
RAIRO-Theor. Inf. Appl. 51 (2017) 51–70 Available online at:

DOI: 10.1051/ita/2017007 www.rairo-ita.org

MAINTENANCE OF A SPANNING TREE FOR DYNAMIC GRAPHS
BY MOBILE AGENTS AND LOCAL COMPUTATIONS

Mouna Ktari1, Mohamed Amine Haddar2, Mohamed Mosbah3

and Ahmed Hadj Kacem4

Abstract. The problem of constructing and maintaining a spanning tree in dynamic networks is
important in distributed systems. Trees are essential structures in various communication protocols
such as information broadcasting, routing, etc. In a distributed computing environment, the solution
of this problem has many practical motivations. To make designing distributed algorithm easier, we
model this latter with a local computation model. Based on the mobile agent paradigm, we present
in this paper a distributed algorithm that maintain a hierarchical spanning tree in dynamic networks.
We study all topological events that may affect the structure of the spanning tree: we address the
appearance and the disappearance of places and communication channels.

Mathematics Subject Classification. 68.00.

1. Introduction

The continued evolution of distributed systems keeps the distributed computing an open area of research.
Nowadays, distributed systems are dynamic and heterogeneous. The variation of components types and the
absence of consensus in its modeling makes computation a very difficult task. To reduce modeling complexity
we model both system and computations.

In order to perform a distributed computation in a dynamic context, we can model dynamic networks as a
graph. Dynamic networks or dynamic distributed systems are characterized by a constant evolution in time.
They are abstracted by dynamic graphs. The graph changes at any time through the addition or removal of
nodes and/or edges. The best known model is the “random graph model” [1]. The network is modeled by a
graph Gn,E that denotes all graphs having n labeled nodes V1, V2, ..., Vn and E edges. Each of these edges
having the same probability to be chosen. A random graph G′

n,E can be defined as an element of Gn,E chosen
at random. Several other models have been proposed, each one changes some of the properties of the initial

Keywords and phrases. Dynamic networks, distributed algorithms, mobile agents, local computation models, spanning tree.

1 ReDCAD, University of Sfax, FSEGS 3018 Sfax, Tunis. mouna.ktari@redcad.org
2 Information technology department, Taif University, Saoudi Arabia. haddar.amine@gmail.com
3 LaBRI, CNRS, Bordeaux INP, University of Bordeaux, 33405 Talence, France. mohamed.mosbah@labri.fr
4 ReDCAD, University of Sfax, FSEGS 3018 Sfax, Tunis. ahmed.hadjkacem@fsegs.rnu.tn

Article published by EDP Sciences c© EDP Sciences 2017

https://doi.org/10.1051/ita/2017007
http://www.rairo-ita.org
http://www.edpsciences.org

52 M. KTARI ET AL.

random graph model, such as the distribution degree [3], clustering coefficient, size of the largest connected
component, diameter of the graph [2], etc.

Modeling dynamic networks based on this model requires a fully acquaintance of evolution of dynamic graph.
The web graph is an example among the wide range of dynamic networks modeled by random graph model [4].
This model proposes creation of dynamic graphs with observed characteristics in the web graph and particularly
that of mimicking its dynamics. As a consequence, the evolution of the dynamic graph is fully known (initially)
from the beginning. Moreover, the random graph model is formalized in a particular application context and it
is sometimes difficult to make it out of this context. It can be concluded that this generator of dynamic graphs
can not match to the real-world networks.

In real cases, we do not have a precognition of the evolution of the graph since changes are unpredictable.
In order to be closer of the real cases, we adopt another model that covers an extremely varied set of dynamic
networks. This model is known as the evolving graph model. It is one of the first developed models characterized
by a lack of prior knowledge of the evolution of dynamic graphs [5].

Modeling dynamic distributed system as a dynamic graph is a first step to reduce the modeling complexity.
What remains, is the modeling of distributed computations. Among the proposed models in literature we present
the local computation model. Graph relabeling systems based on local computations [6] can be considered as a
tool which allows us to encode distributed algorithms in a formal and unified way. A graph relabeling system is
based on a set of relabeling rules which are executed locally. These rules, closely related to mathematical and
logic formulas, are able to derive the correctness of distributed algorithms. A real implementation of rewriting
system was done in the ViSiDiA project [7]. This project aims essentially to simulate and visualize distributed
algorithms encoded by rewriting rules.

In a distributed computing environment, the problem of the spanning tree has many practical motivations.
It was studied on the static and dynamic context. The majority of proposed algorithms are based on message
passing communication model. A performance evaluation using this model was achieved by [10]. The implemen-
tation of the local computation model using message passing is based on the following principle: a distributed
algorithm must be run on any entity (node) of a computing system. The application of a computing step must
be preceded by a synchronization, but this synchronization not only delays the execution of the algorithm but
also uses a great amount of communication resources. Throughout the execution, all computation entities have
committed to run the same algorithm, even if sometimes the rewriting rules are been only applied to a limited
number of entities.

In order to solve the problems faced at the experimentation level, [10] proposed another implementation
of rewriting systems using mobile agents [8]. As a case study, a solution of a spanning tree computation in
anonymous networks has been proposed and proved [9]. This solution is based on benefits obviously inherited
from the use of the mobile agent unlike classical model based on stationary process model. The proposed
solution does not require active processes in each host. The resources, on a given host, are solicited when a
mobile agent arrives on it. At the implementation phase, another important benefit comes from the omission
of the synchronization needed to implement several algorithms using the classical models (message passing) in
asynchronous networks. In fact, computations are encapsulated within mobile agents.

Towards mobile agents, the distributed computing community was presenting an increasing interest due to
their considerable reduction of network load and their overcoming of the network latency [11]. In fact, the
implementation of local computations using mobile agents in a static context has confirmed this interest [9]. In
the same context (local computation), it remains a challenge to prove the mobile agent computational power in
dynamic networks. Our work is a step in this direction.

This paper is organized as follows: we present in the second Section a related works survey. The third section
presents the computation step of the spanning tree. In the fourth section, we present our algorithm for the
maintenance of a spanning tree or a forest of spanning trees following the detection of topological events. In the
fifth section, we present the proof and correctness of proposed algorithm. The last section concludes the paper
and draws some future work perspectives.

MAINTENANCE OF A SPANNING TREE FOR DYNAMIC GRAPHS 53

2. Related works

According to literature, stationary process models are the most used computational models for dynamic
distributed systems. A dynamic distributed system is considered as a set of interconnected computing entities
communicating through established links. These systems are characterized by the appearance or disappearance
of entities and/or links between them. They are modeled by a graph where the vertices (places) denote entities
and the edges denote the communication links. The computational activities are done, in these models, by
concurrent execution of the stationary sequential processes. A spectrum of mechanisms exists for interprocess
communication. The message passing mechanism allows processes to communicate without sharing the same
address, they communicate via messages. However, in the shared memory mechanism, processes communicate
via exchanging information: reading and writing data to the shared region. In fact, in the distributed stetting,
many distributed algorithms depend on the considered communication mechanisms. In general, a distributed
algorithm which is designed and implemented in a given model becomes obsolete in another model. Even if it is
possible, there is a need to re-adapt or to re-encode the algorithm depending on the model specification. In this
context, graph relabeling systems based on local computations [6] can be viewed as a tool which allows to encode
distributed algorithms in a formal and unified way. These model are characterized by their scalability. They
are intensively studied and many results are then proposed in the static context [14–18] and in the dynamic
context [19, 20], etc.

In [24], kuhn et al. proposed a distributed computation in dynamic networks. Authors consider a fixed set of
nodes that operate in synchronized rounds and communicate by broadcast. In each round the communication
graph is chosen adversarially, under an assumption of T -interval connectivity: throughout every block of T
consecutive rounds there must exist a connected spanning sub-graph that remains stable. Based on proposed
model, authors have shown how k-committee election can be used to solve counting and token dissemination.

Among possible computations in dynamic environment, we will focus on the spanning tree problem. In [25],
the fully dynamic algorithm for maintaining a minimum spanning tree in time o(

√
n) per operation was studied.

In the same context, an experimental comparison of several versions of dynamic trees: ST-trees, ET-trees, RC-
trees, and two variants of top trees (self-adjusting and worst-case) was presented in [26]. In both previous cited
works, authors have considered the problem of the tree during an arbitrary sequence of edge insertions and
deletions.

Nowadays, dynamic environment are distributed. The spanning tree problem is among problems which has
been very widely studied in dynamic distributed systems. The most of proposed algorithms are based on
message passing communication model. In [27], authors provide a tree maintenance protocol with amortized
communication complexity that is linear in the actual size A of the connected component in which the algorithm
is performed. The message complexity of the proposed solution was not bounded as a function of A.

To achieve a distributed computation, the local computational model based on message passing communica-
tion model was well adopted. So, in the follow we will refer only to the proposed solutions who have adopted
the local computations model. An original algorithm was proposed to building and maintaining a forest of
spanning tree in highly dynamic networks (asynchronous case) [21]. This algorithm allows the maintenance of a
non-minimum spanning forest in unrestricted dynamic networks, using an interaction model inspired from graph
relabeling systems [22]. The synchronous case was studied by Barjon et al. in [19]. Authors are addressed to the
maintenance of forest of spanning trees without any kind of assumption on the rate of changes. This algorithm
guarantees the maintenance of a minimum spanning forest, but it is significantly more complex compared with
a coarse-grain interaction algorithm proposed by Casteigts [21].

Relying on the local computation model, Haddar [10] has carried an evaluation of performance of distributed
algorithms using the message passing communication model. The synchronization was identified as a main
problem and indispensable in order to apply rules on non-disjoined sub-graphs. This synchronization not only
delays the execution of the algorithm but also uses a great amount of communication resources. In order to
solve the problems faced at the experimentation level, Haddar has proposed another model using mobile agents.
The same paradigm has been used in the dynamic context by Baala et al. [20] and Abbas et al. [23]. Each agent

54 M. KTARI ET AL.

uses a random walk to move in the network and to construct a spanning sub-tree. With respect to dynamicity,
both algorithms require the nodes to know an upper bound on the cover time of the random walk, in order to
regenerate an agent if they are assumption requires the knowledge of the number of nodes or the network size.
As a consequence, the efficiency of the timeout approach decreases dramatically with the rate of topological
changes that may affect the structure of the graph and the network size. In particular, if topological changes
are more frequent than the cover time, the computed tree is constantly fragmented into sub-graphs without a
root.

All previously presented works have considered only the dynamic of communication links. Whereas in dynamic
networks links can appear and disappear as well as places (nodes). In our work, we propose a distributed
computation considering dynamic links and places using a mobile agent-dependent approach.

We are motivated then by the necessity of designing and proving distributed algorithms using mobile agent
in dynamic networks. In [12], we have integrate the mobile agent on the conceptual level and we have proposed
a computation model to describe, understand and prove dynamic distributed algorithms of mobile agents. Our
model allows the use of properties defined in the mobile agent paradigm such as moving autonomously over the
distributed system. When it visits a site, a mobile agent is also allowed to modify the site local information.

To illustrate our model simplicity, we propose in this paper, a solution to the spanning tree using mobile
agent. A first variant of the maintenance algorithm of computed spanning tree has been shown in [13], where we
proposed a solution when communication channels appears and disappears in the underling network. However,
in this paper we present a second variant of the maintenance algorithm of computed spanning tree where places
and links are dynamic.

3. Computation of a hierarchical spanning tree

Referring on proposed model in [12], we model dynamic distributed systems using evolving graphs G =
G1, G2, . . . Every element Gi corresponds to a snapshot of the topology after a topological change occurs (we
call it transaction). We suppose that the computation step of a hierarchical spanning tree starts and finishes
on the initial connected graph G1 before a topological event occurs and no software or hardware fault can
occurs during the computation. Such assumptions can be considered real while we use a very quick algorithm
to compute the spanning tree.

At time t0, our system is composed by a collection P of places and one mobile agent and each place has a
unique identity denoted by placeid. Initial placement of mobile agent is described by an injection π0 : A −→ P.
For all places composed the graph G0 and for the mobile agent is associated to the initial state denoted by λ0.

In our algorithm we need two variables: the levelid and the treeid. The aim of proposed algorithm is to create
a hierarchical spanning tree. This means, for each place belonging to the spanning tree is associated a level. We
denote this level by levelid which is stored in every place local memory called the whiteboard . Moreover, each
added place to the tree must know to which tree it belongs: this information is saved in a local variable called
treeid.

Let (MobAS)=(A, P, S, π0, λ) a mobile agent system, C0 = (state0, D0, A0) is a initial configuration such as:

• ∃p ∈ P such as p is the home et state0(p) = (Root, Ny, Ny, . . . , Ny)
• ∀p ∈ P\home, state0(p) = (N, Ny, Ny, . . . , Ny)
• A = a, π0(a) = home et state0(a) = (”Cloning”)
• D = ∅

At time t0, the mobile agent is placed on the Root. This place, as all places composed the graph, has a unique
identity placeid. The levelid of this place will be initialized by 1, and the treeid will be initialized by the Root
place’s identity.

A mobile agent on the Cloning state, seeks ports labeled Ny. If it does not exist the mobile agent moves to
the End state (see transition T 1). But, if it exists, the mobile agent executes transition T 2. It creates to every
founded port a clone and changes the ports labels from Ny to Nt. Each clone, in the move state, takes the

MAINTENANCE OF A SPANNING TREE FOR DYNAMIC GRAPHS 55

With the following property: T2 > T1

Figure 1. Computation of the spanning tree.

levelid and the treeid of the current place before leaving the place. It changes the output port label from Nt to
S while leaving the place (see transition T 3). Arriving to the destination place, execution of transition T 4 or
T 5:

• If the state of visited place is N (no yet visited by another mobile agent), the mobile agent updates the local
levelid by that brought with it plus 1. After that, it changes the place state from N to V and the arrival
port label from Ny to Fa. It updates the treeid of the current place with this brought from the last visited
place. Finishing this task, it changes its state from move to Cloning (transition T 4).
• If the state of visited place is V , the mobile agent changes the input port label to E and its state to End

(transition T 5).

Our algorithm is recursive, it is executed by a set of mobile agents operating in parallel in order to construct a
hierarchical spanning tree. The spanning tree is composed by parents places and sons places related by channels
labeled S ←→ Fa. Adjacent place to the port S is a parent place: crossing a port S leads to the son place and
crossing a port Fa leads to the parent place. Indeed, crossing ports Fa guide always, from any place, to the
Root of the spanning tree. Proof and correction of computation step of a hierarchical spanning tree was clearly
described in [12].

4. Maintenance of a hierarchical spanning tree
or forest of spanning trees

The computed spanning tree can be affected following the detection of topological events: the appearance
or disappearance of places leads to the occurrence and dissipate of communication channels (links). The disap-
pearance of a place implies the removal of one or more communication channels which leads, in some cases, to
the sub-division of the spanning tree into two sub-trees. Our algorithm must maintain a hierarchical spanning
tree or a forest of hierarchical spanning trees.

56 M. KTARI ET AL.

The disappearance of a place causes the dissipate of one or more adjacent communication channels. Only
places have lost the access path to the Root of the spanning tree (adjacent places to the port Fa) triggers the
maintenance step. On the other hand, when a new place appear, it will join the spanning tree by connecting one
or more communication links. The maintenance step is triggered by places where new channels are associated.

Before detailing the maintenance step, we assume that maintaining step triggered by topological events have
to be done before the occurrence of the next topological event. During the computation step of the spanning
tree, each place archives a copy of the mobile agent (in an inactive state). This copy will be activated upon the
detection of the appearance or disappearance of communication channels. The activated copy of mobile agent
updates the whiteboard of the current place. Thereafter, depending on the label of the adjacent port to the
channel in question (added or removed one), the mobile agent must either do an update or turn back to the
inactive state.

4.1. Topological event: Disappearance of a place

The disappearance of a communication channel can be the result of:

(1) the disappearance of a place from the spanning tree;
(2) or the displacement of a place in the underlying network.

Detecting the disappearance of a communication channel, each adjacent place activates a mobile agent (the
disappearance of channels according to 1. or 2.). Each agent verifies the label of the adjacent port to the deleted
channel. Three cases are possible:

Label E: the adjacent channel is Excluded from the spanning tree. The disappearance of this channel does
not affect the structure of the spanning tree and activated mobile agent has nothing to do.

Label S: crossing this port, the copy agent can reach a son place. The loss of adjacent channel does not affect
the access path from the current place to the Root of the spanning tree. Consequently, the activated mobile
agent has nothing to do.

Label Fa: the loss of adjacent channel means losing the access path to the Root of the spanning tree. As
a result, the current place (concerned place) and all derived sons places (sub-graph) are excluded from the
spanning tree. However, we must try to find another path to re-associate again the concerned place or all the
sub-graph to the spanning tree. In some cases (which are generally rare) it is possible that this path does not
exist which causes the decomposition of the spanning tree in two sub-trees.

To re-associate again the concerned place (or all the sub-graph) to the hierarchical spanning tree, we must
exploit an Excluded channel. This channel can be adjacent directly to the concerned place or adjacent to the
derived sons places. The absence of the Excluded channels implies the sub-division of the spanning tree in two
sub-trees. Finding an Excluded channel, the exploitation is possible only if the Excluded link leads to a place
that has the level lower or equal to that of the concerned place. This is a very important rule of the
maintenance step.

In a case where Excluded channel is adjacent directly to the concerned place, the maintenance step is
conducted in two phases: the verification and exploitation phase. However, if the Excluded channel is adjacent
to the derived sons places, the maintenance step is conducted in three phases: the verification, exploitation and
cleaning phase.

4.1.1. Excluded channel is adjacent directly to the concerned place

Finding more adjacent excluded channels to the concerned place, the copy agent send thought each adjacent
port E a getid agent. Arriving to the destination place, each one takes with it the level of the visited place and
turn back from the same crossed Excluded link. The copy agent select the adjacent channel leading to the place
having the level lower or equal to that of the concerned place.

Case 1. Excluded channel is adjacent, on the other side, to the place having the level lower or equal to that
of the concerned place. The copy agent creates an Examiner agent which will leave through the port labeled

MAINTENANCE OF A SPANNING TREE FOR DYNAMIC GRAPHS 57

Figure 2. The copy agent creates an Examiner.

Figure 3. Exploitation of an Excluded channel by the Examiner agent.

(a) Disappearance of a place (b) Spanning tree after the maintenance step

Figure 4. Maintenance of the spanning tree following the exploitation of a directed adjacent
Excluded channel (levelid <).

E (see transition T 6). Arriving to the destination place, before starting the exploitation phase, the Examiner
must check the state of the port Fa adjacent to the visited place: set to ON or OFF .

• Status ON : exploitation phase (see Fig. 4): the Examiner changes the input port label from E to S, takes
with it the levelid of the current place and it leaves through the same arrival port (execution of transition
T 7). Arriving to the concerned place, the mobile agent changes the arrival label from E to Fa (execution
of transition T 8), computes the difference between the level of a reached place and that it took with it.
Finding, the difference result different from 1, the Examiner agent affects the level brought with it plus 1
to the concerned place. This update requires updating of levels of all sons places (if they exists). So, this
update will be ensured by Corrector agents.
Operating principle of Corrector agents: the Examiner agent seeks ports labeled S. It creates to every
founded port a Corrector agent and changes its state to End. Each Corrector agent takes the levelid of
the current place and crosses a port S. Arriving to the destination place, each one updates the local levelid

58 M. KTARI ET AL.

Figure 5. Transition executed by the Examiner agent when it is impossible to exploit an
Excluded channel.

(a) Disappearance of a place (b) Forest of Spanning trees

Figure 6. Sub-division of the spanning tree on three sub-trees.

by the brought level with it plus 1. After that it seeks the adjacent ports S. If it finds, it should continue
the updating of levels of derivatives sons places by creation of other Corrector agents. Indeed, the updating
levels procedure is recursive. A Corrector agent changes its state to End following the creation of Corrector
agents or where arriving on a sheet place.
• Status OFF : verification phase: that implies that the Excluded link could never re-associate again the

dissociated place (or a sub-graph) to the spanning tree. The Examiner turns back. Arriving to the concerned
place, it seeks another port E.
– Finding another port E, the Examiner agent leaves through it. Arriving to the destination place, it must

check the state of the port Fa adjacent to the visited place: set to ON or OFF and the same previous
transitions are executed.

– If it does not exist, the agent changes the place state from V to Root (see transition T 9). The execution of
this transition implies the sub-division of the hierarchical spanning tree to two sub-trees (see Fig. 6). Each
one is characterized by its own treeid (see the definition of this variable on Sect. 3). The Examiner update
the local treeid by identity of the current place (placeid). Such change is followed by a propagation of the
new treeid towards all derived sons places. So, this propagation will be ensured by Corrector agents. The
Examiner agent seeks ports S. It creates to every founded port a Corrector agent and changes its state
to End. Each one takes the new treeid and crosses a port S. Arriving to the destination place, each agent
affects the brought value of the local treeid. It seeks again adjacent ports S. If it finds, it should continue
the propagation of the new treeid towards derivatives sons places using Corrector agents. Indeed, the
propagational procedure is recursive. A Corrector agent changes its state to End following the creation
of Corrector agents or where arriving to a sheet place.

Case 2. Excluded channel is adjacent, on the other side, to the place having the level higher to that of the
concerned place. The copy agent verifies if the Excluded link allows the mitigation to the place which verifies
the rule of the maintenance step (see (a) in Fig. 8). It creates an Examiner agent which takes with it the
levelid of the current place before leaving through the port E (see transition T 6). Arriving to the destination
place it seeks the port labeled Fa and leaves through it. Coming to the parent place (through the port S), the

MAINTENANCE OF A SPANNING TREE FOR DYNAMIC GRAPHS 59

Figure 7. Exploitation of an Excluded channel by the Examiner agent.

(a) Disappearance of a place (b) Spanning tree after the maintenance
step

Figure 8. Maintenance of the spanning tree following the exploitation of a directed adjacent
Excluded channel (levelid >).

Examiner marks this latter and compares brought level with that of the visited place. The crossing of Fa ports
is iterative as the Examiner has not yet reached a place with the lower or equal level. Arriving to the desired
place, it checks the state of the port labeled Fa. Two cases are possible: status ON or OFF :

• Status ON : exploitation phase (see (b) in Fig. 8): the Examiner turns back, following already marked ports
S during the verification phase, until the attenuation of adjacent place to the Excluded channel. Tacking
with it the level of the current place, the Examiner changes the output port label from E to S. Arriving
to the destination place, it changes the arrival label from E to Fa (execution of transitions T 10 and T 11).
Thereafter, the agent updates the local levelid by that brought with it plus 1. Corrector agents have a
responsibility to update levels of all sons places derived from the concerned place.
• Status OFF : that implies that the Excluded channel could never re-associate again the dissociated place

(or a sub-graph) to the spanning tree. The Examiner turns back, following already marked ports S during
the verification phase. Arriving to the concerned place, it seeks another port E. If it does not exist, the
agent changes the place state from V to Root. The execution of this transition implies the sub-division of
the hierarchical spanning tree to two sub-trees. Each one is characterized by its own treeid. The Examiner
update the local treeid by identity of the current place (placeid). Such change is followed by a propagation
of the new treeid towards all derived sons places. So, this propagation will be ensured by Corrector agents
(execution of transition T 9).

60 M. KTARI ET AL.

Figure 9. Agent is located on the sheet place.

Figure 10. The copy agent creates a researcher agent.

4.1.2. Excluded channel is adjacent to the derived sons places

In this case, no adjacent Excluded channels to the concerned place. The copy agent seeks ports S. If it does
not exist, the mobile is located on the sheet place. It changes the state of the place from V to Root and turn
back to the inactive state (the Standby mode): sub-division of the spanning tree on two sub-trees (see transition
T 12).

But, if it exists, the mobile agent creates to every founded port a Researcher agent (see transition T 13).
Each one takes the levelid of the current place and starts searching of exploitable Excluded links. Finding an
Excluded link, each agent is supposed to verify if this link can re-associate again the concerned place (or all a
sub-graph) to the spanning tree.

To achieve our goal, we need a variable which is attached to each port. This one is denoted by Nbr − Lab:
it is composed of the number of port and its label. Tow values are possible: Nbr − Lab = Y es implies that the
crossing of the adjacent channel leads towards the maintenance of the spanning tree, but Nbr − Lab = No
implies that the crossing of the adjacent channel leads to the sub-division of the spanning tree on two sub-trees.
This variable is initialized by 0 value: no agent has passed through this port.

– Verification phase: after creation of Researchers agents, the copy agent goes from the Active mode to the
Standby mode (inactive state), in which it sleeps on a place waiting for a wake up event: the first returned
Researcher allows it to return to the Active mode. Each created agent leaves through a port S. Arriving to
a son place, it searches an adjacent port E.
Finding only one adjacent port labeled S, the same Researcher agent continues to seek Excluded links on
the derived sons places. But, finding two or more adjacent ports labeled S, the Researcher creates to every
founded port a Researcher agent and switch from Active to the Standby mode. It transmits to each created
agent the level of the concerned place. A first returned Researcher agent allowing it to return to the Active
mode. After its activation, a such Researcher verifies the type of returned response. If it is positive, the
activated agent sends immediately this response to its creator agent. Whereas, the activated agent waits the
receipt of responses from other already sent agents. At the end, the activated agent must send a response
to its creator agent: positive or negative response.

– Exploitation phase: receiving a positive response, the copy agent creates an Examiner agent. This latter,
leaves through the port with Nbr−S = Y es. It crosses all ports S (Nbr−S = Y es) until reaches the adjacent
place to the Excluded channel. Arriving to the desired place, and before crossing this link, the Examiner
changes the output port label from E to Fa. Reaching the destination place, the Examiner modifies the
input port label from E to S. Before turning back, the agent takes with it the levelid of the current place.
Going on a destination place, the Examiner computes the difference between the level of the current place
and that brought with it. If the result is different to 1, the Examiner updates the local levelid by that
brought with it plus 1. This update requires updating levels of all sons places (if they exist). So, this update

MAINTENANCE OF A SPANNING TREE FOR DYNAMIC GRAPHS 61

Figure 11. The Examiner reverses labels of crossed channels.

will be ensured by Corrector agents. Contrariwise, where the difference result is equal to 1, no update of
the level of the current place, consequently no update of sons places levels.
Operating principle of Corrector agents was explained in the Case 1 under Sect. 4.1.1. After achieving the
updating levels of sons places, the Examiner seeks the adjacent port labeled Fa. Before leaving, it takes
with it the levelid of the current place and changes the label of the output port from Fa to S. Arriving to
the destination place, it modifies the label of the input port from S to Fa and affects taken level with it
plus 1 to the visited place.
The reversing of labels of crossed channels (transitions T 14 and T 15) and the updating of labels of visited
places (implicitly updating of levels of derived sons places) are repeated actions, while the Examiner agent
has not yet reached the concerned place (that adjacent to the deleted link). Arriving to this place, the
Examiner updates the local levelid by that brought with it plus 1 (implicitly those of derived from). The
agent finishes the maintenance step by ensuring the cleaning phase.

– Cleaning phase: the Examiner, in this phase of the maintenance step, must reset to zero all values of
the variables Nbr − Lab (those which were modified in the verification phase). It seeks the adjacent ports
labeled S and creates a set of Cleans agents similar to the founded ports and changes its state to End.
Before leaving, each Clean agent modifies the value of the Nbr − Lab to 0. Arriving to the destination
place, the Clean agent seeks ports having a Nbr − Lab 	= 0. It creates an equivalent number of Clean
agents. Each agent, before leaving, reset to zero the Nbr − Lab. Reaching a destination place, if the input
port Nbr − Lab 	= 0, each Clean modifies it to 0. It searches all adjacent port having Nbr − Lab 	= 0 and
continues the cleaning phase. Reaching a place where no possibility of changing, the Clean agent goes to
the End state.

4.2. Topological event: Appearance of a place

The appearance of a new communication channel can be the result of:

(1) the appearance of a new place;
(2) or the displacement of a place in the underlying network.

The appearance of a new place begets its association, through one or more communication channels, to the
spanning tree. The maintenance step is triggered by places where new channels are associated (appeared channels
according to 1. or 2.). The appeared new place doesn’t yet have a copy of the mobile agent. Only those already
belonging to the spanning tree can activate the copy of mobile agent.

Detecting the appearance of a new communication channel, each adjacent place activates a copy agent. Each
one ensures the updating of a local whiteboard (see (a) in Fig. 14). The sate of each adjacent port to the added
channel will be marked ON , however labels will be marked Ny. Each activated agent creates a Solving agent
which will cross the new channel (transition T 16). Before leaving, it takes with it the levelid of the current place
and the treeid value. Each Solving agent end by changing the output port label from Ny to S (transition T 17).
Arriving to the destination place, the Solving agent verifies the state of the visited place. Two cases are possible:
state set to N or V .

62 M. KTARI ET AL.

Figure 12. The copy agent creates a Solving agent.

Figure 13. Executed transition by the Solving agent before leaving a place.

(a) Appearance of a place (b) Transitions executed by the first arrived
Solving agent at the new place

Figure 14. Integration of the new place in the spanning tree.

– State N (Fig. 14 or Fig. 17): that means that the visited place does not belong to the spanning tree. It’s
a new place and it is no yet visited by another mobile agent. The Solving agent updates the local levelid
by that brought with it plus 1. After that, it changes the place state from N to V and the arrival port
label from Ny to Fa. It updates the treeid of the current place with this brought from the last visited place.
Finishing this task, it changes its state to End: the agent commits suicide.

– State V : that means that the visited place belongs to the spanning tree. The Solving agent verifies if a
reached place and that from which it came belong to the same tree. It compares treeid variables.
• The first case: The equality between treeid implies that places belong to the same tree (see Fig. 15).

The added communication channel must be Excluded from the spanning tree.
Finding the label of the input port set to S, the Solving agent modifies the input port label to E and
changes its state to End (transition T 18). But finding it Ny (no yet crossed by another mobile agent),
the Solving agent modifies the label of this port to E and turns back through the same arrival port.
Arriving to the destination place it changes the label of reached port from S to E and its state to End.

MAINTENANCE OF A SPANNING TREE FOR DYNAMIC GRAPHS 63

Figure 15. Transitions executed by the second arrived Solving agent at the added place.

Figure 16. Executed transition by the Solving agent when it arrives to the place belonging
to the same tree that the arrival place.

• The second case (see Fig. 18): Having two different treeid implies that two places, each one belongs
to the tree. The added communication channel will be explored to merge two spanning trees on a single
spanning tree. Before starting the merging action, the Solving agent verifies the label of the input port.

– Finding it labeled Ny, this indicates only one mobile agent is currently working to merge
spanning trees.
=⇒ Having the lower treeid, the Solving agent modifies the input label from Ny to Fa (see a little more
down to follow up the merging process).
=⇒ Having the higher treeid, the Solving agent edits this value by that of the current place. After that, it
takes with it the levelid of this place and turns back from the same arrival port (see (b) in Fig. 18). Before
leaving, it modifies the label of the out put port from Ny to S (see a little more down to follow up the
merging process).

– Finding it labeled S, this indicates that two mobile agents are currently working to merge
spanning trees. But the merging can be performed by a single Solving agent. We suppose then, the
Solving agent taking with it the higher treeid changes its state to End. The remaining agent modifies the
input label from S to Fa.

Merging process: We will present in the following, the necessary details to accomplish the merging of two
spanning trees on a single tree. The Solving agent starts then by verifying the state of the current place. Finding
it V , no change. But, finding it Root, the Solving agent must modify it from Root to V (see (b) in Fig. 18).
Following the updating of the state, the Solving agent must edit the treeid by that brought with it. It followed
after that by updating the level of the current place by that brought with it plus 1. The Solving agent seeks

64 M. KTARI ET AL.

(a) Appearance of a new place

(b) Transitions executed by the first arrived Solving
agent at the new place

Figure 17. Integration of the new place in the spanning tree (second case).

sons places, if they exist, it updates their levels and propagate toward them the new treeid using Corrector
agents. These agents have the same operating principal of those created by the Examiner agent.

Once the Solving agent has launched Corrector agents, it checks if the current place has a second port Fa,
two cases are possible:

– The absence of the second port Fa implies that the Solving agent is on the Root of the second spanning
tree, it changes its state to End.

– The presence of the second port Fa implies that the Solving agent is on a place belonging to the second
spanning tree. This later has already a Root. In order to eliminate the instance of two roots, the Solving
agent must reaching this root place. Before leaving through the second port Fa, the Solving agent takes
with it the levelid of the current place and the treeid. It modifies the label of the output port from Fa to
S. Arriving to the destination place, it changes the label of the input port from S to Fa, affects the level
brought with it plus 1 to the visited place and edits the treeid. Having a sons places, the Solving agent must
ensuring the updating of their levels and propagates toward them the new treeid using Corrector agents.

MAINTENANCE OF A SPANNING TREE FOR DYNAMIC GRAPHS 65

(a) Transitions executed by the second arrived Solving
agent at the new place

(b) Exploitation for merging

Figure 18. Merging of two spanning trees following the appearance of a new place.

Indeed, the reversing labels of crossed channels (transitions T 19 and T 20), the updating of the visited places
levels and the propagation of the treeid are the repeated actions while the Solving agent has not yet reached
the Root place. Arriving to this place, the Solving agent modifies the state of the place from Root to V .
It updates the level of this place and those of derived sons places and concatenates by updating the treeid

and its propagation towards derived sons places (using Corrector agents) and finish by changing its state
to End.

5. Proof and correction of maintenance of a hierarchical spanning tree

5.1. Topological event: Disappearance of a place

Lemma 5.1. Following the disappearance of a place belonging to the spanning tree one or more communication
channels are dissipate. The maintenance step is triggered by places that are adjacent to the dissociated channels.

Proof. Detecting the disappearance of a communication channel, each place adjacent to the dissociated channel
activates the mobile agent. Each one verifies the label of the adjacent port to the deleted channel: port E

66 M. KTARI ET AL.

Figure 19. The Solving agent reverses labels of crossed channels.

(Excluded link from the tree), port S (leads to the son place), and port Fa (leads to the parent place). See the
explanation below. �

Lemma 5.2. The disappearance of the Excluded communication channel from the spanning tree does not affect
the structure of the tree.

Proof. Detecting removal of a communication channel, the adjacent execution platform activates a copy agent
which will ensure the updating of a local whiteboard. The sate of the adjacent port of the deleted channel
changes from ON to OFF state, however labels remain unchanged. Verifying the label of the adjacent port and
finding it labeled E, that implies that the adjacent link is Excluded from the spanning tree and its deletion
does not affect the structure of the computed spanning tree. �

Lemma 5.3. The disappearance of a communication channel belonging to the spanning tree causes the spacing
of adjacent place to the port Fa and all derived sons places (sub-graph) from the spanning tree.

Proof. The spanning tree is composed from sons places and parents places related through channels labeled
S −→ Fa. From a port labeled S, the agent can reach a son place. The loss of the adjacent channel does not
affect the access path to the root. But, the loss of the adjacent channel of the port labeled Fa means losing
of the access path to the parent place and implicitly the access path to the Root of the spanning tree. In this
case, the adjacent place to the port labeled Fa and all derived sons places will be dissociated from the spanning
tree. �

Lemma 5.4. Following the sub-division of the hierarchical spanning tree to two sub-trees, each one must have
its own Root.

Proof. Two cases are possible:

• Located on the sheet place (no adjacent ports other Fa port), the mobile agent modifies the state of the
current place from V to Root. It achieves the necessary updates and changes its state to End.

• Arriving on a place through an Excluded channel and finding the state of the adjacent port Fa set to OFF ,
that implies that the Excluded link could never re-associate again the dissociated place to the spanning
tree. The mobile agent turns back until arriving to the concerned place (adjacent place to the deleted link).
It modifies the state of the place from V to Root, it achieves the necessary updates and changes its state to
End. �

Lemma 5.5. Following the sub-division of the hierarchical spanning tree to two sub-trees, each one must have
its own treeid.

Proof. The sub-division of the hierarchical spanning tree causes the generation of two sub-trees. According to
Lemma 5.4, each one have its own Root. After updating the state of the place from V to Root, the mobile agent
modifies the local treeid by the identity of the current place (placeid). Such change is followed by a propagation

MAINTENANCE OF A SPANNING TREE FOR DYNAMIC GRAPHS 67

of the new treeid to all sons places derived from the root place. The agent seeks ports labeled S. It creates a
set of SetT reeid agents similar to founded ports and changes its state to End. Operating principle of SetT reeid

agents was explained in the Case 2 under the sub section. �

Lemma 5.6. Following the exploitation of an Excluded channel, levels of some places must be updating.

Proof. An Excluded channel is adjacent to two places. On one side, it can be adjacent to the concerned place
or to the son place. On the other side, it can be adjacent to the place having a lower or equal level or to the
place having a higher level (compared by that of the concerned place). Be placed on the place compatible with
the second side, the mobile agent takes with it the level of this place. It turns back by browsing the Excluded
channel. Arriving to the destination place (that’s compatible with the first side), it checks the necessity of
updating the level of the visited place. If it’s necessary, the Examiner affects the level brought with it plus 1
to the visited place. It seeks ports labeled S and creates a set of Corrector agents similar to the founded ports.
Operating principle of Corrector agents was explained in the Case 1 under Sect. 4.1.1.

After achieving the updating levels of sons places, the Examiner seeks the adjacent port Fa. It leaves
through it until reaching the concerned place. During the travel, it updates levels of visited places (implicitly
the updating of sons places). Arriving to the concerned place, the Examiner updates the level of this one and
that of sons places (if they exist). �

5.2. Topological event: Appearance of a place

Lemma 5.7. The appearance of a new place begets its association, through one or more communication chan-
nels, to the spanning tree. The maintenance step is triggered by places where new channels are associated.

Proof. Detecting the appearance of a new communication channel, the adjacent execution platform activates
a copy agent (only places belonging to the spanning tree have a copy of mobile agent). Each one creates a
Solving agent. Before crossing the new link, each one takes with it the local treeid and the levelid. Arriving to
the destination place, the Solving agent verifies the state of the visited place. Two cases are possible: N or V .

• state set to N : the visited place does not belong to the spanning tree, its a new place;
• state set to V : the visited place belong to the spanning tree. The Solving agent verifies if a reached place

and that from which it came belonging to the same tree. It compares treeid variables and according to the
result, it reacts. �

Lemma 5.8. The appearance of a new communication channel between two places belonging to the same tree
implies the Exclution of this link from the spanning tree. The structure of the spanning tree remains unchanged.

Proof. Arriving to the destination place, the Solving agent compares a brought treeid with it and that of the
visited place. If treeid are equals the crossed link must be Excluded from the spanning tree. �

Lemma 5.9. In merging case of two sub-trees, the new spanning tree must have a unique Root place.

Proof. In merging case, only one Solving agent has a responsibility to achieve the fusion of spanning trees. It
verifies the state of the current place. Finding it set to Root, the Solving agent modifies the sate from Root to
V . But finding it set to V , the Solving seeks the adjacent port Fa. It leaves through it until reaching the root
place. Arriving on this place it modifies the sate from Root to V . �

Lemma 5.10. In merging case of two sub-trees, all places composing the new spanning tree must have the same
treeid.

68 M. KTARI ET AL.

Proof. In merging case, the Solving agent edits the treeid of the current place by that brought with it. It seeks
ports labeled S. It creates a set of SetT reeid agents similar to the founded ports. These agents are loaded to
propagate the treeid for all derived sons places. After achieving the propagation of the new treeid to the sons
places, the Solving seeks the adjacent port Fa. If it find, it leaves through it until reaching the root place.
During the travel, it propagates the new treeid to the visited places (implicitly the propagation to the sons
places). Arriving to the root place, the Solving edits the treeid of this one and that of sons places (if they
exist). �

Lemma 5.11. In merging case of two sub-trees, levels of some places must be updating.

Proof. In merging case, carries already with it the level of the place from which it came, the Solving agent
checks the necessity of updating the level of the visited place. If it’s necessary, it affects the level brought with it
plus 1 to the local variable levelid. It seeks ports labeled S and creates a set of Corrector agents similar to the
founded ports. These agents are loaded to update levels of derived sons places. After achieving updating levels
of sons places, the Solving seeks the adjacent port Fa. If it finds, it leaves through it until reaching the root
place. During the travel, it updates levels of visited places (implicitly the updating of sons places). Arriving to
the root place, the Solving updates the level of this one and that of sons places (if they exist). �

Lemma 5.12. Just before the next topological event occurs (appearance or disappearance of places and/or com-
munication channels), any spanning tree or sub-tree has its own Root.

Proof. Evident according to Lemmas 5.4 and 5.9. �

Lemma 5.13. Just before the next topological event occurs, all places belonging to the same sub-tree have the
same treeid.

Proof. Evident according to Lemmas 5.5 and 5.10. �

Lemma 5.14. Just before the next topological event occurs, any sub-tree is a hierarchical spanning tree.

Proof. Evident according to Lemmas 5.6 and 5.11. �

Theorem 5.15. Just before the next topological event occurs, any sub-graph induced by channels having one
port labeled Fa is a spanning tree.

Proof. Evident according to Lemmas 5.12–5.14. �

Theorem 5.16. A necessary time to complete the maintenance step is on O(m).

Proof. A necessary time to complete the maintenance step is the time of travel of a longest path belonging to
the spacing sub-tree (e.q added sub-tree) following the detection of the deletion of a communication channel
(e.q addition). We suppose that this sub-graph is composed from m places, whence the necessary time is on
O(m). �

6. Conclusion and future works

The construction and the maintenance of a spanning tree is one of the most important problems in a dy-
namic distributed system. Based on our proposed framework for designing, proving and simulating distributed
algorithms in dynamic networks [12], we have presented in this paper a solution for the spanning tree problem.
In our model we have integrated the mobile agent on the conceptual level. The mobile agent has a responsibility
of both computing and maintaining spanning trees.

A first variant of the maintenance algorithm of computed hierarchical spanning tree has been shown in [13],
where we proposed a solution when communication channels appear and disappear in the underling network.

MAINTENANCE OF A SPANNING TREE FOR DYNAMIC GRAPHS 69

A second variant of proposed algorithm (the maintenance of a spanning tree or a forest of spanning trees) is
presented in this paper. We have studied all topological events that may affect the structure of the graph: we
address the appearance and the disappearance of places and communication channels.

The disappearance of a place implies the removal of one or more communication channels. As far as the
appearance of a place, this event can lead to the appearance of one or more communication channels. The
displacement of a place in the underlying network can lead also to the appearance and the disappearance of
communication links.

Detecting the disappearance of a communication channel belonging to the spanning tree, adjacent place to
the port Fa will be discarded from the spanning tree. To re-associate again this place (or all a sub-graph) to
the hierarchical spanning tree, we must exploit an Excluded channel. The appearance of a new communication
channel, between two places each one belongs to the tree, will be explored to merge two spanning trees on a
single spanning tree.

To validate our approach, we are proceeding to implement and experiment our algorithm using ViSiDiA
project (Visualization and Simulation of Distributed Algorithms). We are planning in the near future to present
the implementation results of proposed algorithm and presenting other solutions related to the distributed
algorithms problems in the dynamic graphs (election, counting, coloring, etc.).

References

[1] A. Renyi and P. Erdos, On the evolution of random graphs, In Publication of the Mathematical Institute of the Hungarian
Academy of Sciences (1960) 17–61.

[2] B. Yener and C.C. Bilgin, Dynamic network evolution: Models, clustering, anomaly detection. IEEE Networks (2006).
[3] F. Chung, L. Lu and W. Aeillo, A Random Graph Model for Massive Graphs, In Proceedings of the Thirty-second Annual

ACM Symposium on Theory of Computing, ser. Portland, Oregon, USA (2000) 171–180.
[4] A.L. Barabasi and R. Albert, Emergence of Scaling in Random Networks. Science 286 (1999) 509–512.
[5] A. Ferreria, On models and algorithms for dynamic communication networks: The case for evolving graphs, In 4e rencontres

francophones sur les Aspects Algorithmiques des Telecommunications (ALGOTEL), Mèze, France (2002).
[6] E. Sopena, I. Litovsky and Y. Métivier, Handbook of graph grammars and computing by graph transformation. World Scientific

Publishing Co., Inc (1999).
[7] A. Sellami, M. Bauderon, M. Mosbah, S. Gruner and Y. Métivier, Visualization of Distributed Algorithms Based on Graph

Relabelling Systems. Electron. Notes Theoret. Comput. Sci. 50 (2001) 227–237.
[8] A. Hadj Kacem, M.A. Haddar, M. Mosbah, M. Jmail and Y. Métivier, A Distributed Computational Model for Mobile Agents.

In Agent Computing and Multi-Agent Systems, 10th Pacific Rim International Conference on Multi-Agents, PRIMA (2007)
416–421.

[9] A. Hadj Kacem, M.A. Haddar, M. Mosbah and Y. Métivier, Proving Distributed Algorithms for Mobile Agents: Examples of
Spanning Tree Computation in Anonymous Networks. In Distributed Computing and Networking, 9th International Confer-
ence, ICDCN (2008) 286–291.

[10] M.A. Haddar, Codage d’algorithmes distribués d’agents mobiles à l’aide de calculs locaux. Ph.D. thesis. University of Bordeaux
1, France (2011).

[11] D.B. Lange and M. Oshima, Seven good reasons for mobile agents. Commun. ACM (1999) 88–89.
[12] A. Hadj Kacem, M. Ktari, M.A. Haddar and M. Mosbah, Proving Distributed Algorithms for Mobile Agents: Examples of

Spanning Tree Computation in Dynamic Networks. In 12th ACS/IEEE International Conference on Computer Systems and

Applications AICCSA (2015).
[13] A. Hadj Kacem, M. Ktari, M.A. Haddar and M. Mosbah, Distributed Computation and Maintenance of a Spanning Tree in

Dynamic Netrworks by Mobile Agents. In The 30th IEEE International Conference on Advanced Information Networking and
Applications AINA (2016).

[14] I. Litovsky and Y. Métivier, Computing trees with graph rewriting systems with priorities. Tree Automata and Languages
(1992) 115–140.

[15] M. Yamashita and T. Kameda, Computing on anonymous networks: Part I-characterizing the solvable cases. IEEE Transactions
on Parallel and Distributed Systems (1996).

[16] M. Yamashita and T. Kameda, Computing on Anonymous Networks: Part II Decision and Membership Problems. In IEEE
Trans. Parallel Distrib. Syst. IEEE Press (1996).

[17] I. Litovsky and Y. Métivier, Computing with graph rewriting systems with priorities. Theoretical Computer Science (1993).
[18] A. Muscholl, E. Godard and Y. Métivier, The power of local computations in graphs with initial knowledge. In Theory and

applications of graph transformations, Vol. 1764 of Lecture notes in computer science (2000).

70 M. KTARI ET AL.

[19] A. Casteigts, C. Johnen, M. Bargon, S. Chaumette and Y.M. Neggaz, Maintaining a spanning forest in highly dynamic
networks: The synchronous case. In vol. 8878 of Lecture Notes in Computer Science. Springer (2014)

[20] H. Baala, J. Gaber, M. Bui, O. Flauzac and T. El-Ghazawi, A self-stabilizing distributed algorithm for spanning tree construc-
tion in wireless ad hoc networks. J. Parallel Distrib. Comput. 63 (2003) 97–104.

[21] A. Casteigts, F. Guinand, S. Chaumette and Y. Pigne, Distributed maintenance of anytime available spanning trees in dynamic
networks. In ADHOC-NOW. In vol. 7960 of Lecture Notes in Computer Science. Springer, Berlin, Heidelberg (2013).

[22] E. Sopena and I. Litovsky, Graph relabelling systems and distributed algorithms. In Handbook of graph grammars and com-
puting by graph transformation. World scientific (2001) 1–56.

[23] A. Zemmari, M. Mosbah and S. Abbas, Distributed Computation of a Spanning Tree in a Dynamic Graph by Mobile Agents.
In IEEE International Conference on Engineering of Intelligent Systems ICEIS (2006).

[24] F. Kuhn, N.A. Lynch and R. Oshman, Distributed computation in dynamic networks. In Proc. of the 42nd ACM Symposium
on Theory of Computing, STOC (2010) 513–522.

[25] M.R. Henzinger and V. King, Maintaining minimum spanning trees in dynamic graphs. In Automata, Languages and Pro-
gramming: 24th International Colloquium (1997) 594–604.

[26] R.E. Tarjan and R.F. Werneck, Dynamic Trees in Practice. In Experimental Algorithms: 6th International Workshop (2007)
80–93.

[27] S. Kutten and A. Porat, Maintenance of a Spanning Tree in Dynamic Networks. In Proc. of the 13th International Symposium
on Distributed Computing (1999) 342–355.

Communicated by S. Tison.
Received May 13, 2016. Accepted July 10, 2017.

	Introduction
	Related works
	Computation of a hierarchical spanning tree
	Maintenance of a hierarchical spanning tree or forest of spanning trees
	Topological event: Disappearance of a place
	Excluded channel is adjacent directly to the concerned place
	Excluded channel is adjacent to the derived sons places

	Topological event: Appearance of a place

	Proof and correction of maintenance of a hierarchical spanning tree
	Topological event: Disappearance of a place
	Topological event: Appearance of a place

	Conclusion and future works
	References

