥ 2, f(Q1q) ends with ψf(q) = (ρµ)2ρ = (t2t1)2jρ
where 2j > 3. If i ≥ 2, f(q′2) = (t1t2)2i with q′2 a proper prefix of q′3 and 2i > 3. In these two cases, the image
by f of a cube-free word contains a cube; f is not cube-free. So i = j = 1.

We have f(Q1qQ2) = Π1(t2t1)3ρΣ2 = f(q′1q
′3q′2) = f(q′1)(t1t2)3f(q′2). Since t1t2 is not an internal factor

of (t1t2)2 (otherwise, by Lemma 2.2, t1t2 would not be primitive), |f(q′1)| < |f(Q1)| = |Π1t2t1| and |f(q′2)| <
|f(Q2)| = |t2t1Σ2|, we have either Π1 = f(q′1)t1 and f(q′2) = t1ρΣ2, or Π1t2 = f(q′1) and t2f(q′2) = ρΣ2. This
situation can be summed up by Figure 2.

Case 1.1: Π1 = f(q′1)t1.
Since |Π1| < |f(Q1[1])| = |f((q′1q)[1])| and f is bifix, q′1 = ε, Π1 = t1, and f(Q1) = Π1ψ = t1t2t1 = f(q′)t1

where t1 is a prefix of f(q′). Since f is a ps-morphism, and then a bifix morphism, by Lemma 2.4, we obtain
that there exists a prefix x (possibly empty) of q′ such that f(x) = t1. From f(q′) = t1t2 = f(x)t2 with t2 a
prefix of f(q) and f bifix, we obtain that there exists a prefix y of q such that f(y) = t2.

From f(q) = ρµρ = f(yx)ρ and f bifix, we obtain that ρ is the image of a word; a contradiction with the
definition of ρ with the hypotheses of this lemma.

Case 1.2: Π1t2 = f(q′1).
This case is solved in the same way as Case 1.1.
From f(Q1) = Π1t2t1 = f(q′1)t1, we obtain that t1 is the image of a word. From f(q′) = t1t2, we obtain that

t2 is the image of a word. It follows that ρ is the image of a word; a contradiction with the definition of ρ.

Case 2: |f(q′)| > |ψ′|+ |ϕ′|+ |ρ|.
If q′1 = ε, i.e., Q1qQ2 = q′3q′2 then, by definition of ψ′, ψ′ = ψ = ρµ. It follows that |f(q′)| > |ψ′| + |ϕ′| +

|ρ| = |f(q)| + |ϕ′|. Furthermore, |f(q′)3| > |Π1| + 2|f(q)| + 2|ϕ′| = |Π1ψ| + |f(q)| + |ρ| + 2|ϕ′|, i.e., |f(q′)3| >
|f(Q1q)|+ |ρ|+ 2|ϕ′|. Since |ρ| 6= 0, we have |ρ|+ 2|ϕ′| > |ϕ′|. If q′2 6= ε then |f(q′2)| > |Σ2| and, by definition of
ϕ′, we obtain |f(q′)3| = |f(Q1q)ϕ

′|; this is impossible. Hence, q′2 = ε and ϕ′ = ϕ = µρ. It follows that |f(q′)2| =



210 F. WLAZINSKI

(  )f  q

ψ ’

(   )f  q’

1
Π

1
 (    )f  q ’

Σ
2

ϕ’

(   )f  q’ (   )f  q’ 2 (    )f  q ’

µρ

ψ ρ µ ρ

ρµ

ϕ

Figure 3. Case 2.

|f(Q1qQ2)| − |f(q′)| = |Π1ρµf(q)µρΣ2| − |f(q′)| < |Π1ρµΣ2|. If |q′| ≥ 2 then |f(q′)f(q′)| > |Π1Σ2|+ |f(q′)| >
|Π1Σ2|+ |ψ|+ |ϕ|+ |ρ| = |Π1Σ2|+ |ρµρµρ| with |ρ| 6= 0; this conflicts with the previous inequality. Consequently,
we have |q′| = 1 and q′3 = Q1qQ2 with Q1, q, and Q2 non-empty words. Therefore, Q1 = q = Q2 = q′ with
ρµρ = f(q) = f(Q1) = Π1ρµ, i.e., µρ = ρµ. By Proposition 2.1(2), there exist a non-empty word ω over A and
two integers n, and p such that ρ = ωn and µ = ωp. Since ρ 6= ε, we obtain that n ≥ 1. It follows that f(Q1q)
contains ω3n+2p with Q1q cube-free and 3n+ 2p ≥ 3; f is not cube-free.

In the same way, we obtain that either q′2 6= ε or f is not cube-free.
Since Q1qQ2 = q′1q

′3q′2, we have |f(q′1[1])| = |f(Q1[1])| > |Π1| and |f(q′2[|q′2|])| = |f(Q2[|Q2|])| > |Σ2|. Hence,
|ψ′| < |ψ| and |ϕ′| < |ϕ|. It follows from the definitions of ψ′ and ϕ′ that f(q′)3 = ψ′f(q)ϕ′.

We have |ψ′|+ 2|ρ|+ |µ|+ |ϕ′| = |ψ′f(q)ϕ′| = |f(q′)3| > 3(|ψ′|+ |ϕ′|+ |ρ|), that is, |µ| > 2|ψ′|+ 2|ϕ′|+ |ρ|.
It means that µ starts with ϕ′ and ends with ψ′.

This situation can be summed up by Figure 3.
The word f(q′) starts with ψ′ρ and ends with ρϕ′. There exist two words X and Y such that f(q′) = ψ′ρX =

Y ρϕ′. Since |f(q′)| > |ψ′|+ |ϕ′|+ |ρ|, we have |X| > |ϕ′| and |Y | > |ψ′|. Therefore, there exist two non-empty
words X ′ and Y ′ such that X = X ′ϕ′, Y = ψ′Y ′, and f(q′) = ψ′ρX ′ϕ′ = ψ′Y ′ρϕ′. It follows that ρX ′ = Y ′ρ.
By Proposition 2.1(1), there exist two words r and s and an integer i such that ρ = r(sr)i, X ′ = sr, and Y ′ = rs.
Let us also note that µ ends with Y ′ and starts with X ′.

If i ≥ 1 then f(Q1q) contains µρµ which contains Y ′ρX ′ = (rs)2+ir with Q1q cube-free and 2 + i ≥ 3; f is
not cube-free.

Let us now consider the case i = 0. We have ρ = r, Y ′ = ρs, X ′ = sρ, and f(q′) = ψ′ρsρϕ′. From f(q′)3 =
ψ′f(q)ϕ′ = ψ′ρµρϕ′, we also obtain that µ = sρϕ′f(q′)ψ′ρs. Let us remark that µ starts and ends with s. But
the word µ also starts with ϕ′ and also ends with ψ′. In particular, the word f(Q1q) contains µ(ρ)µ which
contains ψ′ρs(ρ)sρϕ′.

If |s| ≤ |ϕ′| then s is a prefix of ϕ′ and ψ′ρs ρ sρϕ′ contains the cube (ρs)3. If |s| ≤ |ψ′| then s is a suffix of
ψ′ and ψ′ρs ρ sρϕ′ contains the cube (sρ)3. If |s| > |ϕ′|, |s| > |ψ′|, and |s| ≤ |ϕ′| + |ψ′| then there exist three
words a, b, and c such that s = abc, ϕ′ = ab, and ψ′ = bc. It follows that ψ′ρs ρ sρϕ′ contains the cube (bcρa)3.
In these three cases, f(Q1q) contains a cube with Q1q cube-free; f is not cube-free.

The remaining case is |s| > |ϕ′|+ |ψ′|; there exists a non-empty word µ′ such that s = ϕ′µ′ψ′ and we have
f(q′) = ψ′ρϕ′µ′ψ′ρϕ′.

Let us denote α′ = ψ′ρ, β′ = ϕ′, ρ′ = ψ′ρϕ′ = α′β′, and θ′ = µ′ρ′ρ′µ′ρ′ρ′µ′. We have f(q′) = ρ′µ′ρ′ and
µ = sρϕ′f(q′)ψ′ρs = ϕ′µ′ρ′f(q′)ρ′µ′ψ′ = ϕ′θ′ψ′.

Since f(Q1) = f(q′1)ψ′ ends with µ, we obtain that f(q′1) ends with ϕ′θ′ = β′θ′. And, since f(Q2) = ϕ′f(q′2)
starts with µρ, we obtain that f(q′2) starts with θ′ψ′ρ = θ′α′. Moreover, by Lemma 2.4, ψ′ and ϕ′ are images
of words by f .

Since f is bifix, if ρ′ = ψ′ρϕ′ is the image of a word by f , then so is ρ; a contradiction with the hypotheses.
So ρ′ is not the image of a word by f .

Since q′1q
′ is a prefix of Q1q and q′q′2 is a suffix of qQ2, the words q′1q

′ and q′q′2 are cube-free.

Finally, since 3|f(q′)| = |ψ′f(q)ϕ′| < |ψf(q)ϕ| ≤ 3|f(q)|, we obtain that |f(q′)| < |f(q)|.
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Figure 4. First decomposition.

When the image of a word w by a morphism f covers a cube, three factors of f(w) are identical. This gives
us three equations on words. To solve these equations when f is cube-free is the first part of the study. A first
conclusion is given by the following lemma; a cube in w necessarily has a particular form.

Lemma 3.3. Let f be a ps-morphism from A∗ to B∗. Let q1, q2, and q be non-empty words over A and let
w = q1q

3q2. Let us assume that f(w) = π1f(z)3σ2, |π1| < |f(q1[1])|, |σ2| < |f(q2[|q2|])|, and z is a non-empty
word over A such that z3 is a pure cube.

If |q| ≤ 2, if |z| ≥ 2, or if 2|f(q)| ≥ |f(z)| then f is not cube-free.
Otherwise, either f is not cube-free or there exist two words X and Y such that |Y | ≤ 1, 2|f(q)| < |f(X)| =

|f(z)| < 3|f(q)|, and q1q
3q2 = X3Y with q1 a prefix of X, q2 a suffix of XY , and |f(Y )| < |f(z)σ2| or q1q

3q2 =
Y X3 with q1 a prefix of Y X, q2 a suffix of X, and |f(Y )| < |π1f(z)|.

Proof. Let us first remark that we can assume that the image by f of any proper factor of z3 is cube-free.
The hypotheses imply |f(z)| > |f(q)|. Furthermore, there exist a suffix σ1 of f(q1) and a prefix π2 of f(q2)

such that f(q1) = π1σ1 and f(q2) = π2σ2. It means that f(z)3 = σ1f(q)3π2.
If |σ1f(q3)| ≤ |f(z)2f(z[1..|z| − 1])| then f(z)2f(z[1..|z| − 1]) contains the cube f(q)3 with z2(z[1..|z| − 1])

a proper factor of z3 and so cube-free. It ends the proof; f is not cube-free. Identically, if |f(q3)π2| ≤
|f(z[2..|z|])f(z)2| then f is not cube-free. Consequently, we obtain that |π2| < |f(z[|z|])| and |σ1| < |f(z[1])|;
there exist two non-empty words α and β such that f(z) = σ1α = βπ2 and f(q)3 = αf(z)β.

This situation can be summed up by Figure 4.
Let us note that α 6= ε or β 6= ε. Otherwise, f(z2) contains f(q)3. It ends the proof; f is not cube-free.
If |f(q2)| ≥ |f(z)| then |α| + |β| = |f(q3)| − |f(z)| ≥ |f(q)| and the length of αf(z)β ∈ Fcts

(
f(z)3

)
∩

Fcts
(
f(q)3

)
is at least |f(z)| + |f(q)|. Let us note that this situation happens in particular when |z| ≥ 2

because in this case |α| + |β| ≥ |f(z[2..|z|])| + |f(z[1..|z| − 1])| ≥ |f(z)| > |f(q)|. By Corollary 2.3, there exist
two words z1 and z2, and two integers i and j such that f(z) = (z1z2)i and f(q) = (z2z1)j . The inequality
|f(z)| > |f(q)|(> 0) implies i > j ≥ 1. It follows that f(z)2 = (z1z2)2i with 2i > 3, that is, f(z)2 contains a
cube; f is not cube-free.

From now on, z is a letter and |f(q2)| < |f(z)|, i.e., 0 < |α| + |β| < |f(q)|. We obtain that f(q)3 = αf(z)β
starts and ends with αβ, i.e., αβ is a prefix and a suffix of f(q). There exist two non-empty words ϕ and ψ
such that f(q) = (αβ)ϕ = ψ(αβ) and f(z) = βϕf(q)ψα. By Proposition 2.1(1), there exist two words ρ and µ,
and an integer j such that αβ = ρ(µρ)j , ϕ = µρ, and ψ = ρµ.

Since f(z)2 contains (ψα)(βϕ) = ρµρ(µρ)jµρ = ρ(µρ)j+2 and f(z)2 is cube-free, we necessarily have j = 0.

In this case, if we pose θ = ϕf(q)ψ, we have αβ = ρ, f(q) = ρµρ, f(z) = βµρf(q)ρµα. Thus we have
θ = µρρµρρµ, f(z) = βθα, f(q1) = π1βθ and f(q2) = θασ2.

Since f is a ps-morphism, and hence, is non-erasing and since q 6= ε, we have ρµ 6= ε. Since f(z) is cube-free,
we necessarily have µ 6= ε and ρ 6= ε. Otherwise, the factor θ = µρρµρρµ of f(z) would be equal to ρ4 or µ3.

We also necessarily have q1[2..|q1|] q and q q2[1..|q2| − 1] cube-free. Otherwise, f(q1[2..|q1|] q) or
f(q q2[1..|q2| − 1]) both factors of f(z)2 would contain a cube.

By Lemma 3.1, if ρ is not the image of a word by f then f is not cube-free; it ends the proof.
Let us now assume that ρ is the image of a word and let q̇ be the non-empty word such that f(q̇) = ρ =

αβ(6= ε). Since f is bifix, f(q) = ρµρ and µ 6= ε, there exists a non-empty word q such that f(q) = µ. It follows
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that q = q̇qq̇ and necessarily |q| ≥ 3. In particular, |f(qqq̇q)| = |f(z)| and qqq̇q is an internal factor of w; f(w)
and f(z)3 are synchronised.

Furthermore, if we denote x = qq̇qq̇q, we obtain that f(x) = θ, f(q1) = π1βf(x), and f(q2) = f(x)ασ2. Since
f is bifix, it follows, by Lemma 2.4, that q1 = W1x for a non-empty word W1 satisfying f(W1) = π1β(6= ε) and
q2 = xW2 for a non-empty word W2 satisfying f(W2) = ασ2( 6= ε).

Since |π1| < |f(q1[1])| = |f(W1[1])|, |σ2| < |f(q2[|q2|])| = |f(W2[|W2|])|, and f(q̇) = ρ = αβ, by Lemma 2.6,
we obtain that q̇ = a, W1 = b, W2 = c for some letters a, b, c. Moreover, we have b = a or c = a. It means that
q1q

3q2 = bx(q̇qq̇)3xc = bxaxaxc.
If b = a, let X = ax. It follows that q1q

3q2 = X3c with |f(X)| = |f(ax)| = |f(q̇x)| = |βf(x)α| = |f(z)| =
3|f(q)| − |ρ| and |f(c)| − |σ2| = |α| < |f(q)| < |f(z)|.

In the same way, if c = a, let X = xa. We have q1q
3q2 = bX3 with |f(xa)| = |f(z)| and |f(b)| < |π1f(z)|.

We can now state a lemma for k = 3 which completes Lemma 2.10.

Lemma 3.4. Let f be a ps-morphism from A∗ to B∗. Let v and T be non-empty words over A such that v3

is a pure cube. Let us assume that f(T ) = π1f(v)3σ2 with |π1| < |f(T [1])|, |σ2| < |f(T [|T |])|, π1 a suffix of the
image by f of a shortest word v1 and σ2 a prefix of the image by f of a shortest word v2.
Then one of the following holds:

• (P.1): There exist a cube x3, a word y over A, and a word Z over B such that
(P.1.1): T = x3y, |y| ≤ 1, f(y) = π1σ2, f(x) = π1Z, and f(v) = Zπ1
(P.1.2): or T = yx3, |y| = 1, f(y) = π1σ2, f(x) = Zσ2, and f(v) = σ2Z.

• (P.2): There exist a pure cube x3 and a non-empty word y over A such that
(P.2.1): T = x3y with |f(x2)| < |π1f(v)|
(P.2.2): or T = yx3 with |f(x2)| < |f(v)σ2|.

• (P.3): T = t3, |v| ≥ 3, |t| = 1 ( i.e., t is a letter), 2|f(v)| < |f(t)| < 3|f(v)|, and there exist two words x 6= ε
and y such that |f(x)| = |f(t)| and

(P.3.1): v1v
3v2 = x3y with v1 a prefix of x, v2 a suffix of xy, and |f(y)| < |f(t)σ′2|

(P.3.2): or v1v
3v2 = yx3 with v1 a prefix of yx, v2 a suffix of x, and |f(y)| < |π′1f(t)|

where π′1 and σ′2 are the words such that f(v1[1]) = π′1π1 and f(v2[|v2|]) = σ2σ
′
2.

• (P.4): f is not cube-free.

Proof. If T is cube-free, it ends the proof; f is not cube-free.
Let us suppose that T contains at least one cube. Among the cubes of T , we choose one whose image by f

is a shortest; we can write T = t1t
3t2 where |f(t)| = min{|f(t′)| where t′

3 ∈ Fcts (T )}. By this definition, since
f is bifix (as any ps-morphism) and so non-erasing, t3 is a pure cube.

If t1 6= ε and t2 6= ε then, by Lemma 3.3, T satisfies condition (P.1) or condition (P.4).
As in the proof of Lemma 2.10 (see Lem. 3.1 in [22]), if a power of f(t) and a power of f(v) have a common

factor of length at least |f(t)|+ |f(v)|, we obtain that T satisfies condition (P.1).

From now, let us assume the converse holds, i.e., any common factor of f(t)3 and f(v)3 is of length at most
|f(t)| + |f(v)|. It means that |f(t)3| − |σ2| < |f(t)| + |f(v)| when t1 6= ε and t2 = ε, and that |f(t)3| − |π1| <
|f(t)|+ |f(v)| when t1 = ε and t2 6= ε. Hence, T satisfies condition (P.2) with x = t.

Let us now treat the case where t1 = t2 = ε. In this case, f(v)3 is factor of f(t3) = f(T ). Hence, 2|f(v)| < |f(t)|
and |π1| + |σ2| = 3|f(t)| − 3|f(v)| > 3|f(v)|. If π1 = ε then f(t2) contains the cube f(v)3 with t2 cube-free; f
is not cube-free. In the same way, if σ2 = ε then f is not cube-free. It follows that v1 6= ε and v2 6= ε; there
exist a prefix π′1 of f(v1[1]) and a suffix σ′2 of f(v2[|v2|]) such that f(v1v

3v2) = π′1π1f(v)3σ2σ
′
2 = π′1f(t)3σ′2. By

Lemma 3.3 with q = v, we obtain that either f is not cube-free (for instance if |v| ≤ 2 or if |t| ≥ 2) or T satisfies
condition (P.3).
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Figure 5. Tetris.

By Lemma 2.8, we immediately obtain:

Corollary 3.5. With hypotheses and notations of Lemma 3.4, if f(T ) and f(v)3 are synchronised then either
f is not cube-free or T verifies (P.1).

4. The special case of uniform morphisms

If we represent the image of a letter by a morphism as a rectangle block, these blocks have the same length
in the case of uniform morphisms. The main idea is to delete blocks as shown in Figure 5. Corollary 4.1 proved
in [22] shows that, under some hypotheses, we can simplify the image of word by a uniform morphism in such
a way.

Corollary 4.1. Let κ ≥ 3 and ` ≥ 1 be two integers, let α be an integer in {1, 2} and let β be an integer in
{κ− 1, κ}.

Let f be a morphism from A∗ to B∗. Let (wi)i=α..β+1 and (xi)i=α..β be words over A such that |f(xi)| =
|f(xj)| 6= 0 for all integers i, j in [α, β].

We denote by w the word wαx
`
α...wβx

`
βwβ+1.

We assume that there exist U , p, s, (Xi)i=α..β, and (Yi)i=α..β words over B such that f(wi) = Yi−1Xi for all
integers i in [1 + α;β]. Furthermore, we also assume that f(wα) = pUα−1X1 and f(wβ+1) = YκU

κ−βs where
U = Xif(x`i)Yi( 6= ε) for all integers i in [α, β]. It means that f(w) = pUκs.

Finally, we assume that there exists an integer q such that, for every integer i in [α, β], 0 ≤ |Xq|− |Xi| ≤ |X ′′q |
where X ′′q is a common suffix of Xq and f(xq), 0 ≤ |Xq|− |Xi| ≤ |f(xq)| when α = 2, or 0 ≤ |Yi|− |Yq| ≤ |f(xq)|
when β = κ− 1.

Then, for every integer 0 ≤ φ < `, the word w′ = wαx
φ
α...wβx

φ
βwβ+1 satisfies f(w′) = pU ′κs with U ′ =

Xif(xφi )Yi for every integer i in [1;κ].
In particular, f(w′) and U ′κ are synchronised only if f(w) and Uκ are synchronised.

We need to specify the cases where the hypotheses of the corollary 4.1 are satisfied; More precisely, Lemma 4.2
proved in [22] describes sufficient conditions to remove blocks.

Again, in order to unify notations from the two papers, our notations come from [22]. For the next lemma
and the rest of the paper, we use some specific variables. Without going into details, λv is the integer such that
f(v3) starts in the λv

th occurrence of U ; dv = 1 if the first occurrence of f(v) from f(v)3 is factor of U and
dv = 0 if not; cv = min{i | f(v)3 is a factor of U i}; and Dv is a prefix of U such that w = vpv

3vs and f(vpv)
ends with Dv or Dvf(v). Moreover, Condition (P.1) in Lemma 3.4 leads us to consider the sets Lj,v (resp.
Rj,v) of the words x3 such that x3 verifies Condition (P.1.1) (resp. Condition (P.1.2)) and f(x3) starts in the
(j −max{dv, dx})th (resp. (j −min{dv, dx})th) occurrence of U .

Lemma 4.2. Let k ≥ 3 be an integer and let κ ∈ {k; k+ 1}. Let f be a morphism from A∗ to B∗ and let w be a
word over A such that f(w) = pUκS for some words p, S and U 6= ε over B such that |p| < |f(w[1])|. Moreover,
we assume that |S| < |f(w[|w|])| when κ = k + 1 and v3 is a chosen factor of a pure k-power vk.
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Figure 6. Examples of values for dv and cv.

When one of the four following situations holds, there exists a word w̌ such that f(w̌) = p′(U ′)κS′ for some
words p′, S′, and U ′ 6= ε over B satisfying |p′| < |f(w̌[1])| and 0 < |U ′| < |U |; moreover f(w̌) and (U ′)κ are
synchronised only if f(w) and Uκ are synchronised.

1. dv = 1, |Dvf(v)2| < |U |, and Lj,v ∪Rj,v 6= ∅ for every integer j ∈ [2, κ].
2. dv = 1, Lj,v ∪ Rj,v 6= ∅ for every integer j ∈ [2, κ − 1], and there exists a positive integer φ such that

w[nv..|w|] starts with vφ+2 and sup
{

2|f(v)|; |Dvf(v)φ|
}
≤ |U | < |Dvf(v)φ+1|.

3. dv = 0, |Dvf(v)2| ≤ |U |, and Lj,v ∪Rj,v 6= ∅ for every integer j ∈ [1, κ].
4. dv = 0, |U | < |Dvf(v)2| < |DvU |, and Lj,v ∪Rj,v 6= ∅ for every integer j ∈ [1, κ− 1].

We say that we made a reduction of f(w).

Using Lemma 3.4 and Lemma 4.2 with κ = 4, we can reduce a word whose image by a uniform morphism
contains a cube. We state our main result.

Theorem 4.3. Let A and B be two alphabets. A cube-free uniform morphism from A∗ to B∗ is k-power-free
for all integers k ≥ 4.

It is a consequence of Proposition 2.9 (Prop. 4.1 in [22]) and Proposition 4.4:

Proposition 4.4. Let A and B be two alphabets. A cube-free uniform morphism from A∗ to B∗ is 4-power-free.

As previously said, we could not conclude in [22] for the case k = 3 due to the fact that Lemma 2.10 does
not hold for this value.

Now, using Lemma 3.4, we only have to follow the proof of Proposition 2.9 (Prop. 4.1 in [22]). It would be
unnecessary and redundant to give all the details of the notations that we have used in it. In fact, since the two
proofs are almost the same, we only give the main ideas. And we only verify that all the steps are effectively
checked for k = 3.

Proof. Let f be a uniform ps-morphism from A∗ to B∗. We assume that f is not 4-power-free and we want to
show that f is not cube-free.

Let w be a shortest 4-power-free word whose image by f contains a 4-power u4 such that f(w) and u4 are
not synchronised.

The central point of the proof is that, starting with w and u, we use iteratively the reduction of Corollary 4.1
on the word whose image contains a 4-power in such a way that it is not possible de reduce anymore. We obtain
new words W et U such that f(W ) = pU4s with p a proper prefix of W [1], s a proper suffix of W [|W |], and
f(W ) and U4 are not synchronised.
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We show that either f is not cube-free, or f(W ) and U can again be reduced using Lemma 4.2 itself using
Corollary 4.1; a contradiction with their definitions.

The first two steps are strictly identical to the first two steps in the proof of Proposition 2.9 (Prop. 4.1 in
[22]); we only have to replace k by 3.

Step 1: For any pure cube v3 of W , the words U4 and f(v)3 do not have any common factor of length at least
|U |+ |f(v)|.

Step 2: W [2..|W | − 1] contains a cube and so a pure-cube.

Step 3: For any pure cube v3 ∈ Fcts (W [2..|W | − 1]), the word f(v)3 is an internal factor of U3 and |f(v2)| < |U |.
For any pure cube v3 ∈ Fcts (W [2..|W | − 1]), the word f(v)3 is an internal factor of U4. So |f(v)3| < |U |+

|f(v)|, i.e., |f(v)2| < |U | and |f(v)3| < 3
2 |U |. Hence, f(v)3 is an internal factor of U3. This implies that cv = 1, 2

or 3.
Let us recall that, for all integers j ∈ [1; 5− cv], f(v)3 is an internal factor of pjU

cvsj+cv . Consequently, if v̂j
is the shortest factor of W [ij ..ij+cv ] such that f(v̂j) contains f(v)3 then, by Corollary 3.5, v̂j satisfies condition
(P.1) of Lemma 3.4 for all integers j ∈ [1; 5− cv].

We are going to see that it implies that W can be reduced; a final contradiction.

Case 3.1: cv = 3
Since |f(v2)| < |U | and by definition of cv, we necessarily have dv = 1 and |Dvf(v)| < |U | ≤ |Dvf(v2)|. For all

integers j ∈ [1; 2], if v̂j satisfies condition (P.1.1) of Lemma 3.4 then xj,v
3 ∈ Lj+1,v. And if v̂j satisfies condition

(P.1.2) of Lemma 3.4 then xj,v
3 ∈ Rj+1,v. In other words, we have Lj+1,v ∪ Rj+1,v 6= ∅ with j + 1 ∈ [2; 3]; by

Lemma 4.2(2) with φ = 1, we can reduce W .

Case 3.2: cv 6= 3 and dv = 1
We necessarily have cv = 2, i.e, 5 − cv = 3. For all integers j ∈ [1; 3], if v̂j satisfies condition (P.1.1) of

Lemma 3.4 then xj,v
3 ∈ Lj+1,v. And if v̂j satisfies condition (P.1.2) of Lemma 3.4 then xj,v

3 ∈ Rj+1,v. That is,
Lj,v ∪Rj,v 6= ∅ for all integers j ∈ [2; 4]; by Lemma 4.2(1), a reduction can be done.

Case 3.3: cv 6= 3 and dv = 0
If cv = 1 then |Dvf(v)2| ≤ |U | and Lj,v ∪ Rj,v 6= ∅ for all integers j ∈ [1; 4]. By Lemma 4.2(3), a reduction

can be done.
If cv = 2 then |U | < |Dvf(v)2| and Lj,v ∪ Rj,v 6= ∅ for all integers j ∈ [1; 3]; by Lemma 4.2(4), a reduction

can be done.

As previously said, these three cases lead to a reduction of f(W ): a contraction with its definition. So f is
not cube-free.
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