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Abstract. The scattering number of a graph is a measure of the vulnerability of a graph. In this
paper we investigate a refinement that involves the average of a local version of the parameter. If v is
a vertex in a connected graph G, then scv(G) = max{ω(G− Sv)− |Sv |}, where the maximum is taken
over all disconnecting sets Sv of G that contain v. The average scattering number of G denoted by
scav(G), is defined as scav(G) =

Σv∈V (G)scv(G)

n
, where n will denote the number of vertices in graph

G. Like the scattering number itself, this is a measure of the vulnerability of a graph, but it is more
sensitive. Next, the relations between average scattering number and other parameters are determined.
The average scattering number of some graph classes are obtained. Moreover, some results about the
average scattering number of graphs obtained by graph operations are given.

Mathematics Subject Classification. 05C40, 05C69, 68M10, 68R10.

1. Introduction

In this paper we consider only finite and undirected graphs, and have no loops or multiple edges. Let G =
(V ; E) be a connected graph and v a vertex in G. Furthermore, S will denote a proper subset of V, and Sv will
denote one that contains v. In graph theory, isomorphism of graphs G and H is a bijection between the vertex
sets of G and H f : V (G) → V (H) such that any two vertices u and v of G are adjacent in G if and only if f(u)
and f(v) are adjacent in H . This kind of bijection is generally called edge-preserving bijection, in accordance
with the general notion of isomorphism being a structure-preserving bijection. If an isomorphism exists between
two graphs, then the graphs are called isomorphic and we write G ∼= H. Let deg(u) denote the degree of the
vertex u in G.

It is known that communication systems are often exposed to failures and attacks. So robustness of the
network topology is a key aspect in the design of computer networks. The stability of a communication network,
composed of processing nodes and communication links, is of prime importance to network designers. Parameters
used to measure vulnerability include connectivity [3], average lower connectivity [1], and scattering number [7].

The connectivity of a graph G is the minimum number of vertices whose removal from G results in a
disconnected or trivial graph and is denoted by κ(G). A. [1] introduced the concept of average lower connectivity.

Keywords and phrases. Connectivity, rupture degree, scattering number, average lower domination number, average lower
independence number.
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3 Fatih Yücalar, Department of Software Engineering, Celal Bayar University, 45400 Manisa, Turkey. fatih.yucalar@cbu.edu.tr
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For a vertex v of a graph G, the lower connectivity, denoted by sv(G), is the smallest number of vertices that
contains v and those vertices whose deletion from G produces a disconnected or a trivial graph. The average
lower connectivity denoted by κav(G), is the value Σv∈V (G)sv(G)

n , Σv∈V (G)sv(G) will denote the sum over all
vertices of G. The toughness [2] t(G) of G is defined by t(G) = min{ |S|

ω(G−S) : S ⊆ V (G) and ω(G − S) > 1}
where ω(G − S) denotes the number of components in G − S.

The concept of scattering number was introduced by Jung in [7]. In 1989, Ouyang et al. [8] for the first time
proposed to use the scattering number of graphs to measure the vulnerability of networks. They obtained some
basic results on scattering number of trees and an analysis of the scattering number of Harary graphs. In [9],
the authors gave some results on the relationship between the scattering number and some other parameters
of graph. Unlike the other measures, the scattering number shows not only the difficulty to break down the
network but also the damage that has been caused.

The scattering number sc(G) of G is defined by

sc(G) = max{ω(G − S) − |S| : S ⊂ V (G), ω(G − S) ≥ 2}

where ω(G−S) denotes the number of components in G−S. A set S such that ω(G−S) �= 1 and ω(G−S)−|S| =
sc(G) is called a scattering set of G.

The average parameters have been found to be more useful in some circumstance than the corresponding
measures based on worst-case situation [6]. Therefore, incorporating the concept of the scattering number and
the idea of the average lower connectivity, we introduce a new graph parameter called the average scattering
number in this paper.

1.1. The average scattering number

We investigate a refinement that involves the local scattering number. If v is a vertex in a connected graph G,
then scv(G) = max{ω(G − Sv) − |Sv|, ω(G − Sv) ≥ 2}, where ω(G − Sv) denotes the number of components of
the graph G − Sv and the maximum is taken over all disconnecting sets Sv of G that contain v.

Note that for a graph G of order n, sc(G) = −n if and only if G is isomorphic to the complete graph Kn [4].
In particular, the local scattering number of a complete graph Kn is defined to be −n.

The average scattering number of G denoted by scav(G), is defined as

scav(G) =
Σv∈V (G)scv(G)

n
,

where Σv∈V (G)scv(G) will denote the sum over all vertices of G.
Clearly, for any graph G, sc(G) = max{scv(G) : v ∈ V (G)}. A local scattering set of G is any (strict) subset

Sv of V (G) for which ω(G − Sv) − |Sv| = scv(G). In particular, the average scattering number of a complete
graph Kn is defined to be −n.

For example, consider the graph G in Figure 1, where |V (G)| = 5 and |E(G)| = 5. It can be easily seen that
scu1 = scu4 = scu5 = 0 and scu2 = scu3 = 1. It follows that scav(G) = (0 + 1 + 1 + 0 + 0)/5 = 2/5.

1.2. Motivation

Given two graphs, one can ask the following question: is the average scattering number a suitable parameter,
regarding vulnerability? In other words, does the average scattering number distinguish between them?

Example 1.1. It can be easily seen that the connectivity of a path Pn (n ≥ 4) and a star K1,n−1 (n ≥ 4) are
equal: κ(Pn) = κ(K1,n−1) = 1. On the other hand, the average scattering numbers of a path Pn (n ≥ 4) and a
star K1,n−1 (n ≥ 4) are different: scav(K1,n−1) = n2−4n+2

n and scav(Pn) = n−2
n .
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Figure 1. The graph G.

G1 G2

Figure 2. The graphs G1 and G2.

Example 1.2. It can be easily seen that the scattering number of a path P7 and a complete bipartite K3,4 are
equal: sc(P7) = sc(K3,4) = 1. On the other hand, the average scattering number of a path P7 and a complete
bipartite K3,4 are different: scav(K3,4) = −1

7 and scav(P7) = 5
7 .

Example 1.3. Let G1 and G2 be the graphs presented in Figure 2.

It can be easily seen that the connectivity and scattering number of these graphs are equal

κ(G1) = κ(G2) = sc(G1) = sc(G2) = 1.

On the other hand, the average scattering number of G1 and G2 are different

scav(G1) = 2/5;

scav(G2) = 1/5.

The results could be checked by readers.
Another example, sc(Pn) = 1, but scav(Pn) = n−2

n . It is easy to see that the scattering number of Pn is
always constant value. On the other hand, the average scattering number of Pn is not constant, that is always
variable value.

These examples means that the average scattering number can be more efficient compared with the other
vulnerability parameters. If we want to choose the stabler graph among the graphs which have the same order
and the same size, one way is to choose the graph with minimum average scattering number. Graphs with large
average scattering number are more vulnerable. In order to reconstruct a disrupted network easily, the number
of connected components, formed after the vertices deleted, should be possibly small.

In Section 2, we give theorems related to average scattering number and graph parameters. In Section 3,
the average scattering number of some graph classes are obtained. In Section 4, some results about the average
scattering number of graphs obtained by graph operations are given.
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2. Bounds for average scattering number

In this section, we give theorems related to average scattering number and graph parameters.

Lemma 2.1. Let G = (V, E) be a connected graph. If scv(G) ≤ k for all v ∈ V, then scav(G) ≤ k. Moreover, if
scv(G) ≥ k for all v ∈ V, then scav(G) ≥ k.

Theorem 2.2. If G is a noncomplete graph of order n, then

scav(G) ≤ sc(G).

Proof. For any graph G, sc(G) = max{scv(G) : v ∈ V (G)} and so we have

scav(G) ≤ sc(G). �

Theorem 2.3. If G is a noncomplete graph of order n with the scattering set is unique, then

scav(G) < sc(G).

Proof. Let v ∈ V (G) and S1 be a scattering set of G. If v ∈ S1, then we get scv(G) = sc(G). If v /∈ S1, then we
get scv(G) < sc(G). So we have

scav(G) < sc(G). �

Theorem 2.4. If G is a noncomplete graph of order n, covering number β and independence number α, then

scav(G) ≥ α − β − 2.

Proof. Let v ∈ V (G) and Sv be a cutset of G. It can be easily seen that there is a local scattering set S∗
v of G

such that |S∗
v | = β + 1 and then we have ω(G − S∗

v ) = α − 1. So

scv(G) = max{ω(G − Sv) − |Sv|} ≥ ω(G − S∗
v ) − |S∗

v | = (α − 1) − (β + 1)

scv(G) ≥ α − β − 2.

By Lemma 2.1, we get
scav(G) ≥ α − β − 2. �

Theorem 2.5. If G is a noncomplete graph of order n, covering number β, independence number α and β = α,
then

scav(G) ≥ −1.

Proof. Let v ∈ V (G), Sv be a cutset of G and M be a minimum covering set of G.
If v ∈ V (M), then it can be easily seen that there is a local scattering set S∗

v such that |S∗
v | = β. Then

ω(G − S∗
v ) = α and we have

scv(G) = max{ω(G − Sv) − |Sv|} ≥ ω(G − S∗
v ) − |S∗

v | = α − β = 0, (2.1)

for v ∈ V (M).
If v /∈ V (M), then it can be easily seen that there is a local scattering set S∗

v such that |S∗
v | = β + 1. Then

ω(G − S∗
v ) = α − 1 and we have

scv(G) = max{ω(G − Sv) − |Sv|} ≥ ω(G − S∗
v ) − |S∗

v | = (α − 1) − (β + 1) = −2, (2.2)

for v /∈ V (M).
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Thus, by (2.1), (2.2) and Lemma 2.1,

scav(G) ≥ 0.β + (−2).α
n

=
−2.α

2.α
= −1. �

Proposition 2.6. If G is a noncomplete graph of order n and covering number β, then

scav(G) ≥ 1 − β.

Theorem 2.7. If G is a noncomplete graph of order n, independence number α, and toughness t, then

scav(G) ≤
{

2(1 − t), if t > 1 ;
α(1 − t), if t ≤ 1.

Proof. Let S be a scattering set of G. By Theorem 2.2, we have

scav(G) ≤ sc(G) = ω(G − S) − |S|
scav(G)

ω(G − S)
≤ 1 − |S|

ω(G − S)

By the definition of toughness |S|
ω(G−S) ≥ t for any scattering set S. Then

scav(G)
ω(G − S)

≤ 1 − t.

So we have,
scav(G) ≤ ω(G − S)(1 − t)

We know that 2 ≤ ω(G − S) ≤ α for any scattering set S. If t > 1 then (1 − t) is negative and so ω(G − S)
should be minimum, 2 ≤ ω(G − S) and we have

scav(G) ≤ 2(1 − t).

If t ≤ 1 then (1 − t) is positive and so ω(G − S) should be maximum, ω(G − S) ≤ α and we have

scav(G) ≤ α(1 − t). �

Corollary 2.8. If G is a noncomplete graph of order n and independence number α, then

scav(G) ≤ α.

Proposition 2.9. If G is a noncomplete r-regular graph, then

scav(G) ≥ −r.

Lemma 2.10. Let H be a spanning subgraph of a noncomplete connected graph G, then

scav(H) ≥ scav(G).

Theorem 2.11 [10]. Let G be a noncomplete connected graph of order n(≥ 3);

(a) the length of a longest path is p, then sc(G) ≤ n − p.
(b) sc(G) ≤ n − 2κ.
(c) sc(G) ≤ α − κ.
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Theorem 2.12. If G is a noncomplete graph of order n ≥ 4 and longest path length p, then

scav(G) ≤ n − p.

Proof. By Theorems 2.2 and 2.11, we have

scav(G) ≤ n − p. �

Theorem 2.13. If G is a noncomplete graph of order n, then

scav(G) ≤ n − 2κ.

Proof. The proof is similar to Theorem 2.12. �

Theorem 2.14. If G is a noncomplete graph of order n, connectivity κ and independence number α, then

scav(G) ≤ α − κ.

Proof. The proof is similar to Theorem 2.12. �

3. The average scattering number of some graph classes

In this section, the average scattering number of some graph classes are obtained.

Theorem 3.1. If T is a tree of order n ≥ 4 having k leaves, then

scav(T ) ≥ n − k

n
·

Proof. Let v ∈ V (T ) and S∗
v be a local scattering set of T. Let W be the set of the k leaves of T .

If v ∈ W and |S∗
v | = r then we have ω(T − S∗

v ) ≥ r and we have

scv(T ) = ω(T − S∗
v) − |S∗

v | ≥ r − r = 0

for k leaves.
If v /∈ W and |S∗

v | = r then we have ω(T − S∗
v ) ≥ r + 1 and we get

scv(T ) = ω(T − S∗
v ) − |S∗

v | ≥ r + 1 − r = 1

for n − k vertices with degree at least 2. Thus,

scav(T ) ≥ k.0 + (n − k).1
n

=
n − k

n
· �

Theorem 3.2. If Pn is a path graph of order n ≥ 4, then

scav(Pn) =
n − 2

n
·

Proof. Let v ∈ V (Pn) and S∗
v be a local scattering set of Pn. A path graph has 2 vertices with degree 1 and

n − 2 vertices with degree 2. Let V (Pn) be partitioned into V1 and V2 such that V1 contains the 2 vertices of
degree one in Pn and V2 contains all the remaining vertices.

If v ∈ V1 then |S∗
v | = 2 and ω(Pn − S∗

v ) = 2. So scv(Pn) = 0.
If v ∈ V2 then |S∗

v | = 1 and ω(Pn − S∗
v ) = 2. So scv(Pn) = 1 for n − 2 vertices with degree 2. Thus,

scav(Pn) =
2.0 + (n − 2).1

n
=

n − 2
n

· �
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Using Theorem 3.1, we show that the path Pn has the minimum average scattering number among all trees
of order n ≥ 4.

Theorem 3.3. If Cn is a cycle graph of order n ≥ 4, then

scav(Cn) = 0.

Proof. The vertices of Cn be c1, c2, ..., cn in order along the cycle. For every vertex of Cn, if |Sv| = r then
ω(Cn − Sv) ≤ r. So we have scv(Cn) ≤ 0.

It can be easily seen that there is a local scattering set S∗
v of Cn such that |S∗

v | = 2 where if v = ci or v = ci+2

then S∗
v = {ci, ci+2}. Hence, we have ω(Cn − S∗

v ) = 2. So we get scv(Cn) = 0 for n vertices of Cn. From the
definition of average scattering number we have,

scav(Cn) =
n.0
n

= 0. �

Theorem 3.4. If Ka,b is a complete bipartite graph of order a + b (2 ≤ a ≤ b), then

scav(Ka,b) =

⎧⎨
⎩

b2 − a2 − 2b

a + b
, if a < b;

0 , if a = b.

Proof. Let v ∈ V (Ka,b) and Sv be a cutset of Ka,b. Let the partite sets of Ka,b be A and B with |A| = a and
|B| = b. We distinguish two cases.

Case 1. For every vertex of Ka,b, if a = b, then |Sv| = a = b and ω(Ka,b − Sv) = a. Therefore, scv(Ka,b) = 0,
so scav(Ka,b) = 0.

Case 2. For v ∈ A, a minimum cutset of Ka,b that contains v must be A, so |Sv| = a and ω(Ka,b − Sv) = b.
Therefore, we get scv(Ka,b) = b − a. On the other hand, for v ∈ B, a minimum cutset of Ka,b that
contains v must be A∪{v}, so |Sv| = a+1 and ω(Ka,b−Sv) = b−1. Hence, we have scv(Ka,b) = b−a−2.
Elementary computation yields the result. �

Theorem 3.5. The average scattering of the star K1,n−1 (n ≥ 4) is n2−4n+2
n .

Proof. Let v ∈ V (K1,n−1) and S∗
v be a local scattering set of K1,n−1. A star graph has one vertex with degree

n − 1 and n − 2 vertices with degree 1.
If deg(v) = n − 1, then |S∗

v | = 1 and ω(K1,n−1 − S∗
v ) = n − 1. So scv(K1,n−1) = n − 2.

If deg(v) = 1, then |S∗
v | = 2 and ω(K1,n−1 − S∗

v ) = n − 2. So scv(K1,n−1) = n − 4 for n − 1 vertices with
degree one.

Thus,

scav(K1,n−1) =
1.(n − 2) + (n − 1).(n − 4)

n
=

n2 − 4n + 2
n

· �

4. Graph operations

In this section we consider some of the graph operations such as power, join, cartesian product of graphs.
The union operation is not taken into consideration since it is disconnected.
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4.1. Power

We begin with the definition of the power of a graph.

Definition 4.1. [5] The k − th power Gk of a connected graph G is that graph with V (Gk) = V (G) for which
uv ∈ E(Gk) if and only if 1 ≤ dG(u, v) ≤ k.

Theorem 4.2. If G is a graph of order n and diameter d, then

scav(G) ≥ scav(G2) ≥ scav(G3) ≥ . . . ≥ scav(Gd) = −n.

Proof. Since for any graph G and positive integer i, Gi is a subgraph of Gi+1, it follows from Lemma 2.10
that scav(G) ≥ scav(G2) ≥ scav(G3) ≥ . . . ≥ scav(Gd). If a graph has diameter d, then its d − th power is the
complete graph and scav(Gd) = −n. �

4.2. Join

In this section, we consider some results on the average scattering number of the join of two graphs.

Definition 4.3. [5] The join G = G1 + G2 of graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge
sets E1 and E2 is the graph union G1 union G2 together with all the edges joining V1 and V2.

Theorem 4.4. Let G and H be two noncomplete connected graphs of order a(≥ 4) and b(≥ 4), respectively.
Then

scav(G + H) ≥ 1
a + b

(a(sc(H) − a) + b(sc(G) − b)).

Proof. If v ∈ V (G), take as Y some scattering set of H and let S = V (G) ∪ Y. Clearly, S is a cutset of G + H
and

ω((G + H) − S) − |S| = ω(H − Y ) − |Y ∪ V (G)| = sc(H) − a.

Therefore, for any local scattering set Sv,

ω((G + H) − Sv) − |Sv| ≥ ω((G + H) − S) − |S| = sc(H) − a.

If v ∈ V (H), take as X some scattering set of G and let S = V (H) ∪ X. Clearly, S is a cutset of G + H and

ω((G + H) − S) − |S| = ω(G − X) − |X ∪ V (H)| = sc(G) − b.

Therefore, for any local scattering set Sv,

ω((G + H) − Sv) − |Sv| ≥ ω((G + H) − S) − |S| = sc(G) − b.

Thus,

scav(G + H) =
1

a + b
(Σv∈V (G)scv(G + H) + Σv∈V (H)scv(G + H))

scav(G + H) ≥ 1
a + b

(a(sc(H) − a) + b(sc(G) − b)). �

Theorem 4.5. If Wn is a wheel graph of order n, then

scav(Wn) = −1.
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Proof. Since Wn
∼= K1 + Cn−1, the wheel graph Wn has n vertices. Let v ∈ V (Wn) and S∗

v be a local scattering
set of Wn. The cardinality of S∗

v local scattering set is always the same for every vertex of any Wn and equals 3
and ω(Wn −S∗

v) = 2. Hence, we have scv(Wn) = −1. It follows from the definition of average scattering number
that

scav(Wn) =
n.(−1)

n
= −1. �

Proposition 4.6. Let a(≥ 4) be a positive integer, then

scav(K1 + Pa) =
−2

a + 1
·

Proof. The proof is similar to Theorem 4.5. �

4.3. Cartesian product

Now we give the definition of Cartesian product.

Definition 4.7. [5] The Cartesian product G1 ×G2 of graphs G1 and G2 has V (G1)× V (G2) as its vertex set
and (u1, u2) is adjacent to (v1, v2) if either u1 = v1 and u2 is adjacent to v2 or u2 = v2 and u1 is adjacent to v1.

Theorem 4.8. Let a and b be positive integers, then

scav(Pa × Pb) =

⎧⎪⎨
⎪⎩

−1
ab

, if a and b are odd;

0, otherwise.

Proof. Let v ∈ V (Pa × Pb) and Sv be a scattering set of Pa × Pb. We distinguish two cases.

Case 1. We can assume a and b are odd. Let M be a minimum covering set of Pa × Pb. If v ∈ V (M), then it
can be easily seen that there is a scattering set Sv of Pa ×Pb such that |Sv| = ab−1

2 , where Sv contains
all the vertices of a minimum covering set of Pa × Pb. Then ω((Pa × Pb) − Sv) = ab+1

2 and we get

scv(Pa × Pb) =
ab + 1

2
− ab − 1

2
= 1, (4.1)

for v ∈ V (M).
If v /∈ V (M), then |Sv| = ab+1

2 and ω((Pa × Pb) − Sv) = ab−1
2 . Thus,

scv(Pa × Pb) =
ab − 1

2
− ab + 1

2
= −1, (4.2)

for v /∈ V (M).
Therefore, by (4.1) and (4.2),

scav(Pa × Pb) =
1
ab

(
ab − 1

2
.1 +

ab + 1
2

.(−1)
)

=
−1
ab

·
Case 2. We can assume a or b are even. It is easy to find a Hamilton cycle in Pa×Pb. It follows from Lemma 2.10

and Theorem 3.3 that scav(Pa × Pb) ≤ 0. On the other hand, if a or b are even, then we know that
α = β. It can be easily seen that there is a scattering set Sv of Pa × Pb such that |Sv| = ab

2 , where Sv

contains all the vertices of a minimum covering set of Pa × Pb. Then ω((Pa × Pb) − Sv) = ab
2 and we

get
scv(Pa × Pb) = 0,

for v ∈ V (Pa × Pb). So we have
scav(Pa × Pb) = 0. �
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5. Conclusion

In this study, a new graph theoretical parameter namely the average scattering number has been presented
for the network vulnerability. The present parameter has been constructed by summing of the local scattering
number of every vertex of a graph divided by the number of vertices of the graph. Additionally, the stability of
popular interconnection networks has been studied and their average scattering numbers have been computed.
If we want to choose the stabler graph among the graphs which have the same order and the same size, one
way is to choose the graph with minimum average scattering number.
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tive suggestions and comments that improve the quality of this paper.
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