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Abstract. Connectivity and Diagnosability play an important role in measuring the fault tolerance
of interconnection networks. As a topology structure of interconnection networks, the expanded k-ary
n-cube XQk

n has many good properties. In this paper, we prove that (1) the connectivity of XQk
n is

4n; (2) the nature connectivity of XQk
n is 8n−4; (3) the nature diagnosability of XQk

n under the PMC
model and MM∗ model is 8n − 3 for n ≥ 2.
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1. Introduction

Many multiprocessor systems have interconnection networks (networks for short) as underlying topologies and
a network is usually represented by a graph where nodes represent processors and links represent communication
links between processors. We use graphs and networks interchangeably. For the system, study of the topological
properties of its network is important. Furthermore, some processors may fail in the system, so processor fault
identification plays an important role for reliable computing. The first step to deal with faults is to identify the
faulty processors from the fault-free ones. The identification process is called the diagnosis of the system. A
system G is said to be t-diagnosable if all faulty processors can be identified without replacement, provided that
the number of faults presented does not exceed t. The diagnosability t(G) of G is the maximum value of t such
that G is t-diagnosable [6, 8, 12]. For a t-diagnosable system, Dahbura and Masson [6] proposed an algorithm
with time complex O(n2.5), which can effectively identify the set of faulty processors.

Several diagnosis models (e.g., Preparata, Metze, and Chien’s (PMC) model [18], Barsi, Grandoni, and
Maestrini’s (BGM) model [2], and Maeng and Malek’s (MM) model [14]) have been proposed to investigate the
diagnosability of multiprocessor systems. In particular, two of the proposed models, the PMC model and MM
model, are well known and widely used. In the PMC model, the diagnosis of the system is achieved through two
linked processors testing each other. In the MM model, to diagnose a system, a node sends the same task to
two of its neighbor vertices, and then compares their responses. For this reason, the MM model is also said to
be the comparison model. Sengupta and Dahbura [6] proposed a special case of the MM model, called the MM*
model, in which each node must test its any pair of adjacent nodes. Numerous studies have been investigated
under the PMC model and MM model or MM* model, see [5, 8, 12, 13, 16, 26].

In the traditional measurement of a system-level diagnosability for the multiprocessor system, one generally
assumes that any subset of processors may simultaneously fail. If all the neighbor vertices of some node v
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are faulty simultaneously, it is impossible to determine whether v is faulty or fault-free. As a consequence,
the diagnosability of a system is less than its minimum node degree. However, in a large-scale multiprocessor
system, we can safely assume that all neighbor vertices of any node do not fail at the same time. Based on
this assumption, Lai et al. [12] introduced the restricted diagnosability of the multiprocessor system called the
conditional diagnosability of the system. They consider the situation that any fault set cannot contain all the
neighbor vertices of any vertex in a system. Since the probability that the all neighbors of a fault node fail
and create faults is more to the probability that the all neighbors of a fault-free node fail and create faults
in the system, we consider the situation that no fault set can contain all the neighbors of any fault-free node
in the system, which is called the nature diagnosability of the system. In 2012, Peng et al. [16] proposed a
measure for fault diagnosis of the system, namely, the g-good-neighbor diagnosability of the system (which is
also called the g-good-neighbor conditional diagnosability), which requires that every fault-free node contains
at least g fault-free neighbors. In [16], they studied the g-good-neighbor diagnosability of the n-dimensional
hypercube under the PMC model. In [21], Wang and Han studied the g-good-neighbor diagnosability of the
n-dimensional hypercube under MM∗ model. Yuan et al. [26,27] studied that the g-good-neighbor diagnosability
of the k-ary n-cube (k ≥ 3) under the PMC model and MM∗ model. The Cayley graph CΓn generated by the
transposition tree Γn has recently received considerable attention. In [19, 20], Wang et al. studied the g-good-
neighbor diagnosability of CΓn under the PMC model and MM∗ model for g = 1, 2. In [19], Wang et al.
proved that the nature diagnosability of the system is less than or equal to the conditional diagnosability of
the system. Therefore, the nature diagnosability of the system is nature and one important study topic. The
n-dimensional bubble-sort star graph BSn has many good properties. In 2016, Wang et al. [23] studied the
2-good-neighbor connectivity and 2-good-neighbor diagnosability of BSn. In 2015, Zhang et al. [28] proposed
a new measure for fault diagnosis of the system, namely, the g-extra diagnosability, which restrains that every
fault-free component has at least (g + 1) fault-free nodes. In [28], they studied the g-extra diagnosability of
the n-dimensional hypercube under the PMC model and MM∗ model. In 2016, Wang et al. [22] studied the
2-extra diagnosability of BSn under the PMC model and MM∗ model. In 2017, Wang and Yang [24] studied
the 2-good-neighbor (2-extra) diagnosability of alternating group graph networks under the PMC model and
MM* model.

The k-ary n-cube has many desirable properties, such as ease of implementation of algorithms and ability
to reduce message latency by exploiting communication locality found in many parallel applications [4, 7].
Therefore, a number of distributed-memory parallel systems (also known as multicomputers) have been built
with a k-ary n-cube forming the underlying topology, such as the Cray T3D [11], the J-machine [15], the
iWarp [17] and the IBM Blue Gene [1]. In 2011, Xiang and Stewart [25] proposed the augmented k-ary n-cube.
In 2016, Zhao and Wang [29] studied the nature diagnosability of augmented 3-ary n-cubes, and Hao and
Wang [9] studied the nature diagnosability of augmented k-ary n-cubes for k ≥ 4. In this paper, we extend the
k-ary n-cube and define an expanded k-ary n-cube XQk

n. The connectivity and diagnosability of XQk
n have been

studied in this paper. We prove that (1) the connectivity of XQk
n is 4n and XQk

n is tightly 4n super connected;
(2) the nature connectivity of XQk

n is 8n− 4; (3) the nature diagnosability of XQk
n under the PMC model and

MM∗ model is 8n − 3 for n ≥ 2.

2. Preliminaries

In this section, some definitions and notations needed for our discussion, the expanded k-ary n-cube, the
PMC model and MM∗ model are introduced.

2.1. Definitions and Notations

A multiprocessor system is modeled as an undirected simple graph G = (V, E), whose vertices (nodes)
represent processors and edges (links) represent communication links. Given a nonempty vertex subset V ′ of V ,
the induced subgraph by V ′ in G, denoted by G[V ′], is a graph, whose vertex set is V ′ and the edge set is the set
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of all the edges of G with both endpoints in V ′. The degree dG(v) of a vertex v is the number of edges incident
with v. We denote by δ(G) the minimum degrees of vertices of G. For any vertex v, we define the neighborhood
NG(v) of v in G to be the set of vertices adjacent to v. u is called a neighbor or a neighbor vertex of v for
u ∈ NG(v). Let S ⊆ V . We use NG(S) to denote the set ∪v∈SNG(v)\S. For neighborhoods and degrees, we will
usually omit the subscript for the graph when no confusion arises. Let F1 and F2 be two distinct subsets of V for
G = (V, E). Define the symmetric difference F1 � F2 = (F1 \F2)∪ (F2 \F1). A graph G is said to be k-regular if
for any vertex v, dG(v) = k. A set of edges M ⊆ E(G) is called a matching if they are independent. A matching
is said to be perfect if it covers all points of G. Let G = (V, E) be a connected graph. The connectivity κ(G) of
a graph G is the minimum number of vertices whose removal results in a disconnected graph or only one vertex
left. A fault set F ⊆ V is called a nature faulty set if |N(v) ∩ (V \F )| ≥ 1 for every vertex v in V \F . A nature
cut of G is a nature faulty set F such that G − F is disconnected. The minimum cardinality of nature cuts is
said to be the nature connectivity of G, denoted by κ∗(G). For graph-theoretical terminology and notation not
defined here we follow [3].

2.2. The PMC model and the MM∗ model

Under the PMC model [26], to diagnose a system G, two adjacent nodes in G are capable to perform tests on
each other. For two adjacent nodes u and v in V (G), the test performed by u on v is represented by the ordered
pair (u, v). The outcome of a test (u, v) is 1 (respectively, 0) if u evaluate v as faulty (respectively, fault-free).
In the PMC model, we usually assume that the testing result is reliable (respectively, unreliable) if the node u
is fault-free(respectively, faulty). A test assignment T for a system G is a collection of tests for every adjacent
pair of vertices. It can be modeled as a directed testing graph T = (V (G), L), where (u, v) ∈ L implies that u
and v are adjacent in G. The collection of all test results for a test assignment T is called a syndrome. Formally,
a syndrome is a function σ : L �→ {0, 1}.

The set of all faulty processors in the system is called a faulty set. This can be any subset of V (G). For a
given syndrome σ, a subset of vertices F ⊆ V (G) is said to be consistent with σ if syndrome σ can be produced
from the situation that, for any (u, v) ∈ L such that u ∈ V \ F , σ(u, v) = 1 if and only if v ∈ F . This means
that F is a possible set of faulty processors. Since a test outcome produced by a faulty processor is unreliable,
a given set F of faulty vertices may produce a lot of different syndromes. On the other hand, different fault sets
may produce the same syndrome. Let σ(F ) denote the set of all syndromes which F is consistent with.

Under the PMC model, two distinct sets F1 and F2 in V (G) are said to be indistinguishable if σ(F1)∩σ(F2) 	=
∅, otherwise, F1 and F2 are said to be distinguishable. Besides, we say (F1, F2) is an indistinguishable pair if
σ(F1) ∩ σ(F2) 	= ∅; else, (F1, F2) is a distinguishable pair.

Using the MM model [26], the diagnosis is carried out by sending the same testing task to a pair of processors
and comparing their responses. Under the MM model, we always assume the output of a comparison performed
by a faulty processor is unreliable. The comparison scheme of a system G = (V, E) is modeled as a multigraph,
denoted by M = (V (G), L), where L is the labeled-edge set. A labeled edge (u, v)w ∈ L represents a comparison
in which two vertices u and v are compared by a vertex w, which implies uw, vw ∈ E(G). The collection of all
comparison results in M = (V (G), L) is called the syndrome, denoted by σ∗, of the diagnosis. If the comparison
(u, v)w disagrees, then σ∗((u, v)w) = 1, otherwise, σ∗((u, v)w) = 0. Hence, a syndrome is a function from L to
{0, 1}. The MM* model is a special case of the MM model and each node of G must test its any pair of adjacent
nodes, i.e., if uw, vw ∈ E(G), then (u, v)w ∈ L.

Similarly to the PMC model, we can define a subset of vertices F ⊆ V (G) is consistent with a given syndrome
σ∗ and two distinct sets F1 and F2 in V (G) are indistinguishable (respectively, distinguishable) under the MM*
model.

A system G = (V, E) is nature t-diagnosable if F1 and F2 are distinguishable, for each distinct pair of nature
faulty subsets F1 and F2 of V with |F1| ≤ t and |F2| ≤ t. The nature diagnosability tn(G) of G is the maximum
value of t such that G is nature t-diagnosable.
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Figure 1. Illustration of a distinguishable pair (F1, F2) under the PMC model.
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Figure 2. Illustration of a distinguishable pair (F1, F2) under the MM* model.

Before discussing the nature diagnosability of the expanded k-ary n-cube XQk
n under the PMC and MM∗

model, we first give existing results.

Theorem 2.1 [26]. A system G = (V, E) is nature t-diagnosable under the PMC model if and only if there is
an edge uv ∈ E with u ∈ V \(F1 ∪F2) and v ∈ F1 � F2 for each distinct pair of nature faulty subsets F1 and F2

of V with |F1| ≤ t and |F2| ≤ t (See Fig. 1).

Theorem 2.2 [6, 26]. A system G = (V, E) is nature t-diagnosable under the MM∗ model if and only if each
distinct pair of nature faulty subsets F1 and F2 of V with |F1| ≤ t and |F2| ≤ t satisfies one of the following
conditions.

(1) There are two vertices u, w ∈ V \ (F1∪F2) and there is a vertex v ∈ F1 � F2 such that uw ∈ E and vw ∈ E.
(2) There are two vertices u, v ∈ F1 \F2 and there is a vertex w ∈ V \ (F1 ∪F2) such that uw ∈ E and vw ∈ E.
(3) There are two vertices u, v ∈ F2 \ F1 and there is a vertex w ∈ V \ (F1 ∪F2) such that uw ∈ E and vw ∈ E

(See Fig. 2).

2.3. The expanded k-ary n-cube

The expanded k-ary n-cube, denoted by XQk
n (n ≥ 1 and even k ≥ 6), is a graph consisting of kn vertices

{u0u1 . . . un−1 : 0 ≤ ui ≤ k − 1, 0 ≤ i ≤ n − 1}. Two vertices u = u0u1 . . . un−1 and v = v0v1 . . . vn−1 are
adjacent if and only if there exists an integer j ∈ {0, 1, . . . , n − 1} such that uj = vj + g (mod k) and ui = vi,
for i ∈ {0, 1, . . . , n − 1} \ {j} and g ∈ {1,−1, 2,−2}. For clarity of presentation, we omit writing “(mod k)” in
similar expressions for the remainder of the paper. For terminology and notation not defined here we follow [10].
The expanded k-ary 1-cube XQk

1 is depicted in Figure 3.
We can partition XQk

n into k disjoint subgraphs XQk
n[0], XQk

n[1], . . . , XQk
n[k − 1] (abbreviated as

XQ[0], XQ[1], . . . , XQ[k − 1], if there is no ambiguity), where every vertex u = u0u1 . . . un−1 ∈ V (XQk
n)

has a fixed integer i in the last position un−1 for i ∈ {0, 1, . . . , k− 1}. Let u ∈ V (XQ[i]). Then N(u) \V (XQ[i])
is said to be outside neighbor vertices of u.
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Figure 3. (a) The expanded k-ary 1-cube XQk
1 .

Proposition 2.3. Each XQ[i] is isomorphic to XQk
n−1 for 0 ≤ i ≤ k − 1.

Proof. Note that the vertex set of XQk
n−1 is {u0u1 . . . un−2 : 0 ≤ ui ≤ k − 1, 0 ≤ i ≤ n − 2} and the vertex set

of XQ[i] is {u0u1 . . . un−2i : 0 ≤ uj ≤ k − 1, 0 ≤ j ≤ n − 2, i ∈ {0, 1, . . . , k − 1}}. Therefore, |{u0u1 . . . un−2 :
0 ≤ ui ≤ k − 1, 0 ≤ i ≤ n − 2}| = |{u0u1 . . . un−2i : 0 ≤ uj ≤ k − 1, 0 ≤ j ≤ n − 2, i ∈ {0, 1, . . . , k − 1}}|. Now
define a mapping from V (XQk

n−1) to V (XQ[i]) given by

ϕ : u0u1u2 . . . un−2 → u0u1 . . . un−2i.

It is clear that ϕ is bijective. Let u = u0u1u2 . . . un−2, v = v0v1v2 . . . vn−2, and uv ∈ E(XQk
n−1). Then, the

definition of XQk
n−1, there exists an integer j ∈ {0, 1, . . . , n − 2} such that vj = uj + g (mod k) and ui = vi,

for i ∈ {0, 1, . . . , n − 2} \ {j}, where g ∈ {1,−1, 2,−2}. Therefore, ϕ(v) = v0v1v2 . . . vn−2i = u0u1 . . . uj−1, uj +
g, uj+1 . . . un−2i. Note that ϕ(u) = u0u1 . . . uj−1, uj , uj+1 . . . un−2i. Thus, ϕ(u)ϕ(v) ∈ E(XQ[i]).

Let ϕ(u) = u0u1 . . . uj−1, uj, uj+1 . . . un−2i, ϕ(v) = v0v1v2 . . . vn−2i and ϕ(u)ϕ(v) ∈ E(XQ[i]). Then there
exists an integer j ∈ {0, 1, . . . , n− 2} such that vj = uj + g (mod k) and ui = vi, for i ∈ {0, 1, . . . , n− 2} \ {j},
where g ∈ {1,−1, 2,−2}, i.e., ϕ(v) = v0v1v2 . . . vn−2i = u0u1 . . . uj−1, uj+g, uj+1 . . . un−2i. Therefore, ϕ−1(v) =
v0v1v2 . . . vn−2 = u0u1 . . . uj−1, uj + g, uj+1 . . . un−2. Note that ϕ−1(u) = u0u1 . . . uj−1, uj ,
uj+1 . . . un−2. Thus, uv = ϕ−1(u)ϕ−1(v) ∈ E(XQk

n−1). �

Let Q be a finite group, and let S be a spanning set of Q such that S does not contain the identity element. The
directed Cayley graph Cay(S, Q) is defined as follows: its vertex set is Q, its arc set is {(g, gs) : g ∈ Q, s ∈ S}. If
for every s ∈ S we also have s−1 ∈ S, then each of the arc set of Cay(S, Q) has parallel edges going in different
directions. If we replace two arc of parallel edges going in different directions in Cay(S, Q) with an edge, then
we obtain an undirected graph called the undirected Cayley graph. Every Cayley graph in this paper is an
undirected Cayley graph.

Let (Zk)n denote the n-fold Cartesian product of the group (Zk,⊕k), where Zk = {0, 1, . . . , k−1} and where
k denotes addition modulo k. Let x = (x0, x1, . . . , xn−1) ∈ (Zk)n. Then x−1 = (k − x0, k − x1, . . . , k − xn−1).

Theorem 2.4. Let n ≥ 1 and even k ≥ 6. The expanded k-ary n-cube XQk
n is the Cayley graph

Cay(S, (Zk)n), where the spanning set S is {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1), (k−1, 0, 0, . . . , 0), (0, k−
1, 0, . . . , 0), . . . , (0, . . . , 0, k − 1), (2, 0, . . . , 0), (0, 2, 0, . . . , 0), . . . , (0, . . . , 0, 2), (k − 2, 0, . . . , 0), (0, k −
2, 0, . . . , 0), . . . , (0, . . . , 0, k − 2)}.
Proof. Note that V (XQk

n) = (Zk)n. Now define a mapping from V (XQk
n) to (Zk)n given by

ϕ : u1u2u3 . . . un−1 → u1u2 . . . un−1.

Then ϕ is bijective. Let uv ∈ E(XQk
n). Then, the definition of XQk

n, there exists an integer j ∈ {0, 1, . . . , n−1}
such that vj = uj + g (mod k) and ui = vi, for i ∈ {0, 1, . . . , n − 1} \ {j}, where g ∈ {1,−1, 2,−2}. Note that
k − 1 ≡ −1 (mod k) and k − 2 ≡ −2 (mod k). Let s = (0, . . . , 0, 0 + g, 0, . . . , 0), and let 0 + g be the j position
in the s. Then s ∈ S. Note that ϕ(u)ϕ(v) = uv. Therefore, v = u + s and hence ϕ(u)ϕ(v) ∈ E(Cay(S, (Zk)n)).
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Let ϕ(u)ϕ(v) ∈ E(Cay(S, (Zk)n)). Then, the definition of Cay(S, (Zk)n), there exists an s ∈ S such that
ϕ(v) = ϕ(u) + s. Note that ϕ(u) = u and ϕ(v) = v. Therefore, v = ϕ(v) = ϕ(u) + s = u + s. Note that
ϕ−1(u)ϕ−1(v) = uv and v = u + s. Let s = (0, . . . , 0, 0 + g, 0, . . . , 0), and let 0 + g be the j position in the s.
Then vj = uj + g (mod k) and ui = vi, for i ∈ {0, 1, . . . , n − 1} \ {j}. Note that k − 1 ≡ −1 (mod k) and
k − 2 ≡ −2 (mod k). Therefore, g ∈ {1,−1, 2,−2} and hence uv ∈ E(XQk

n). �

Note that XQk
n is a special Cayley graph. Therefore, XQk

n has the following properties.
The automorphism group of a graph G is transitive if there exists an automorphism ϕ to any pair u, v of

vertices in G such that ϕ(u) = v. In this case, G is called vertex transitive. The following proposition is clear.

Proposition 2.5. XQk
n is 4n-regular, vertex transitive.

The girth is the length of a shortest cycle in a graph G. The following proposition is clear.

Proposition 2.6. The girth of XQk
n is 3.

Proposition 2.7. Let u ∈ V (XQ[i]). Then four outside neighbor vertices of u are in four different XQ[j]′s.

Proof. Let u = u0u1 . . . un−2i. Then u ∈ V (XQ[i]), u0u1 . . . un−2i + 1 ∈ V (XQ[i + 1]), u0u1 . . . un−2i − 1 ∈
V (XQ[i − 1]), u0u1 . . . un−2i + 2 ∈ V (XQ[i + 2]) and u0u1 . . . un−2i − 2 ∈ V (XQ[i − 2]). �

Proposition 2.8. Let XQk
1 be the expanded k-ary 1-cube.

(1) If k = 6 and two vertices u, v are adjacent, then there are at most two common neighbor vertices of these
two vertices, i.e., |N(u)∩N(v)| ≤ 2. If k = 6 and two vertices u, v are not adjacent, then there are at most
four common neighbor vertices of these two vertices, i.e., |N(u) ∩ N(v)| ≤ 4.

(2) If k ≥ 8, then there are at most two common neighbor vertices of two vertices u, v, i.e., |N(u) ∩ N(v)| ≤ 2.

Proof. Let u, v ∈ V (XQk
1). Suppose that k = 6. Then XQk

1 = XQ6
1. By Proposition 2.5, without loss of

generality, we suppose that u = 0. Note that N(0) = {1, 2, 4, 5} and N(3) = {1, 2, 4, 5}. Note that two vertices
0, 3 are not adjacent and N(0)∩N(3) = {1, 2, 4, 5}. Therefore, there are at most four common neighbor vertices
of these two vertices, i.e., |N(u) ∩ N(v)| ≤ 4. From Figures 3a and 3b (geometry) is symmetrical about the
axis 03. Therefore, we consider only edges 01 and 02 for adjacent two vertices. Note that N(0) = {1, 2, 4, 5}
and N(1) = {0, 2, 3, 5}. Therefore, N(0) ∩ N(1) = {2, 5}. N(0) = {1, 2, 4, 5} and N(2) = {0, 1, 3, 4}. Therefore,
N(0) ∩ N(2) = {1, 4}. Thus, for adjacent two vertices u, v, there are at most two common neighbor vertices of
these two vertices, i.e., |N(u) ∩ N(v)| ≤ 2.

Suppose that k ≥ 8. By Proposition 2.5, we suppose that u = 0. From Figure 3b, Figure 3b (geometry) is
symmetrical about the axis 0k

2 . Therefore, we consider only two vertices: u = 0 and v ∈ {1, 2, . . . , k
2}. Note that

N(0) = {1, 2, k − 2, k − 1}, N(1) = {0, 2, 3, k − 1} and N(2) = {0, 1, 3, 4}. Therefore, N(0) ∩ N(1) = {2, k − 1}
and N(0) ∩ N(2) = {1}. Thus, for adjacent two vertices u, v, there are at most two common neighbor vertices
of these two vertices, i.e., |N(u) ∩ N(v)| ≤ 2. Now consider two vertices: u = 0 and v ∈ {3, 4, . . . , k

2}. Let
v = 3. Note that N(3) = {1, 2, 4, 5}. Therefore, N(0) ∩ N(3) = {1, 2}. Note that N(4) = {2, 3, 5, 6}. Therefore,
N(0) ∩ N(4) = {2, 6} when k = 8 and N(0) ∩ N(4) = {2} when k ≥ 10. Let v ∈ {5, 6, . . . , k

2} and x ∈ N(v).
Then 3 ≤ x ≤ k − 3. Therefore, N(0) ∩ N(x) = ∅. Thus, there are at most two common neighbor vertices of
these two vertices u, v, i.e., |N(u) ∩ N(v)| ≤ 2. �

Proposition 2.9. Let XQk
n be the expanded k-ary n-cube.

(1) If k = 6 and two vertices u, v are adjacent, then there are at most two common neighbor vertices of these
two vertices, i.e., |N(u)∩N(v)| ≤ 2. If k = 6 and two vertices u, v are not adjacent, then there are at most
four common neighbor vertices of these two vertices, i.e., |N(u) ∩ N(v)| ≤ 4.

(2) If k ≥ 8, then there are at most two common neighbor vertices of two vertices u, v, i.e., |N(u) ∩ N(v)| ≤ 2.
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Proof. We can partition XQk
n into k disjoint subgraphs XQk

n[0], XQk
n[1], . . . , XQk

n[k − 1] (abbreviated as
XQ[0], XQ[1], . . . , XQ[k − 1], if there is no ambiguity), where every vertex u0u1 . . . un−1 ∈ V (XQk

n) has a
fixed integer i in the last position un−1 for i ∈ {0, 1, . . . , k− 1}. By Proposition 2.3, each XQ[i] is isomorphic to
XQk

n−1 for 0 ≤ i ≤ k − 1. Let u, v ∈ V (XQk
n). By Proposition 2.5, without loss of generality, we suppose that

u = 00 . . .0︸ ︷︷ ︸
n

. Then u ∈ V (XQ[0]).

Suppose that k = 6. When n = 1, the result holds by Proposition 2.8. We proceed by induction on n (n ≥ 2).
Our induction hypothesis is the following.

(a) If two vertices u, v are adjacent, then there are at most two common neighbor vertices of these two vertices,
i.e., |N(u) ∩ N(v)| ≤ 2 in XQ6

n−1.
(b) If two vertices u, v are not adjacent, then there are at most four common neighbor vertices of these two

vertices, i.e., |N(u) ∩ N(v)| ≤ 4 in XQ6
n−1.

Let v ∈ V (XQ[0]). By the induction hypothesis, (a) if two vertices u, v are adjacent, |N(u)∩N(v)| ≤ 2 in XQ[0];
(b) if two vertices u, v are not adjacent, |N(u) ∩N(v)| ≤ 4 in XQ[0]. By Proposition 2.7, (N(u) ∩ V (XQ[i])) ∩
(N(v) ∩ V (XQ[i])) = ∅ for i ∈ {1, 2, . . . , 5}. Therefore, |N(u)∩N(v)| ≤ 2 for (a) and |N(u)∩N(v)| ≤ 4 for (b)
in this case.

Suppose that v ∈ V (XQ[i]) for i ∈ {1, 2, . . . , 5}. If v ∈ {0 . . .0︸ ︷︷ ︸
n−1

1, 0 . . .0︸ ︷︷ ︸
n−1

2, . . . , 0 . . . 0︸ ︷︷ ︸
n−1

4, 0 . . .0︸ ︷︷ ︸
n−1

5}, then, by the in-

duction hypothesis, (a) if two vertices u, v are adjacent, |N(u)∩N(v)| ≤ 2; (b) if two vertices u, v are not adjacent,
|N(u)∩N(v)| ≤ 4. Note that (N(u)∩V (XQ[i]))∩(N(v)∩V (XQ[i]))\{0 . . .0︸ ︷︷ ︸

n−1

1, 0 . . .0︸ ︷︷ ︸
n−1

2, . . . , 0 . . . 0︸ ︷︷ ︸
n−1

4, 0 . . . 0︸ ︷︷ ︸
n−1

5} = ∅

for i ∈ {0, 1, 2, . . . , 5}. Therefore, |N(u) ∩ N(v)| ≤ 2 or |N(u) ∩ N(v)| ≤ 4 in this case. Let v ∈
V (XQ[i])\{0 . . .0︸ ︷︷ ︸

n−1

1, 0 . . .0︸ ︷︷ ︸
n−1

2, 0 . . .0︸ ︷︷ ︸
n−1

3, 0 . . .0︸ ︷︷ ︸
n−1

4, 0 . . . 0︸ ︷︷ ︸
n−1

5} for i ∈ {1, 2, 3, 4, 5}. Since |N(u) ∩ V (XQ[i])| ≤ 1 for

i ∈ {1, 2, 3, 4, 5}, |N(v) ∩ V (XQ[0])| ≤ 1 and (N(u) ∩ V (XQ[j])) ∩ (N(v) ∩ V (XQ[j])) = ∅ for i 	= j,
|N(u) ∩ N(v)| ≤ 2 holds.

Suppose that k ≥ 8. When n = 1, the result holds by Proposition 2.8. We proceed by induction on n. Our
induction hypothesis is that |N(u) ∩ N(v)| ≤ 2 for two vertices u, v in XQk

n−1. Let v ∈ V (XQ[0]). By the
induction hypothesis, |N(u)∩N(v)| ≤ 2 for two vertices u, v in XQ[0]. By Proposition 2.7, (N(u)∩V (XQ[i]))∩
(N(v) ∩ V (XQ[i])) = ∅ for i ∈ {1, 2, . . . , k − 1}. Therefore, |N(u) ∩ N(v)| ≤ 2 in this case.

Suppose that v ∈ V (XQ[i]) for i ∈ {1, 2, . . . , k − 2, k − 1}. If v ∈ {0 . . .0︸ ︷︷ ︸
n−1

1, 0 . . .0︸ ︷︷ ︸
n−1

2, . . . , 0 . . .0︸ ︷︷ ︸
n−1

(k − 1)}, then

|N(u) ∩ N(v)| ≤ 2 by Propositions 2.7 and 2.8. Let v ∈ V (XQ[i])\{0 . . .0︸ ︷︷ ︸
n−1

1, 0 . . . 0︸ ︷︷ ︸
n−1

2, . . . , 0 . . . 0︸ ︷︷ ︸
n−1

(k − 1)}. Note

that |N(u)∩V (XQ[i])| ≤ 1, |N(v)∩V (XQ[0])| ≤ 1 and (N(u)∩V (XQ[j]))∩ (N(v)∩V (XQ[j])) = ∅ for i 	= j.
Therefore, there are at most two common neighbor vertices of two vertices u, v, i.e., |N(u) ∩ N(v)| ≤ 2. �

3. The connectivity of the expanded k-ary n-cube

In the process of the proof of the nature diagnosability of the expanded k-ary n-cube XQk
n, we use the nature

connectivity of XQk
n. Therefore, in this section, we shall show the connectivity and nature connectivity of XQk

n.

Proposition 3.1. The connectivity κ(XQk
1) = 4.

Proof. By Menger’s Theorem, a graph XQk
1 has connectivity κ(XQk

1) = 4 if and only if, given any two distinct
vertices of V (XQk

1), there are 4 vertex-disjoint paths joining them. By Theorem 2.4, it is sufficient to show
that, for u = 0 and a distinct vertex v of V (XQk

1), there are 4 vertex-disjoint paths joining u and v. By the
symmetry, we will prove that, for u = 0 and one v ∈ {1, 2, . . . , k

2}, there are 4 vertex-disjoint paths joining u
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and v. Let an odd i ∈ {2, 3, . . . , k
2}. We have that four vertex-disjoint paths: 0, 1, 3, 5, . . . , i; 0, 2, 4, . . . , i − 1, i;

0, k−1, k−3, k−5, . . . , i and 0, k−2, k−4, . . . , i+1, i. When i = 1, we have that four vertex-disjoint paths: 0, 1;
0, k− 1, 1; 0, 2, 1 and 0, k− 2, k− 4, . . . , 4, 3, 1. Let an even i ∈ {1, 2, 3, . . . , k

2}. We have that four vertex-disjoint
paths: 0, 1, 3, . . . , i − 1, i; 0, 2, 4, . . . , i; 0, k − 1, k − 3, k − 5, . . . , i + 1, i and 0, k − 2, k − 4, . . . , i. �

Proposition 3.2. The connectivity κ(XQk
2) = 8.

Proof. Note κ(XQk
2) ≤ δ(XQk

2) = 8. We prove this statement by contradiction. Suppose that F ⊆ V (XQk
2)

with |F | ≤ 7 is a cut of XQk
2 . By Proposition 2.3, each XQ[i] is isomorphic to XQk

1 for 0 ≤ i ≤ k − 1. Let
Fi = F ∩ V (XQ[i]) for i ∈ {0, 1, 2, . . . , k − 1}.

Suppose that |Fi| = max{|Fi| : 0 ≤ i ≤ k − 1}. Note that the vertex set of XQ[i] is {u0i : 0 ≤ u0 ≤ k − 1, i ∈
{1, . . . , k − 1}} and the vertex set of XQ[0] is {u00 : 0 ≤ u0 ≤ k − 1}. Now define a mapping from V (XQk

2) to
V (XQk

2) given by
ϕ : u0u1 → u0(u1 − i).

Then ϕ(u0i) = u00.

Claim 1. ϕ is an automorphism of XQk
2.

It is clear that ϕ is bijective. Let u = u0u1, v = v0v1, and uv ∈ E(XQk
2). Then, the definition of XQk

2 ,
v0 = u0 + g (mod k) and v1 = u1, or v0 = u0, v1 = u1 + g (mod k), where g ∈ {1,−1, 2,−2}. Suppose, first, that
v0 = u0 + g (mod k) and v1 = u1. Note ϕ(u) = u0, u1 − i and ϕ(v) = ϕ(u0 + g, u1) = u0 + g, u1 − i. Suppose,
second, that v0 = u0, v1 = u1 + g (mod k). Note ϕ(u) = u0, u1 − i and ϕ(v) = ϕ(u0, u1 + g) = u0, u1 + g − i.
Therefore, ϕ(u)ϕ(v) ∈ E(XQk

2) by the definition of XQk
2 .

Let ϕ(u) = u0, u1 − i, ϕ(v) = v0, v1 − i and ϕ(u)ϕ(v) ∈ E(XQk
2). Then, the definition of XQk

2 , v0 = u0 + g
(mod k) and v1 − i = u1 − i, or v0 = u0, v1 − i = u1 − i + g (mod k), where g ∈ {1,−1, 2,−2}. Suppose,
first, that v0 = u0 + g (mod k) and v1 − i = u1 − i. Then ϕ−1(u) = u0u1 and ϕ−1(v) = u0 + g, u1. Suppose,
second, that v0 = u0, v1 − i = u1 − i + g (mod k). Then ϕ−1(u) = u0u1 and ϕ−1(v) = u0, u1 + g. Therefore,
uv = ϕ−1(u)ϕ−1(v) ∈ E(XQk

n−1) by the definition of XQk
2 . Therefore, ϕ is an automorphism.

Claim 2. Let ϕ be the above. If F ⊆ V (XQk
2) is a cut of XQk

2 , then ϕ(F ) is also a cut of XQk
2 . In particular,

ϕ(Fi) ⊆ V (XQ[0]) and |ϕ(Fi)| = |Fi|.
Since ϕ is bijective, |ϕ(F )| = |F | and |ϕ(Fi)| = |Fi|. Let B1, . . . , Bk (k ≥ 2) be the components of XQk

2 −F .
Then [V (Bi), V (Bj)] = ∅ for 1 ≤ i, j ≤ k and i 	= j. Let bi ∈ V (Bi) and bj ∈ V (Bj). Then bi is not adjacent
to bj . Since ϕ is an automorphism, ϕ(bi) is not adjacent to ϕ(bj). Therefore, [ϕ(V (Bi)), ϕ(V (Bj))] = ∅ for
1 ≤ i, j ≤ k and i 	= j, and hence ϕ(F ) is also a cut of XQk

2 . Let f ∈ Fi. Then f = u0i for 0 ≤ u0 ≤ k − 1.
Therefore, ϕ(f) = u00 ∈ V (XQ[0]) and hence ϕ(Fi) ⊆ V (XQ[0]).

By Claim 2, without loss of generality, we suppose that |F0| = max{|Fi| : 0 ≤ i ≤ k − 1}. We consider the
following cases.

Case 1. |F0| = 1.
Since |F0| = max{|Fi| : 0 ≤ i ≤ k−1}, there are six Fi’s such that |Fi| = 1 for i ∈ {1, 2, . . . , k−1} and k ≥ 8.

By Proposition 3.1, XQ[i]− Fi is connected. Since there is a complete matching between XQ[i] and XQ[i + 1]
for i ∈ {0, 1, . . . , k − 2}, XQk

2 − F is connected, a contradiction to that F is a cut of XQk
2 .

Case 2. |F0| = 2.
Since |F0| = max{|Fi| : 0 ≤ i ≤ k−1}, there are at most five Fi’s such that 1 ≤ |Fi| ≤ 2 for i ∈ {1, 2, . . . , k−1}.

By Proposition 3.1, XQ[i]− Fi is connected. Since there is a complete matching between XQ[i] and XQ[i + 1]
for i ∈ {0, 1, . . . , k − 2}, XQk

2 − F is connected, a contradiction to that F is a cut of XQk
2 .

Case 3. |F0| = 3.
Since |F0| = max{|Fi| : 0 ≤ i ≤ k−1}, there are at most four Fi’s such that 1 ≤ |Fi| ≤ 3 for i ∈ {1, 2, . . . , k−1}.

By Proposition 3.1, XQ[i]−Fi is connected. Since there is a complete matching between XQ[i] and XQ[i+1] for
i ∈ {0, 1, . . . , k− 2}, XQk

2 [V (XQ[1]−F1)∪ . . .∪V (XQ[k− 1]−Fk−1)] is connected. Without loss of generality,
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we suppose that |F1| = 3. Then |Fk−1| ≤ 1. Since there is a complete matching between XQ[0] and XQ[k − 1],
XQk

2 − F is connected, a contradiction to that F is a cut of XQk
2 .

Case 4. |F0| = 4.
In this case, there are at most three Fi’s such that 1 ≤ |Fi| ≤ 3 for i ∈ {1, 2, . . . , k − 1}. By Proposition 3.1,

XQ[i]−Fi is connected. Since there is a complete matching between XQ[i] and XQ[i+1] for i ∈ {0, 1, . . . , k−2},
XQk

2 [V (XQ[1] − F1) ∪ . . . ∪ V (XQ[k − 1] − Fk−1)] is connected. Since |F1| + |F2| + . . . + |Fk−1| = 3, by
Proposition 2.7, XQk

2 − F is connected, a contradiction to that F is a cut of XQk
2.

Case 5. |F0| = 5.
In this case, there are at most two Fi’s such that 1 ≤ |Fi| ≤ 2 for i ∈ {1, 2, . . . , k − 1}. By Proposition 3.1,

XQ[i]−Fi is connected. Since there is a complete matching between XQ[i] and XQ[i+1] for i ∈ {0, 1, . . . , k−2},
XQk

2 [V (XQ[1] − F1) ∪ . . . ∪ V (XQ[k − 1] − Fk−1)] is connected. Since |F1| + |F2| + . . . + |Fk−1| = 2, by
Proposition 2.7, XQk

2 − F is connected, a contradiction to that F is a cut of XQk
2.

Case 6. |F0| = 6.
In this case, there is one Fi’s such that |Fi| = 1 for i ∈ {1, 2, . . . , k − 1}. By Proposition 3.1, XQ[i] − Fi

is connected. Since there is a complete matching between XQ[i] and XQ[i + 1] for i ∈ {0, 1, . . . , k − 2},
XQk

2 [V (XQ[1] − F1) ∪ . . . ∪ V (XQ[k − 1] − Fk−1)] is connected. Since |F1| + |F2| + . . . + |Fk−1| = 1, by
Proposition 2.7, XQk

2 − F is connected, a contradiction to that F is a cut of XQk
2.

Case 7. |F0| = 7.
In this case, |F1| = |F2| = . . . = |Fk−1| = 0. Since there is a complete matching between XQ[i] and

XQ[i + 1] for i ∈ {0, 1, . . . , k − 2}, XQk
2 [V (XQ[1] − F1) ∪ . . . ∪ V (XQ[k − 1] − Fk−1)] is connected. Since

|F1| + |F2| + . . . + |Fk−1| = 0, by Proposition 2.7, XQk
2 − F is connected, a contradiction to that F is a cut of

XQk
2 .

By Cases 1−7, The connectivity XQk
2 is 8. �

Theorem 3.3. Let XQk
n be the expanded k-ary n-cube with n ≥ 1 and even k ≥ 6, Then the connectivity

κ(XQk
n) = 4n.

Proof. We can partition XQk
n into k disjoint subgraphs XQk

n[0], XQk
n[1], . . . , XQk

n[k − 1] (abbreviated as
XQ[0], XQ[1], . . . , XQ[k − 1], if there is no ambiguity), where every vertex u = u0u1 . . . un−1 ∈ V (XQk

n) has
a fixed integer i in the last position un−1 for i ∈ {0, 1, . . . , k − 1}. When n = 1 and n = 2, the result holds by
Propositions 3.1 and 3.2. We proceed by induction on n. Our induction hypothesis is κ(XQk

n−1) = 4n− 4 when
n ≥ 3. By Proposition 2.3, each XQ[i] is isomorphic to XQk

n−1 for 0 ≤ i ≤ k − 1. We will prove κ(XQk
n) = 4n.

Suppose that F ⊆ V (XQk
n) is a minimum cut of XQk

n. Since κ(XQk
n) ≤ δ(XQk

n) = 4n, |F | ≤ 4n holds. It
is sufficient to show that XQk

n − F is connected for |F | ≤ 4n − 1. We prove this statement by contradiction.
Suppose that F ⊆ V (XQk

n) with |F | ≤ 4n−1 is a cut of XQk
n. Let Fi = F ∩V (XQ[i]) for i ∈ {0, 1, 2, . . . , k−1}

with |F0| = max{|Fi| : 0 ≤ i ≤ k − 1}. We consider the following cases.

Case 1. |F0| ≤ 4n − 5.
Since |F0| = max{|Fi| : 0 ≤ i ≤ k − 1}, |Fi| ≤ 4n − 5. By the induction hypothesis, XQ[i]− Fi is connected.

Since kn−1 > 4n − 5 + (4n − 5) = 8n − 10 and there is a complete matching between XQ[i] and XQ[i + 1] for
i ∈ {0, 1, . . . , k − 2}, XQk

n − F is connected, a contradiction to that F is a cut of XQk
n.

Case 2. 4n − 4 ≤ |F0| ≤ 4n − 1.
In this case, there are at most three Fi’s such that 1 ≤ |Fi| ≤ 3. By Proposition 3.1, XQ[i]−Fi is connected

for i ∈ {1, 2, . . . , k−1}. Since there is a complete matching between XQ[i] and XQ[i+1] for i ∈ {0, 1, . . . , k−2},
XQk

n[V (XQ[1]− F1) ∪ . . . ∪ V (XQ[k − 1]− Fk−1)] is connected. By Proposition 2.7, XQk
n − F is connected, a

contradiction to that F is a cut of XQk
n.

By Cases 1 and 2, The connectivity XQk
n is 4n. �
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Remarks on Theorem 3.3. First, the connectivity of the expanded k-ary n-cube XQk
n is maximum. Second,

by Menger’s Theorem, any two distinct vertices of XQk
n, there are 4n vertex-disjoint paths joining them. Having

a high connectivity is a desirable property of any interconnection network as it provides fault-tolerance with
regard to message routing, allows for hot-spots to be avoided, and allows large messages to be split up into
smaller ones and routed in parallel along vertex-disjoint paths.

A connected graph G is super connected if every minimum cut F of G isolates one vertex. If, in addition,
G − F has two components, one of which is an isolated vertex, then G is tightly |F | super connected.

Theorem 3.4. Let XQk
n be the expanded k-ary n-cube with n ≥ 1 and even k ≥ 6, Then XQk

n is tightly 4n
super connected.

Proof. Let F ⊆ V (XQk
n) with |F | = 4n be any minimum cut of XQk

n. Let Fi = F ∩ V (XQ[i]) for i ∈
{0, 1, 2, . . . , k − 1} with |F0| = max{|Fi| : 0 ≤ i ≤ k − 1}. We consider the following cases.

Case 1. |F0| ≤ 4n − 5.
Since |F0| = max{|Fi| : 0 ≤ i ≤ k − 1}, |Fi| ≤ 4n − 5. By Theorem 3.3, XQ[i] − Fi is connected. Since

kn−1 > 4n − 5 + (4n − 5) = 8n − 10 and there is a complete matching between XQ[i] and XQ[i + 1] for
i ∈ {0, 1, . . . , k − 2}, XQk

n − F is connected, a contradiction to that F is a cut of XQk
n.

Case 2. |F0| = 4n − 4.
Suppose that there is only one Fi such that |Fi| 	= 0. Then |Fi| = 4. Without loss of generality, we suppose

that |F1| = 4. By Proposition 3.1, XQ[i] − Fi is connected for i ∈ {2, 3, . . . , k − 1}. Since there is a complete
matching between XQ[i] and XQ[i+1] for i ∈ {0, 1, . . . , k−2}, XQk

2 [V (XQ[2]−F3)∪ . . .∪V (XQ[k−1]−Fk−1)]
is connected. Since |Fk−1| = 0 (or |F2| = 0) and there is a complete matching between XQ[0] and XQ[k − 1]
(or XQ[0] and XQ[2]), XQk

n − F is connected, a contradiction to that F is a cut of XQk
n.

Suppose that there are two Fi’s such that |Fi| 	= 0. Then |Fi| ≤ 3. By Proposition 3.1, XQ[i]−Fi is connected
for i ∈ {1, 2, . . . , k−1}. Since there is a complete matching between XQ[i] and XQ[i+1] for i ∈ {0, 1, . . . , k−2},
XQk

2 [V (XQ[1]− F1) ∪ . . . ∪ V (XQ[k − 1]− Fk−1)] is connected. By Proposition 2.7, XQk
n − F is connected, a

contradiction to that F is a cut of XQk
n.

Suppose that there are three Fi’s such that |Fi| 	= 0. Then |Fi| ≤ 2. By Proposition 3.1, XQ[i]−Fi is connected
for i ∈ {1, 2, . . . , k−1}. Since there is a complete matching between XQ[i] and XQ[i+1] for i ∈ {0, 1, . . . , k−2},
XQk

2 [V (XQ[1]− F1) ∪ . . . ∪ V (XQ[k − 1]− Fk−1)] is connected. By Proposition 2.7, XQk
n − F is connected, a

contradiction to that F is a cut of XQk
n.

Suppose that there are four Fi’s such that |Fi| 	= 0. Then |Fi| ≤ 1. By Proposition 3.1, XQ[i] − Fi is
connected for i ∈ {1, 2, . . . , k − 1}. Since there is a complete matching between XQ[i] and XQ[i + 1] for
i ∈ {0, 1, . . . , k − 2}, XQk

2 [V (XQ[1] − F1) ∪ . . . ∪ V (XQ[k − 1] − Fk−1)] is connected. Let XQ[0] − F0 be
connected. Since kn−1 > 4n − 4 + 1 = 4n − 3 and there is a complete matching between XQ[0] and XQ[1],
XQk

n − F is connected, a contradiction to that F is a cut of XQk
n. Let XQ[0] − F0 be disconnected and

let B1, . . . , Bk (k ≥ 2) be the components of XQ[0] − F0. If k ≥ 3, then, by Proposition 2.7, (N(V (B1)) ∪
N(V (B2))) ∩ (V (XQ[1] − F1) ∪ . . . ∪ V (XQ[k − 1] − Fk−1))| ≥ 8. If |V (Br)| ≥ 2 (1 ≤ r ≤ k − 1), then,
by Proposition 2.7, |N(V (B1) ∩ (V (XQ[1] − F1) ∪ . . . ∪ (V (XQ[k − 1] − Fk−1))| ≥ 8. Combining this with
|F1| + . . . + |Fk−1| = 4, we have that XQ[0] − F0 has two components, one of which is an isolated vertex
v. Since kn−1 > 4n − 4 + 1 + 1 = 4n − 2 and there is a complete matching between XQ[0] and XQ[1],
XQk

n[V (XQ[0]− F0 − v) ∪ V (XQ[1]− F1)∪ . . .∪ V (XQ[k − 1]− Fk−1)] is connected. Therefore, XQk
n −F has

two components, one of which is an isolated vertex.
Case 3. 4n− 3 ≤ |F0| ≤ 4n.

In this case, there are at most three Fi’s such that 1 ≤ |Fi| ≤ 3. By Proposition 3.1, XQ[i]−Fi is connected
for i ∈ {1, 2, . . . , k−1}. Since there is a complete matching between XQ[i] and XQ[i+1] for i ∈ {0, 1, . . . , k−2},
XQk

2 [V (XQ[1]− F1) ∪ . . . ∪ V (XQ[k − 1]− Fk−1)] is connected. By Proposition 2.7, XQk
n − F is connected, a

contradiction to that F is a cut of XQk
n.

By Cases 1−3, XQk
n is tightly 4n super connected. �
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Proposition 3.5. Let XQk
2 be the expanded k-ary 2-cube with even k ≥ 6, and let F ⊆ V (XQk

2) with |F | ≤ 11.
If XQk

2 − F is disconnected, then XQk
2 − F has two components, one of which is an isolated vertex.

Proof. We can partition XQk
2 into k disjoint subgraphs XQk

2 [0], XQk
2 [1], . . . , XQk

2 [k − 1] (abbreviated as
XQ[0], XQ[1], . . . , XQ[k − 1], if there is no ambiguity), where every vertex u0u1 ∈ V (XQk

2) has a fixed
integer i in the last position u1 for i ∈ {0, 1, . . . , k − 1}. By Proposition 2.3, each XQ[i] is isomorphic to XQk

1

for 0 ≤ i ≤ k − 1. By Theorem 3.3, κ(XQ[i]) = 4. Let Fi = F ∩ V (XQ[i]) for i ∈ {0, 1, 2, . . . , k − 1} with
|F0| = max{|Fi| : 0 ≤ i ≤ k − 1}. We consider the following cases.

Case 1. |F0| ≤ 3.
Since |F0| = max{|Fi| : 0 ≤ i ≤ k − 1}, |Fi| ≤ 3. By Theorem 3.3, XQ[i]− F is connected.
Suppose that |F0| ≤ 2. Then |Fi| ≤ 2 for i ∈ {1, 2, . . . , k − 1}. Since there is a complete matching between

XQ[i] and XQ[i+1] for i ∈ {0, 1, . . . , k− 2}, XQk
2 −F is connected, a contradiction to that F is a cut of XQk

2 .
Suppose that |F0| = 3. Then |Fi| ≤ 3 for i ∈ {1, 2, . . . , k − 1}. If |Fi| ≤ 2 for i ∈ {1, 2, . . . , k − 1}, then

XQk
2 − F is connected, a contradiction to that F is a cut of XQk

2 . If k ≥ 8, then XQk
2 − F is connected, a

contradiction to that F is a cut of XQk
2 . Therefore, let k = 6 and there be Fi’s for i ∈ {1, 2, 3, 4, 5} such that

|Fi| = 3. Since |F1| + . . . + |F5| ≤ 8, there are at most two Fi’s such that |Fi| = 3. Suppose that there is one
Fi such that |Fi| = 3. Without loss of generality, let that |F1| = 3. Then |F5| ≤ 2. Since there is a complete
matching between XQ[i] and XQ[i + 1] for i ∈ {0, 1, . . . , 4}, Q6

2[V (XQ[1] − F1) ∪ . . . ∪ V (XQ[5] − F5)] is
connected. Since there is a complete matching between XQ[0] and XQ[5], Q6

2 −F is connected, a contradiction
to that F is a cut of Q6

2. Suppose that there are two Fi such that |Fi| = 3. Without loss of generality, let that
|F1| = 3 and |F5| = 3. Since there is a complete matching between XQ[i] and XQ[i + 1] for i ∈ {0, 1, . . . , 4},
Q6

2[V (XQ[1]−F1)∪ . . .∪ V (XQ[5]−F5)] is connected. Since there is a complete matching between XQ[0] and
XQ[2], Q6

2 − F is connected, a contradiction to that F is a cut of Q6
2.

Case 2. |F0| = 4.
Since |F0| = max{|Fi| : 0 ≤ i ≤ k − 1}, |Fi| ≤ 4. Since |F1| + . . . + |F5| ≤ 7, there is at most one Fi such

that |Fi| = 4 for i ∈ {1, 2 . . . , k − 1}. Without loss of generality, let that |F1| = 4. Then |F2|+ . . . + |Fk−1| ≤ 3.
By Theorem 3.3, XQ[i] − F is connected for i ∈ {2, 3, . . . , k − 1}. Since there is a complete matching between
XQ[i] and XQ[i + 1] for i ∈ {0, 1, . . . , 4}, XQk

2[V (XQ[2] − F2) ∪ . . . ∪ V (XQ[k − 1] − Fk−1)] is connected.
By Theorem 3.4, XQ[i] − Fi is connected or XQ[i] − Fi has two components, one of which is an isolated
vertex vi for i ∈ {0, 1}. Let XQ[i] − Fi be connected for i ∈ {1, 2}. Then |V (XQ[i] − Fi)| ≥ 2 for i ∈
{1, 2}. By Proposition 2.7, XQk

2 − F is connected, a contradiction to that F is a cut of XQk
2. Without loss of

generality, suppose that XQ[1]− F1 has two components, one of which is an isolated vertex and XQ[0]− F0 is
connected. Since |V (XQ[0] − F0)| ≥ 2 and |F2| + . . . + |Fk−1| ≤ 3, by Proposition 2.7, XQk

2 [V (XQ[0] − F0) ∪
V (XQ[2]− F2) ∪ . . . ∪ V (XQ[k − 1]− Fk−1)] is connected. Therefore, XQk

2 − F is connected, or XQk
2 − F has

two components, one of which is an isolated vertex. Then XQ[i] − Fi is disconnected for i ∈ {1, 2}. Suppose
that k = 6. Then XQ[i] − Fi has two components, two of which are isolated vertices for i ∈ {1, 2}. Since
|F2|+ . . .+ |F5| ≤ 3, by Theorem 3.4, XQ6

2[V (XQ[i]−Fi)∪V (XQ[2]−F2)∪ . . .∪V (XQ[5]−F5)] is connected,
or XQ6

2[V (XQ[i]−Fi)∪V (XQ[2]−F2)∪ . . .∪V (XQ[5]−F5)] has two components, one of which is an isolated
vertex vi for i ∈ {0, 1}. Note that |N(v0)∩N(v1)| ≤ 2. Since |N(v0)∩N(v1)| ≤ 2 and |F2|+. . .+|F5| ≤ 3, XQ6

2−F
is connected, or XQ6

2 − F has two components, one of which is an isolated vertex. Suppose that k ≥ 8. Since
|V (XQ[0]−F0)| ≥ 3 and |F2|+. . .+|Fk−1| ≤ 3, XQk

2 [V (XQ[0]−F0)∪V (XQ[2]−F2)∪. . .∪V (XQ[k−1]−Fk−1)]
is connected, or XQk

2 [V (XQ[0]−F0)∪V (XQ[2]−F2)∪ . . .∪V (XQ[k− 1]−Fk−1)] has two components, one of
which is an isolated vertex. If XQk

2[V (XQ[0]−F0)∪ V (XQ[2]−F2)∪ . . .∪ V (XQ[k− 1]−Fk−1)] is connected,
then XQk

2 − F is connected, or XQk
n − F has two components, one of which is an isolated vertex. Then

XQk
2 [V (XQ[0] − F0) ∪ V (XQ[2] − F2) ∪ . . . ∪ V (XQ[k − 1] − Fk−1)] has two components, one of which is an

isolated vertex. Since |V (XQ[1]−F1)| ≥ 3, XQk
2 [V (XQ[1]−F1)∪ V (XQ[2]−F2)∪ . . .∪ V (XQ[k− 1]−Fk−1)]

is connected, or XQk
2 [V (XQ[1]−F1)∪V (XQ[2]−F2)∪ . . .∪V (XQ[k− 1]−Fk−1)] has two components, one of

which is an isolated vertex. Suppose that XQk
2[V (XQ[i]−Fi)∪V (XQ[2]−F2)∪ . . .∪V (XQ[k−1]−Fk−1)] has
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two components, one of which is an isolated vertex vi for i ∈ {0, 1}. By Proposition 2.9, |N(v0) ∩ N(v1)| ≤ 2.
Since |N(v0)∩N(v1)| ≤ 2 and |F2|+ . . .+ |Fk−1| ≤ 3, XQk

2 −F is connected, or XQk
2 −F has two components,

one of which is an isolated vertex.
Suppose that there are at most three Fi’s such that |Fi| 	= 0. Then |Fi| ≤ 3 for i ∈ {2, 3, . . . , k − 1}. By

Theorem 3.3, XQ[i]−F is connected for i ∈ {2, 3, . . . , k−1}. Since there is a complete matching between XQ[i]
and XQ[i + 1], for i ∈ {0, 1, . . . , k − 2}, XQk

2[V (XQ[2] − F2) ∪ . . . ∪ V (XQ[k − 1] − Fk−1)] is connected. By
Proposition 2.7, XQk

2 − F is connected, a contradiction to that F is a cut of XQk
2.

Case 3. |F0| = 5.
In this case, |F1| + . . . + |Fk−1| ≤ 11 − 5 = 6. Since |F0| = max{|Fi| : 0 ≤ i ≤ k − 1}, |Fi| ≤ 5 for

i ∈ {1, 2, . . . , k− 1}. Suppose that |Fi| ≤ 3 for i ∈ {1, 2, . . . , k− 1}. By Theorem 3.3, XQ[i]−F is connected for
i ∈ {1, 2 . . . , k−1}. Since there is a complete matching between XQ[i] and XQ[i+1] ( or XQ[i] and XQ[i+2]),
for i ∈ {0, 1, . . . , k−2}, XQk

2 [V (XQ[1]−F1)∪ . . .∪V (XQ[k−1]−Fk−1)] is connected. Since |F2|+ . . .+ |F5| ≤ 6,
by Proposition 2.7, XQk

2 −F is connected, or XQk
2 −F has two components, one of which is an isolated vertex.

Note that there is at most one Fi such that |Fi| = 4 for i ∈ {1, 2, . . . , k − 1}. Without loss of generality, let
that |F1| = 4. Since |F1|+ . . .+ |Fk−1| ≤ 6, there are at most three Fi’s such that |Fi| 	= 0 for i ∈ {1, 2, . . . , k−1}.
By Proposition 2.7, XQk

2 − F is connected, a contradiction to that F is a cut of XQk
2 .

Note that there is at most one Fi such that |Fi| = 5 for i ∈ {1, 2, . . . , k − 1}. Without loss of generality, let
that |F1| = 5. Since |F1|+ . . .+ |Fk−1| ≤ 6, there are at most two Fi’s such that |Fi| 	= 0 for i ∈ {1, 2, . . . , k−1}.
By Proposition 2.7, XQk

2 − F is connected, a contradiction to that F is a cut of XQk
2 .

Case 4. |F0| = 6.
In this case, |F1|+ . . . + |Fk−1| ≤ 11− 6 = 5. Suppose that |Fi| ≤ 3 for i ∈ {1, 2, . . . , k − 1}. By Theorem 3.3,

XQ[i]−F is connected for i ∈ {1, 2 . . . , k−1}. Since there is a complete matching between XQ[i] and XQ[i+1],
for i ∈ {0, 1, . . . , k−2}, XQk

2 [V (XQ[1]−F1)∪ . . .∪V (XQ[k−1]−Fk−1)] is connected. Since |F2|+ . . .+ |F5| ≤ 5,
by Proposition 2.7, XQk

2 −F is connected, or XQk
2 −F has two components, one of which is an isolated vertex.

Note that there is at most one Fi such that |Fi| = 4 for i ∈ {1, 2, . . . , k − 1}. Without loss of generality, let
that |F1| = 4. Since |F1|+ . . .+ |Fk−1| ≤ 5, there are at most two Fi’s such that |Fi| 	= 0 for i ∈ {1, 2, . . . , k−1}.
By Proposition 2.7, XQk

2 − F is connected, a contradiction to that F is a cut of XQk
2 .

Note that there is at most one Fi such that |Fi| = 5 for i ∈ {1, 2, . . . , k − 1}. Without loss of generality, let
that |F1| = 5. Since |F1|+ . . . + |Fk−1| ≤ 5, there are at most one Fi such that |Fi| 	= 0 for i ∈ {1, 2, . . . , k − 1}.
By Proposition 2.7, XQk

2 − F is connected, a contradiction to that F is a cut of XQk
2 .

Case 5. |F0| = 7.
In this case, k ≥ 8 and |F1|+ . . . + |F5| ≤ 4. Suppose that |Fi| ≤ 3 for i ∈ {1, 2, . . . , k − 1}. By Theorem 3.3,

XQ[i]−F is connected for i ∈ {1, 2 . . . , k−1}. Since there is a complete matching between XQ[i] and XQ[i+1],
for i ∈ {0, 1, . . . , k−2}, XQk

2 [V (XQ[1]−F1)∪ . . .∪V (XQ[k−1]−Fk−1)] is connected. Since |F2|+ . . .+ |F5| ≤ 4,
by Proposition 2.7, XQk

2 −F is connected, or XQk
2 −F has two components, one of which is an isolated vertex.

Note that there is at most one Fi such that |Fi| = 4 for i ∈ {1, 2, . . . , k − 1}. Without loss of generality, let
that |F1| = 4. Since |F1|+ . . . + |Fk−1| ≤ 4, there are at most one Fi such that |Fi| 	= 0 for i ∈ {1, 2, . . . , k − 1}.
By Proposition 2.7, XQk

2 − F is connected, a contradiction to that F is a cut of XQk
2 .

Case 6. 8 ≤ |F0| ≤ 11.
In this case, |F1| + . . . + |F5| ≤ 3. Since there is a complete matching between XQ[i] and XQ[i + 1] for

i ∈ {0, 1, . . . , k−2}, Qk
2 [V (XQ[1]−F1)∪ . . .∪V (XQ[k−1]−Fk−1)] is connected. By Proposition 2.7, XQk

2 −F
is connected, a contradiction to that F is a cut of XQk

2 . �

Proposition 3.6. Let XQk
n be the expanded k-ary n-cube with even k ≥ 6, and let F ⊆ V (XQk

n) with |F | ≤
8n − 5. If XQk

n − F is disconnected, then XQk
n − F has two components, one of which is an isolated vertex.

Proof. We can partition XQk
n into k disjoint subgraphs XQk

n[0], XQk
n[1], . . . , XQk

n[k − 1] (abbreviated as
XQ[0], XQ[1], . . . , XQ[k − 1], if there is no ambiguity), where every vertex u0u1 . . . un−1 ∈ V (XQk

n) has a
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fixed integer i in the last position un−1 for i ∈ {0, 1, . . . , k − 1}. By Proposition 2.3, each XQ[i] is isomorphic
to XQk

n−1 for 0 ≤ i ≤ k − 1. Let F ⊆ V (XQk
n) with |F | ≤ 8n − 5 and let XQk

n − F is disconnected. Let
Fi = F ∩ V (XQ[i]) for i ∈ {0, 1, 2, . . . , k − 1} with |F0| = max{|Fi| : 0 ≤ i ≤ k − 1}. When n = 2, the result
holds by Propositions 3.5. We proceed by induction on n. Our induction hypothesis is that XQk

n−1−F has two
components, one of which is an isolated vertex for |F | ≤ 8n − 13 and n ≥ 3 if XQk

n−1 − F is disconnected. By
Proposition 2.3, each XQ[i] is isomorphic to XQk

n−1 for 0 ≤ i ≤ k − 1. We consider the following cases.

Case 1. |F0| ≤ 4n − 5.
Since |F0| = max{|Fi| : 0 ≤ i ≤ k − 1}, |Fi| ≤ 4n − 5 for i ∈ {1, 2, . . . , k − 1}. By Theorem 3.3, XQ[i] − F is

connected for i ∈ {0, 1, . . . , k − 1}. Since kn−1 > 4n− 5 + (4n− 5) = 8n− 10 and there is a complete matching
between XQ[i] and XQ[i + 1], for i ∈ {0, 1, . . . , k − 2}, XQk

n − F is connected, a contradiction to that F is a
cut of XQk

n.

Case 2. |F0| = 4n − 4.
In this case, |F1|+. . .+|Fk−1| ≤ 8n−5−(4n−4) = 4n−1. Since |F0| = max{|Fi| : 0 ≤ i ≤ k−1}, |Fi| ≤ 4n−4

for i ∈ {1, 2, . . . , k − 1}. Therefore, there is at most one Fi such that |Fi| = 4n − 4 for i ∈ {1, 2, . . . , k − 1}.
Without loss of generality, let that |F1| = 4n− 4.

Suppose that there are four Fi’s such that |Fi| 	= 0. Then |Fi| ≤ 1 for i ∈ {2, 3, . . . , k − 1}. By Theorem 3.3,
XQ[i]−F is connected for i ∈ {2, 3, . . . , k−1}. Since there is a complete matching between XQ[i] and XQ[i+1],
for i ∈ {0, 1, . . . , k − 2}, XQk

n[V (XQ[2] − F2) ∪ . . . ∪ V (XQ[k − 1] − Fk−1)] is connected. By Theorem 3.4,
XQ[i]− Fi is connected or XQ[i]− Fi has two components, one of which is an isolated vertex vi for i ∈ {0, 1}.
Let XQ[i]− Fi be connected for i ∈ {1, 2}. Note that kn−1 − (4n − 4) > 2 and hence |V (XQ[i] − Fi)| ≥ 2. By
Proposition 2.7, XQk

n − F is connected, a contradiction to that F is a cut of XQk
n. Without loss of generality,

suppose that XQ[1]− F1 has two components, one of which is an isolated vertex and XQ[0]− F0 is connected.
Since |V (XQ[0]−F0)| ≥ 2 and |F2|+. . .+|Fk−1| = 3, by Proposition 2.7, XQk

n[V (XQ[0]−F0)∪V (XQ[2]−F2)∪
. . . ∪ V (XQ[k − 1]− Fk−1)] is connected. Therefore, XQk

n − F is connected, or XQk
n − F has two components,

one of which is an isolated vertex. Then XQ[i] − Fi be disconnected for i ∈ {1, 2}. Since |V (XQ[0] − F0)| ≥ 3
and |F2| + . . . + |Fk−1| = 3, XQk

n[V (XQ[0]− F0) ∪ V (XQ[2]− F2) ∪ . . . ∪ V (XQ[k − 1] − Fk−1)] is connected,
or XQk

n[V (XQ[0] − F0) ∪ V (XQ[2] − F2) ∪ . . . ∪ V (XQ[k − 1] − Fk−1)] has two components, one of which
is an isolated vertex. If XQk

n[V (XQ[0] − F0) ∪ V (XQ[2] − F2) ∪ . . . ∪ V (XQ[k − 1] − Fk−1)] is connected,
then XQk

n − F is connected, or XQk
n − F has two components, one of which is an isolated vertex. Then

XQk
n[V (XQ[0] − F0) ∪ V (XQ[2] − F2) ∪ . . . ∪ V (XQ[k − 1] − Fk−1)] has two components, one of which is an

isolated vertex v0. Since |V (XQ[1]−F1)| ≥ 3, XQk
n[V (XQ[1]−F1)∪V (XQ[2]−F2)∪ . . .∪V (XQ[k−1]−Fk−1)]

is connected, or XQk
n[V (XQ[1]−F1)∪V (XQ[2]−F2)∪ . . .∪V (XQ[k−1]−Fk−1)] has two components, one of

which is an isolated vertex. Suppose that XQk
n[V (XQ[i]−Fi)∪V (XQ[2]−F2)∪ . . .∪V (XQ[k−1]−Fk−1)] has

two components, one of which is an isolated vertex vi for i ∈ {0, 1}. By Proposition 2.9, |N(v0) ∩ N(v1)| ≤ 2.
Since |N(v0)∩N(v1)| ≤ 2 and |F2|+ . . .+ |Fk−1| ≤ 3, XQk

n−F is connected, or XQk
n−F has two components,

one of which is an isolated vertex.
Suppose that there are three Fi’s such that |Fi| 	= 0. Then |Fi| ≤ 2 for i ∈ {2, 3, . . . , k − 1}. By Theorem 3.3,

XQ[i]−F is connected for i ∈ {2, 3, . . . , k−1}. Since there is a complete matching between XQ[i] and XQ[i+1],
for i ∈ {0, 1, . . . , k − 2}, XQk

n[V (XQ[2] − F2) ∪ . . . ∪ V (XQ[k − 1] − Fk−1)] is connected. By Proposition 2.7,
XQk

n − F is connected, a contradiction to that F is a cut of XQk
n.

Case 3. |F0| = 4n − 3.
In this case, |F1|+. . .+|Fk−1| ≤ 8n−5−(4n−3) = 4n−2. Since |F0| = max{|Fi| : 0 ≤ i ≤ k−1}, |Fi| ≤ 4n−3

for i ∈ {1, 2, . . . , k − 1}. Suppose that |Fi| ≤ 4n − 5 for i ∈ {1, 2, . . . , k − 1}. By Theorem 3.3, XQ[i] − F is
connected for i ∈ {1, 2 . . . , k − 1}. Since there is a complete matching between XQ[i] and XQ[i + 1], for
i ∈ {0, 1, . . . , k−2}, XQk

n[V (XQ[1]−F1)∪. . .∪V (XQ[k−1]−Fk−1)] is connected. Since |F0| = 4n−3 ≤ 8n−13,
XQ[0] − F0 has two components, one of which is an isolated vertex v0 by the induction hypothesis. Since
kn−1 > 4n−3+4n−4+1 = 8n−6, XQk

n−F is connected, or has two components, one of which is an isolated.
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Note that there is at most one Fi such that |Fi| = 4n−4 for i ∈ {1, 2, . . . , k−1}. Without loss of generality, let
that |F1| = 4n−4. Since |F1|+. . .+|Fk−1| ≤ 4n−2, there are three Fi’s such that |Fi| 	= 0 for i ∈ {1, 2, . . . , k−1}.
By Proposition 2.7, XQk

n − F is connected, a contradiction to that F is a cut of XQk
n.

Note that there is at most one Fi such that |Fi| = 4n−3 for i ∈ {1, 2, . . . , k−1}. Without loss of generality, let
that |F1| = 4n−3. Since |F1|+ . . .+ |Fk−1| ≤ 4n−2, there are two Fi’s such that |Fi| 	= 0 for i ∈ {1, 2, . . . , k−1}.
By Proposition 2.7, XQk

n − F is connected, a contradiction to that F is a cut of XQk
n.

Case 4. |F0| = 4n − 2.
In this case, |F1|+ . . .+ |Fk−1| ≤ 8n−5−(4n−2) = 4n−3. Suppose that |Fi| ≤ 4n−5 for i ∈ {1, 2, . . . , k−1}.

By Theorem 3.3, XQ[i] − F is connected for i ∈ {1, 2 . . . , k − 1}. Since there is a complete matching between
XQ[i] and XQ[i+1], for i ∈ {0, 1, . . . , k−2}, XQk

n[V (XQ[1]−F1)∪. . .∪V (XQ[k−1]−Fk−1)] is connected. Since
|F0| = 4n−2 ≤ 8n−13, XQ[0]−F0 has two components, one of which is an isolated vertex v0 by the induction
hypothesis. Since kn−1 > 4n− 2 + 4n − 4 + 1 = 8n − 5, XQk

n − F is connected, or has two components, one of
which is an isolated vertex. Note that there is at most one Fi such that |Fi| = 4n − 4 for i ∈ {1, 2, . . . , k − 1}.
Without loss of generality, let that |F1| = 4n − 4. Since |F2| + . . . + |Fk−1| ≤ 1, By Proposition 2.7, XQk

n − F
is connected, a contradiction to that F is a cut of XQk

n.

Case 5. |F0| = 4n − 1.
In this case, |F1|+ . . .+ |Fk−1| ≤ 8n−5−(4n−1) = 4n−4. Suppose that |Fi| ≤ 4n−5 for i ∈ {1, 2, . . . , k−1}.

By Theorem 3.3, XQ[i] − F is connected for i ∈ {1, 2 . . . , k − 1}. Since there is a complete matching between
XQ[i] and XQ[i+1], for i ∈ {0, 1, . . . , k−2}, XQk

n[V (XQ[1]−F1)∪. . .∪V (XQ[k−1]−Fk−1)] is connected. Since
|F0| = 4n−1 ≤ 8n−13, XQ[0]−F0 has two components, one of which is an isolated vertex v0 by the induction
hypothesis. Since kn−1 > 4n− 1 + 4n − 4 + 1 = 8n − 4, XQk

n − F is connected, or has two components, one of
which is an isolated vertex. Note that there is at most one Fi such that |Fi| = 4n − 4 for i ∈ {1, 2, . . . , k − 1}.
Without loss of generality, let that |F1| = 4n − 4. Since |F2| + . . . + |Fk−1| = 0, By Proposition 2.7, XQk

n − F
is connected, a contradiction to that F is a cut of XQk

n.

Case 6. 4n ≤ |F0| ≤ 8n − 13.
In this case, |F1| + . . . + |Fk−1| ≤ 8n − 5 − 4n = 4n − 5. By Theorem 3.3, XQ[i] − F is connected for

i ∈ {1, 2 . . . , k − 1}. Since there is a complete matching between XQ[i] and XQ[i + 1], for i ∈ {0, 1, . . . , k − 2},
XQk

n[V (XQ[1] − F1) ∪ . . . ∪ V (XQ[k − 1] − Fk−1)] is connected. Suppose that XQ[0] is connected. Since
kn−1 > 8n− 5, XQk

n −F is connected, a contradiction to that F is a cut of XQk
n. Then XQ[0] is disconnected.

By the induction hypothesis, XQ[0]−F0 has two components, one of which is an isolated vertex. Since kn−1 >
8n − 5 + 1 = 8n − 4, XQk

n − F is connected, or has two components, one of which is an isolated vertex.

Case 7. 8n − 12 ≤ |F0| ≤ 8n − 5.
In this case, |F1| + . . . + |Fk−1| ≤ 7. Since n ≥ 3, κ(XQ[i]) = 4(n − 1) ≥ 8 holds for i ∈ {1, 2, . . . , k − 1}

by Theorem 3.3. By Theorem 3.3, XQ[i] − Fi is connected for i ∈ {1, 2, . . . , k − 1}. Since there is a complete
matching between XQ[i] and XQ[i+1], for i ∈ {0, 1, . . . , k−2}, XQk

n[V (XQ[1]−F1)∪. . .∪V (XQ[k−1]−Fk−1)]
is connected. Suppose that XQ[0] − F0 is connected. Since kn−1 > 8n − 5 and there is a complete matching
between XQ[0] and XQ[1], XQk

n−F is connected, a contradiction to that F is a cut of XQk
n. Then XQ[0]−F0

is disconnected. Let B1, . . . , Bk (k ≥ 2) be the components of XQ[0] − F0. If k ≥ 3, then, by Proposition 2.7,
|N(V (B1)∪V (B2))∩(V (XQ[1])∪. . .∪V (XQ[k−1]))| ≥ 8. If |V (Bj)| ≥ 2, then, by Proposition 2.7, |N(V (Bj))∩
(V (XQ[1]) ∪ . . . ∪ V (XQ[k − 1]))| ≥ 8 (1 ≤ j ≤ k). Combining this with |F1| + . . . + |Fk−1| ≤ 7, we have that
XQk

n − F is connected or XQk
n − F has two components, one of which is an isolated vertex. �

Lemma 3.7. Let A = {0 . . .0︸ ︷︷ ︸
n

, 1 0 . . .0︸ ︷︷ ︸
n−1

}. If F1 = NXQk
n
(A), F2 = A ∪ NXQk

n
(A), then |F1| = 8n − 4, |F2| =

8n − 2, δ(XQk
n − F1) ≥ 1, and δ(XQk

n − F2) ≥ 1 (n ≥ 2 or n = 1 and k ≥ 8) (See Fig. 2).

Proof. By A = {0 . . .0︸ ︷︷ ︸
n

, 1 0 . . .0︸ ︷︷ ︸
n−1

}, we have XQk
n[A] = K2. From calculating, we have |F1| = |NXQk

n
(A)| = 8n− 4

and |F2| = |A| + |F1| = 8n − 2 by Proposition 2.6. Suppose n = 1 and k ≥ 8. From Figure 3b, XQk
1 − F2
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Figure 3. (b) An illustration about the proof of Lemma 3.7.

is connected. Therefore, δ(XQk
1 − F1) ≥ 1 and δ(XQk

1 − F2) ≥ 1. Let n ≥ 2, k ≥ 8 and x ∈ V (XQk
n) \ F2.

By Proposition 2.9, |NXQk
n
(x) ∩ F2| ≤ 4. Therefore, δ(XQk

n − F2) ≥ 4n − 4 ≥ 1. Let n ≥ 3, k = 6 and
x ∈ V (XQk

n) \ F2. By Proposition 2.9, |NXQk
n
(x) ∩ F2| ≤ 8. Therefore, δ(XQk

n − F2) ≥ 4n− 8 ≥ 1.
Let n = 2, k = 6 and x ∈ V (XQ6

2) \ F2. Then V (XQ[0]) − F2 = ∅. Suppose that x ∈ V (XQ[i]) \ F2 for
i ∈ {1, 2, . . . , 5}. Let u = 00 and v = 10. If x ∈ {01, 02, 03, 04, 05}, then x = 03. Note |N(x) ∩ N(v)| = 0
and hence |NXQ6

2
(x) ∩ F2| ≤ 4 in this case. Let x ∈ V (XQ[i])\{01, 02, 03, 04, 05} for i ∈ {1, 2, 3, 4, 5}. Since

|N(u) ∩ V (XQ[i])| ≤ 1 for i ∈ {1, 2, 3, 4, 5}, |N(x) ∩ V (XQ[0])| ≤ 1, |N(u) ∩ N(x)| ≤ 2 holds. Similarly,
|N(v)∩N(x)| ≤ 2. Therefore, |NXQ6

2
(x)∩F2| ≤ 4 and hence δ(XQ6

2−F2) ≥ 4× 2− 4 ≥ 1. Note that XQ6
2−F1

has two parts XQ6
2 − F2 and XQ6

2[A] = K2. Note that δ(XQ6
2[A]) = 1. Therefore, δ(XQ6

2 − F1) ≥ 1. �

Theorem 3.8. Let XQk
n be the expanded k-ary n-cube with n ≥ 1 and even k ≥ 6, Then the nature connectivity

of XQk
n is 8n − 4, i.e., κ∗(XQk

n) = 8n − 4.

Proof. Let A = {0 . . . 0︸ ︷︷ ︸
n

, 1 0 . . .0︸ ︷︷ ︸
n−1

} in Lemma 3.7. Then |N(A)| = 8n − 4. Since N(A) is a nature cut of XQk
n,

κ∗(XQk
n) ≤ 8n − 4 holds.

By Proposition 3.6, if F ⊆ V (XQk
n) with |F | ≤ 8n − 5, then XQk

n − F is connected or XQk
n − F has two

components, one of which is an isolated vertex. Therefore, if F is a nature cut of XQk
n, then |F | ≥ 8n − 4.

Combining this with κ∗(XQk
n) ≤ 8n − 4, we have that κ∗(XQk

n) = 8n − 4. �

4. The nature diagnosability of the expanded k-ary n-cube under

the PMC model

In this section, we shall show the nature diagnosability of the he expanded k-ary n-cube under the PMC
model.

Lemma 4.1. Let XQk
n be the expanded k-ary n-cube with even k ≥ 6. Then the nature diagnosability of XQk

n

under the PMC model is less than or equal to 8n − 3, i.e., tn(XQk
n) ≤ 8n− 3.

Proof. Let A be defined in Lemma 3.7, and let F1 = NXQk
n
(A), F2 = A∪NXQk

n
(A). By Lemma 3.7, |F1| = 8n−4,

|F2| = 8n − 2, δ(XQk
n − F1) ≥ 1 and δ(XQk

n − F2) ≥ 1. Therefore, F1 and F2 are both nature faulty sets of
XQk

n with |F1| = 8n − 4 and |F2| = 8n − 2. Since A = F1 � F2 and NXQk
n
(A) = F1 ⊂ F2, there is no edge
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of XQk
n between V (XQk

n)\(F1 ∪ F2) and F1 � F2. By Theorem 2.1, we can deduce that XQk
n is not nature

(8n − 2)-diagnosable under the PMC model. Hence, by the definition of the nature diagnosability, we conclude
that the nature diagnosability of XQk

n is less than 8n − 2, i.e., tn(XQk
n) ≤ 8n − 3. �

Lemma 4.2. Let n ≥ 2 and let XQk
n be the expanded k-ary n-cube with even k ≥ 6. Then the nature diagnos-

ability of XQk
n under the PMC model is more than or equal to 8n − 3, i.e., tn(XQk

n) ≥ 8n − 3.

Proof. By the definition of the nature diagnosability, it is sufficient to show that XQk
n is nature (8n − 3)-

diagnosable. By Theorem 2.1, to prove XQk
n is nature (8n− 3)-diagnosable, it is equivalent to prove that there

is an edge uv ∈ E(XQk
n) with u ∈ V (XQk

n)\(F1 ∪ F2) and v ∈ F1 � F2 for each distinct pair of nature faulty
subsets F1 and F2 of V (XQk

n) with |F1| ≤ 8n − 3 and |F2| ≤ 8n − 3.
We prove this statement by contradiction. Suppose that there are two distinct nature faulty subsets F1 and F2

of V (XQk
n) with |F1| ≤ 8n−3 and |F2| ≤ 8n−3, but the vertex set pair (F1, F2) is not satisfied with the condition

in Theorem 2.1, i.e., there are no edges between V (XQk
n)\(F1 ∪ F2) and F1 � F2. Without loss of generality,

assume that F2 \ F1 	= ∅. Suppose V (XQk
n) = F1 ∪ F2. By the definition of XQk

n, |F1 ∪ F2| = kn. It is obvious
that kn > 16n− 6 for n ≥ 2. Since n ≥ 5, we have that kn = |V (XQk

n)| = |F1 ∪ F2| = |F1| + |F2| − |F1 ∩ F2| ≤
|F1| + |F2| ≤ 2(8n − 3) = 16n − 6, a contradiction. Therefore, V (XQk

n) 	= F1 ∪ F2.
Since there are no edges between V (XQk

n)\(F1∪F2) and F1 � F2, and F1 is a nature faulty set, XQk
n−F1 has

two parts XQk
n−F1−F2 and XQk

n[F2\F1] (for convenience). Thus, δ(XQk
n−F1−F2) ≥ 1 and δ(XQk

n[F2\F1]) ≥
1. Similarly, δ(XQk

n[F1 \ F2]) ≥ 1 when F1 \ F2 	= ∅. Therefore, F1 ∩ F2 is also a nature faulty set. When
F1 \ F2 = ∅, F1 ∩ F2 = F1 is also a nature faulty set. Since there are no edges between V (XQk

n − F1 − F2)
and F1 � F2, F1 ∩ F2 is a nature cut. By Theorem 3.8, |F1 ∩ F2| ≥ 8n − 4. Note that |F2\F1| ≥ 2. Therefore,
|F2| = |F2\F1|+ |F1 ∩ F2| ≥ 2 + 8n− 4 = 8n− 2, which contradicts with that |F2| ≤ 8n− 3. So XQk

n is nature
(8n − 3)-diagnosable. By the definition of tn(XQk

n), tn(XQk
n) ≥ 8n − 3. �

Combining Lemmas 4.1 and 4.2, we have the following theorem.

Theorem 4.3. Let n ≥ 2 and let XQk
n be the expanded k-ary n-cube with even k ≥ 6. Then the nature

diagnosability of XQk
n under the PMC model is 8n − 3.

5. The nature diagnosability of the expanded k-ary n-cube XQk
n under

the MM
∗

model

In this section, we shall show the nature diagnosability of the he expanded k-ary n-cube under the MM∗

model.

Lemma 5.1. Let XQk
n be the expanded k-ary n-cube with even k ≥ 6. Then the nature diagnosability of XQk

n

under the MM∗ model is less than or equal to 8n − 3, i.e., tn(XQk
n) ≤ 8n − 3.

Proof. Let A, F1 and F2 be defined in Lemma 3.7 (See Fig. 2). By Lemma 3.7, |F1| = 8n − 4, |F2| = 8n − 2,
δ(XQk

n −F1) ≥ 1 and δ(XQk
n −F2) ≥ 1. So both F1 and F2 are nature faulty sets. By the definitions of F1 and

F2, F1 � F2 = A. Note F1 \F2 = ∅, F2 \F1 = A and (V (XQk
n) \ (F1 ∪F2))∩A = ∅. Therefore, both F1 and F2

are not satisfied with any one condition in Theorem 2.2, and XQk
n is not nature (8n − 2)-diagnosable. Hence,

tn(XQk
n) ≤ 8n − 3. �

Lemma 5.2. Let n ≥ 2 and let XQk
n be the expanded k-ary n-cube with even k ≥ 6. Then the nature diagnos-

ability of XQk
n under the MM∗ model is more than or equal to 8n − 3, i.e., tn(XQk

n) ≥ 8n − 3.

Proof. By the definition of nature diagnosability, it is sufficient to show that XQk
n is nature (8n−3)-diagnosable.

By Theorem 2.2, suppose, on the contrary, that there are two distinct nature faulty subsets F1 and F2 of
XQk

n with |F1| ≤ 8n − 3 and |F2| ≤ 8n − 3, but the vertex set pair (F1, F2) is not satisfied with any one
condition in Theorem 2.2. Without loss of generality, assume that F2 \ F1 	= ∅. Similarly to the discussion on
V (XQk

n) 	= F1 ∪ F2 in Lemma 4.2, we can deduce V (XQk
n) 	= F1 ∪ F2. Therefore, V (XQk

n) 	= F1 ∪ F2.
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Claim 1. XQk
n − F1 − F2 has no isolated vertex.

Suppose, on the contrary, that XQk
n −F1 −F2 has at least one isolated vertex w. Since F1 is a nature faulty

set, there is a vertex u ∈ F2 \ F1 such that u is adjacent to w. Since the vertex set pair (F1, F2) is not satisfied
with any one condition in Theorem 2.2, there is at most one vertex u ∈ F2 \ F1 such that u is adjacent to w.
Thus, there is just a vertex u ∈ F2 \ F1 such that u is adjacent to w. Assume F1 \ F2 = ∅. Then F1 ⊆ F2.
Since F2 is a nature faulty set, XQk

n − F2 = XQk
n − F1 − F2 has no isolated vertex, a contradiction. Therefore,

let F1 \ F2 	= ∅ as follows. Similarly, we can deduce that there is just a vertex v ∈ F1 \ F2 such that v is
adjacent to w. Let W ⊆ V (XQk

n) \ (F1 ∪ F2) be the set of isolated vertices in XQk
n[V (XQk

n) \ (F1 ∪ F2)], and
let H be the subgraph induced by the vertex set V (XQk

n) \ (F1 ∪ F2 ∪ W ). Then for any w ∈ W , there are
(4n − 2) neighbors in F1 ∩ F2. Since |F2| ≤ 8n − 3, we have

∑
w∈W |NXQk

n[(F1∩F2)∪W ](w)| = |W |(4n − 2) ≤∑
v∈F1∩F2

dXQk
n
(v) ≤ |F1 ∩F2|(4n− 2) ≤ (|F2| − 1)(4n− 2) ≤ (8n− 4)(4n− 2) = 32n2 − 32n + 8. It follows that

|W | ≤ 32n2−32n+8
4n−2 ≤ 8n− 4. Note |F1 ∪F2| = |F1|+ |F2| − |F1 ∩ F2| ≤ 2(8n− 3)− (4n− 2) = 12n− 4. Suppose

V (H) = ∅. Then kn = |V (XQk
n)| = |F1 ∪ F2| + |W | ≤ 12n − 4 + 8n − 4 = 20n − 8. This is a contradiction to

n ≥ 2. So V (H) 	= ∅. Since the vertex set pair (F1, F2) is not satisfied with the condition (1) of Theorem 2.2,
and any vertex of V (H) is not isolated in H , we induce that there is no edge between V (H) and F1 � F2.
Thus, F1 ∩ F2 is a vertex cut of XQk

n and δ(XQk
n − (F1 ∩ F2)) ≥ 1, i.e., F1 ∩ F2 is a nature cut of XQk

n. By
Theorem 3.8, |F1 ∩F2| ≥ 8n− 4. Because |F1| ≤ 8n− 3, |F2| ≤ 8n− 3, and neither F1 \F2 nor F2 \F1 is empty,
we have |F1 \ F2| = |F2 \ F1| = 1. Let F1 \ F2 = {v1} and F2 \ F1 = {v2}. Then for any vertex w ∈ W , w are
adjacent to v1 and v2. According to Proposition 2.9, there are at most two common neighbors for any pair of
vertices in XQk

n when k ≥ 8, it follows that there are at most two isolated vertices in XQk
n − F1 − F2, i.e.,

|W | ≤ 2.
Suppose that there is exactly one isolated vertex v in XQk

n − F1 − F2. Let v1 and v2 be adjacent to v. Then
NXQk

n
(v)\{v1, v2} ⊆ F1∩F2, NXQk

n
(v1)\{v, v2} ⊆ F1∩F2, NXQk

n
(v2)\{v, v1} ⊆ F1∩F2, |(NXQk

n
(v)\{v1, v2})∩

(NXQk
n
(v1)\{v, v2})| ≤ 1 and |(NXQk

n
(v)\{v1, v2})∩(NXQk

n
(v2)\{v, v1})| ≤ 1 and |[NXQk

n
(v1)\{v}]∩[NXQk

n
(v2)\

{v}]| ≤ 1. Thus, |F1∩F2| ≥ |NXQk
n
(v)\{v1, v2}|+ |NXQk

n
(v1)\{v, v2}|+ |NXQk

n
(v2)\{v, v1}| = (4n−2)+(4n−

2)+(4n−2)−3 = 12n−9. It follows that |F2| = |F2 \F1|+ |F1∩F2| ≥ 1+12n−9 = 12n−8 > 8n−3 (n ≥ 2),
which contradicts |F2| ≤ 8n − 3.

Suppose that there are exactly two isolated vertices v and w in XQk
n − F1 − F2. Let v1 and v2 be adjacent

to v and w, respectively. Then NXQk
n
(v) \ {v1, v2} ⊆ F1 ∩ F2, NXQk

n
(w) \ {v1, v2} ⊆ F1 ∩ F2, NXQk

n
(v1) \

{v, w, v2} ⊆ F1 ∩ F2, NXQk
n
(v2) \ {v, w, v1} ⊆ F1 ∩ F2, |(NXQk

n
(v) \ {v1, v2}) ∩ (NXQk

n
(v1) \ {v, w, v2})| ≤ 1 and

|(NXQk
n
(v) \ {v1, v2}) ∩ (NXQk

n
(v2) \ {v, w, v1})| ≤ 1. |(NXQk

n
(w) \ {v1, v2}) ∩ (NXQk

n
(v1) \ {v, w, v2})| ≤ 1 and

|(NXQk
n
(w)\{v1, v2})∩(NXQk

n
(v2)\{v, w, v1})| ≤ 1. By Proposition 2.9, there are at most two common neighbors

for any pair of vertices in XQk
n. Thus, it follows that |(NXQk

n
(v1)\ {v, w, v2})∩ (NXQk

n
(v2)\ {v, w, v1})| = 0 and

|(NXQk
n
(v)\{v1, v2})∩(NXQk

n
(w)\{v1, v2})| = 0. Thus, |F1∩F2| ≥ |NXQk

n
(v)\{v1, v2}|+ |NXQk

n
(w)\{v1, v2}|+

|NXQk
n
(v1)\{v, w, v2}|+|NXQk

n
(v2)\{v, w, v1}| = (4n−2)+(4n−2)+(4n−3)+(4n−3)−1−1−1−1 = 16n−14.

It follows that |F2| = |F2 \ F1| + |F1 ∩ F2| ≥ 1 + 16n − 14 = 16n − 13 > 8n − 3 (n ≥ 2), which contradicts
|F2| ≤ 8n − 3.

Suppose that k = 6, and v1 and v2 are adjacent. By Proposition 2.9, |N(v1)∩N(v2)| ≤ 2. Therefore, |W | ≤ 2.
Suppose that there is exactly one isolated vertex v in XQk

n − F1 − F2. Let v1 and v2 be adjacent to v. Then
NXQk

n
(v)\{v1, v2} ⊆ F1∩F2, NXQk

n
(v1)\{v, v2} ⊆ F1∩F2, NXQk

n
(v2)\{v, v1} ⊆ F1∩F2, |(NXQk

n
(v)\{v1, v2})∩

(NXQk
n
(v1)\{v, v2})| ≤ 1 and |(NXQk

n
(v)\{v1, v2})∩(NXQk

n
(v2)\{v, v1})| ≤ 1 and |[NXQk

n
(v1)\{v}]∩[NXQk

n
(v2)\

{v}]| ≤ 1. Thus, |F1∩F2| ≥ |NXQk
n
(v)\{v1, v2}|+ |NXQk

n
(v1)\{v, v2}|+ |NXQk

n
(v2)\{v, v1}| = (4n−2)+(4n−

2)+(4n−2)−3 = 12n−9. It follows that |F2| = |F2 \F1|+ |F1∩F2| ≥ 1+12n−9 = 12n−8 > 8n−3 (n ≥ 2),
which contradicts |F2| ≤ 8n − 3.

Suppose that there are exactly two isolated vertices v and w in XQk
n − F1 − F2. Let v1 and v2 be adjacent

to v and w, respectively. Then NXQk
n
(v) \ {v1, v2} ⊆ F1 ∩ F2, NXQk

n
(w) \ {v1, v2} ⊆ F1 ∩ F2, NXQk

n
(v1) \

{v, w, v2} ⊆ F1 ∩ F2, NXQk
n
(v2) \ {v, w, v1} ⊆ F1 ∩ F2, |(NXQk

n
(v) \ {v1, v2}) ∩ (NXQk

n
(v1) \ {v, w, v2})| ≤ 1

and |(NXQk
n
(v) \ {v1, v2}) ∩ (NXQk

n
(v2) \ {v, w, v1})| ≤ 1. |(NXQk

n
(w) \ {v1, v2}) ∩ (NXQk

n
(v1) \ {v, w, v2})| ≤ 1
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and |(NXQk
n
(w) \ {v1, v2}) ∩ (NXQk

n
(v2) \ {v, w, v1})| ≤ 1. By Proposition 2.9, there are at most two common

neighbors for any pair of vertices in XQk
n |(NXQk

n
(v)\{v1, v2})∩(NXQk

n
(w)\{v1, v2})| = 0. Thus, it follows that

|(NXQk
n
(v1) \ {v, w, v2}) ∩ (NXQk

n
(v2) \ {v, w, v1})| = 0 and |(NXQk

n
(v) \ {v1, v2}) ∩ (NXQk

n
(w) \ {v1, v2})| = 0.

Thus, |F1∩F2| ≥ |NXQk
n
(v)\{v1, v2}|+ |NXQk

n
(w)\{v1, v2}|+ |NXQk

n
(v1)\{v, w, v2}|+ |NXQk

n
(v2)\{v, w, v1}| =

(4n− 2)+ (4n− 2)+ (4n− 3)+ (4n− 3)− 1− 1− 1− 1 = 16n− 14. It follows that |F2| = |F2 \F1|+ |F1 ∩F2| ≥
1 + 16n − 14 = 16n − 13 > 8n− 3 (n ≥ 2), which contradicts |F2| ≤ 8n − 3.

Suppose that k = 6, and v1 and v2 are not adjacent. By Proposition 2.9, |N(v1) ∩ N(v2)| ≤ 4 and hence
|W | ≤ 4. If |N(v1) ∩ N(v2)| = 4, then v1, v2 ∈ V (XQ[i]). From Figure 3, XQ6

1[N(v1) ∩ N(v2)] is connected.
Therefore, |W | ≤ 3. Since |N(v1) ∩ N(v2)| 	= 3, |W | ≤ 2 holds.

Suppose that there is exactly one isolated vertex v in XQk
n − F1 − F2. Let v1 and v2 be adjacent to v. Then

NXQk
n
(v) \ {v1, v2} ⊆ F1 ∩ F2, NXQk

n
(v1) \ {v} ⊆ F1 ∩ F2, NXQk

n
(v2) \ {v} ⊆ F1 ∩ F2, |(NXQk

n
(v) \ {v1, v2}) ∩

(NXQk
n
(v1) \ {v})| ≤ 2 and |(NXQk

n
(v) \ {v1, v2})∩ (NXQk

n
(v2) \ {v})| ≤ 2 and |[NXQk

n
(v1) \ {v}]∩ [NXQk

n
(v2) \

{v}]| ≤ 3. Thus, |F1∩F2| ≥ |NXQk
n
(v)\{v1, v2}|+|NXQk

n
(v1)\{v}|+|NXQk

n
(v2)\{v}| = (4n−2)+(4n−1)+(4n−

1)−2−2−3 = 12n−11. It follows that |F2| = |F2 \F1|+ |F1∩F2| ≥ 1+12n−11 = 12n−10 > 8n−3 (n ≥ 2),
which contradicts |F2| ≤ 8n − 3.

Suppose that there are exactly two isolated vertices v and w in XQk
n−F1−F2. Let v1 and v2 be adjacent to v

and w, respectively. Then NXQk
n
(v)\{v1, v2} ⊆ F1∩F2, NXQk

n
(w)\{v1, v2} ⊆ F1∩F2, NXQk

n
(v1)\{v, w} ⊆ F1∩F2,

NXQk
n
(v2) \ {v, w} ⊆ F1 ∩ F2, |(NXQk

n
(v) \ {v1, v2}) ∩ (NXQk

n
(v1) \ {v, w})| ≤ 2 and |(NXQk

n
(v) \ {v1, v2}) ∩

(NXQk
n
(v2) \ {v, w})| ≤ 2. |(NXQk

n
(w) \ {v1, v2}) ∩ (NXQk

n
(v1) \ {v, w})| ≤ 2 and |(NXQk

n
(w) \ {v1, v2}) ∩

(NXQk
n
(v2) \ {v, w})| ≤ 2. By Proposition 2.9, there are at most four common neighbors for any pair of vertices

in XQk
n. Thus, it follows that |(NXQk

n
(v1) \ {v, w}) ∩ (NXQk

n
(v2) \ {v, w})| ≤ 2.

Thus, |F1 ∩F2| ≥ |NXQk
n
(v) \ {v1, v2}|+ |NXQk

n
(w) \ {v1, v2}|+ |NXQk

n
(v1) \ {v, w}|+ |NXQk

n
(v2) \ {v, w}| =

(4n−2)+(4n−2)+(4n−2)+(4n−2)−2−2−2−2−2 = 16n−18. It follows that |F2| = |F2 \F1|+ |F1∩F2| ≥
1 + 16n − 18 = 16n − 17 > 8n− 3 (n ≥ 2), which contradicts |F2| ≤ 8n − 3.

The proof of Claim 1 is complete.
Let u ∈ V (XQk

n) \ (F1 ∪F2). By Claim 1, u has at least one neighbor in XQk
n −F1 −F2. Since the vertex set

pair (F1, F2) is not satisfied with any one condition in Theorem 2.2, by the condition (1) of Theorem 2.2, for any
pair of adjacent vertices u, w ∈ V (XQk

n)\ (F1∪F2), there is no vertex v ∈ F1 � F2 such that uw ∈ E(XQk
n) and

vw ∈ E(XQk
n). It follows that u has no neighbor in F1 � F2. By the arbitrariness of u, there is no edge between

V (XQk
n)\ (F1 ∪F2) and F1 � F2. Since F2 \F1 	= ∅ and F1 is a nature faulty set, δXQk

n
([F2 \F1]) ≥ 1 and hence

|F2 \ F1| ≥ 2. Since both F1 and F2 are nature faulty sets, and there is no edge between V (XQk
n) \ (F1 ∪ F2)

and F1 � F2, F1 ∩ F2 is a nature cut of XQk
n. By Theorem 3.8, we have |F1 ∩ F2| ≥ 8n − 4. Therefore,

|F2| = |F2 \ F1|+ |F1 ∩ F2| ≥ 2 + (8n− 4) = 8n− 2, which contradicts |F2| ≤ 8n− 3. Therefore, XQk
n is nature

(8n − 3)-diagnosable and tn(XQk
n) ≥ 8n − 3. The proof is complete. �

Combining Lemmas 5.1 and 5.2, we have the following theorem.

Theorem 5.3. Let n ≥ 2. Then the nature diagnosability of the expanded k-ary n-cube XQk
n under the MM∗

model is 8n − 3.

6. Conclusions

In this paper, we investigate the problem of the nature diagnosability of the expanded k-ary n-cube XQk
n

under the PMC model and MM∗. It is proved that the nature diagnosability of XQk
n under the PMC model and

MM∗ model is 8n− 3 for n ≥ 2. The work will help engineers to develop more different measures of the nature
diagnosability based on application environment, network topology, network reliability, and statistics related to
fault patterns.
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