
RAIRO-Theor. Inf. Appl. 50 (2016) 351–369 Available online at:

DOI: 10.1051/ita/2016025 www.rairo-ita.org

SOME CLASSES OF RATIONAL FUNCTIONS FOR PICTURES ∗, ∗∗

Frantǐsek Mráz1, Friedrich Otto2 and Daniel Pr̊uša3

Abstract. With the aid of homogeneous morphisms, we turn the deterministic two-dimensional two-
way ordered restarting automaton and its extended variant into devices that compute transductions of
pictures, and we study the resulting classes of transductions in detail.
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1. Introduction

Digital image processing is a rapidly developing discipline [5]. It has a long term impact on the theory of
formal languages, as it motivates researchers to extend notions of grammars and automata from one-dimensional
strings to two-dimensional pictures. The aim of many tasks of digital image processing (as e.g. filtering, editing
or restoration) is to perform a transformation of the input image. While there have been many contributions
to the theory of picture languages concerning automata and grammars (see, e.g., [4] for an overview), it seems
that transformations on pictures have not yet been studied from the automata-theoretical point of view. Here
we present such a study based on the deterministic ordered restarting automaton (or det-ORWW-automaton).

The det-ORWW-automaton was introduced in [11]. Such an automaton has a finite-state control, a tape
with end markers that initially contains the input, and a window of size three. Based on its state and the
contents of its window, the automaton can either perform a move-right step, which shifts the window one
position to the right and changes the state, or a combined rewrite/restart step, which replaces the symbol in
the middle of the window by a symbol that is strictly smaller with respect to a predefined ordering on the
working alphabet, moves the window back to the left end of the tape, and resets the state to the initial state,
or an accept step, which causes the automaton to halt and accept. While the nondeterministic variant of this
type of automaton even accepts some languages that are not growing context-sensitive [8], it has been shown
in [11] that the deterministic variant accepts exactly the regular languages. In [13], it was observed that states
are actually not needed for det-ORWW-automata, as each automaton of this form can be transformed into
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a stateless det-ORWW-automaton that accepts the same language as the given automaton. Taking the size
of the working alphabet as a measure of the descriptional complexity of a stateless det-ORWW-automaton,
it was shown that stateless det-ORWW-automata are exponentially more succinct than even nondeterministic
finite-state acceptors [7]. Finally in [15], these automata were turned into transducers by combining them with
morphisms, and it was shown that they characterize the rational functions that map the empty word to itself.

In [10,11,14], we introduced and studied various extensions of the det-ORWW-automaton to two dimensions.
All these types of two-dimensional det-ORWW-automata have a window of size 3-by-3 that can move across
a given rectangular input picture, starting at the top left corner. A sequence of move operations ends with a
combined rewrite/restart step, which replaces the symbol in the middle of the window by a smaller symbol,
moves the window back to the top left corner, and resets the state to the initial state, it ends with an accept step,
or it ends when no further transition is applicable. The various types of two-dimensional det-ORWW-automata
differ in the form of the window movements that are allowed. Here we first consider the most restricted one of
these models, the deterministic two-dimensional two-way ordered restarting automaton (det-2D-2W-ORWW-
automaton, for short), which can only perform move-right and move-down steps. Even though, it is already
powerful enough to accept a class of picture languages that strictly extends the class DREC, the class of
deterministically recognizable two-dimensional languages [14]. Based on this result and the above observation
on the (string) transformations that are computed by det-ORWW-automata in combination with morphisms,
we have chosen to extend the det-2D-2W-ORWW-automaton into a two-dimensional transducer by combining it
with a homogeneous morphism (see Sect. 3 for the definitions). In this way we obtain a class of two-dimensional
transductions that can be interpreted as a class of rational functions on pictures. As we will see, the transductions
based on det-2D-2W-ORWW-automata include all spacial filters that are used in digital image processing (see,
e.g., [5]), and they are closed under composition. However, the operations of horizontal mirroring, vertical
mirroring, and rotation cannot be realized by these devices.

Therefore, we also consider the deterministic two-dimensional extended two-way ordered restarting automa-
ton (det-2D-x2W-ORWW-automaton, for short) from [10], which is obtained from the det-2D-2W-ORWW-
automaton by an extension of the move-right and move-down operations. It is known that already the stateless
variant of these automata can simulate the deterministic Sgaffito automaton of [18], which in turn can simulate
the det-2D-2W-ORWW-automaton, and that the det-2D-x2W-ORWW-automaton with states is strictly more
expressive than its stateless variant [16]. We will see that the resulting class of transductions contains the op-
erations of horizontal and vertical mirroring. However, it is only closed under a restricted form of composition.
In addition, it appears that the operation of rotation cannot even be realized by these devises.

This paper is structured as follows. In Section 2, we recall some basic notions on pictures and picture lan-
guages, we restate the definition of the det-2D-2W-ORWW-automaton, and we recall that each such automaton
can be turned into an equivalent det-2D-2W-ORWW-automaton that has only a single state. Hence, for these
automata states are actually not needed, and accordingly, they are called stateless. In Section 3, we extend
the det-2D-2W-ORWW-automaton into a transducer by combining it with a homogeneous two-dimensional
morphism, and we present a detailed example of a transduction computed in this way. Then, in Section 4 we
prove the closure properties mentioned before, and we show that the operations of horizontal mirroring, vertical
mirroring, and rotation cannot be realized by these devices. In Section 5 we study transformations computed by
det-2D-x2W-ORWW-automata. Finally, in Section 6 we observe that each of the recognizable picture languages
of [3] occurs as the range of a transduction that is computed by a det-2D-2W-ORWW-automaton.

2. Pictures and picture languages

We use the common notation and terms on pictures and picture languages (see, e.g., [4]). For a finite alpha-
bet Σ, Σ∗,∗ denotes the set of rectangular pictures over Σ, that is, if P ∈ Σ∗,∗, then P is a two-dimensional
array of symbols from Σ. We denote the number of rows and columns of a picture P by rows(P ) and cols(P ),
respectively. The pair (rows(P ), cols(P )) is called the dimension of P . For all m, n ≥ 1, Σm,n denotes the set
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Figure 1. The boundary picture P̂ .

of pictures of dimension (m, n) over Σ. A picture language over Σ is a subset of Σ∗,∗. For 1 ≤ i ≤ rows(P ) and
1 ≤ j ≤ cols(P ), Pi,j identifies the symbol located in row i and column j of P .

Let S = {�,�,�,⊥, #} be a set of five special markers, called sentinels. In what follows, we will always
assume implicitly that Σ ∩S = ∅ for any alphabet Σ considered. In order to enable our automata to be defined
below to detect the border of a picture P ∈ Σm,n easily, we define the boundary picture P̂ over Σ ∪ S of
dimension (m + 2, n + 2), which is illustrated in Figure 1. Here the symbols �,�,� and ⊥ uniquely identify the
corresponding borders (left, right, top, bottom) of P̂ , while the symbol # marks the corners of P̂ .

In [10, 11], we introduced several variants of a two-dimensional deterministic ordered restarting automaton.
These models are restricted variants of the deterministic two-dimensional four-way ordered restarting automaton,
which has a finite set of states and a scanning window of dimension (3, 3). Based on its current state and the
current contents of the window, it can move in any of the four possible directions and change its state, or it can
perform a combined rewrite/restart step in which it replaces the symbol in the central position of its window by a
symbol that is smaller with respect to a predefined ordering. It accepts by executing a specific accept instruction.
As shown in [14], these automata are quite expressive, as they accept at least all deterministic context-free
(string) languages. Therefore, several restricted variants have been studied in [10, 11, 14] that are obtained
from these four-way automata by restricting the possible window movements. Here we concentrate on the
most restricted one of these models, the deterministic two-dimensional two-way ordered restarting automaton.
Formally this automaton is defined as follows, where H = {R, D} is the set of possible window movements.

Definition 2.1. A deterministic two-dimensional two-way ordered restarting automaton (a det-2D-2W-
ORWW-automaton4) is given through a 7-tuple M = (Q, Σ, Γ,S, q0, δ, >), where

• Q is a finite set of states containing the initial state q0,
• Σ is a finite input alphabet and Γ is a finite tape alphabet containing Σ such that Γ ∩ S = ∅, where S is

the aforementioned set of sentinels,
• > is a partial ordering on Γ , and
• δ : Q × (Γ ∪ S)3,3 → (Q × H) ∪ Γ ∪ {Accept} is the transition function that satisfies the following three

restrictions for all q ∈ Q and all C ∈ (Γ ∪ S)3,3:
(1) if C2,3 =�, then δ(q, C) = (q′, R) for all q′ ∈ Q,
(2) if C3,2 = ⊥, then δ(q, C) = (q′, D) for all q′ ∈ Q,
(3) if δ(q, C) = b ∈ Γ , then C2,2 > b with respect to the ordering >.

A det-2D-2W-ORWW-automaton is called stateless if Q = {q0}, that is, if the initial state is its only state. As
such an automaton cannot change its state, the state q0 is actually irrelevant. Accordingly, such an automaton
is called stateless, and we suppress the components referring to states from its description. In addition, we use
the prefix stl- to denote stateless types of automata.

4The suffix -WW in the name of this model of automaton is inherited from the original model of the restarting automaton
(see [6]), where it expresses the fact that these automata can reWrite (in contrast to versions which can only delete symbols) and
can use Working (non-input) symbols in their rewrite operations.
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To simplify the presentation we say that the window of M is at position (i, j) to mean that the field in the
center of the window is at row i and column j. Given a picture P ∈ Σm,n as input, M begins its computation in
state q0 with its read/write window reading the subpicture of dimension (3, 3) of P̂ at the upper left corner, that

is, the window is at position (1, 1) of P . Thus, M sees the subpicture

⎛⎝ # � �
� P1,1 P1,2

� P2,1 P2,2

⎞⎠ . Applying its transition

function, M now moves through P̂ . If M is in a state q, sees C in its read/write window and δ(p, C) = (q′, R),
then M moves its read/write window one position to the right and enters state q′. Similarly, if δ(p, C) = (q′, D),
the automaton moves its read/write window one position down and enters state q′. The automaton M continues
moving through the picture until it reaches a state q and a position with current contents C of the read/write
window such that either δ(p, C) is undefined, or δ(p, C) = Accept, or δ(p, C) = b for some letter b ∈ Γ which is
smaller than C2,2 by definition. In the first case, M gets stuck, and so the current computation ends without
accepting, in the second case, M halts and accepts, and in the third case, M replaces the symbol C2,2 by the
symbol b, moves its read/write window back to the upper left corner, and reenters its initial state q0. This latter
step is called a combined rewrite/restart step. A part of a computation that begins with an initial configuration
(or after a rewrite/restart step) and that ends with the first (next) rewrite/restart step is called a cycle, and
the part that follows after the last rewrite/restart step is called a tail computation. Thus, the computation of
M on input P consists of a sequence of cycles that is followed by a tail computation.

A picture P ∈ Σ∗,∗ is accepted by M, if the computation of M on input P ends with an accept instruction. By
L(M) we denote the language consisting of all pictures over Σ that M accepts, and by L(det-2D-2W-ORWW)
(L(stl-det-2D-2W-ORWW)) we denote the class of picture languages that are accepted by (stateless) det-2D-
2W-ORWW-automata. In fact, stateless det-2D-2W-ORWW-automata are as expressive as those with states.

Theorem 2.2. [12] From a given det-2D-2W-ORWW-automaton M, one can construct a stateless det-2D-2W-
ORWW-automaton M0 in polynomial time such that L(M0) = L(M).

Actually, if M = (Q, Σ, Γ,S, q0, δ, >), then the stateless det-2D-2W-ORWW-automaton M0 has a tape
alphabet of size O((|Q| + |Γ |) · |Γ |5).

By REC we denote the class of recognizable picture languages of Giammarresi and Restivo [3], and by
DREC we denote the deterministically recognizable two-dimensional languages of Anselmo, Giammarresi, and
Madonia [1,2]. Concerning these classes of picture languages, the following inclusion results have been obtained
(see, e.g., [14]):

DREC � L(stl-det-2D-2W-ORWW) = L(det-2D-2W-ORWW) � P,

where P denotes the polynomial-time recognizable languages.

3. Computing transductions

While processing a given input picture P , a det-2D-2W-ORWW-automaton M transforms P into a picture
over its tape alphabet. Accordingly, one could simply take this transformation as the transduction computed
by M. However, as we will see below in Example 3.2, M needs to encode some technical information on
the current computation within the picture it is processing. This information disturbs the image of P being
produced. Therefore, we adopt the definition from [15] to the two-dimensional case, that is, we associate a
transduction with a det-2D-2W-ORWW-automaton and a morphism.

Definition 3.1.

(a) Let Γ and Δ be two finite alphabets. A homogeneous morphism from Γ ∗,∗ into Δ∗,∗ is defined by two
integers b, h ≥ 1 and a mapping ϕ : Γ → Δh,b that associates with each letter a ∈ Γ a picture ϕ(a) of
dimension (h, b) over Δ. Then ϕ can be extended naturally into a morphism ϕ : Γ ∗,∗ → Δ∗,∗ that maps a
picture P ∈ Γ m,n into a picture ϕ(P ) ∈ Δm·h,n·b.
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(a) (b)

Figure 2. An example picture P0 from Lsq (a) and the picture τ(P0) (b).

(b) Let M = (Q, Σ, Γ,S, q0, δ, >) be a det-2D-2W-ORWW-automaton, let Δ be a finite (output) alphabet, and
let ϕ : Γ ∗,∗ → Δ∗,∗ be a homogeneous morphism. For P ∈ L(M), let P̃ denote the final tape inscription
that M produces during its accepting computation on input P . With P we associate the output picture
ϕ(P̃ ). In this way the pair (M, ϕ) defines a transduction ϕM : Σ∗,∗ → Δ∗,∗ with domain L(M).

Next we present an example of a transduction on pictures that is computed by a det-2D-2W-ORWW-automaton.

Example 3.2. Let Σ = {�, �} and Lsq = {P ∈ Σ∗,∗ | rows(P ) = cols(P ) ≥ 1 }, that is, Lsq consists of all
square pictures over Σ. An example picture P0 is given in Figure 2a.

Next we define a transformation τ on Lsq by taking, for n := rows(P ) = cols(P ),

τ(P ) := Q ∈ Σn,n, where Qn,i = Pi,n and Qi,n = Pn,i, 1 ≤ i ≤ n,

and Qi,j = Pi,j , 1 ≤ i, j < n,

that is, τ(P ) is obtained from P by interchanging the last column with the last row, leaving all other entries
untouched. See Figure 2b for the picture τ(P0).

We present a det-2D-2W-ORWW-automaton Mτ = (Q, Σ, Γ,S, q0, δ, >) and a homogeneous morphism ϕ :
Γ ∗,∗ → Σ∗,∗ such that (Mτ , ϕ) realizes the transformation ϕMτ = τ .

We take Γ = Σ∪{ [a, b]i | a, b ∈ Σ, 1 ≤ i ≤ 5 }, we define a partial ordering > by taking a > [a, b]1 > [a, c]2 >
[a, d]3 > [a, e]4 > [a, f ]5 for all a, b, c, d, e, f ∈ Σ, and we define the transition function δ in such a way that Mτ

proceeds as follows given a picture P ∈ Σn,n as input:

(1) The information on the last column is moved to the main diagonal and then down to the bottom row. This
is achieved as follows. First, the symbols P1,n−1, P1,n−2, . . . , P1,2 are rewritten, from right to left, by the
symbols [P1,n−1, P1,n]1, [P1,n−2, P1,n]1, . . . , [P1,2, P1,n]1, and then the symbol P1,1 is rewritten by the symbol
[P1,1, P1,n]2. Then in row 2, the information on the last symbol P2,n is copied from right to left, replacing
the symbols P2,j by [P2,j , P2,n]1 for j = n− 1, n− 2, . . . , 3 and by replacing the symbol P2,2 by the symbol
[P2,2, P2,n]2. Observe that Mτ recognizes position (2, 2) by observing that the top row of its window contains
an auxiliary symbol with index 2 that is followed by two auxiliary symbols with index 1. Finally, the symbol
P2,1 is replaced by the symbol [P2,1, P1,n]2 by copying the information on P1,n from the auxiliary symbol at
position (1, 1). Now rows 3 to n− 1 are dealt with in the same way, that is, the symbol Pi,n is copied to the
left, letter by letter, using auxiliary symbols with index 1 until it finally reaches the main diagonal, where
it is encoded by the symbol [Pi,i, Pi,n]2, and then the information on Pj,n, j = i − 1, i − 2, . . . , 1, is copied
from the first i − 1 symbols in row i − 1 to the first i − 1 symbols in row i. This continues until Pn−1,1 is
rewritten by [Pn−1,1, P1,n]2. Finally, the entries in row n are rewritten from right to left, replacing Pn,i by
[Pn,i, Pi,n]2, 1 ≤ i ≤ n. When entry Pn,1 has been rewritten, then Mτ realizes after the next restart that
phase 1 is complete. In Figure 3a the picture resulting from P0 by phase 1 is presented.

(2) Now the information on the bottom row is moved up to the main diagonal, and then it is moved to the
last column. This is achieved as follows. First, the information on the symbol Pn,1 is moved up the first
column, replacing the symbols [Pi,1, P1,n]2 by [Pi,1, Pn,1]3, 2 ≤ i ≤ n − 1, and finally replacing the symbol
[P1,1, P1,n]2 by [P1,1, Pn,1]4. Next the information on the symbol Pn,2 is moved up the second column,
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(a) (b)

Figure 3. The example picture P0 after phase 1 (a) and after phase 2 (b).

replacing the symbols [Pi,2, P2,n]2 by [Pi,2, Pn,2]3, 3 ≤ i ≤ n − 1, by replacing the symbol [P2,2, P2,n]2 by
[P2,2, Pn,2]4, and finally replacing the symbol [P1,2, P1,n]1 by [P1,2, Pn,1]4. Then columns 3 to n−1 are dealt
with analogously, and finally, the symbol Pi,n is rewritten into [Pi,n, Pn,i]5, i = n−1, n−2, . . . , 1. Figure 3b
shows the example picture P0 after phase 2.

(3) Finally, the homogeneous morphism ϕ maps the symbols of the form [a, b]3 or [a, b]4 to a, as these are the
symbols that remain in those positions that do not belong to the last row or the last column, and those of
the form [a, b]2 and [a, b]5 to b, as these are the symbols in the last row and the last column, respectively.

As the window of Mτ is of dimension (3, 3), it is easily seen that δ can be defined in the required way. It follows
that (Mτ , ϕ) correctly computes the transformation τ .

By a slight modification of the above construction it is possible to construct a det-2D-2W-ORWW-automaton
and a projection that realize a transduction which swaps some other pair of the first/last row or the first/last
column of input pictures. However, we will see in Corollary 4.10 that transductions which rotate the whole
picture cannot be realized in this way.

Using the same construction as in the proof of Theorem 2.2 (see [12]), and by extending the morphism ϕ
accordingly, we obtain the following consequence.

Corollary 3.3. Let (M, ϕ) be a det-2D-2W-ORWW-automaton and a homogeneous morphism that realize a
transduction τ : Σ∗,∗ → Δ∗,∗. Then one can construct a stateless det-2D-2W-ORWW-automaton M0 and a
homogeneous morphism ϕ0 in polynomial time such that the pair (M0, ϕ0) also realizes the transduction τ .

By Fhm(det-2D-2W-ORWW) (Fhm(stl-det-2D-2W-ORWW)) we denote the class of transductions that are
realized by (stateless) det-2D-2W-ORWW-automata with the help of homogeneous morphisms. From Corol-
lary 3.3 we see that these two classes of transductions coincide. In the one-dimensional case, that is, for strings,
the class of functions that are computed by det-ORWW-automata with the aid of morphisms coincides with
the class RatF0 of rational functions that map the empty word to itself [15]. Therefore, we feel that it is justi-
fied to consider the class of transductions Fhm(det-2D-2W-ORWW) as a reasonable candidate for the class of
rational functions on pictures. To justify this choice we now study this class of transductions in some detail,
concentrating on the closure with respect to composition.

4. On the class Fhm(det-2D-2W-ORWW)

First we argue that the transductions computed by det-2D-2W-ORWW-automata include all spatial filters
used in digital image processing. Spatial filtering of a digital image consists in computing a value for each pixel
of an image as a function of pixel values within a window centered at the location of the pixel (see [5]). In
general, a filter based on a window of dimension ((2a + 1), (2b + 1)) is a function f : (Σ ∪ {#})2a+1,2b+1 → Δ.
By applying the filter f to a picture P of dimension (m, n), we obtain the picture P ′ of the same dimension as P :
P ′

i,j = f(Bi,j,a,b), where Bi,j,a,b is the subpicture of P of dimension ((2a+1), (2b+1)) with its central field on the
symbol Pi,j . Formally, Bi,j,a,b

k,l = Pi−a+k,j−b+l for k = 0, 1, . . . , 2a and l = 0, 1, . . . , 2b, where Pi−a+k,j−b+l = #,
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whenever i − a + k ≤ 0, i − a + k > m, j − b + l ≤ 0, or j − b + l > n. We denote this as P ′ = P ∗ f . Filters
for which the function f is a linear combination of some values associated to symbols from Σ ∪ {#} are known
also as convolution filters. They are used in image pre-processing for blurring, contrast enhancing, etc.

If f : (Σ ∪ {#})2a+1,2b+1 → Δ is a filter function with a = b = 1, then we can easily construct a det-2D-
2W-ORWW-automaton M and a homogeneous morphism ϕ such that, for each picture P , ϕM(P ) = P ∗ f . Let
M = (Q, Σ, Γ,S, q0, δ, >) be the following det-2D-2W-ORWW-automaton, where Γ = Σ∪Γ ′, Γ ′ = (Σ∪{#})3,3,
and let ϕ(B) = f(B) for all B ∈ Γ ′. The automaton M works on an input picture P as follows. From a restarting
configuration the automaton moves down the first column of the picture until it finds the last row containing a
symbol from Σ. This could also be the last row of the picture. Then it starts to move to the right on this row
until it finds the last symbol from Σ (which is followed by the right sentinel � or a symbol from Γ ′). Then M
rewrites this symbol into the symbol from Γ ′ that corresponds to the contents of its scanning window. In such
a rewrite step, all sentinels are represented by the symbol #. If no symbol can be rewritten anymore, that is,
the symbol at position (1, 1) has already been rewritten into a symbol from Γ ′, then M accepts. Trivially, the
morphism ϕ applied to the final picture over Γ ′ computes the filtered picture P ∗ f .

Now it is easy to generalize the above construction to functions f : (Σ ∪ {#})2a+1,2b+1 → Δ for any values
a, b ≥ 1. One simply chooses Γ ′ = (Σ∪{#})2a+1,2b+1 and uses repeated rewrites to replace each symbol Pi,j ∈ Σ
of an input picture P by the symbol B ∈ Γ ′ that corresponds to the subpicture of dimension (2a + 1, 2b + 1) of
P which is centered at the position (i, j). Together with the homogeneous morphism ϕ that maps the letter B
to f(B) we obtain a realization of the transduction defined by the filter function f through a pair (M, ϕ).

Next we show that the class of transductions Fhm(det-2D-2W-ORWW) is closed under the operation of
composition. First, we consider the special case that the first transduction in a composition uses a projection
instead of a more general homogeneous morphism.

Lemma 4.1. Let M1 = (Q1, Σ1, Γ1,S, q1, δ1, >1) be a det-2D-2W-ORWW-automaton, let π1 : Γ1 → Σ2 be
a projection, and let τ1 : Σ∗,∗

1 → Σ∗,∗
2 be the transduction that is realized by (M1, π1). Further, let M2 =

(Q2, Σ2, Γ2,S, q2, δ2, >2) be a det-2D-2W-ORWW-automaton, let ϕ2 : Γ ∗,∗
2 → Δ∗,∗ be a homogeneous morphism,

and let τ2 : Σ∗,∗
2 → Δ∗,∗ denote the transduction that is realized by (M2, ϕ2). Then there exist a det-2D-2W-

ORWW-automaton M and a homogeneous morphism ϕ such that (M, ϕ) realizes the transduction τ = τ2 ◦ τ1.

Proof. The det-2D-2W-ORWW-automaton M will first simulate M1, then it will determine the corresponding
output picture, and finally it will simulate M2 on the latter. The main issue is how to distinguish between these
stages. This must be achieved through the contents of the various cells on the tape.

We take M = (Q1 ∪ Q2, Σ1, Γ1 ∪ Γ2,S, q1, δ, >), where we assume that Q1 ∩ Q2 = ∅ and Γ1 ∩ Γ2 = ∅, we
define the ordering > through

a > b if (a, b ∈ Γ1 and a >1 b) or (a, b ∈ Γ2 and a >2 b) or (a ∈ Γ1 and b ∈ Γ2) ,

and we define δ in such a way that it realizes the following three phases:

(1) M simulates M1 on the input picture until M1 reaches a configuration in which M1 would apply an
accepting instruction (q, C) → Accept (q ∈ Q1, C ∈ Γ 3,3

1 ). Instead of this accept instruction, M performs
the rewrite/restart step (q, C) → π1(C2,2).

(2) Let P be the time-ordered sequence of cells which M1 visits from its last restart to the accept step. M still
simulates the steps of M1, however, a cycle is ended as soon as the window contains at least one symbol
from Γ2. In this case, assuming that the central cell of the scanning window stores the symbol a ∈ Γ1, M
rewrites this symbol into π1(a) and restarts. Since M1 is deterministic, M will traverse shorter and shorter
prefixes of P until it scans a symbol from Γ2 immediately after a restart. An example of P and all its cells
that are rewritten into symbols from Γ2 during the first and second phase is depicted in Figure 4.

(3) The presence of a symbol from Γ2 in the window immediately after a restart informs M that it should now
simulate M2. Note that at this stage, the cells contain symbols from both, Γ1 and Γ2. During this phase,
however, each symbol a ∈ Γ1 is simply interpreted as the symbol π1(a). �
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× ×
×
×

× ×
×

Figure 4. The gray cells form the path traversed by M1 from its last restart to its accept
step. The crossed cells are rewritten to a symbol from Γ2 by M in the first and second phase.

Lemma 4.2. The class of picture languages L(det-2D-2W-ORWW) is closed under inverse homogeneous mor-
phisms, that is, if M = (Q, Σ, Γ,S, q0, δ, >) is a det-2D-2W-ORWW-automaton and ϕ : Δ∗,∗ → Σ∗,∗ is a
homogeneous morphism, then there exists a det-2D-2W-ORWW-automaton M′ which accepts P ∈ Δ∗,∗ if and
only if M accepts ϕ(P ).

Proof. Let (h, b) be the dimension of the images ϕ(a), where a ∈ Δ, that is, each picture P ∈ Δm,n

is mapped by ϕ to a picture ϕ(P ) ∈ Σm·h,n·b. The idea is to construct a det-2D-2W-ORWW-automaton
M′ = (Q′, Δ, Γ ′,S, q′0, δ

′, >′) which simulates the computation of M on input ϕ(P ), where each tape cell of M′

represents a block of dimension (h, b) of the tape of M. We thus define Γ ′ = Δ∪Γ h,b. Each B ∈ Γ h,b represents
the possible contents of a block, where Bi,j is the symbol in the ith row and the jth column of that block.
Moreover, each input symbol a ∈ Δ represents the block contents ϕ(a). In one step, M′ simulates all those steps
that are performed by M within the corresponding block, ending when M leaves the block or when M ends the
current cycle inside this block. When M leaves a block, the automaton M′ must perform a corresponding move
right or move down step. In order to simulate the next step of M inside the corresponding block, the state of M′

must record the position at the block perimeter in which M enters it. Since a det-2D-2W-ORWW-automaton
moves its head only to the right and down, there are h + b − 1 positions in the first row and the first column
of each block at which M can enter it. Accordingly, we take Q′ = Q × {1, 2, . . . , h + b − 1} and q′0 = (q0, 1),
assuming that the number 1 represents the top-left corner of a block. The partial ordering >′ is defined in
accordance with >, taking B >′ B′ if B′ ∈ Γ h,b, B ∈ Γ h,b or B = ϕ(a) for some a ∈ Δ, and the following
condition is met: ∃i, j : Bi,j > B′

i,j ∧ �i, j : B′
i,j > Bi,j . Finally, δ′ is chosen to realize the instructions that

implement the simulation of M. �

By combining Lemmas 4.1 and 4.2 we obtain the intended closure property.

Theorem 4.3. The class of transductions Fhm(det-2D-2W-ORWW) is closed under composition.

Proof. Let M = (Q, Σ, Γ,S, q0, δ, >) and M′ = (Q′, Σ′, Γ ′,S, q′0, δ′, >′) be two det-2D-2W-ORWW-automata,
ϕ : Γ ∗,∗ → (Σ′)∗,∗ and ϕ′ : (Γ ′)∗,∗ → Δ∗,∗ be two homogeneous morphisms, τ and τ ′ be the transductions
realized by (M, ϕ) and (M′, ϕ′), respectively. Using the construction from the proof of Lemma 4.2, we can
transform the automaton M′ into a det-2D-2W-ORWW-automaton M which accepts P ∈ Γ ∗,∗ if and only if
M′ accepts ϕ(P ). Moreover, any final tape inscription P̃ that M produces during its accepting computation
contains the corresponding final tape contents P̃ obtained by M′ on the input ϕ(P ) in encoded form. We can

easily define a homogeneous morphism ϕ′ which computes ϕ′(P̃ ) from P̃ . A det-2D-2W-ORWW-automaton
realizing τ ′ ◦ τ can be obtained from M with the identity morphism and M with ϕ′ using Lemma 4.1. �

For pictures P ∈ Σ∗,∗
1 and R ∈ Σ∗,∗

2 of the same dimension (m, n), let P ⊗ R denote their pointwise compo-
sition, which is the picture S ∈ (Σ1 × Σ2)m,n such that Si,j = (Pi,j , Ri,j) for all i, j. Now let τ1 : Σ∗,∗

1 → Γ ∗,∗
1
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and τ2 : Σ∗,∗
2 → Γ ∗,∗

2 be two transductions such that, for all P ∈ Σ∗,∗
1 and R ∈ Σ∗,∗

2 , τ1(P ) and τ2(R) have the
same dimension, whenever P and R have the same dimension. Then together with the pointwise composition
P ⊗ R of P and R, also the pointwise composition τ1(P ) ⊗ τ2(R) of τ1(P ) and τ2(R) is defined. We define
the parallel composition of τ1 and τ2 as the transduction τ1 ⊗ τ2 : (Σ1 × Σ2)∗,∗ → (Γ1 × Γ2)∗,∗ given through
(τ1 ⊗ τ2)(P ⊗ R) = τ1(P ) ⊗ τ2(R).

Corollary 4.4. Let τ1 : Σ∗,∗
1 → Γ ∗,∗

1 and τ2 : Σ∗,∗
2 → Γ ∗,∗

2 be transductions that are realizable by det-2D-2W-
ORWW-automata and homogeneous morphisms. If the parallel composition τ1 ⊗ τ2 of τ1 and τ2 is defined, then
it is also realizable by a det-2D-2W-ORWW-automaton and a homogeneous morphism.

Proof. In analogy to the proof of Lemma 4.1, a det-2D-2W-ORWW-automaton M with input alphabet Σ1×Σ2

can first simulate the automaton M1, where (M1, ϕ1) realizes the transduction τ1, using the first component
of each cell and keeping the information in the second component of each cell fixed. Thereafter, it simulates
the automaton M2, where (M2, ϕ2) realizes the transduction τ2, using the second component of each cell and
keeping the information in the first component of each cell fixed. By combining ϕ1 and ϕ2 componentwise, we
obtain a homogeneous morphism ϕ such that the pair (M, ϕ) realizes the transduction τ1 ⊗ τ2. �

Let τ1 : Σ∗,∗ → Γ ∗,∗
1 and τ2 : Σ∗,∗ → Γ ∗,∗

2 be transductions such that τ1(P ) and τ2(P ) have the same
dimension for all pictures P . Then we can define their parallel composition τ : Σ∗,∗ → (Γ1 × Γ2)∗,∗ by taking
τ(P ) = τ1(P )⊗ τ2(P ). Also this transformation is realizable, if τ1 and τ2 are realizable, as we can easily realize
the mapping a → (a, a).

The following lemma can be used to prove that a certain transduction cannot be realized by a det-2D-2W-
ORWW-automaton and a homogeneous morphism.

Lemma 4.5. Let τ : Σ∗,∗ → Γ ∗,∗ be a transduction such that the dimensions of P and of τ(P ) coincide for
every P ∈ Σ∗,∗, and let π1, π2 : Σ×Γ → Σ be the projections that are defined by π1((a, c)) = a and π2((a, c)) = c
for all (a, c) ∈ Σ × Γ . If there is a det-2D-2W-ORWW-automaton M = (Q, Σ × Γ, Γ ′,S, q0, δ, >) such that the
language

L = { π1(P ′) | P ′ ∈ L(M) ∧ π2(P ′) = τ(π1(P ′)) }
is not accepted by any det-2D-2W-ORWW-automaton, then the transduction τ does not belong to the class
Fhm(det-2D-2W-ORWW).

Proof. Assume that τ is realized by a det-2D-2W-ORWW-automaton M1 and a homogeneous morphism ϕ.
From M1, we can construct a det-2D-2W-ORWW-automaton M2 that accepts L as follows. For an input
P ∈ Σ∗,∗, M2 simulates M1 while representing the pair (P , τ(P )) on its tape, that is, in each cell it always
encodes the current contents together with the original input, and in a final phase each final letter is replaced
by its corresponding image under ϕ. Then it simulates the computation of M on this pair and accepts P
if and only if M accepts the pair (P , τ(P )). As this contradicts our assumption on L, we see that τ ∈
Fhm(det-2D-2W-ORWW). �

Based on this lemma, we will prove below that Fhm(det-2D-2W-ORWW) does neither contain the operation
of vertical mirroring nor the operation of rotation. However, before we can do that, we need to introduce the
following technical result, where �denotes the column concatenation of pictures. For any two pictures P ∈ Σm,n

and Q ∈ Σk,l, P �Q is defined only if m = k, and in this case P �Q ∈ Σm,n+l is the picture that is obtained
by concatenating the corresponding rows of both pictures.

Theorem 4.6. Let Σ be an alphabet of size k > 1 and f : Σ∗,∗ → Σ∗,∗ be an injective function such that, for
any picture P ∈ Σ∗,∗, f(P ) has the same number of rows as P . Further, let L be a picture language such that
|L ∩ Σn,∗| ∈ 2ω(n log n). Then the language Lf = {P �f(P ) | P ∈ L } /∈ L(det-2D-2W-ORWW).
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Proof. Assume to the contrary that there exists a det-2D-2W-ORWW-automaton M = (Q, Σ, Γ,S, q0, δ, >)
such that L(M) = Lf . Without loss of generality we may assume that M is stateless (Thm. 2.2) and that
it accepts only at the lower right corner of the picture. Let n be a sufficiently large positive integer the exact
value of which will be determined later. We consider the accepting computations on input pictures of the form
P �f(P ) ∈ Lf for P ∈ Σn,∗. The left part of the picture containing P will be denoted by P�, and the right part
containing f(P ) will be denoted by Pr .

As each cycle of M starts with the read/write window at the upper left corner of P�, we see that each cycle
of M consists of a part during which M is on P�, which is then possibly followed by a part during which M is
on Pr. We are particularly interested in the behaviour of M at the border between P� and Pr, that is, when the
middle column of its read/write window is over the last column of P�. These positions are the only positions
in which the contents of the tape fields containing Pr has any influence on the behaviour of M on P�. In fact,
only the contents of the tape fields within the last column of P� can have any influence on the behavior of M
on Pr, and only the contents of the first column of Pr can have any influence on the behaviour of M on P�.

The computation of M on input P �f(P ) can be divided into two types of phases:

• a left-phase consists of a sequence of maximum length of cycles during which M executes rewrite steps on P�;
• a right-phase consists of a sequence of cycles during which M executes rewrite steps on Pr until M accepts

or rewrites a symbol in the leftmost column of Pr.

Observe that during a left-phase, the active (that is, the central) position of the window stays on P�. Further,
during all cycles of a right-phase, M follows exactly the same path through the subpicture P�, as M is deter-
ministic, and as the effects of the rewrite operations performed during this right-phase (apart from the last one,
which is executed on the first column of Pr) are invisible for M as long as it is on P�.

Obviously, an accepting computation of M on an input of the form P �f(P ) cannot consist of a single left-
phase only. The first column of Pr has n entries only that can be rewritten at most |Γ |−1 times. Thus, altogether
at most n · (|Γ | − 1) rewrites can occur in this column, which implies that there are at most n · (|Γ | − 1) + 1
many right-phases and at most as many left-phases.

With the accepting computation of M on an input P �f(P ) of the form described above, we now associate
a generalized crossing sequence GCS(P �f(P )) that is defined as follows:

(1) We begin with a pair (C�, Cr), where C� and Cr are the contents of the last column of P� and the first
column of Pr, respectively.

(2) Whenever a rewrite operation is performed on the mth row within the last column of P�, we append the
corresponding pair of the form (m, b)� to the sequence, where b is the symbol which is written into the mth
row of the last column of P�.

(3) Whenever a right-phase starts, we append (m) to the sequence, where m is the row in which the right part
Pr is entered.

(4) Whenever a right-phase ends with an execution of a rewrite operation on the mth row within the first
column of Pr, we append the corresponding pair of the form (m, b)r to the sequence, where b is the symbol
which is written into the mth row of the first column of Pr.

As there are at most n · (|Γ | − 1) + 1 many right-phases, at most n · (|Γ | − 1) many rewrites in column n,
and at most n · (|Γ | − 1) many rewrites in column n + 1, we see that each sequence GCS(M, P �f(P )) is
of length at most 3 · n · (|Γ | − 1) + 2 ≤ 3 · n · |Γ |. There are at most |Σ|2n possible pairs of columns of
length n at the beginning of a generalized crossing sequence. Hence, the number of possible generalized cross-
ing sequences is at most |Σ|2n · (

∑3·n·|Γ |
i=1 (n + 2 · |Γ | · n)i) ∈ 2O(n·log n). However, there are 2ω(n log n) many

pictures of the form P �f(P ). If n is sufficiently large, then there are more pictures of this form than there
are possible generalized crossing sequences. Hence, there exist two pictures P1, P2 ∈ Σn,n such that P1 = P2,
but GCS(M, P1

�f(P1)) = GCS(M, P2
�f(P2)). Now it is easy to see that M will also accept the picture

P1
�f(P2) ∈ L – a contradiction. �
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(a) (b) (c)

Figure 5. An example of a picture P (a), its vertical mirror PVM (b) and a picture from Lpal (c).

Now we can prove the following negative result, where Σ is any finite alphabet of cardinality at least 2 and
τVM : Σ∗,∗ → Σ∗,∗ denotes the operation of vertical mirroring, that is, τVM maps a picture P ∈ Σm,n, m, n ≥ 2,
to its vertical mirror PVM ∈ Σm,n, that is, for all i, j, PVM

i,j = Pi,n+1−j .

Lemma 4.7. τVM ∈ Fhm(det-2D-2W-ORWW).

Proof. For simplicity we take Σ = {�, �}. An example of a picture P and its image τVM(P ) are given in
Figures 5a and 5b. Further, let Lpal = {P �PVM | P ∈ Σm,n, m, n ≥ 2 }, that is, Lpal contains exactly those
pictures Q ∈ Σ∗,∗ with m ≥ 2 rows and 2n (n ≥ 2) columns for which Q = QVM (that is, each row of Q is a
palindrome). A picture from Lpal is depicted in Figure 5c. As there are 2m·n many pictures of dimension (m, n)
over Σ, Theorem 4.6 implies that Lpal is not accepted by any det-2D-2W-ORWW-automaton.

On the other hand, if both Q and τVM(Q) are represented in one picture over Σ × Σ, then a det-2D-2W-
ORWW-automaton can easily verify whether Q is in Lpal or not by checking whether Qx,y = (τVM(Q))x,y for
all coordinates (x, y). Thus, Lemma 4.5 applies here to show that τVM ∈ Fhm(det-2D-2W-ORWW). �

Hence, the operation of vertical mirroring cannot be realized by a det-2D-2W-ORWW-automaton. By symme-
try it follows that the operation of horizontal mirroring cannot be realized in this way, either. We will show that
also the operation of rotating a picture by 90 degrees cannot be realized by a det-2D-2W-ORWW-automaton.

Let P rot denote the picture that is obtained from a picture P ∈ Σm,n by rotating it clockwise by 90 degrees,
that is, for all i, j, P rot

i,j = Pj,m+1−i.
Let Σ = {�, �}, and let Lrot denote the following picture language over Σ:

Lrot = {P �(P rot)rot | P ∈ Σn,n, n ≥ 1 },

that is, a picture in Lrot consists of the column concatenation of a square picture P over Σ and its image
(P rot)rot obtained by a two-fold application of the operation of rotation.

Corollary 4.8. Lrot ∈ L(det-2D-2W-ORWW).

Proof. All pictures in the language Lrot are of the form P �f(P ), where f(P ) = (P rot)rot. The function f is
injective and |Lrot ∩ Σn,∗| = 2θ(n2) ⊂ 2ω(n log n). Hence according to Theorem 4.6, the language Lrot cannot be
accepted by any det-2D-2W-ORWW-automaton. �

Based on this result, we can now derive the following negative result.

Lemma 4.9. Let Σ = {�, �}, and let τ rr : Σ∗,∗ → Σ∗,∗ be the transduction that maps a picture
P ∈ Σm,n to its two-fold rotation (P rot)rot ∈ Σm,n, that is, for all i, j, P rr

i,j = Pm+1−i,n+1−j. Then
τ rr ∈ Fhm(det-2D-2W-ORWW).

Proof. Observe that τ rr(P �(P rot)rot) = P �(P rot)rot and that the language Lrot is not accepted by any det-
2D-2W-ORWW-automaton. On the other hand, if both P and τ rr(P ) are represented in one picture over
Σ×Σ, then a det-2D-2W-ORWW-automaton can easily verify whether P is in Lrot or not by checking whether
Px,y = (τ rr(P ))x,y for all coordinates (x, y). Thus, by Lemma 4.5, τ rr ∈ Fhm(det-2D-2W-ORWW). �
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As by Theorem 4.3 the class of transformations Fhm(det-2D-2W-ORWW) is closed under composition, we
obtain the following consequence from Lemma 4.9.

Corollary 4.10. τ rot ∈ Fhm(det-2D-2W-ORWW), where τ rot is the operation of rotation.

5. Computing transductions by det-2D-x2W-ORWW-Automata

A det-2D-2W-ORWW-automaton cannot scan a given picture completely in a single cycle, which leads to
rather complicated algorithms, as witnessed by Example 3.2. Therefore, we now turn to an extension of this
model in which the move-right and move-down steps are slightly more general.

Definition 5.1. [10] A deterministic two-dimensional extended two-way ordered restarting automaton, a det-
2D-x2W-ORWW-automaton for short, is given through a 7-tuple M = (Q, Σ, Γ,S, q0, δ, >), where all compo-
nents are defined as for a det-2D-2W-ORWW-automaton, but the move-right and move-down steps are extended
as follows:

(1) When the window contains the right border marker �, but not the bottom marker, then an extended move-
right step shifts the window to the beginning of the next row, that is, if the central position of the window
is on the last field of row i for some i < rows(P ), then it is moved to the first field of row i + 1.

(2) When the window contains the bottom marker ⊥, but not the right border marker, then an extended move-
down step shifts the window to the top of the next column, that is, if the central position of the window
is on the bottom-most field of column j for some j < cols(P ), then it is moved to the top-most field of
column j + 1.

(3) In any cycle, as soon as M executes an extended move-right (move-down) step, then for the rest of this
cycle, it cannot execute any extended move-down (move-right) steps.

Finally, M is called a stateless det-2D-x2W-ORWW-automaton (or a stl-det-2D-x2W-ORWW-automaton) if it
has just a single state.

Obviously, for one-row pictures the det-2D-x2W-ORWW-automaton behaves exactly as the det-2D-2W-
ORWW-automaton. However, it is known that stl-det-2D-x2W-ORWW-automata are strictly weaker in ex-
pressive power than the variants with states [10, 16], and from Theorem 2.2 we see that they are at least as
expressive as det-2D-2W-ORWW-automata.

Together with a homogeneous morphism ϕ : Γ → Δh,b, a (stateless) det-2D-x2W-ORWW-automaton
M = (Q, Σ, Γ,S, q0, δ, >) defines a transduction ϕM : Σ∗,∗ → Δ∗,∗ in analogy to Definition 3.1. By
Fhm(stl-det-2D-x2W-ORWW) and Fhm(det-2D-x2W-ORWW) we denote the corresponding classes of transduc-
tions.

In combination with Lemma 4.7, the following result shows that Fhm(det-2D-2W-ORWW) is a proper subclass
of Fhm(det-2D-x2W-ORWW). Recall from Lemma 4.7 that τVM denotes the operation of vertical mirroring for
pictures of dimension (m, n) (m, n ≥ 2).

Theorem 5.2. τVM ∈ Fhm(det-2D-x2W-ORWW).

Proof. Let Σ be a finite (input) alphabet. We use the idea from the proof that the language Lcopy that consists
of all pictures P �P , where P is any picture from Σn,n (n ≥ 1), is accepted by a det-2D-x2W-ORWW-
automaton [16].

A det-2D-x2W-ORWW-automaton M and a homogeneous morphism ϕ for computing τVM are obtained
as follows. Let P ∈ Σm,n be a given input picture, where m, n ≥ 2. Then M proceeds as follows, where we
distinguish between the processing of the first row (Phase 1) and the processing of all other rows (Phase 2).
Below we use the notation Σ-syllable to denote any maximal factor of the tape contents that only consists of
letters from Σ.
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Phase 1. Using the second row and the auxiliary symbols [a, b]↑1 , [a, b]↑2 for a, b ∈ Σ, M computes the reversal
of the first row as follows. To simplify the presentation we assume in the following that n is an even number,
but it is easily seen how to extend the construction also to uneven numbers.

• In each cycle M scans the first row from left to right. Depending on the form of the string contained in this
row, one of the following steps is executed:

(1) If the first row contains a string from the set { [a, b]2 | a, b ∈ Σ }∗ · Σ+ · { [a, b]2 | a, b ∈ Σ }∗, then M must
interchange the first letter of the Σ-syllable, say c, with the last letter of this syllable, say d. Accordingly, it
executes an extended move-right step, and then it replaces the symbol x in row 2 that is below the letter c
by the symbol [x, d]↑1 and restarts. In the next cycle, when M encounters a symbol c ∈ Σ in row 1 below
which the symbol [x, d]↑1 is written, then it rewrites c into [c, d]1 and restarts.

(2) If the first row contains a string from the set { [a, b]2 | a, b ∈ Σ }∗·{ [a, b]1 | a, b ∈ Σ }·Σ+·{ [a, b]2 | a, b ∈ Σ }∗,
then M must move the information on the letter [c, d]1 to the last letter of the Σ-syllable. If that syllable
ends with the letter d, then M replaces that occurrence of d by [d, c]1 and restarts, otherwise, it halts
without accepting.

(3) If the first row contains a string from the set { [a, b]2 | a, b ∈ Σ }∗ · { [a, b]1 | a, b ∈ Σ } · Σ∗ · { [a, b]1 | a, b ∈
Σ } · { [a, b]2 | a, b ∈ Σ }∗, then the letters with index 1 must be replaced by the corresponding letters with
index 2. Accordingly, M executes an extended move-right step, and then it replaces the symbol [x, d]↑1 that
is below the first letter [c, d]1 by the symbol [x, d]↑2 and restarts. In the next cycle, when M encounters
a symbol [c, d]1 in row 1 below which the symbol [x, d]↑2 is written, then it rewrites [c, d]1 into [c, d]2 and
restarts.

(4) If the first row contains a string from the set { [a, b]2 | a, b ∈ Σ }+·Σ∗·{ [a, b]1 | a, b ∈ Σ }·{ [a, b]2 | a, b ∈ Σ }∗,
then M replaces the symbol [d, c]1 by [d, c]2 and restarts.

• If the first row contains a string from { [a, b]2 | a, b ∈ Σ }∗, then Phase 1 is complete. Each letter a = P1,j ∈ Σ
has been replaced by the auxiliary symbol [a, b]2, where b = P1,n+1−j . Thus, the operation of mirroring has
been executed successfully on row 1. Now, by marking all items in row 1 from right to left, this information is
moved to the top leftmost field. Hence, after the next restart, M realizes that it is in Phase 2.

Phase 2. For row i, i = 2, 3, . . . , m, M proceeds as follows, where we interpret a symbol of the form [x, c]↑2 in
row 2 simply as the input symbol x. Observe that for all i ≥ 2, M already sees row i in (the lower part) of its
window when it scans row i − 1. This means that it is not necessary to encode information on row i into any
other row, which simplifies the processing of this row considerably.

• In each cycle M moves right across row i − 1 scanning already row i with the bottom line of its window.
Depending on the form of the string contained in row i, one of the following steps is executed following an
extended move-right step at the end of row i − 1:

(1) If row i contains a string from the set { [a, b]2 | a, b ∈ Σ }∗ · Σ+ · { [a, b]2 | a, b ∈ Σ }∗, then M must
interchange the first letter of the Σ-syllable, say c, with the last letter of this syllable, say d. Accordingly,
it replaces the symbol c in row i by the symbol [c, d]1 and restarts.

(2) If row i contains a string from the set { [a, b]2 | a, b ∈ Σ }∗ ·{ [a, b]1 | a, b ∈ Σ }·Σ+ ·{ [a, b]2 | a, b ∈ Σ }∗, then
M must move the information on the letter [c, d]1 to the last letter of the Σ-syllable. If that syllable ends
with the letter d, then M replaces that occurrence of d by [d, c]1 and restarts, otherwise, it halts without
accepting.

(3) If row i contains a string from the set { [a, b]2 | a, b ∈ Σ }∗ · { [a, b]1 | a, b ∈ Σ } · Σ∗ · { [a, b]1 | a, b ∈
Σ } · { [a, b]2 | a, b ∈ Σ }∗, then the letters with index 1 must be replaced by the corresponding letters with
index 2. Accordingly, M replaces the first symbol of the form [c, d]1 by the symbol [c, d]2 and restarts.

(4) If row i contains a string from the set { [a, b]2 | a, b ∈ Σ }+ · Σ∗ · { [a, b]1 | a, b ∈ Σ } · { [a, b]2 | a, b ∈ Σ }∗,
then M replaces the symbol of the form [d, c]1 by [d, c]2 and restarts.
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• If row i contains a string from { [a, b]2 | a, b ∈ Σ }∗, then this row is complete. Each letter a ∈ Σ has been
replaced by the auxiliary symbol [a, b]2, where b = Pi,n+1−j , if a = Pi,j . Thus, the operation of mirroring has
been executed successfully on row i. Now, by marking all items in row i from right to left, this information is
moved to the leftmost field in row i. Hence, after the next restart, M continues with row i + 1. Once all rows
have been processed in this way, M halts and accepts.

Finally, the homogeneous morphism ϕ is defined to map a symbol of the form [a, b]2 to the input symbol b.
Then ϕM(P ) = τVM(P ), that is, the pair (M, ϕ) realizes the operation of vertical mirroring on all pictures of
height m ≥ 2. �

Analogously, the operation of horizontal mirroring can be realized by a det-2D-x2W-ORWW-automaton and
a homogeneous morphism. However, it appears that the operation of rotation cannot be realized in this way.
Further, without states det-2D-x2W-ORWW-automata cannot realize the operations of vertical or horizontal
mirroring. Here we state and prove this result for the operation of vertical mirroring.

Theorem 5.3. τVM ∈ Fhm(stl-det-2D-x2W-ORWW).

Proof. Let Σ = {a, b, �} and

L = {P ∈ Σ2,2n | n ≥ 1, P1,i ∈ {a, b} and P2,i = �, 1 ≤ i ≤ 2n }.
Assume that the operation of vertical mirroring can be realized by a stl-det-2D-x2W-ORWW-automaton M =
(Σ, Γ,S, δ, >) and a homogeneous morphism ϕ : Γ → Σ.

We now analyze the accepting computations of M on pictures of the form P
(l)
u

�P
(r)
v ∈ L, where, for

u = a1a2 . . . an ∈ {a, b}n and v = b1b2 . . . bn ∈ {a, b}n,

P (l)
u =

[
a1 a2 . . . an a
� � . . . � �

]
and P (r)

v =
[

a b1 b2 . . . bn

� � � . . . �

]
.

Given P
(l)
u

�P
(r)
v as input, M will perform an accepting computation, which consists of a finite sequence of

cycles that is followed by an accepting tail computation, and which produces a picture

P̂ (l)
u

�P̂ (r)
v =

[
cn . . . c2 c1 c0 d0 dn . . . d2 d1

en . . . e2 e1 e0 f0 fn . . . f2 f1

]
such that ϕ(ci) = bi and ϕ(di) = ai for all 1 ≤ i ≤ n, ϕ(c0) = ϕ(d0) = a, and ϕ(ej) = ϕ(fj) = � for all
0 ≤ j ≤ n.

We split this computation into a finite number of phases, where we distinguish between four types of phases:

(1) A left-only phase (O) consists of a sequence of cycles in which the window of M stays on the left half of
the picture.

(2) An upper-right phase (U) consists of a sequence of cycles in which all rewrite steps are performed on the
right half of the picture, and in addition, in the first of these cycles, M enters the right half of the picture
through move-right steps in row 1.

(3) A lower-left phase (L) is a sequence of cycles in which all rewrite steps are performed in the left half of the
picture, and in addition, the first of these cycles contains an extended move-right step.

(4) A lower-right phase (R) is a sequence of cycles in which all rewrite steps are performed in the right half of
the picture, and in addition, in the first of these cycles, M enters the right half of the picture through a
move-right step in row 2 or after executing an extended move-down step.

Obviously, the sequence of cycles of the computation of M on input P
(l)
u

�P
(r)
v can uniquely be split into a

sequence of phases if we require that each phase is of maximum length. Thus, this computation can be described
in a unique way by a string α over the alphabet Ω = {O, U, L, R}.
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Concerning the possible changes from one phase to the next there are some restrictions based on the fact
that M is stateless.

• While M is in a lower-right phase (R), it just moves through the left half of the current picture after each
rewrite/restart step. Thus, M cannot get into another phase until it performs a rewrite step that replaces a
symbol in the first column of the right half of the picture. Only then may follow a left-only phase (O) or a
lower-left phase (L). However, in a fixed column, less than 2 · |Γ | many rewrite steps can be performed, and
so |α|R ≤ 1 + 2 · |Γ | follows.

• When M is in a lower-left phase (L), then it can next get into a lower-right phase (R) or into an upper-right
phase (U). However, when M got into the lower-left phase, then it moved all the way right across the first
row. Thus, it cannot get into an upper-right phase (U) before a rewrite step is performed that replaces a
symbol in the last column of the left half of the picture. As there are less than 2 · |Γ | many rewrite steps
that can be performed on this column, we see that |α|L ≤ 1 + |α|R + 2 · |Γ | ≤ 2 + 4 · |Γ | follows.

• When M is in an upper-right phase (U), then it can next get into a lower-left phase (L) or a left-only phase
(O). However, when M got into the upper-right phase, then it moved across the left half of the first row,
and so it can get into a left-only phase only after a symbol in the first column of the right half of the picture
has been rewritten. It follows that |α|U ≤ 1 + |α|L + 2 · |Γ | ≤ 3 + 6 · |Γ |.

• A left-only phase (O) can be followed by any other phase. Thus, we obtain that |α|O ≤ 1+|α|R+|α|L+|α|U ≤
7 + 12 · |Γ |.

It follows that |α| ≤ |α|O + |α|R + |α|L + |α|U ≤ 13 + 24 · |Γ |, that is, each computation of M consists of at
most 13 + 24 · |Γ | many phases.

Now we associate a generalized crossing sequence GCS(M, P
(l)
u

�P
(r)
v ) to the computation of M on the input

picture P
(l)
u

�P
(r)
v as follows.

Let α(u, v) ∈ {O, U, L, R}+ be the description of the sequence of phases of the accepting computation of M
on input P

(l)
u

�P
(r)
v . After each letter X of α(w), we insert a 2-by-2 picture

(
c d
e f

)
such that

(
c
e

)
is the contents

of the rightmost column of the left half and
(

d
f

)
is the contents of the leftmost column of the right half of the

picture at the end of the phase represented by the letter X . Thus, GCS(M, P
(l)
u

�P
(r)
v ) is a string of length at

most 26+48 · |Γ | over the finite alphabet Ω ∪Γ 2,2 of size 4+ |Γ |4, that is, there are only finitely many different
such crossing sequences.

If n is sufficiently large, then there are three strings u, v, w ∈ {a, b}n, u = a1a2 . . . an, v = b1b2 . . . bn, and
w = b′1b

′
2 . . . b′n, such that v = w, but GCS(M, P

(l)
u

�P
(r)
v ) = GCS(M, P

(l)
u

�P
(r)
w ). The computation of M on

input P
(l)
u

�P
(r)
v yields a final picture of the form

P̃ (l)
u

�P̃ (r)
v =

[
cn . . . c2 c1 c0 d0 dn . . . d2 d1

en . . . e2 e1 e0 f0 fn . . . f2 f1

]

such that ϕ(ci) = bi and ϕ(di) = ai for all 1 ≤ i ≤ n, ϕ(c0) = ϕ(d0) = a, and ϕ(ej) = ϕ(fj) = � for all
0 ≤ j ≤ n, and the computation of M on input P

(l)
u

�P
(r)
w yields a final picture of the form

P̂ (l)
u

�P̂ (r)
w =

[
c′n . . . c′2 c′1 c′0 d′0 d′n . . . d′2 d′1
e′n . . . e′2 e′1 e′0 f ′

0 f ′
n . . . f ′

2 f ′
1

]

such that ϕ(c′i) = b′i and ϕ(d′i) = ai for all 1 ≤ i ≤ n, ϕ(c′0) = ϕ(d′0) = a, and ϕ(e′j) = ϕ(f ′
j) = � for all 0 ≤ j ≤ n.

However, as the two generalized crossing sequences coincide, we see that c′i = ci and e′i = ei for all 1 ≤ i ≤ n.
This implies that b′i = ϕ(c′i) = ϕ(ci) = bi for all 1 ≤ i ≤ n, which means that v = b1b2 . . . bn = b′1b

′
2 . . . b′n = w,

contradicting our choice of v and w. Thus, the operation of vertical mirroring cannot be realized by a stl-det-
2D-x2W-ORWW-automaton in combination with a homogeneous morphism. �
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Together with Theorem 5.2 this shows that Fhm(stl-det-2D-x2W-ORWW) is a proper subclass of
Fhm(det-2D-x2W-ORWW). Next, we have the following closure property for the transformations that can be
realized by (stateless) det-2D-x2W-ORWW-automata.

Theorem 5.4. Let M1 = (Q1, Σ1, Γ1,S, q1, δ1, >1) be a det-2D-x2W-ORWW-automaton, let π1 : Γ1 → Σ2

be a projection, and let τ1 : Σ∗,∗
1 → Σ∗,∗

2 be the transduction that is realized by (M1, π1). Further, let
M2 = (Q2, Σ2, Γ2,S, q2, δ2, >2) be a det-2D-x2W-ORWW-automaton, let ϕ2 : Γ ∗,∗

2 → Δ∗,∗ be a homogeneous
morphism, and let τ2 : Σ∗,∗

2 → Δ∗,∗ denote the transduction that is realized by (M2, ϕ2). Then there exist a
det-2D-x2W-ORWW-automaton M and a homogeneous morphism ϕ such that (M, ϕ) realizes the transduction
τ = τ2 ◦ τ1. Moreover, if M1 and M2 are stateless, then also M can be chosen to be stateless.

Proof. The arguments given in the proof of Lemma 4.1 also apply to (stl-)det-2D-x2W-ORWW-automata. The
only problem occurs in that in the proof of that lemma, the (stl-)det-2D-x2W-ORWW-automaton M must
distinguish between two parts of its computation. This was achieved by marking the shortest path from the top
leftmost position of the current picture to the position (i, j) at which the automaton M1 accepts.

The (stl-)det-2D-x2W-ORWW-automaton M also marks this position and restarts. Now M should simu-
late M2. However, unless the marked position (i, j) happens to be inside the initial position of the window,
M does not know that it now should simulate M2. Therefore, it still behaves just like M1 during the tail of
its accepting computation. Hence, no rewrite will be performed, but the marked position (i, j) will be reached
eventually. Now M adds a mark also to the position (i′, j′) that it reached prior to the position (i, j). However,
here a problem arises if position (i, j) was reached by an extended move-right (move-down) step, as then the
previous position (i′, j′) is not inside the window when the position (i, j) is reached. In that case, M marks the
first unmarked position to the right of (below) position (i, j). Continuing in this manner, the final part of row
i (the lower part of column j) will eventually be completely marked. Hence, when M reaches position (i′, j′),
then it already sees that the symbol in the next row (column) is marked, and instead of performing an extended
move-right (move-down) step, the symbol at position (i′, j′) is marked. Thus, after finitely many cycles a path
from the position (i, j), at which M1 accepted, to the initial position (1, 1) is completely marked. For the case
of stateless automata, now all cells must be marked so that, afterwards, M always realizes that it is to simulate
M2 without having to remember this fact. �

Theorem 5.4 says that the classes Fhm(stl-det-2D-x2W-ORWW) and Fhm(det-2D-x2W-ORWW) of transduc-
tions are closed under a restricted form of composition. However, the latter is not closed under general compo-
sition.

Theorem 5.5. (a) The class of picture languages L(det-2D-x2W-ORWW) is not closed under inverse homoge-
neous morphisms.

(b) The class of transductions Fhm(det-2D-x2W-ORWW) is not closed under composition.

Proof. Let Σ = {a, b} and Γ = {a, b, �}. We define the languages

L1 = {P ∈ Σ1,2n | n ≥ 1, P1,1 . . . P1,n = (P1,n+1 . . . P1,2n)ρ }
where ρ : Σ∗ → Σ∗ denotes the operation of reversal for strings, and

L2 =
{

P ∈ Γ 2,2n | n ≥ 1, P1,1 . . . P1,n = (P1,n+1 . . . P1,2n)ρ
, P1,i ∈ {a, b} and P2,i = � for all 1 ≤ i ≤ 2n

}
.

We utilize two results from [10]. First, it is known that det-2D-x2W-ORWW-automata working over one-row
pictures (that is, strings) only accept regular languages. Secondly, the picture language L2 is accepted by a
det-2D-x2W-ORWW-automaton.
(a) Consider the homogeneous morphism ϕ : Σ∗,∗ → Γ ∗,∗ that is given by ϕ(a) =

[
a
�

]
and ϕ(b) =

[
b
�

]
. Then

ϕ−1(L2) = {P | ϕ(P ) ∈ L2 } = L1, which is not accepted by a det-2D-x2W-ORWW-automaton, as it is not
regular. This proves (a).
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(b) Next we define a transduction τ1 : Σ1,∗ → Γ 2,∗, which extends each one-row picture over Σ by an additional
row of symbols �, and a transduction τ2 : Γ 2,∗ → Σ2,∗, which transforms each P ∈ L2 of dimension (2, 2n) to
a2,2n and each P /∈ L2 of dimension (2, n) to b2,n. Both these transductions are in Fhm(det-2D-x2W-ORWW).

Assume that τ2 ◦ τ1 is realized by (M, ϕ′), where M is a det-2D-x2W-ORWW-automaton and ϕ′ is a homo-
geneous morphism. Then

ϕM (P ) = τ2(τ1(P )) =
[

a a . . . a
a a . . . a

]
, if P ∈ L1, and

ϕM (P ) = τ2(τ1(P )) =
[

b b . . . b
b b . . . b

]
, if P /∈ L1.

Thus, from M we can easily obtain a det-2D-x2W-ORWW-automaton for the language L1, which contradicts
the observation above. This proves (b). �

6. Decision problems

Computing the transduction ϕM realized by a det-2D-2W-ORWW-automaton or a det-2D-x2W-ORWW-
automaton M and a homogeneous morphism ϕ on a given input picture only requires polynomial time. However,
we will see that the problem of deciding whether there exists a picture P ′ such that ϕM(P ′) = P for a given
picture P is NP-complete.

The following lemma says that each det-2D-2W-ORWW-automaton can be modified in such a way that the
input can be reconstructed at the end of any accepting computation.

Lemma 6.1. For each L ∈ L(det-2D-2W-ORWW), there is a det-2D-2W-ORWW-automaton M =
(Q, Σ, Γ,S, q0, δ, >) and a projection ϕ : Γ → Σ such that L = L(M) and (M, ϕ) realizes the identity.

Proof. Let M1 = (Q, Σ, Γ1,S, q0, δ1, >1) be a det-2D-2W-ORWW-automaton. We take Γ2 = Σ ∪ (Σ × Γ1)
and define the projections ϕ, π : Γ2 → Σ by ϕ(a) = π(a) = a for all a ∈ Σ, and ϕ((a, b)) = a, π((a, b)) =
b for all (a, b) ∈ Σ × Γ1. Let M2 = (Q, Σ, Γ2,S, q0, δ2, >2), where we define the ordering >2 by c >2 d iff
π(c) >1 π(d) (c, d ∈ Γ2) and the transition function δ2 as follows:

δ2(q, C) = (q′, R), if δ1(q, π(C)) = (q′, R),

δ2(q, C) = (q′, D), if δ1(q, π(C)) = (q′, D),

δ2(q, C) = (a, c), if (C2,2 = a or C2,2 = (a, b)) and δ1(q, π(C)) = c,

δ2(q, C) = Accept, if δ1(q, π(C)) = Accept.

Then, L(M1) = L(M2), and the pair (M2, ϕ) realizes the identity. �

For a picture P , we denote by Bh,w(P ) the set of all its subpictures of dimension (h, w). A tile is simply
a square picture of dimension (2, 2). A picture language L ⊆ Σ∗,∗ is called a local picture language, if there
exists a finite set Θ of tiles over Σ ∪ {#} such that L = {P ∈ Σ∗,∗ | B2,2(P̂ ) ⊆ Θ }. The family REC of
recognizable picture languages can be characterized as the set of languages that are obtained by projections
from local picture languages (see, e.g., [4]). Below we show that every recognizable picture language can be
obtained as the image of a transduction from Fhm(det-2D-2W-ORWW). This result will then be further utilized
to study the complexity of decision problems on transductions.

Proposition 6.2. Let L ⊆ Δ∗,∗ be a picture language from REC. Then there are a det-2D-2W-ORWW-
automaton M = (Q, Σ, Γ,S, q0, δ, >) and a projection θ : Γ → Δ such that L = θM(L(M)).
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Proof. Let L ⊆ Δ∗,∗ be a picture language from REC. Then there exist a local language L′ ∈ Σ∗,∗ on some
alphabet Σ and a projection π : Σ → Δ such that L = π(L′). Every local picture language is accepted by a
deterministic four-way finite automaton, which can in turn be simulated by a det-2D-2W-ORWW-automaton
(in fact, even the stronger deterministic two-dimensional on-line tessellation automaton can be simulated [14]).
Hence, by Lemma 6.1, there are a det-2D-2W-ORWW-automaton M = (Q, Σ, Γ,S, q0, δ, >) and a projection ϕ :
Γ → Σ such that L(M) = L′ and the pair (M, ϕ) realizes the identity on L′. It follows that (π◦ϕ)M(L(M)) = L,
since ϕM(L(M)) = L′. �

From this proposition and the fact that REC contains languages for which the membership problem is
NP-complete [9], we now obtain the following complexity result.

Corollary 6.3. The following problem is NP-complete:
Instance: A det-2D-2W-ORWW-automaton M = (Q, Σ, Γ,S, q0, δ, >), a morphism ϕ : Γ ∗,∗ → Δ∗,∗, and a

picture P ∈ Δ∗,∗.
Question: Is P ∈ ϕM(L(M))?

Proof. It remains to show that the above problem is in NP. Let P ∈ Δ∗,∗ be a given picture. Then we can
simply guess a picture P ′ ∈ Σ∗,∗ such that rows(P ′) ≤ rows(P ) and cols(P ′) ≤ cols(P ) and check in polynomial
time whether P = ϕ(P̃ ′) holds. �

Proposition 6.2 can also be applied to show that the “family of transduction images” inherits the undecid-
ability of problems that are not decidable for REC like, e.g., the emptiness and the finiteness problems (see [3]).

7. Conclusion

By combining a det-2D-2W-ORWW-automaton or a det-2D-x2W-ORWW-automaton with a homogeneous
two-dimensional morphism, we obtained a device for computing transductions of pictures. As in the one-
dimensional setting the corresponding devices characterize the rational functions mapping the empty string
to itself, the two-dimensional transductions computed by our devices can be seen as defining classes of rational
functions for pictures. These classes contain all spatial filters that are used in digital image processing, for
det-2D-2W-ORWW-automata, the corresponding class is closed under composition, and for (stl-)det-2D-x2W-
ORWW-automata, it is closed under a restricted form of composition. While the operations of horizontal and
vertical mirroring are beyond the power of det-2D-2W-ORWW- and stl-det-2D-x2W-ORWW-automata, they
can be realized by det-2D-x2W-ORWW-automata. Unfortunately, the class of transductions computed by the
latter is not closed under composition, and it remains open whether or not the operation of rotation can be
realized by these automata. Also it remains open whether the class of transductions computed by stateless
det-2D-x2W-ORWW-automata is closed under general composition.

Observe that the idea of extending a det-2D-2W-ORWW- or a det-2D-x2W-ORWW-automaton with a homo-
geneous morphism to obtain a realization of a transduction on pictures can also be applied to the deterministic
two-dimensional three-way ORWW-automata introduced in [11], to the (deterministic) Sgraffito automaton [18],
and to the (deterministic) restarting tiling automaton [17]. Actually, it appears that all our results on the trans-
ductions that are realizable by det-2D-2W-ORWW-automata carry over to deterministic Sgraffito automata.
However, it remains the question of whether or not the latter automata are more expressive than the former.
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[6] P. Jančar, F. Mráz, M. Plátek and J. Vogel, On monotonic automata with a restart operation. J. Autom. Lang. Comb. 4

(1999) 287–311.
[7] K. Kwee and F. Otto, On some decision problems for stateless deterministic ordered restarting automata. In DCFS 2015,

Proc. In vol. 9118 of Lect. Notes Comput. Sci. Edited by J. Shallit and A. Okhotin. Springer, Heidelberg (2015) 165–176.
[8] K. Kwee and F. Otto, On the effects of nondeterminism on ordered restarting automata. In SOFSEM 2016, Proc. In vol. 9587

of Lect. Notes Comput. Sci. Edited by R.M. Freivalds, G. Engels and B. Catania. Springer, Heidelberg (2016) 369–380.
[9] K. Lindgren, C. Moore and M. Nordahl, Complexity of two-dimensional patterns. J. Stat. Phys. 91 (1998) 909–951.

[10] F. Mráz and F. Otto, Extended two-way ordered restarting automata for picture languages. In LATA 2014. In vol. 8370 of
Lect. Notes Comput. Sci. Edited by A.-H. Dediu, C. Mart́ın-Vide, J.-L. Sierra-Rodŕıguez and B. Truthe. Springer, Heidelberg
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