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Abstract. Group signature is a useful cryptographic primitive, which makes every group member
sign messages on behalf of a group they belong to. Namely group signature allows that group member
anonymously signs any message without revealing his/her specific identity. However, group signature
may make the signers abuse their signing rights if there are no measures of keeping them from abusing
signing rights in the group signature schemes. So, group manager must be able to trace (or reveal)
the identity of the signer by the signature when the result of the signature needs to be arbitrated,
and some revoked group members must fully lose their capability of signing a message on behalf
of the group they belong to. A practical model meeting the requirement is verifier-local revocation,
which supports the revocation of group member. In this model, the verifiers receive the group member
revocation messages from the trusted authority when the relevant signatures need to be verified. With
the rapid development of identity-based cryptography, several identity-based group signature (IBGS)
schemes have been proposed. Compared with group signature based on public key cryptography, IBGS
can simplify key management and be used for more applications. Although some identity-based group
signature schemes have been proposed, few identity-based group signature schemes are constructed
in the standard model and focus on the traceability of signature. In this paper, we present a fully
traceable (and verifier-local revocation) identity-based group signature (TIBGS) scheme, which has
a security reduction to the computational Diffie–Hellman (CDH) assumption. Also, we give a formal
security model for traceable identity-based group signature and prove that the proposed scheme has
the properties of traceability and anonymity.

Mathematics Subject Classification. 94A60.

1. Introduction

1.1. Background

Group signature [17] allows group member (signer) to hide his identifying information to a group when group
member signs messages, thus group signature only reveals the fact that a message was signed by possible one
of group members (a list of possible signers). Additionally, in a practical group signature scheme, the group
must be constructed by a group manager, who can revoke the anonymity of any signer or identify the real group
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signer. Because a list of possible signers must be constructed to form a group, some intricate problems need to be
solved, such as joining the new members and the revocation of group members. Ateniese et al. [3] first proposed
an efficient and provably coalition-resistant group signature scheme. However, the security of coalition-resistant
group signature was not formalized. In [6], Bellare et al. summarized the requirements of group signature and
showed the security definitions of group signature. Boneh et al. [10] proposed a short group signature scheme
in the random oracle model.

In public key cryptography, the management of public keys is a critical problem. For example, certificate
authority (CA) generates a digital certificate, which assures that public key belongs to the corresponding user.
Then, in a group signature scheme based on public key cryptography, a group public key is corresponding
to multi-distributing private keys (signing keys), the joining and revocation of group member is an intricate
problem [4, 9, 11, 14]. For large group, it is inefficient to update group public key and distributing private keys
when a user joins or exits a group. Bresson et al. [11] proposed that the signer may prove that his group certificate
does not belong to a list of revoked certificates. However, the length of group signature is proportional to the
number of revoked group members. Camenisch et al. [14] proposed a different way to handle this problem by
using accumulators4. However, in some pairing-based accumulators [15,26], the size of public keys linearly grows
with the maximal number of accumulations.

The method of verifier-local revocation was proposed by Brickell in [12]. Boneh et al. [9] gave the formal
definitions of verifier-local revocation. In this kind of approaches [13,21,24,33], the verifiers receive the revocation
list of group members from the authority (such as private key generator) when a signature needs to be verified,
and non-revoked group members do not need to update their distributing private keys. So, the length of signature
does not depend on the number of revoked group members in this model, and the verifiers only need to perform an
additional computing to test that whether the signature was signed by a revoked group member on the revocation
list of group members. Of course, this kind of approaches increase the verification cost being proportional to
the size of the revocation list.

In 2009, Nakanishi et al. [25] proposed a revocable group signature scheme with constant complexities for
signing and verifying. Also, group members do not need to update their distributing private keys. However,
the size of public keys linearly grows with the maximal number N of users in their scheme. In 2012, Libert
et al. [22,23] proposed two group signature schemes based on public key cryptography, which have many useful
properties [23]: O(logN)-size group public keys, revocation lists of size O(r) ((r) is the number of revoked users),
constant membership certificate size, constant signature size and verification time.

Identity-based cryptography is another cryptographic primitive. In identity-based cryptography, a user’s
public key is obtained from his public identity, such as name, IP address or email address, etc. Then, the user’s
private key is distributed from a private key generator (PKG). The main target of application of identity-based
cryptography is to simplify key management and remove public key certificates. In the group signature schemes
based on public key cryptography, the proposed schemes suffers from many drawbacks such as verification and
revocation of certificates. Obviously, removing public key certificates can simplify the procedure of joining and
revocation of group member. So, compared with group signature based on public key cryptography, identity-
based group signature can lessen the suffering of joining and revocation of group member. Identity-based group
signature allows a group member to sign a message by the identity of a group that he belongs to, and does not
reveal the specific identity of the group member, while the group manager can trace the identity of the group
member by the signature if the result of the signature needs to be arbitrated. Also, the receiver of the group
signature verifies the signature by the identity of the group that the signer belongs to. When a group member
leaves the group or joins the group, identity-based group signature revokes or verifies his membership by not
dealing with his public key certificate but dealing with his identity. Identity-based group signature can simplify
key management and be more easily used for many applications, such as e-voting, distributed systems, grid
computing, mobile agent applications, distributed shared object systems, global distribution networks, mobile

4An accumulator is a kind of “hash” function mapping a set of values to a short, constant-size string while allowing to efficiently
prove that a specific value was accumulated.



TRACEABLE IDENTITY-BASED GROUP SIGNATURE 195

communications, and so on. For example, an anonymous e-voting is being done on a BBS-Suppose that a group
is discussing an issue on a bulletin board via the Internet and anonymously wishes to vote for the issue on
behalf of the group. When a decision is achieved on the group, one of the group can anonymously vote on behalf
of the group by identity-based group signature. Obviously, compared with other cryptographic primitives, such
as identity-based multi-proxy signature, identity-based group signature can anonymously be used to vote and
trace the real signer when the result of the signature needs to be arbitrated.

1.2. Our contributions

In this paper, we present a traceable identity-based group signature scheme in the standard model. Also, we
give the formal security models for traceable identity-based group signature. Under our security models, the
proposed scheme is proved to have the properties of anonymity and traceability with enough security. In this
paper, our contributions are as follows:

• We present a fully traceable (and verifier-local revocation) identity-based group signature scheme in the
standard model. No poly-time adversary can produce a valid TIBGS signature on any identities and messages
when the adversary may adaptively be permitted to choose identities and messages after executing group-
setup oracle, join-user oracle, revoke-user oracle, signature oracle and trace-user oracle.
• We present a framework for TIBGS and show a detailed security model for TIBGS. Compared with the

security models of TIBGS [18, 20], we introduce the Libert et al.’s model [23] to our security model. In
our security model, we consider three situations for the security of TIBGS and further strengthen our
security model on identity-based cryptography. Under our security model, the proposed TIBGS scheme is
proved to be secure in the standard model, and has a security reduction to the simple standard assumption
(computational Diffie–Hellman assumption).
• Compared with other revocable identity-based group signature schemes proposed by [18, 20], the proposed

TIBGS scheme has some advantages (the comparisons of the three schemes are given in Appendix A).

1.3. Outline

The rest of this paper is organized as follows. In Section 2, we discuss the related works about IBGS. In
Section 3, we review the bilinear pairings and complexity assumptions on which we build. In Section 4, we show
a framework for TIBGS. In Section 5, we set up the security models for TIBGS. In Section 6, we propose a
traceable identity-based group signature scheme in the standard model under our framework for TIBGS. In
Section 7, we analyze the correctness, efficiency and security of the proposed scheme. Finally, we draw our
conclusions in Section 8.

2. Related work

Due to the contributions of Boneh et al. [7, 8, 27, 29], a rapid development of identity-based cryptogra-
phy has taken place. Boneh [7] proposed an identity-based encryption scheme in the random oracle model.
Waters [29] proposed an efficient identity-based encryption scheme in the standard model. Based on their
works, some researchers proposed many identity-based signature schemes in the random oracle model or stan-
dard model [5, 16, 19, 27]. Also, with these identity-based signature (IBS) schemes, a lot of variants, such as the
identity-based proxy signature (IBPS) schemes [28, 30, 31], the identity-based ring signature schemes [1, 2, 32],
the identity-based group signature schemes [18, 20], etc., have also been proposed. In 2012, Au et al. [2] pro-
posed a new identity-based event-oriented linkable ring signature scheme with an option as revocable-iff-linked.
With this option, if a user generates two linkable ring signatures in the same event, everyone can compute his
identity from these two signatures. Presently some identity-based group signature schemes are proposed in the
standard model or random oracle model. In 2011, Ibraimi et al. [20] proposed an identity-based group signa-
ture with membership revocation in the standard model. However, their security model is not enough complete
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for identity-based group signature, some notions are confused. And their scheme is not fully identity-based
group signature scheme, the master key of the system is still constructed on public key cryptography. In 2014,
Emura et al. [18] proposed an γ-hiding revocable group signature scheme in the random oracle model. Because
their scheme introduces the notion of attributes, their scheme is enough complex and inefficient.

3. Preliminaries

3.1. Bilinear maps

Let G1 and G2 be groups of prime order q and g be a generator of G1. We say G2 has an admissible
bilinear map, e : G1 ×G1 → G2 if the following two conditions hold. The map is bilinear; for all a, b, we have
e
(
ga, gb

)
= e(g, g)a·b. The map is non-degenerate; we must have that e (g, g) �= 1.

3.2. Computational Diffie–Hellman assumption

Definition 3.1 (Computational Diffie–Hellman (CDH) problem). Let G1 be a group of prime order q and g
be a generator of G1; for all (g, ga, gb) ∈ G1, with a, b ∈ Zq, the CDH problem is to compute ga·b.

Definition 3.2. The (�, ε)-CDH assumption holds if no �-time algorithm can solve the CDH problem with
probability at least ε.

4. A framework for TIBGS

In the section, we present a formal definition of TIBGS. Let A be universe of possible identities, we set
ID ⊆ A as the identity of user or group.

Definition 4.1 (Traceable Identity-Based Group Signature Scheme). Let TIBGS = (System-Setup, Group-
Setup, Join-User, Revoke-User, Sign, Verify, Trace-User) be a traceable identity-based group signature scheme
on A. In TIBGS, all algorithms are described as follows:

(1) System-Setup: The randomized algorithm run by private key generator (PKG) inputs a security param-
eter 1k, and then outputs all system parameters TIBGK and a system private key spk on the security
parameter 1k.

(2) Group-Setup: The randomized algorithm run by private key generator inputs (TIBGK, spk, IDg ⊆ A),
and then outputs a group private key skIDg

to a group manager, where IDg is a group identity, skIDg
is a

group private key on the management of the group manager.
(3) Join-User: The randomized algorithm run by the group manager inputs (TIBGK, skIDg

, IDi ⊆ A), and
then outputs a member private key skIDi

to a group member, where skIDi
is the member private key of

the group member, IDi is the corresponding identity and i ∈ {1, 2, . . . , n} (n ∈ N is a maximal number of
group members).

(4) Revoke-User: The randomized algorithm run by the group manager inputs (TIBGK, skIDg
, IDi ⊆ A,

RLtID), and then outputs an updated revocation list RLt+1
ID , where IDi is the corresponding identity of the

revoked user, RLtID = {. . . (IDj ,�IDj ) . . .} is a revocation list in the duration t (IDj is the corresponding
identity of the revoked user and �IDj is a credential on the corresponding identity).

(5) Sign: The randomized algorithm is a standard traceable identity-based group signature algorithm. Signer
needs to sign a message M ∈ {0, 1}∗. The algorithm run by a group member inputs (TIBGK, skIDi

, M),
and then outputs a signature σ, where σ ∈ {0, 1}∗ ∪ {⊥}, skIDi is the member private key of the group
member and IDi is the corresponding identity with i ∈ {1, 2, . . . , n}.
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(6) Verify: The signature receivers verify a standard traceable identity-based group signature σ. The deter-
ministic algorithm run by a signature verifier inputs (TIBGK, M, IDg, σ, RLtID), and then outputs the
boolean value, accept or reject.

(7) Trace-User: The group manager traces a real group member (signer) on the traceable identity-based group
signature σ. The deterministic algorithm run by the group manager inputs (TIBGK, M, skIDg

, σ, RLtID),
and then outputs the identity of the real signer or ⊥.

The correctness of TIBGS requires that for any (TIBGK, spk) ← System-Setup(1k), skIDg
← Group-

Setup(TIBGK, spk, IDg ⊆ A), skIDi
← Join-User(TIBGK, skIDg

, IDi ⊆ A) for all i with i ∈ {1, 2, . . . , n},
M ∈ {0, 1}∗, then

Pr[Verify(TIBGK,M, IDg,Sign(TIBGK, skIDi
,M), RLtID) = 1] = 1.

The traceability of TIBGS requires that for any (TIBGK, spk) ←System-Setup(1k), skIDg ←
Group-Setup (TIBGK, spk, IDg ⊆ A), skIDi

← Join-User (TIBGK, skIDg
, IDi ⊆ A) for all i with

i ∈ {1, 2, . . . , n}, M ∈ {0, 1}∗, then

Pr[Trace-User (TIBGK,M, skIDg ,Sign (TIBGK, skIDi ,M), RLtID) = IDi] = 1,

where the identity IDi belongs to the group named by the identity IDg.

5. Security model

According to [20, 23], we consider that a fully secure TIBGS scheme must meet the following three security
requirements:

(1) Unforgeability: A valid TIBGS signature must be signed by a valid group member (signer). Therefore, no
poly-time adversary can produce a valid TIBGS signature on any identities and messages when the adversary
may adaptively be permitted to choose identities and messages after executing group setup oracle, joining
user oracle, revoking user oracle, signature oracle and tracing user oracle.

(2) Anonymity: A valid TIBGS signature can only reveal that one group identity possessed by a group manager
satisfies the signature. It means a valid TIBGS signature can hide the identifying information of real signer
to one group.

(3) Traceability: In some situations, a valid TIBGS signature needs to reveal the identity of real signer from
one group. It means a valid TIBGS signature can trace a real signer. Then we split the requirement to the
following two small security notions5 [23]:
(a) The first one is called security against misidentification attacks, which requires that even if the adversary

can introduce (or corrupt) and revoke any user, a valid TIBGS signature can not reveal the identifying
information outside the set of the identities of unrevoked adversarially-controlled users.

(b) The second one is called security against framing attacks, which requires that an honest user is only
responsible for the messages that he signed, namely there is no situation that a valid TIBGS signature
can reveal the identity of a real group member (signer) but this signer did not sign this signature.

Based on the above three situations, we propose a complete security model for traceable identity-based
group signature. Typically, in a security model, security proof is such a process: we first set a computational
assumption (problem) not solved under the current computer processing capacity, then we need to illustrate that
the ability of the adversary breaking a proposed scheme within a certain time and probability is equal to that
of the adversary breaking the unsolved computational problem through the interaction between the adversary
and the oracles (algorithms). Therefore, because the setting of the computational problem is impossible to be

5The two security notions are more detailedly expanded from the correctness of traceability.
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solved under the current computer processing capacity, the adversary does not have the ability to break the
proposed scheme, where we call the conversion method of the ability of the adversary as reduction. To make
our security model easier to understand, we construct several algorithms interacting with adversary, which may
make attack experiments to the traceable identity-based group signature schemes in the above three situations.
In our security model, we maximize adversary’s advantage, and assume that all attacking conditions needed by
adversary hold and adversary may forge signatures after limitedly querying oracles in the above three situations.

In our security model, we assume there are n+ 1 users in a traceable identity-based group signature scheme
(n ∈ N is a maximal number of group members), and at least one user u∗ of n + 1 users is not corrupted by
adversary. And we maximize adversary’s advantage, where adversary can get all useful information except for
the member private key of u∗6.

All symbols and parameters are defined as follows in the algorithms:

(1) Ua is a set of users that were registered by an adversary in this game, where the user uai ∈ Ua with
i ∈ {1, 2, . . .}, IDa

i is the identity of the user uai .
(2) U b is a set of honest users when an adversary acts a dishonest group manager in this game, where the user

ubi ∈ U b with i ∈ {1, 2, . . .}, IDb
i is the identity of the user ubi .

(3) k is a secure parameter, A represents an adversary.

Definition 5.1 (Unforgeability of a Traceable Identity-Based Group Signature Scheme). Let TIBGS =
(System-Setup, Group-Setup, Join-User, Revoke-User, Sign, Verify, Trace-User) be a traceable identity-based
group signature scheme on A, where A is the universe of possible identities. Additionally, we set that k is a
secure parameter, and Pr(BU TIBGS(k,A)=1) is the probability that the algorithm BU TIBGS returns 1. Then
the advantage that the adversary A breaks TIBGS is defined as follows:

Adv
u tibgs−uf
TIBGS (k, qg, qj , qs, �) = Pr(Bu tibgs(k,A) = 1),

where qg is the maximal number of “Group-Setup” oracle queries, qj is the maximal number of “Join-User”
oracle queries, qs is the maximal number of “Sign” oracle queries and � is the running time of B. If the advantage
that the adversary breaks TIBGS is negligible, then the scheme TIBGS is secure.

According to Definition 5.1, the algorithm BU TIBGS is described as follows:

1. Setup: Running System-Setup, (TIBGK, spk)←System-Setup(1k), and then TIBGK is passed to A.

2. Queries : A makes queries to the following oracles for polynomially many times:

• Group-Setup(): Given the public parameters TIBGK and the identity IDg of the group, the oracle returns
a group private key skIDg

to A.
• Join-User(): Given the public parameters TIBGK, the group private key skIDg

(or the identity IDg) and
the identity IDi of the group member, the oracle returns a member private key skIDi

to A, where skIDg
is

a group private key on the identity IDg of the group.
• Sign(): Given the public parameters TIBGK, the member private key skIDi (or the identity IDi) and the

message M, the oracle returns a signature σ to A, where σ ∈ {0, 1}∗∪{⊥}, skIDi
is the member private key

of the group member and IDi is the corresponding identity.

3. Forgery: A outputs its forgery, (M∗, σ∗) for ID∗
g and RLtID∗

g
, where the identity ID∗

g and the revocation list
RLtID∗

g
are arbitrary forgeries generated by A. It succeeds if

(a) 1←Verify(TIBGK, M∗, ID∗
g , σ∗, RLtID∗

g
);

(b) A did not query Group-Setup on input ID∗
g , did not query Join-User on inputs skID∗

g
and ID∗, and did

not query Sign on inputs skID∗ and M∗ where the identity ID∗ of skID∗ belongs to the group named by
the identity ID∗

g .

6u∗ is used to play a challenger which can interact with simulator and adversary.
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Definition 5.2 (Traceability of a Traceable Identity-Based Group Signature Scheme). Let TIBGS=(System-
Setup, Group-Setup, Join-User, Revoke-User, Sign, Verify, Trace-User) be a traceable identity-based group
signature scheme, which meets the requirement of unforgeability. TIBGS is traceable if the following conditions
can be satisfied:

(1) For all valid generated (TIBGK, spk) ← System-Setup(1k), skIDg ← Group-Setup(TIBGK, spk, IDg),
skIDi

←Join-User(TIBGK, skIDg
, IDi) with i ∈ {0, 1}, then σ0 =Sign(TIBGK, skID0 , M) and

σ1 = Sign(TIBGK, skID1 , M), the outputs of Trace-User(TIBGK, M, skIDg
, σ0, RLtID) and Trace-

User(TIBGK, M, skIDg
, σ1, RLtID) are distinguishable in polynomially many times.

(2) We set that k is a secure parameter, and Pr(BTM TIBGS(k,A)=1) is the probability that the algorithm
BTM TIBGS returns 1, and that Pr(BTF TIBGS(k,A)=1) is the probability that the algorithm BTF TIBGS

returns 1. Then the advantage that the adversary A breaks TIBGS is defined as follows:

Adv
t tibgs−mf
TIBGS (k, qg, qj , qr, qs, �) = Pr(Btm tibgs(k,A) = 1) ‖ Pr(Btf tibgs(k,A) = 1),

where qg is the maximal number of “Group-Setup” oracle queries, qj is the maximal number of “Join-User”
oracle queries, qr is the maximal number of “Revoke-User” oracle queries, qs is the maximal number of
“Sign” oracle queries and � is the running time of B. If the advantage that the adversary breaks TIBGS
is negligible, then the scheme TIBGS is secure.

According to Definition 5.2, the algorithm BTM TIBGS is described as follows:
1. Setup: Running System-Setup, (TIBGK, spk)←System-Setup(1k), and then TIBGK is passed to A.

2. Queries : A makes queries to the following oracles for polynomially many times:

• Join-User(): Given the public parameters TIBGK, the group private key skIDg
(or the identity IDg) and

the identity IDua
i

of the group member, the oracle returns a member private key skIDua
i

to A, where skIDg

is a group private key on the identity IDg of the group and the user (group member) uai is added to the set
Ua.
• Revoke-User(): Given the public parameters TIBGK, the group private key skIDg

(or the identity IDg),
the identity IDua

i
of the revoked group member and the revocation list RLtID of the last duration t, the

oracle returns an updated revocation list RLt+1
ID .

• Sign(): Given the public parameters TIBGK, the member private key skIDua
i

(or the identity IDua
i
) and

the message M, the oracle returns a signature σ to A, where σ ∈ {0, 1}∗ ∪ {⊥}, skIDua
i

is the member
private key of the group member, IDua

i
is the corresponding identity, and the user uai is added to the set

Ua if uai /∈ Ua.
3. Forgery: A outputs its forgery, (M∗, σ∗) for ID∗

g and RLtID∗
g
, where the identity ID∗

g and the revocation list
RLtID∗

g
are arbitrary forgeries generated by A. It succeeds if

(a) 1←Verify(TIBGK, M∗, ID∗
g , σ

∗, RLtID∗
g
);

(b) A did not query Join-User on inputs skID∗
g

and ID∗, did not query Revoke-User on inputs skID∗
g
, ID∗

and RLt−1
ID∗

g
, and did not query Sign on inputs skID∗ and M∗, where the identity ID∗ of skID∗ belongs to

the group named by the identity ID∗
g and ID∗ /∈ Ua \RLtID∗

g
;

(c) ID∗ ←Trace-User(TIBGK, M∗, skID∗
g
, σ∗, RLtID∗

g
).

And then the algorithm BTF TIBGS is described as follows:
1. Setup: Running System-Setup, (TIBGK, spk)←System-Setup(1k), and then TIBGK is passed to A.

2. Queries : A makes queries to the following oracles for polynomially many times:

• Group-Setup(): Given the public parameters TIBGK and the identity IDg of the group, the oracle returns
a group private key skIDg

to A.
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• Join-User(): Given the public parameters TIBGK, the group private key skIDg
(or the identity IDg) and

the identity IDub
i

of the group member, the oracle returns a member private key skID
ub

i

to A, where skIDg

is a group private key on the identity IDg of the group and the user (group member) ubi is added to the set
U b where U b �= ∅.
• Revoke-User(): Given the public parameters TIBGK, the group private key skIDg

(or the identity IDg),
the identity IDub

i
of the revoked group member and the revocation list RLtID of the last duration t, the

oracle returns an updated revocation list RLt+1
ID .

• Sign(): Given the public parameters TIBGK, the member private key skID
ub

i

(or the identity IDub
i
) and the

message M, the oracle returns a signature σ to A, where σ ∈ {0, 1}∗∪{⊥}, skID
ub

i

is the member private key

of the group member, IDub
i

is the corresponding identity and the user ubi is added to the set U b if ubi /∈ U b.

3. Forgery: A outputs its forgery, (M∗, σ∗) for ID∗
g and RLtID∗

g
, where the identity ID∗

g and the revocation list
RLtID∗

g
are arbitrary forgeries generated by A. It succeeds if

(a) 1←Verify(TIBGK, M∗, ID∗
g , σ

∗, RLtID∗
g
);

(b) A did not query Group-Setup on input ID∗
g , did not query Join-User on inputs skID∗

g
and ID∗, did not

query Revoke-User on inputs skID∗
g
, ID∗ and RLt−1

ID∗
g
, and did not query Sign on inputs skID∗ and M∗,

where the identity ID∗ of skID∗ belongs to the group named by the identity ID∗
g and ID∗ ∈ U b;

(c) ID∗ ←Trace-User(TIBGK, M∗, skID∗
g
, σ∗, RLtID∗

g
).

Definition 5.3 (Anonymity of a Traceable Identity-Based Group Signature Scheme). Let TIBGS = (System-
Setup, Group-Setup, Join-User, Revoke-User, Sign, Verify, Trace-User) be a traceable identity-based group
signature scheme. Additionally, we set that k is a secure parameter, and Pr(BA TIBGS(k,A)=1) is the probability
that the algorithm BA TIBGS returns 1. Then the advantage that the adversary A breaks TIBGS is defined as
follows:

Adv
a tibgs

TIBGS(k, qg, qj , qr, qs, �) =
∣∣∣∣Pr(Ba tibgs(k,A) = 1)− 1

2

∣∣∣∣ ,
where qg is the maximal number of “Group-Setup” oracle queries, qj is the maximal number of “Join-User”
oracle queries, qr is the maximal number of “Revoke-User” oracle queries, qs is the maximal number of “Sign”
oracle queries and � is the running time of B. If the advantage that the adversary breaks TIBGS is negligible,
then the scheme TIBGS is secure.

According to Definition 5.3, the algorithm BA TIBGS is described as follows:
1. Setup: Running System-Setup, (TIBGK, spk)←System-Setup(1k), and then TIBGK is passed to A.

2. Queries Phase 1: A makes queries to the following oracles for polynomially many times:

• Group-Setup(): Given the public parameters TIBGK and the identity IDg of the group, the oracle returns
a group private key skIDg

to A.
• Join-User(): Given the public parameters TIBGK, the group private key skIDg

(or the identity IDg) and
the identity IDi of the group member, the oracle returns a member private key skIDi

to A, where skIDg
is

a group private key on the identity IDg of the group.
• Revoke-User(): Given the public parameters TIBGK, the group private key skIDg (or the identity IDg),

the identity IDi of the revoked group member and the revocation list RLtID of the last duration t, the oracle
returns an updated revocation list RLt+1

ID .
• Sign(): Given the public parameters TIBGK, the member private key skIDi

(or the identity IDi) and the
message M, the oracle returns a signature σ to A, where σ ∈ {0, 1}∗∪{⊥}, skIDi is the member private key
of the group member and IDi is the corresponding identity.
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3. Challenge: A sends to the challenger its forgery (M∗, ID∗
g , RLtID∗

g
) and two group member identities ID∗

0 and
ID∗

1 that belong to the group named by the group identity ID∗
g . The forgery satisfies the following conditions:

(a) A did not query Group-Setup on input ID∗
g ;

(b) A did not query Join-User on inputs ID∗
g , ID∗

0 (and ID∗
1);

(c) A did not query Revoke-User on inputs ID∗
g , ID∗

0 (and ID∗
1) and RLt−1

ID∗
g
.

The challenger picks a random bit x ∈ {0, 1}, and then runs and outputs σ∗ ←Sign(TIBGK, skID∗
x
, M∗) to

A.

4. Queries Phase 2: A makes queries to the following oracles for polynomially many times again:

• Group-Setup(): Given the public parameters TIBGK and the identity IDg of the group (where IDg �= ID∗
g),

the oracle returns a group private key skIDg
to A.

• Join-User(): Given the public parameters TIBGK, the group private key skIDg
(or the identity IDg) and

the identity IDi of the group member (where skIDg
�= skID∗

g
and IDi /∈ {ID∗

0, ID
∗
1}), the oracle returns a

member private key skIDi
to A, where skIDg

is a group private key on the identity IDg of the group.
• Revoke-User(): Given the public parameters TIBGK, the group private key skIDg (or the identity IDg),

the identity IDi of the revoked group member and the revocation list RLtID of the last duration t, the oracle
returns an updated revocation list RLt+1

ID (where A did not query Revoke-User on inputs skID∗
g
, ID∗

0 (and
ID∗

1)).
• Sign(): Given the public parameters TIBGK, the member private key skIDi

(or the identity IDi) and the
message M, the oracle returns a signature σ to A.

5. Guess : A outputs a bit x′ ∈ {0, 1} and succeeds if x′ = x.

6. Traceable Identity-Based Group Signature Scheme

Let TIBGS=(System-Setup, Group-Setup, Join-User, Revoke-User, Sign, Verify, Trace-User) be a traceable
identity-based group signature scheme. In TIBGS, all algorithms are described as follows:

(1) TIBGS.System-Setup: The algorithm run by the PKG system inputs a security parameter 1k. Additionally,
let G1 and G2 be groups of prime order q and g be a generator of G1, and let e : G1 ×G1 → G2 denote
the bilinear map. The size of the group is determined by the security parameter, and we set A ⊆ Zq as the
universe of identities. And one hash function, H : {0, 1}∗ → Z1k·q can be defined and used to generate any
integer value in Z1k·q (where 1k represents the corresponding decimal number).
Then the system parameters are generated as follows. The algorithm chooses random a, b ∈ Zq, and then
sets g1 = ga and g3 = gb. Nine group elements g2, g4, ϑ, ψ, μ, τ , �, χ and κ ∈ G1 are randomly chosen.
Finally, the algorithm outputs the public parameters TIBGK=(G1, G2, e, g, g1, g2, g3, g4, ϑ, ψ, μ, τ , �,
χ, κ), where ga2 is seen as the system private key spk.
Additionally, the algorithm run by the PKG system generates user’s private key with respect to the identity
of user. The algorithm inputs (TIBGK, spk, ID ⊆ A), where ID is the identity of user. And then the
algorithm randomly chooses r1 ∈ Zq, computes x0 = ga2 ·ϑr1·H(ID) ·ψr1 and x1 = gr1 . The algorithm outputs
a private key sk{ID} = {x0, x1} for user.

Remark 6.1. Every user may verify his private key by the following equation:

e(x0, g) = e(g1, g2) · e(ϑ, xH(ID)
1 ) · e(ψ, x1).

(2) TIBGS.Group-Setup: The algorithm run by private key generator inputs (TIBGK, spk, IDg), where IDg

is a group identity. And then the algorithm randomly chooses r2 ∈ Zq, computes y0 = gb4 · μr2·H(IDg) · τr2 ,
y1 = gr2 . The algorithm outputs a group private key gsk{IDg} = {y0, y1} to the group manager.
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(3) TIBGS.Join-User : The algorithm run by the group manager inputs (TIBGK, gsk{IDg}, ID), where ID is
the identity of group member (user). And then the algorithm randomly chooses r3, r4 ∈ Zq, computes

v0 = y0 · ϑr3·H(ID) · ψr3 ·�r4 = gb4 · μr2·H(IDg) · τr2 · ϑr3·H(ID) · ψr3 ·�r4 ,

v1 = e(ϑr3·H(ID) · ψr3 , g),
v2 = gr4 , v3 = y1 = gr2 , v4 = gr3 .

Remark 6.2. v4 is used to trace the real signer in a group.

Finally, the algorithm outputs a member private key usk{ID} = {v0, v1, v2, v3} to the group member.

(4) TIBGS.Revoke-User : The algorithm run by the group manager inputs (TIBGK, ID, RLt), where ID is
the corresponding identity of the revoked user. And the algorithm computes

T = v1 · e(ϑH(ID) · ψ, x1) = e(ϑ(r1+r3)·H(ID) · ψr1+r3 , g).
Finally, the algorithm outputs and adds a tuple [ID, T, v2] to the revocation list RLt, and then an updated
revocation list RLt+1 is published by a secure approach, where v1 and v2 belong to the member private key
of the revoked user and x1 belongs to the private key of the revoked user.

Remark 6.3. The group manager may get x1 from the PKG system or the revoked user when the revoked user
was registered to the group. This construction does not break the security of the whole scheme according to the
Paterson et al.’s signature scheme [27]. However, to make our description simpler, the approach of publishing
the revocation list is not described in this paper.

(5) TIBGS.Sign: A group member needs to sign a message M ∈ {0, 1}∗. The algorithm run by the group
member inputs (TIBGK, usk{ID}, M), and then randomly chooses r5, r6 ∈ Zq, computes

σ0 = x0 · v0 · ϑr5·H(ID) · ψr5 ·�r5 · χr6·H(M) · κr6

= ga2 · gb4 · ϑ(r1+r3+r5)·H(ID) · ψr1+r3+r5 · μr2·H(IDg) · τr2 ·�r4+r5 · χr6·H(M) · κr6 ,
σ1 = e(ϑH(ID) · ψ, x1) · v1 · e(ϑr5·H(ID) · ψr5 , g)

= e(ϑH(ID) · ψ, gr1) · e(ϑr3·H(ID) · ψr3 , g) · e(ϑr5·H(ID) · ψr5 , g)
= e(ϑ(r1+r3+r5)·H(ID) · ψr1+r3+r5 , g),

σ2 = v2 · gr5 = gr4+r5 ,

σ3 = v3 = gr2 ,

σ4 = gr6 .

Finally, the algorithm outputs a signature Φ = {σ0, σ1, σ2, σ3, σ4}.
(6) TIBGS.Verify: The signature receivers verify a standard traceable identity-based group signature σ. The

algorithm run by a signature verifier inputs (TIBGK, M, IDg, Φ, RLt), and then the following steps are
finished:
(a) The algorithm computes the following equation:

e(σ0, g) = e(g1, g2) · e(g3, g4) · σ1 · e(�,σ2) · e(μH(IDg) · τ, σ3) · e(χH(M) · κ, σ4).

If the above equation is correct, then the algorithm runs into the next step, otherwise the algorithm
outputs the boolean value reject.
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(b) The algorithm computes the following equation by the revocation list RLt:

σ1 = e

(
ϑH(ID) · ψ, σ2

v2

)
· T.

If the above equation is correct, then the algorithm outputs the boolean value reject; otherwise, if the
algorithm does not find the correcting equation σ1 = e(ϑH(ID) · ψ, σ2

v2
) · T on the revocation list RLt,

then the algorithm outputs the boolean value accept.

Remark 6.4. σ1 = e(ϑH(ID) · ψ, σ2
v2

) · T can denote whether the group member (signer) has been revoked.

(7) TIBGS.Trace-User : The algorithm run by the group manager inputs (TIBGK, M, Φ). For any potential
identity ID, the algorithm computes the following equation:

e

(
ϑH(ID) · ψ, x1 · v4 · σ2

v2

)
=

e(σ0, g)
e(g1, g2) · e(g3, g4) · e(�,σ2) · e(μH(IDg) · τ, σ3) · e(χH(M) · κ, σ4)

·

If the above equation is correct, then the algorithm outputs the identity ID of the real signer.

7. Analysis of the proposed scheme

7.1. Correctness

In the proposed scheme, the traceable identity-based group signature is Φ = {σ0, σ1, σ2, σ3, σ4}, where

σ0 = x0 · v0 · ϑr5·H(ID) · ψr5 ·�r5 · χr6·H(M) · κr6
= ga2 · gb4 · ϑ(r1+r3+r5)·H(ID) · ψr1+r3+r5 · μr2·H(IDg) · τr2 ·�r4+r5 · χr6·H(M) · κr6 ,

σ1 = e(ϑH(ID) · ψ, x1) · v1 · e(ϑr5·H(ID) · ψr5 , g)
= e(ϑH(ID) · ψ, gr1) · e(ϑr3·H(ID) · ψr3 , g) · e(ϑr5·H(ID) · ψr5 , g)
= e(ϑ(r1+r3+r5)·H(ID) · ψr1+r3+r5 , g),

σ2 = v2 · gr5 = gr4+r5 ,

σ3 = v3 = gr2 ,

σ4 = gr6 .

So, Φ may be verified by the following equation:

e(σ0, g) = e(ga2 · gb4 · ϑ(r1+r3+r5)·H(ID) · ψr1+r3+r5 · μr2·H(IDg) · τr2 ·�r4+r5 · χr6·H(M) · κr6 , g)
= e(ga2 , g) · e(gb4, g) · e(ϑ(r1+r3+r5)·H(ID) · ψr1+r3+r5 , g) · e(μr2·H(IDg) · τr2 , g) · e(�r4+r5 , g)

× e(χr6·H(M) · κr6 , g)
= e(g1, g2) · e(g3, g4) · σ1 · e(�,σ2) · e(μH(IDg) · τ, σ3) · e(χH(M) · κ, σ4).

7.2. Efficiency

In the proposed scheme, Φ = {σ0, σ1, σ2, σ3, σ4}, where

σ0 = x0 · v0 · ϑr5·H(ID) · ψr5 ·�r5 · χr6·H(M) · κr6 ,
σ1 = e(ϑH(ID) · ψ, x1) · v1 · e(ϑr5·H(ID) · ψr5 , g),
σ2 = v2 · gr5 , σ3 = v3 = gr2 , σ4 = gr6 .
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Thus, the length of signature is 4 · |G1| + |G2|, where |G1| is the size of element in G1 and |G2| is the size of
element in G2. Additionally, because x0 · v0 · ϑr5·H(ID) · ψr5 ·�r5 · κr6 , χr6 in χr6·H(M), σ1, σ2 and σ4 may be
precomputed, and we assume that the time for integer multiplication and hash computation can be ignored,
signing a message for a traceable identity-based group signature only needs to compute at most 1 exponentiation
in G1 and 1 multiplication in G1. Also, the signature receiver needs to verify a traceable identity-based group
signature by the following equations:

(1) e(σ0, g) = e(g1, g2) · e(g3, g4) · σ1 · e(�,σ2) · e(μH(IDg) · τ, σ3) · e(χH(M) · κ, σ4);
(2) σ1 = e(ϑH(ID) · ψ, σ2

v2
) · T .

Because the value e(g1, g2) · e(g3, g4) can be precomputed and cached, verification requires L + 4 pairing com-
putations, L + 2 exponentiations in G1, L + 3 multiplications in G1 and L + 4 multiplications in G2, where L
is the number of the revoked users in the revocation list RLt7.

In this paper, we compare the proposed scheme (the scheme of Sect. 6) with the revocable identity-based
group signature scheme proposed by Ibraimi et al. [20] and the γ-hiding revocable group signature scheme
proposed by Emura et al. [18]. In Appendix A, we show the comparisons of the three schemes.

7.3. Security

In the section, we show the proposed scheme (the scheme of Sect. 6) has a security reduction to the CDH
assumption and the TIBGS unforgeability under the adaptive chosen message and identity attacks, and has the
TIBGS traceability and the TIBGS anonymity. Our proofs for the following theorems are based on the security
models of Section 5 (we defer the proofs to Appendix B).

Theorem 7.1. The scheme of Section 6 is (�, ε, qg, qj, qs)-unforgeable (according to Def. 5.1), assuming that
the (�′, ε′)-CDH assumption holds in G1, where:

ε′ =
(

1− qg
q

)
·
(

1− qj
q

)
·
(

1− qs
q

)2

· ε
q3
,

�
′ = � +O(qg · (5 · Cexp + 4 · Cmul) + qj · (10 · Cexp + 7 · Cmul + 1 · Cpair)

+ qs · (15 · Cexp + 12 · Cmul + 1 · Cpair))
and qg is the maximal number of “Group-Setup” oracle queries, qj is the maximal number of “Join-User” oracle
queries, qs is the maximal number of “Sign” oracle queries, Cmul and Cexp are respectively the time for a
multiplication and an exponentiation in G1, Cpair is the time for a pairing computation.

Theorem 7.2. The scheme of Section 6 is a traceable TIBGS scheme when it is unforgeable (Thm. 7.1 holds)
and satisfies the following conditions (according to Def. 5.2):

(a) The outputs of “Trace-User” oracle are distinguishable in polynomially many times.
(b) The scheme of Section 6 is (�′′, ε′′, qg, qj, qr, qs)-secure, assuming that the (�′, ε′)-CDH assumption holds

in G1, where:

ε′′ =

[
ε′ · q3

(1 − qj

q ) · (1− qr

q ) · (1− qs

q )2

]∥∥∥∥∥
[

ε′ · q3
(1 − qg

q ) · (1− qj

q ) · (1− qr

q ) · (1− qs

q )2

]
,

�
′′ = MAX{�′ −O(qj · (10 · Cexp + 7 · Cmul1 + 1 · Cpair) + qr · (6 · Cexp + 3 · Cmul1 + 2 · Cpair + Cmul2)

+ qs · (15 · Cexp + 12 · Cmul1 + 1 · Cpair)), �
′ −O(qg · (5 · Cexp + 4 · Cmul1)

+ qj · (10 · Cexp + 7 · Cmul1 + 1 · Cpair) + qr · (6 · Cexp + 3 · Cmul1 + 2 · Cpair + Cmul2)

+ qs · (15 · Cexp + 12 · Cmul1 + 1 · Cpair))},
7We only consider the bad thing that the revoked user is the last one in the revocation list when verification starts from the

first one to the last one.
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and qg is the maximal number of “Group-Setup” oracle queries, qj is the maximal number of “Join-User”
oracle queries, qr is the maximal number of “Revoke-User” oracle queries, qs is the maximal number of
“Sign” oracle queries, Cmul1 and Cexp are respectively the time for a multiplication and an exponentiation
in G1, Cpair is the time for a pairing computation and Cmul2 is the time for a multiplication in G2.

Theorem 7.3. The scheme of Section 6 is (�, ε, qg, qj, qr, qs)-anonymous (according to Def. 5.3), assuming
that the (�′, ε′)-CDH assumption holds in G1, where:

ε′ =
(

1− qg1
q

)
·
(

1− qj1
q

)
·
(

1− qr1
q

)
·
(

1− qs1
q

)2

·
(

1− qg2
q

)
·
(

1− qj2
q

)
·
(

1− qr2
q

)
·
(

1− qs2
q

)2

· ε−
1
2

q3
,

�
′ = � +O((qg1 + qg2) · (5 · Cexp + 4 · Cmul1) + (qj1 + qj2) · (10 · Cexp + 7 · Cmul1 + 1 · Cpair)

+ (qr1 + qr2) · (6 · Cexp + 3 · Cmul1 + 2 · Cpair + Cmul2)
+ (qs1 + qs2) · (15 · Cexp + 12 · Cmul1 + 1 · Cpair)),

qg1 and qg2 are respectively the maximal numbers of “Group-Setup” oracle queries in the Queries Phase 1 and 2,
qj1 and qj2 are respectively the maximal numbers of “Join-User” oracle queries in the Queries Phase 1 and 2,
qr1 and qr2 are respectively the maximal numbers of “Revoke-User” oracle queries in the Queries Phase 1 and 2,
qs1 and qs2 are respectively the maximal numbers of “Sign” oracle queries in the Queries Phase 1 and 2, Cmul1
and Cexp are respectively the time for a multiplication and an exponentiation in G1, Cpair is the time for a
pairing computation and Cmul2 is the time for a multiplication in G2.

8. Conclusions

In this paper, we present a fully traceable (and verifier-local revocation) identity-based group signature
scheme, which has a security reduction to the computational Diffie–Hellman (CDH) assumption. Also, we give
the formal security models for traceable identity-based group signature. Under our security models, the proposed
scheme is proved to have the properties of anonymity and traceability with enough security. Compared with
other revocable identity-based group signature schemes proposed by [18, 20], the proposed scheme is efficient.
Because the proposed scheme is not enough efficient, the work about TIBGS still needs to be further progressed.

Appendix A. Comparisons of three schemes

Tables A.1–A.3 show the comparisons of the three schemes (the scheme of Sect. 6, the Ibraimi et al.’s
scheme [20] and the Emura et al.’s scheme [18]). Table A.1 shows the signature length comparison of the three
schemes. In Table A.1, compared with the Ibraimi et al.’s scheme and the Emura et al.’s scheme, the signature
length of the proposed scheme is the shortest one. Table A.2 shows the performance comparison of the three
schemes (where we assume that some computations may be precomputed and the time for integer multiplication
and hash computation can be ignored). In Table A.2, compared with the Ibraimi et al.’s scheme, the proposed
scheme is efficient on the cost of signing and verification; compared with the Emura et al.’s scheme, although the
verification cost of the proposed scheme is more than that of the Emura et al.’s scheme, the signing cost of the
proposed scheme is less. Table A.3 shows other comparisons of the three schemes. In Table A.3, our proposed
scheme is constructed in the standard model.

Remark A.1. To make the description simpler, we assume that the Emura et al.’s scheme is also constructed
on symmetric bilinear pairing and some public parameters of the Emura et al.’s scheme may be not included in
the final signature.



206 K. GU ET AL.

Table A.1. Signature Length Comparison of Three Schemes. |G1| represents the length of
element in G1, |Zq| represents the length of element in Zq, |G2| represents the length of element
in G2.

The length of signature
Scheme [20] 8 · |G1|
Scheme [18] 14 · |G1| + 20 · |Zq |
Our scheme 4 · |G1| + |G2|

Table A.2. Performance Comparison of Three Schemes. Lm is the length of signed message,
Lk is the length of identity, L is the number of the revoked users in the revocation list RLt,
Cmul1 and Cexp are respectively the time for a multiplication and an exponentiation in G1,
Cpair is the time for a pairing computation and Cmul2 is the time for a multiplication in G2.

Signing Verification
Scheme [20] Lm · Cexp + (Lm + 1) · Cmul1 (Lm + Lk) · Cmul1 + (Lm + Lk + 2) · Cexp

+9 · Cpair + 5 · Cmul2

Scheme [18] (Lm + 4) · Cexp + (Lm + 1) · Cmul1 + 2 · Cpair 24 · Cmul1 + 54 · Cexp + 19 · Cpair + 15 · Cmul2

Our scheme Cexp + Cmul1 (L + 3) · Cmul1 + (L + 2) · Cexp + (L + 4) · Cpair

+(L + 4) · Cmul2

Table A.3. Other comparisons of three schemes.

Model Assumptions
Scheme [20] standard model DLIN (decision Linear) and CDH
Scheme [18] random oracle model CDH, DDH (decision Diffie–Hellman), DLIN and SDH (strong Diffie–Hellman)
Our scheme standard model CDH

Appendix B. Security proof

Proof of Theorem 7.1

Proof. Let TIBGS be a traceable identity-based group signature scheme of Section 6. Additionally, let A be
an (�, ε, qg, qj , qs)-adversary attacking TIBGS. From the adversary A, we construct an algorithm B, for (g,
ga, gb)∈ G1, the algorithm B is able to use A to compute ga·b. Thus, we assume the algorithm B can solve the
CDH with probability at least ε′ and in time at most �′, contradicting the (�′, ε′)-CDH assumption. Such a
simulation may be created in the following way:

Setup: The PKG system inputs a security parameter 1k. Additionally, let G1 and G2 be groups of prime order
q and g be a generator of G1, and let e : G1 ×G1 → G2 denote the bilinear map. The size of the group is
determined by the security parameter, and we set A ⊆ Zq as the universe of identities. One hash function,
H : {0, 1}∗ → Z1k·q can be defined and used to generate any integer value in Z1k·q (where 1k represents the
corresponding decimal number).

Then the system parameters are generated as follows. The algorithm chooses random x1, x2 ∈ Zq, and then
sets g1 = ga, g2 = gb · g−x1, g3 = gb and g4 = ga · g−x2 (B doesn’t know a and b). Also the algorithm chooses �,
∂, ν, λ, η, α and π ∈ Zq, and then sets ϑ = g�2 · g, ψ = g∂ , μ = gν4 · g, τ = gλ, � = gη, χ = gα2 · g and κ = gπ.
Finally, the system outputs the public parameters TIBGK = (G1, G2, e, g, g1, g2, g3, g4, ϑ, ψ, μ, τ , �, χ, κ).

Additionally, because the algorithm B doesn’t know a and b, the algorithm can construct all private keys
of users by the following computation: for one user u (ID ⊆ A is the identity of the user u), the algorithm B
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chooses a random r1 ∈ Zq and computes x0 = g
− 1

�
1 · ϑr1 · g−

∂
� · 1

H(ID)
1 · ψ r1

H(ID) , x1 = (g−
1
�

1 · gr1) 1
H(ID) , and then

outputs a private key sk{ID} = {x0, x1} to A.

Remark B.1. To the correctness of sk{ID}, sk{ID} may be changed as follows:

x0 = g
− 1

�
1 · ϑr1 · g−

∂
� · 1

H(ID)
1 · ψ r1

H(ID)

= ga2 · g−a2 · g− 1
�

1 · ϑr1 · g−
∂
� · 1

H(ID)
1 · ψ r1

H(ID)

= ga2 · (g�2 · g)−
a
� · ϑr1 · ga·(−∂

� )· 1
H(ID) · ψ r1

H(ID)

= ga2 · ϑ−
a
� · ϑr1 · ψ− a

� · 1
H(ID) · ψ r1

H(ID)

= ga2 · ϑr1−
a
� · ψ r1

H(ID)− a
� · 1

H(ID)

= ga2 · ϑr1−
a
� · ψ(r1− a

� )· 1
H(ID) ,

x1 = (g−
1
�

1 · gr1) 1
H(ID)

= (g−
a
� · gr1) 1

H(ID)

= g(r1− a
� )· 1

H(ID) .

Setting r′1 = (r1 − a
� ) · 1

H(ID) , sk{ID} = {x0, x1} = {ga2 · ϑr
′
1·H(ID) · ψr′1 , gr

′
1} is a valid private key, where we

assure that � ·H(ID) �= 0 mod q.

Queries : When running the adversary A, the relevant queries can occur according to Definition 5.1. The algo-
rithm B answers these in the following way:

• Group-Setup queries: Given the public parameters TIBGK and the identity IDg of the group, the algorithm

B similarly constructs a group private key gsk{IDg} = {y0, y1} = {g− 1
ν

3 · μr2 · g−
λ
ν · 1

H(IDg)

3 · τ
r2

H(IDg ) , (g−
1
ν

3 ·
gr2)

1
H(IDg ) } to the adversaryA. Setting r′2 = (r2− b

ν )· 1
H(IDg) , gsk{IDg} = {y0, y1} = {gb4·μr

′
2·H(IDg)·τr′2 , gr′2}

is a valid private key, where we assure that ν ·H(IDg) �= 0 mod q.
• Join-User queries : Given the public parameters TIBGK, the identity IDg of the group and the identity ID

of the group member (user), the algorithm chooses random r2, r3, r4 ∈ Zq and computes

v0 = g
− 1

ν
3 · μr2 · g−

λ
ν · 1

H(IDg )

3 · τ
r2

H(IDg) · ϑr3·H(ID) · ψr3 ·�r4 ,

v1 = e(ϑr3·H(ID) · ψr3 , g),
v2 = gr4 , v3 = (g−

1
ν

3 · gr2) 1
H(IDg) , v4 = gr3 .

Finally, the algorithm outputs a member private key usk{ID} = {v0, v1, v2, v3, v4} to the adversary A.
Similarly, setting r′2 = (r2− b

ν ) · 1
H(IDg) , usk{ID} = {v0, v1, v2, v3, v4} = {gb4 ·μr

′
2·H(IDg) · τr′2 ·ϑr3·H(ID) ·ψr3 ·

�r4 , e(ϑr3·H(ID) ·ψr3 , g), gr4 , gr′2 , gr3} is a valid private key, where we assure that ν ·H(IDg) �= 0 mod q.

Remark B.2. Where we do not consider the traceability of the real signer, thus v4 is also passed to the
adversary A.
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• Sign queries : given the public parameters TIBGK, the identity IDg of the group, the identity ID of the
group member (user) and the message M, the algorithm chooses random r2, r3, r4, r5 ∈ Zq and computes

σ0 = g
− 1

ν
3 · μr2 · g−

λ
ν · 1

H(IDg )

3 · τ
r2

H(IDg ) · ϑr3·H(ID) · ψr3 ·�r4 · g− 1
α

1 · χr5 · g−
π
α · 1

H(M)
1 · κ r5

H(M) ,

σ1 = e(ϑr3·H(ID) · ψr3 , g),
σ2 = gr4 ,

σ3 = (g−
1
ν

3 · gr2) 1
H(IDg ) ,

σ4 = (g−
1
α

1 · gr5) 1
H(M) ,

σ5 = gr3 .

Finally, the algorithm outputs a signature Φ = {σ0, σ1, σ2, σ3, σ4, σ5} to the adversary A. Similarly, we do
not consider the traceability of the real signer and maximize the adversary’s advantage, thus σ5 is also passed
to the adversary A.

Remark B.3. To the correctness of Φ, Φ may be changed as follows:

σ0 = g
− 1

ν
3 · μr2 · g−

λ
ν · 1

H(IDg)

3 · τ
r2

H(IDg ) · ϑr3·H(ID) · ψr3 ·�r4 · g− 1
α

1 · χr5 · g−
π
α · 1

H(M)
1 · κ r5

H(M)

= gb4 · g−b4 · g−
1
ν

3 · μr2 · g−
λ
ν · 1

H(IDg )

3 · τ
r2

H(IDg ) · ϑr3·H(ID) · ψr3 ·�r4 · ga2 · g−a2 · g− 1
α

1 · χr5 · g−
π
α · 1

H(M)
1 · κ r5

H(M)

= gb4 · (gν4 · g)−
b
ν · μr2 · gb·(−λ

ν )· 1
H(IDg) · τ

r2
H(IDg) · ϑr3·H(ID) · ψr3 ·�r4 · ga2 · (gα2 · g)−

a
α · χr5

× ga·(−π
α )· 1

H(M) · κ r5
H(M)

= gb4 · μr2−
b
ν · τb·(− 1

ν )· 1
H(IDg ) · τ

r2
H(IDg ) · ϑr3·H(ID) · ψr3 ·�r4 · ga2 · χr5−

a
α · κa·(− 1

α )· 1
H(M) · κ r5

H(M)

= gb4 · μr2−
b
ν · τ (r2− b

ν )· 1
H(IDg) · ϑr3·H(ID) · ψr3 ·�r4 · ga2 · χr5−

a
α · κ(r5− a

α )· 1
H(M) ,

σ3 = (g−
1
ν

3 · gr2) 1
H(IDg) = g

(r2− b
ν )· 1

H(IDg ) ,

σ4 = (g−
1
α

1 · gr5) 1
H(M) = g(r5− a

α )· 1
H(M) .

Setting r′2 = (r2 − b
ν ) · 1

H(IDg) and r′5 = (r5 − a
α ) · 1

H(M) , we may get that

σ0 = gb4 · μr2−
b
ν · τ (r2− b

ν )· 1
H(IDg ) · ϑr3·H(ID) · ψr3 ·�r4 · ga2 · χr5−

a
α · κ(r5− a

α )· 1
H(M)

= gb4 · μr
′
2·H(IDg) · τr′2 · ϑr3·H(ID) · ψr3 ·�r4 · ga2 · χr

′
5·H(M) · κr′5

= ga2 · gb4 · ϑr3·H(ID) · ψr3 · μr′2·H(IDg) · τr′2 ·�r4 · χr′5·H(M) · κr′5 ,
σ3 = gr

′
2 ,

σ4 = gr
′
5 ,

Thus, Φ = {σ0, σ1, σ2, σ3, σ4, σ5} is a valid signature, where we assure that ν ·H(IDg) �= 0 mod q and α·H(M) �=
0 mod q.

Forgery: If the algorithm B does not abort as a consequence of one of the queries above, the adversary A
will, with probability at least ε, return a message M∗, and a valid identity-based group signature forgery,
Φ∗ = {σ∗

0 , σ
∗
1 , σ

∗
2 , σ

∗
3 , σ

∗
4 , σ

∗
5} for the identity ID∗ of the group member, the identity ID∗

g of the group
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and the revocation list RLtID∗
g
, where

σ∗
0 = ga2 · gb4 · ϑr

∗
2 ·H(ID∗) · ψr∗2 · μr∗3 ·H(ID∗

g ) · τr∗3 ·�r∗4 · χr∗5 ·H(M∗) · κr∗5 ,
σ∗

1 = e(ϑr
∗
2 ·H(ID∗) · ψr∗2 , g),

σ∗
2 = gr

∗
4 ,

σ∗
3 = gr

∗
3 ,

σ∗
4 = gr

∗
5 ,

σ∗
5 = gr

∗
2 .

And A did not query Group-Setup on input ID∗
g , did not query Join-User on inputs ID∗

g and ID∗, and did not
query Sign on inputs ID∗

g , ID∗ and M∗.
If � · H(ID∗) �= 0 mod q, or ν · H(ID∗

g) �= 0 mod q or α · H(M∗) �= 0 mod q, then the algorithm B will
abort.

If � · H(ID∗) = 0 mod q, and ν · H(ID∗
g) = 0 mod q and α · H(M∗) = 0 mod q, then the algorithm B

computes and outputs

2

√
σ∗

0

g−x1
1 · g−x2

3 · gr∗2 ·H(ID∗) · gr∗2 ·∂ · gr∗3 ·H(ID∗
g ) · gr∗3 ·λ · gr∗4 ·η · gr∗5 ·H(M∗) · gr∗5 ·π

= 2

√
ga2 · gb4 · ϑr∗2 ·H(ID∗) · ψr∗2 · μr∗3 ·H(ID∗

g ) · τr∗3 ·�r∗4 · χr∗5 ·H(M∗) · κr∗5
g−x1
1 · g−x2

3 · gr∗2 ·H(ID∗) · gr∗2 ·∂ · gr∗3 ·H(ID∗
g ) · gr∗3 ·λ · gr∗4 ·η · gr∗5 ·H(M∗) · gr∗5 ·π

= 2

√
(gb · g−x1)a ·(ga · g−x2)b ·(g�2 ·g)r∗2·H(ID∗) ·(g∂)r∗2 ·(gν4 · g)r

∗
3·H(ID∗

g ) ·(gλ)r∗3 ·(gη)r∗4 ·(gα2 ·g)r∗5·H(M∗) · (gπ)r∗5
g−x1
1 ·g−x2

3 ·gr∗2 ·H(ID∗) · gr∗2·∂ · gr∗3 ·H(ID∗
g ) ·gr∗3·λ · gr∗4 ·η · gr∗5 ·H(M∗) · gr∗5 ·π

= ga·b,

which is the solution to the given CDH problem.
Now, we analyze the probability of the algorithm B not aborting. For the simulation to complete without

aborting, we require that all Group-Setup queries will have ν ·H(IDg) �= 0 mod q, all Join-User queries will
have ν ·H(IDg) �= 0 mod q, and all Sign queries will have ν ·H(IDg) �= 0 mod q and α ·H(M) �= 0 mod q, and
that � ·H(ID∗) = 0 mod q, and ν ·H(ID∗

g) = 0 mod q and α ·H(M∗) = 0 mod q in forgery. If the algorithm
B does not abort, then the following conditions must hold:

(a) ν ·H(IDgi) �= 0 mod q in Group-Setup queries, with i = 1, 2 . . . qg;
(b) ν ·H(IDgi) �= 0 mod q in Join-User queries, with i = 1, 2 . . . qj ;
(c) ν ·H(IDgi) �= 0 mod q and α ·H(Mi) �= 0 mod q in Sign queries, with i = 1, 2 . . . qs;
(d) the algorithm B does not abort in forgery, namely � ·H(ID∗) = 0 mod q, and ν ·H(ID∗

g) = 0 mod q and
α ·H(M∗) = 0 mod q.

To make the analysis simpler, we will define the events Ei, Fi, Ti, Li, R∗, F ∗, S∗ as

Ei: ν ·H(IDgi) �= 0 mod q, with i = 1, 2 . . . qg;
Fi: ν ·H(IDgi) �= 0 mod q, with i = 1, 2 . . . qj ;
Ti: ν ·H(IDgi) �= 0 mod q, with i = 1, 2 . . . qs;
Li: α ·H(Mi) �= 0 mod q, with i = 1, 2 . . . qs;
R∗: � ·H(ID∗) = 0 mod q;
F ∗: ν ·H(ID∗

g) = 0 mod q;
S∗: α ·H(M∗) = 0 mod q.
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Then the probability of B not aborting is

Pr(not abort) = Pr

(
qg⋂
i=1

Ei ∧
qj⋂
i=1

Fi ∧
qs⋂
i=1

(Ti ∧ Li) ∧R∗ ∧ F ∗ ∧ S∗
)
.

It is easy to see that the events
qg⋂
i=1

Ei,
qj⋂
i=1

Fi,
qs⋂
i=1

Ti,
qs⋂
i=1

Li, R∗, F ∗ and S∗ are independent. Then we may

compute

Pr

( qg⋂
i=1

Ei

)
= 1− Pr

( qg⋃
i=1

¬Ei
)

= 1− qg · 1k

1k · q = 1− qg
q

;

Pr

(
qj⋂
i=1

Fi

)
= 1− Pr

(
qj⋃
i=1

¬Fi
)

= 1− qj · 1k

1k · q = 1− qj
q

;

Pr

(
qs⋂
i=1

Ti

)
= 1− Pr

(
qs⋃
i=1

¬Ti
)

= 1− qs · 1k

1k · q = 1− qs
q

;

Pr

(
qs⋂
i=1

Li

)
= 1− Pr

(
qs⋃
i=1

¬Li
)

= 1− qs · 1k

1k · q = 1− qs
q

;

Pr(R∗) =
1k

1k · q =
1
q
; Pr(F ∗) =

1k

1k · q =
1
q
; Pr(S∗) =

1k

1k · q =
1
q
·

Thus,

Pr(not abort) = Pr

( qg⋂
i=1

Ei ∧
qj⋂
i=1

Fi ∧
qs⋂
i=1

(Ti ∧ Li) ∧R∗ ∧ F ∗ ∧ S∗
)

= Pr

( qg⋂
i=1

Ei

)
· Pr

( qj⋂
i=1

Fi

)
· Pr

(
qs⋂
i=1

Ti

)
· Pr

(
qs⋂
i=1

Li

)
· Pr(R∗) · Pr(F ∗) · Pr(S∗)

=
(

1− qg
q

)
·
(

1− qj
q

)
·
(

1− qs
q

)2

· 1
q3
·

So we can get that ε′ = (1− qg

q ) · (1− qj

q ) · (1− qs

q )2 · εq3 .
If the simulation does not abort, the adversary A will create a valid signature forgery with probability at

least ε. The algorithm B can then compute ga·b from the forgery as shown above. The time complexity of the
algorithm B is dominated by the time for the exponentiations and multiplications in the queries. We assume
that the time for integer addition and integer multiplication, and the time for hash computation can both be
ignored, then the time complexity of the algorithm B is

�
′ = � +O(qg · (5 ·Cexp + 4 ·Cmul) + qj · (10 ·Cexp + 7 ·Cmul + 1 ·Cpair) + qs · (15 ·Cexp + 12 ·Cmul + 1 ·Cpair)).

Thus, Theorem 7.1 follows. �

Proof of Theorem 7.2

Proof. According to Definition 5.2, we need to divide the proof to the following three parts:

a) Correctness (the outputs of “Trace-User” oracle are distinguishable):
From the algorithm TIBGS.Trace-User , we may know that
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1) e(σ0, g)

e(g1,g2)·e(g3,g4)·e(�,σ2)·e(μH(IDg )·τ,σ3)·e(χH(M)·κ,σ4)

= e(ga
2 ·gb

4·ϑ(r1+r3+r5)·H(ID)·ψr1+r3+r5 ·μr2·H(IDg )·τr2 ·�r4+r5 ·χr6·H(M)·κr6 , g)

e(g1,g2)·e(g3,g4)·e(�,σ2)·e(μH(IDg )·τ,σ3)·e(χH(M)·κ,σ4)

= e(ϑ(r1+r3+r5)·H(ID) · ψr1+r3+r5 , g),
2) e(ϑH(ID) · ψ, x1 · v4 · σ2

v2
)

= e(ϑH(ID) · ψ, gr1 · gr3 · gr4+r5

gr4 )
= e(ϑH(ID) · ψ, gr1+r3+r5).

So, for any potential identity ID, the algorithm TIBGS.Trace-User run by the group manager can verify
the identity of a real signer by the following equation:

e

(
ϑH(ID) · ψ, x1 · v4 · σ2

v2

)
=

e(σ0, g)
e(g1, g2) · e(g3, g4) · e(�,σ2) · e(μH(IDg) · τ, σ3) · e(χH(M) · κ, σ4)

.

b) Misidentification attacks :
Let TIBGS be a traceable identity-based group signature scheme of Section 6. Additionally, let A be an
(�, ε, qj , qr, qs)-adversary attacking TIBGS. From the adversary A, we construct an algorithm B, for (g,
ga, gb)∈ G1, the algorithm B is able to use A to compute ga·b. Thus, we assume the algorithm B can solve
the CDH with probability at least ε′ and in time at most �′, contradicting the (�′, ε′)-CDH assumption.
According to the algorithm BTM TIBGS of Definition 5.2, such a simulation may be created in the following
way (to avoid the symbol confused, we use uAi and UA to replace uai and Ua of the algorithm BTM TIBGS):

Setup: The PKG system inputs a security parameter 1k. Additionally, let G1 and G2 be groups of prime
order q and g be a generator of G1, and let e : G1 ×G1 → G2 denote the bilinear map. The size of the group
is determined by the security parameter, and we set A ⊆ Zq as the universe of identities. One hash function,
H : {0, 1}∗ → Z1k·q can be defined and used to generate any integer value in Z1k·q (where 1k represents the
corresponding decimal number).

Then the system parameters are generated as follows. The algorithm chooses random x1, x2 ∈ Zq, and then
sets g1 = ga, g2 = gb · g−x1, g3 = gb and g4 = ga · g−x2 (B doesn’t know a and b). Also the algorithm chooses �,
∂, ν, λ, η, α and π ∈ Zq, and then sets ϑ = g�2 · g, ψ = g∂ , μ = gν4 · g, τ = gλ, � = gη, χ = gα2 · g and κ = gπ.
Finally, the system outputs the public parameters TIBGK=(G1, G2, e, g, g1, g2, g3, g4, ϑ, ψ, μ, τ , �, χ, κ).

Additionally, because the algorithm B doesn’t know a and b, the algorithm can construct all private keys of
users by the following computation: for one user u (ID is the identity of the user u), the algorithm B chooses a

random r1 ∈ Zq and computes x0 = g
− 1

�
1 ·ϑr1 ·g

−∂
� · 1

H(ID)
1 ·ψ r1

H(ID) , x1 = (g−
1
�

1 ·gr1)
1

H(ID) , and then outputs a private
key sk{ID} = {x0, x1} to A. Similarly, setting r′1 = (r1− a

� )· 1
H(ID) , sk{ID} = {x0, x1} = {ga2 ·ϑr

′
1·H(ID) ·ψr′1 , gr′1}

is a valid private key, where we assure that � ·H(ID) �= 0 mod q.

Queries : When running the adversary A, the relevant queries can occur according to the algorithm BTM TIBGS

of Definition 5.2. The algorithm B answers these in the following way:

• Join-User queries : given the public parameters TIBGK, the identity IDg of the group and the identity IDuA
i

of the group member (the user uAi is added to the set UA), the algorithm chooses random r2, r3, r4 ∈ Zq and
computes

v0 = g
− 1

ν
3 · μr2 · g−

λ
ν · 1

H(IDg)

3 · τ
r2

H(IDg ) · ϑr3·H(ID
uA

i
) · ψr3 ·�r4 ,

v1 = e(ϑ
r3·H(ID

uA
i

) · ψr3 , g),
v2 = gr4 , v3 = (g−

1
ν

3 · gr2) 1
H(IDg ) , v4 = gr3 .
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Finally, the algorithm outputs a member private key usk{ID
uA

i
} = {v0, v1, v2, v3, v4} to the adversary A.

Similarly, setting r′2 = (r2 − b
ν ) · 1

H(IDg) ,

usk{ID
uA

i
} = {v0, v1, v2, v3, v4}

= {gb4 · μr
′
2·H(IDg) · τr′2 · ϑr3·H(ID

uA
i

) · ψr3 ·�r4 , e(ϑ
r3·H(ID

uA
i

) · ψr3 , g), gr4, gr
′
2 , gr3}.

So, usk{ID
uA

i
} is a valid private key, where we assure that ν ·H(IDg) �= 0 mod q.

Remark B.4. Where we maximize the adversary’s advantage, thus v4 is also passed to A.

• Revoke-User : Given the public parameters TIBGK, the identity IDuA
i

of the revoked group member and
the revocation list RLtID of the last duration t (RLtID = ∅ when t = 0), the algorithm chooses random
r1, r3, r4 ∈ Zq and computes

T = e(ϑ
H(ID

uA
i

) · ψ, (g−
1
�

1 · gr1)
1

H(ID
uA

i
)
) · e(ϑr3·H(ID

uA
i

) · ψr3 , g),
v2 = gr4 .

Finally, the algorithm outputs and adds a tuple [IDuA
i
, T, v2] to the revocation list RLtID, and then an

updated revocation list RLt+1
ID is published to the adversary A. Similarly, setting r′1 = (r1 − a

� ) · 1
H(ID

uA
i

) ,

T = e

(
ϑ
H(ID

uA
i

) · ψ, (g−
1
�

1 · gr1)
1

H(ID
uA

i
)
)
· e
(
ϑ
r3·H(ID

uA
i

) · ψr3 , g
)

= e

(
ϑ
H(ID

uA
i

) · ψ, g
(r1− a

� )· 1
H(ID

uA
i

)
)
· e
(
ϑ
r3·H(ID

uA
i

) · ψr3 , g
)

= e
(
ϑ
H(ID

uA
i

) · ψ, gr′1
)
· e
(
ϑ
r3·H(ID

uA
i

) · ψr3 , g
)

= e
(
ϑ

(r′1+r3)·H(ID
uA

i
) · ψ(r′1+r3), g

)
,

thus the tuple [IDuA
i
, T, v2] is a valid data, where we assure that � ·H(IDuA

i
) �= 0 mod q.

• Sign queries : Given the public parameters TIBGK, the identity IDg of the group, the identity IDuA
i

of
the group member (the user uAi is added to the set UA) and the message M, the algorithm chooses random
r2, r3, r4, r5 ∈ Zq and computes

σ0 = g
− 1

ν
3 · μr2 · g−

λ
ν · 1

H(IDg )

3 · τ
r2

H(IDg) · ϑr3·H(ID
uA

i
) · ψr3 ·�r4 · g− 1

α
1 · χr5 · g−

π
α · 1

H(M)
1 · κ r5

H(M) ,

σ1 = e(ϑ
r3·H(ID

uA
i

) · ψr3 , g),
σ2 = gr4 ,

σ3 = (g−
1
ν

3 · gr2) 1
H(IDg ) ,

σ4 = (g−
1
α

1 · gr5) 1
H(M) ,

σ5 = gr3 .

Finally, the algorithm outputs a signature Φ = {σ0, σ1, σ2, σ3, σ4, σ5} to the adversary A. Similarly, we
maximize the adversary’s advantage, thus σ5 is also passed to the adversary A. Setting r′2 = (r2− b

ν ) · 1
H(IDg)

and r′5 = (r5− a
α ) · 1

H(M) , Φ = {σ0, σ1, σ2, σ3, σ4, σ5} is a valid signature, where we assure that ν ·H(IDg) �=
0 mod q and α ·H(M) �= 0 mod q.
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Forgery: If the algorithm B does not abort as a consequence of one of the queries above, the adversary A
will, with probability at least ε, return a message M∗, and a valid identity-based group signature forgery,
Φ∗ = {σ∗

0 , σ
∗
1 , σ

∗
2 , σ

∗
3 , σ

∗
4 , σ

∗
5} for the identity ID∗ of the group member, the identity ID∗

g of the group and the
revocation list RLtID∗

g
, where

σ∗
0 = ga2 · gb4 · ϑr

∗
2 ·H(ID∗) · ψr∗2 · μr∗3 ·H(ID∗

g ) · τr∗3 ·�r∗4 · χr∗5 ·H(M∗) · κr∗5 ,
σ∗

1 = e(ϑr
∗
2 ·H(ID∗) · ψr∗2 , g),

σ∗
2 = gr

∗
4 ,

σ∗
3 = gr

∗
3 ,

σ∗
4 = gr

∗
5 ,

σ∗
5 = gr

∗
2 ,

and A did not query Join-User on inputs ID∗
g and ID∗, did not query Revoke-User on inputs ID∗ and RLt−1

ID∗
g
,

and did not query Sign on inputs ID∗
g , ID∗ and M∗, where the identity ID∗ belongs to the group named by

the identity ID∗
g and ID∗ /∈ UA \RLtID∗

g
.

If � · H(ID∗) �= 0 mod q, or ν · H(ID∗
g) �= 0 mod q or α · H(M∗) �= 0 mod q, then the algorithm B will

abort.
If � · H(ID∗) = 0 mod q, and ν · H(ID∗

g) = 0 mod q and α · H(M∗) = 0 mod q, then the algorithm B
computes and outputs

2

√
σ∗

0

g−x1
1 · g−x2

3 · gr∗2 ·H(ID∗) · gr∗2 ·∂ · gr∗3 ·H(ID∗
g ) · gr∗3 ·λ · gr∗4 ·η · gr∗5 ·H(M∗) · gr∗5 ·π

= 2

√
ga2 · gb4 · ϑr∗2 ·H(ID∗) · ψr∗2 · μr∗3 ·H(ID∗

g ) · τr∗3 ·�r∗4 · χr∗5 ·H(M∗) · κr∗5
g−x1
1 · g−x2

3 · gr∗2 ·H(ID∗) · gr∗2 ·∂ · gr∗3 ·H(ID∗
g ) · gr∗3 ·λ · gr∗4 ·η · gr∗5 ·H(M∗) · gr∗5 ·π

= 2

√
(gb ·g−x1)a ·(ga ·g−x2)b ·(g�2 ·g)r∗2·H(ID∗) ·(g∂)r∗2 ·(gν4 ·g)r

∗
3·H(ID∗

g ) ·(gλ)r∗3 ·(gη)r∗4 ·(gα2 ·g)r∗5·H(M∗) ·(gπ)r∗5
g−x1
1 · g−x2

3 · gr∗2 ·H(ID∗) · gr∗2 ·∂ · gr∗3 ·H(ID∗
g ) · gr∗3 ·λ · gr∗4 ·η · gr∗5 ·H(M∗) · gr∗5 ·π

= ga·b,

which is the solution to the given CDH problem.
Now, we analyze the probability of the algorithm B not aborting. For the simulation to complete without

aborting, we require that all Join-User queries will have ν ·H(IDg) �= 0 mod q, all Revoke-User queries will
have � ·H(IDuA

i
) �= 0 mod q, and all Sign queries will have ν ·H(IDg) �= 0 mod q and α ·H(M) �= 0 mod q,

and that � · H(ID∗) = 0 mod q, and ν · H(ID∗
g) = 0 mod q and α · H(M∗) = 0 mod q in forgery. If the

algorithm B does not abort, then the following conditions must hold:

(a) ν ·H(IDgi) �= 0 mod q in Join-User queries, with i = 1, 2 . . . qj ;
(b) � ·H(IDuA

i
) �= 0 mod q in Revoke-User queries, with i = 1, 2 . . . qr;

(c) ν ·H(IDgi) �= 0 mod q and α ·H(Mi) �= 0 mod q in Sign queries, with i = 1, 2 . . . qs;
(d) the algorithm B does not abort in forgery, namely � ·H(ID∗) = 0 mod q, and ν ·H(ID∗

g) = 0 mod q and
α ·H(M∗) = 0 mod q.

Then we will define the events Fi, Ei, Ti, Li, R∗, F ∗, S∗ as

Fi: ν ·H(IDgi) �= 0 mod q, with i = 1, 2 . . . qj ;
Ei: � ·H(IDuA

i
) �= 0 mod q, with i = 1, 2 . . . qr;

Ti: ν ·H(IDgi) �= 0 mod q, with i = 1, 2 . . . qs;
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Li: α ·H(Mi) �= 0 mod q, with i = 1, 2 . . . qs;
R∗: � ·H(ID∗) = 0 mod q;
F ∗: ν ·H(ID∗

g) = 0 mod q;
S∗: α ·H(M∗) = 0 mod q.

The probability of B not aborting is

Pr(not abort) = Pr

( qj⋂
i=1

Fi ∧
qr⋂
i=1

Ei ∧
qs⋂
i=1

(Ti ∧ Li) ∧R∗ ∧ F ∗ ∧ S∗
)
.

It is easy to see that the events
qj⋂
i=1

Fi,
qr⋂
i=1

Ei,
qs⋂
i=1

Ti,
qs⋂
i=1

Li, R∗, F ∗ and S∗ are independent. Then we may

compute

Pr

( qj⋂
i=1

Fi

)
= 1− Pr

( qj⋃
i=1

¬Fi
)

= 1− qj · 1k

1k · q = 1− qj
q

;

Pr

(
qr⋂
i=1

Ei

)
= 1− Pr

(
qr⋃
i=1

¬Ei
)

= 1− qr · 1k

1k · q = 1− qr
q

;

Pr

(
qs⋂
i=1

Ti

)
= 1− Pr

(
qs⋃
i=1

¬Ti
)

= 1− qs · 1k

1k · q = 1− qs
q

;

Pr

(
qs⋂
i=1

Li

)
= 1− Pr

(
qs⋃
i=1

¬Li
)

= 1− qs · 1k

1k · q = 1− qs
q

;

Pr(R∗) =
1k

1k · q =
1
q
; Pr(F ∗) =

1k

1k · q =
1
q
; Pr(S∗) =

1k

1k · q =
1
q
·

Thus,

Pr(not abort) = Pr

( qj⋂
i=1

Fi ∧
qr⋂
i=1

Ei ∧
qs⋂
i=1

(Ti ∧ Li) ∧R∗ ∧ F ∗ ∧ S∗
)

= Pr

( qj⋂
i=1

Fi

)
· Pr

(
qr⋂
i=1

Ei

)
· Pr

(
qs⋂
i=1

Ti

)
· Pr

(
qs⋂
i=1

Li

)
· Pr(R∗) · Pr(F ∗) · Pr(S∗)

=
(

1− qj
q

)
·
(

1− qr
q

)
·
(

1− qs
q

)2

· 1
q3
·

So we can get that ε′ = (1− qj

q ) · (1− qr

q ) · (1− qs

q )2 · εq3 .
If the simulation does not abort, the adversary A will create a valid signature forgery with probability at

least ε. The algorithm B can then compute ga·b from the forgery as shown above. The time complexity of the
algorithm B is dominated by the time for the exponentiations and multiplications in the queries. We assume
that the time for integer addition and integer multiplication, and the time for hash computation can both be
ignored, then the time complexity of the algorithm B is

�
′ = � +O(qj · (10 · Cexp + 7 · Cmul1 + 1 · Cpair) + qr · (6 · Cexp + 3 · Cmul1 + 2 · Cpair + Cmul2)

+ qs · (15 · Cexp + 12 · Cmul1 + 1 · Cpair)).
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c) Framing attacks :
Let TIBGS be a traceable identity-based group signature scheme of Section 6. Additionally, let A be an (�,

ε, qg, qj , qr, qs)-adversary attacking TIBGS. From the adversary A, we construct an algorithm B, for (g, ga,
gb)∈ G1, the algorithm B is able to use A to compute ga·b. Thus, we assume the algorithm B can solve the
CDH with probability at least ε′ and in time at most �

′, contradicting the (�′, ε′)-CDH assumption. According
to the algorithm BTF TIBGS of Definition 5.2, such a simulation may be created in the following way (to avoid
the symbol confused, we use uBi and UB to replace ubi and U b of the algorithm BTF TIBGS):

Setup: The PKG system inputs a security parameter 1k. Additionally, let G1 and G2 be groups of prime order q
and g be a generator of G1, and let e : G1 ×G1 → G2 denote the bilinear map. The size of the group is
determined by the security parameter, and we set A ⊆ Zq as the universe of identities. One hash function,
H : {0, 1}∗ → Z1k·q can be defined and used to generate any integer value in Z1k·q (where 1k represents the
corresponding decimal number).

Then the system parameters are generated as follows. The algorithm chooses random x1, x2 ∈ Zq, and then
sets g1 = ga, g2 = gb · g−x1, g3 = gb and g4 = ga · g−x2 (B doesn’t know a and b). Also the algorithm chooses �,
∂, ν, λ, η, α and π ∈ Zq, and then sets ϑ = g�2 · g, ψ = g∂ , μ = gν4 · g, τ = gλ, � = gη, χ = gα2 · g and κ = gπ.
Finally, the system outputs the public parameters TIBGK=(G1, G2, e, g, g1, g2, g3, g4, ϑ, ψ, μ, τ , �, χ, κ).

Additionally, because the algorithm B doesn’t know a and b, the algorithm can construct all private keys of
users by the following computation: for one user u (ID is the identity of the user u), the algorithm B chooses a

random r1 ∈ Zq and computes x0 = g
− 1

�
1 ·ϑr1 ·g

−∂
� · 1

H(ID)
1 ·ψ r1

H(ID) , x1 = (g−
1
�

1 ·gr1)
1

H(ID) , and then outputs a private
key sk{ID} = {x0, x1} to A. Similarly, setting r′1 = (r1− a

� )· 1
H(ID) , sk{ID} = {x0, x1} = {ga2 ·ϑr

′
1·H(ID) ·ψr′1 , gr′1}

is a valid private key, where we assure that � ·H(ID) �= 0 mod q.
Queries : When running the adversary A, the relevant queries can occur according to the algorithm BTF TIBGS

of Definition 5.2. The algorithm B answers these in the following way:

• Group-Setup queries: Given the public parameters TIBGK and the identity IDg of the group, the algorithm

B similarly constructs a group private key gsk{IDg} = {y0, y1} = {g− 1
ν

3 · μr2 · g−
λ
ν · 1

H(IDg)

3 · τ
r2

H(IDg ) , (g−
1
ν

3 ·
gr2)

1
H(IDg ) } to the adversaryA. Setting r′2 = (r2− b

ν )· 1
H(IDg) , gsk{IDg} = {y0, y1} = {gb4·μr

′
2·H(IDg)·τr′2 , gr′2}

is a valid private key, where we assure that ν ·H(IDg) �= 0 mod q.
• Join-User queries : Given the public parameters TIBGK, the identity IDg of the group and the identity
IDuB

i
of the group member (the user uBi is added to the set UB where UB �= ∅), the algorithm chooses

random r2, r3, r4 ∈ Zq and computes

v0 = g
− 1

ν
3 · μr2 · g−

λ
ν · 1

H(IDg)

3 · τ
r2

H(IDg ) · ϑr3·H(ID
uB

i
) · ψr3 ·�r4 ,

v1 = e(ϑ
r3·H(ID

uB
i

) · ψr3 , g),
v2 = gr4 , v3 = (g−

1
ν

3 · gr2) 1
H(IDg ) , v4 = gr3 .

Finally, the algorithm outputs a member private key usk{ID
uB

i
} = {v0, v1, v2, v3, v4} to the adversary A.

Similarly, setting r′2 = (r2 − b
ν ) · 1

H(IDg) ,

usk{ID
uB

i
} = {v0, v1, v2, v3, v4}

= {gb4 · μr
′
2·H(IDg) · τr′2 · ϑr3·H(ID

uB
i

) · ψr3 ·�r4 , e(ϑ
r3·H(ID

uB
i

) · ψr3 , g), gr4 , gr
′
2 , gr3}.

So, usk{ID
uB

i
} is a valid private key, where we assure that ν ·H(IDg) �= 0 mod q.

Remark B.5. Where we maximize the adversary’s advantage, thus v4 is also passed to A.
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• Revoke-User : Given the public parameters TIBGK, the identity IDuB
i

of the revoked group member and the
revocation list RLtID of the last duration t (RLtID = ∅ when t = 0), the algorithm chooses random r1, r3, r4 ∈
Zq and computes

T = e

(
ϑ
H(ID

uB
i

) · ψ,
(
g
− 1

�
1 · gr1

) 1
H(ID

uB
i

)
)
· e
(
ϑ
r3·H(ID

uB
i

) · ψr3 , g
)
,

v2 = gr4 .

Finally, the algorithm outputs and adds a tuple [IDuB
i
, T, v2] to the revocation list RLtID, and then an

updated revocation list RLt+1
ID is published to the adversary A. Similarly, setting r′1 = (r1 − a

� ) · 1
H(ID

uB
i

) ,

T = e

(
ϑ
H(ID

uB
i

) · ψ,
(
g
− 1

�
1 · gr1

) 1
H(ID

uB
i

)
)
· e
(
ϑ
r3·H(ID

uB
i

) · ψr3 , g
)

= e

(
ϑ
H(ID

uB
i

) · ψ, g
(r1−a

� )· 1
H(ID

uB
i

)

)
· e
(
ϑ
r3·H(ID

uB
i

) · ψr3 , g
)

= e
(
ϑ
H(ID

uB
i

) · ψ, gr′1
)
· e
(
ϑ
r3·H(ID

uB
i

) · ψr3 , g
)

= e
(
ϑ

(r′1+r3)·H(ID
uB

i
) · ψ(r′1+r3), g

)
,

thus the tuple [IDuB
i
, T, v2] is a valid data, where we assure that � ·H(IDuB

i
) �= 0 mod q.

• Sign Queries : given the public parameters TIBGK, the identity IDg of the group, the identity IDuB
i

of
the group member (the user uBi is added to the set UB) and the message M, the algorithm chooses random
r2, r3, r4, r5 ∈ Zq and computes

σ0 = g
− 1

ν
3 · μr2 · g−

λ
ν · 1

H(IDg )

3 · τ
r2

H(IDg ) · ϑr3·H(ID
uB

i
) · ψr3 ·�r4 · g− 1

α
1 · χr5 · g−

π
α · 1

H(M)
1 · κ r5

H(M) ,

σ1 = e(ϑ
r3·H(ID

uB
i

) · ψr3 , g),

σ2 = gr4 ,

σ3 = (g−
1
ν

3 · gr2) 1
H(IDg ) ,

σ4 = (g−
1
α

1 · gr5) 1
H(M) ,

σ5 = gr3 .

Finally, the algorithm outputs a signature Φ = {σ0, σ1, σ2, σ3, σ4, σ5} to the adversary A. Similarly, we
maximize the adversary’s advantage, thus σ5 is also passed to the adversary A. Setting r′2 = (r2− b

ν ) · 1
H(IDg)

and r′5 = (r5− a
α ) · 1

H(M) , Φ = {σ0, σ1, σ2, σ3, σ4, σ5} is a valid signature, where we assure that ν ·H(IDg) �=
0 mod q and α ·H(M) �= 0 mod q.

Forgery: If the algorithm B does not abort as a consequence of one of the queries above, the adversary A
will, with probability at least ε, return a message M∗, and a valid identity-based group signature forgery,
Φ∗ = {σ∗

0 , σ
∗
1 , σ

∗
2 , σ

∗
3 , σ

∗
4 , σ

∗
5} for the identity ID∗ of the group member, the identity ID∗

g of the group
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and the revocation list RLtID∗
g
, where

σ∗
0 = ga2 · gb4 · ϑr

∗
2 ·H(ID∗) · ψr∗2 · μr∗3 ·H(ID∗

g ) · τr∗3 ·�r∗4 · χr∗5 ·H(M∗) · κr∗5 ,
σ∗

1 = e(ϑr
∗
2 ·H(ID∗) · ψr∗2 , g),

σ∗
2 = gr

∗
4 ,

σ∗
3 = gr

∗
3 ,

σ∗
4 = gr

∗
5 ,

σ∗
5 = gr

∗
2 .

And A did not query Group-Setup on input ID∗
g , did not query Join-User on inputs ID∗

g and ID∗, did not
query Revoke-User on inputs ID∗ and RLt−1

ID∗
g
, and did not query Sign on inputs ID∗

g , ID
∗ and M∗, where the

identity ID∗ belongs to the group named by the identity ID∗
g and ID∗ ∈ UB.

If � · H(ID∗) �= 0 mod q, or ν · H(ID∗
g) �= 0 mod q or α · H(M∗) �= 0 mod q, then the algorithm B will

abort.
If � · H(ID∗) = 0 mod q, and ν · H(ID∗

g) = 0 mod q and α · H(M∗) = 0 mod q, then the algorithm B
computes and outputs

2

√
σ∗

0

g−x1
1 · g−x2

3 · gr∗2 ·H(ID∗) · gr∗2 ·∂ · gr∗3 ·H(ID∗
g ) · gr∗3 ·λ · gr∗4 ·η · gr∗5 ·H(M∗) · gr∗5 ·π

= 2

√
ga2 · gb4 · ϑr∗2 ·H(ID∗) · ψr∗2 · μr∗3 ·H(ID∗

g ) · τr∗3 ·�r∗4 · χr∗5 ·H(M∗) · κr∗5
g−x1
1 · g−x2

3 · gr∗2 ·H(ID∗) · gr∗2 ·∂ · gr∗3 ·H(ID∗
g ) · gr∗3 ·λ · gr∗4 ·η · gr∗5 ·H(M∗) · gr∗5 ·π

= 2

√
(gb ·g−x1)a ·(ga · g−x2)b ·(g�2 ·g)r∗2·H(ID∗) ·(g∂)r∗2 ·(gν4 ·g)r

∗
3·H(ID∗

g ) ·(gλ)r∗3 ·(gη)r∗4 ·(gα2 ·g)r∗5·H(M∗) ·(gπ)r∗5
g−x1
1 · g−x2

3 · gr∗2·H(ID∗) ·gr∗2 ·∂ · gr∗3 ·H(ID∗
g ) · gr∗3 ·λ · gr∗4 ·η · gr∗5 ·H(M∗) · gr∗5 ·π

= ga·b,

which is the solution to the given CDH problem.
Now, we analyze the probability of the algorithm B not aborting. For the simulation to complete without

aborting, we require that all Group-Setup queries will have ν ·H(IDg) �= 0 mod q, all Join-User queries will
have ν ·H(IDg) �= 0 mod q, all Revoke-User queries will have � ·H(IDuB

i
) �= 0 mod q, and all Sign queries will

have ν ·H(IDg) �= 0 mod q and α·H(M) �= 0 mod q, and that �·H(ID∗) = 0 mod q, and ν ·H(ID∗
g) = 0 mod q

and α · H(M∗) = 0 mod q in forgery. If the algorithm B does not abort, then the following conditions must
hold:

(a) ν ·H(IDgi) �= 0 mod q in Group-Setup queries, with i = 1, 2 . . . qg;
(b) ν ·H(IDgi) �= 0 mod q in Join-User queries, with i = 1, 2 . . . qj ;
(c) � ·H(IDuB

i
) �= 0 mod q in Revoke-User queries, with i = 1, 2 . . . qr;

(d) ν ·H(IDgi) �= 0 mod q and α ·H(Mi) �= 0 mod q in Sign queries, with i = 1, 2 . . . qs;
(e) the algorithm B does not abort in forgery, namely � ·H(ID∗) = 0 mod q, and ν ·H(ID∗

g) = 0 mod q and
α ·H(M∗) = 0 mod q.

Then we will define the events Di, Fi, Ei, Ti, Li, R∗, F ∗, S∗ as

Di: ν ·H(IDgi) �= 0 mod q, with i = 1, 2 . . . qg;
Fi: ν ·H(IDgi) �= 0 mod q, with i = 1, 2 . . . qj ;
Ei: � ·H(IDuB

i
) �= 0 mod q, with i = 1, 2 . . . qr;

Ti: ν ·H(IDgi) �= 0 mod q, with i = 1, 2 . . . qs;



218 K. GU ET AL.

Li: α ·H(Mi) �= 0 mod q, with i = 1, 2 . . . qs;
R∗: � ·H(ID∗) = 0 mod q;
F ∗: ν ·H(ID∗

g) = 0 mod q;
S∗: α ·H(M∗) = 0 mod q.

The probability of B not aborting is

Pr(not abort) = Pr

( qg⋂
i=1

Di ∧
qj⋂
i=1

Fi ∧
qr⋂
i=1

Ei ∧
qs⋂
i=1

(Ti ∧ Li) ∧R∗ ∧ F ∗ ∧ S∗
)
.

It is easy to see that the events
qg⋂
i=1

Di,
qj⋂
i=1

Fi,
qr⋂
i=1

Ei,
qs⋂
i=1

Ti,
qs⋂
i=1

Li, R∗, F ∗ and S∗ are independent. Then we

may compute

Pr

(
qg⋂
i=1

Di

)
= 1− Pr

(
qg⋃
i=1

¬Di

)
= 1− qg · 1k

1k · q = 1− qg
q

;

Pr

(
qj⋂
i=1

Fi

)
= 1− Pr

(
qj⋃
i=1

¬Fi
)

= 1− qj · 1k

1k · q = 1− qj
q

;

Pr

(
qr⋂
i=1

Ei

)
= 1− Pr

(
qr⋃
i=1

¬Ei
)

= 1− qr · 1k

1k · q = 1− qr
q

;

Pr

(
qs⋂
i=1

Ti

)
= 1− Pr

(
qs⋃
i=1

¬Ti
)

= 1− qs · 1k

1k · q = 1− qs
q

;

Pr

(
qs⋂
i=1

Li

)
= 1− Pr

(
qs⋃
i=1

¬Li
)

= 1− qs · 1k

1k · q = 1− qs
q

;

Pr(R∗) =
1k

1k · q =
1
q
; Pr(F ∗) =

1k

1k · q =
1
q
; Pr(S∗) =

1k

1k · q =
1
q
·

Thus,

Pr(not abort) = Pr

( qg⋂
i=1

Di ∧
qj⋂
i=1

Fi ∧
qr⋂
i=1

Ei ∧
qs⋂
i=1

(Ti ∧ Li) ∧R∗ ∧ F ∗ ∧ S∗
)

= Pr

( qg⋂
i=1

Di

)
· Pr

( qj⋂
i=1

Fi

)
· Pr

(
qr⋂
i=1

Ei

)
· Pr

(
qs⋂
i=1

Ti

)
· Pr

(
qs⋂
i=1

Li

)
· Pr(R∗) · Pr (F ∗) · Pr(S∗)

=
(

1− qg
q

)
·
(

1− qj
q

)
·
(

1− qr
q

)
·
(

1− qs
q

)2

· 1
q3
.

So we can get that ε′ = (1− qg

q ) · (1− qj

q ) · (1− qr

q ) · (1 − qs

q )2 · εq3 .
If the simulation does not abort, the adversary A will create a valid signature forgery with probability at

least ε. The algorithm B can then compute ga·b from the forgery as shown above. The time complexity of the
algorithm B is dominated by the time for the exponentiations and multiplications in the queries. We similarly
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assume that the time for integer addition and integer multiplication, and the time for hash computation can
both be ignored, then the time complexity of the algorithm B is

�
′ = � +O(qg · (5 · Cexp + 4 · Cmul1) + qj · (10 · Cexp + 7 · Cmul1 + 1 · Cpair)

+ qr · (6 · Cexp + 3 · Cmul1 + 2 · Cpair + Cmul2) + qs · (15 · Cexp + 12 · Cmul1 + 1 · Cpair)).
Therefore, from the above proofs, we may get that

ε′′ =

⎡
⎢⎣ ε′ · q3(

1− qj

q

)
·
(
1− qr

q

)
·
(
1− qs

q

)2

⎤
⎥⎦
∥∥∥∥∥∥∥
⎡
⎢⎣ ε′ · q3(

1− qg

q

)
·
(
1− qj

q

)
·
(
1− qr

q

)
·
(
1− qs

q

)2

⎤
⎥⎦ ,

�
′′ = MAX{�′ −O(qj · (10 · Cexp + 7 · Cmul1 + 1 · Cpair) + qr · (6 · Cexp + 3 · Cmul1 + 2 · Cpair + Cmul2)

+ qs · (15 · Cexp + 12 · Cmul1 + 1 · Cpair)), �
′ −O(qg · (5 · Cexp + 4 · Cmul1)

+ qj · (10 · Cexp + 7 · Cmul1 + 1 · Cpair) + qr · (6 · Cexp + 3 · Cmul1 + 2 · Cpair + Cmul2)

+ qs · (15 · Cexp + 12 · Cmul1 + 1 · Cpair))}.
Thus, Theorem 7.2 follows. �

Proof of Theorem 7.3

Proof. Let TIBGS be a traceable identity-based group signature scheme of Section 6. Additionally, let A be an
(�, ε, qg, qj , qr, qs)-adversary attacking TIBGS. From the adversary A, we construct an algorithm B, for (g,
ga, gb)∈ G1, the algorithm B is able to use A to compute ga·b. Thus, we assume the algorithm B can solve the
CDH with probability at least ε′ and in time at most �′, contradicting the (�′, ε′)-CDH assumption. According
to the algorithm BA TIBGS of Definition 5.3, such a simulation may be created in the following way:

Setup: The PKG system inputs a security parameter 1k. Additionally, let G1 and G2 be groups of prime order q
and g be a generator of G1, and let e : G1 ×G1 → G2 denote the bilinear map. The size of the group is
determined by the security parameter, and we set A ⊆ Zq as the universe of identities. One hash function,
H : {0, 1}∗ → Z1k·q can be defined and used to generate any integer value in Z1k·q (where 1k represents the
corresponding decimal number).

Then the system parameters are generated as follows. The algorithm chooses random x1, x2 ∈ Zq, and then
sets g1 = ga, g2 = gb · g−x1, g3 = gb and g4 = ga · g−x2 (B doesn’t know a and b). Also the algorithm chooses �,
∂, ν, λ, η, α and π ∈ Zq, and then sets ϑ = g�2 · g, ψ = g∂ , μ = gν4 · g, τ = gλ, � = gη, χ = gα2 · g and κ = gπ.
Finally, the system outputs the public parameters TIBGK=(G1, G2, e, g, g1, g2, g3, g4, ϑ, ψ, μ, τ , �, χ, κ).

Additionally, because the algorithm B doesn’t know a and b, the algorithm can construct all private keys of
users by the following computation: for one user u (ID is the identity of the user u), the algorithm B chooses a

random r1 ∈ Zq and computes x0 = g
− 1

�
1 ·ϑr1 ·g

−∂
� · 1

H(ID)
1 ·ψ r1

H(ID) , x1 = (g−
1
�

1 ·gr1)
1

H(ID) , and then outputs a private
key sk{ID} = {x0, x1} to A. Similarly, setting r′1 = (r1− a

� )· 1
H(ID) , sk{ID} = {x0, x1} = {ga2 ·ϑr

′
1·H(ID) ·ψr′1 , gr′1}

is a valid private key, where we assure that � ·H(ID) �= 0 mod q.

Queries Phase 1 : When running the adversary A, the relevant queries can occur according to the algorithm
BA TIBGS of Definition 5.3. The algorithm B answers these in the following way:

• Group-Setup queries: Given the public parameters TIBGK and the identity IDg of the group, the algorithm

B similarly constructs a group private key gsk{IDg} = {y0, y1} = {g− 1
ν

3 · μr2 · g−
λ
ν · 1

H(IDg)

3 · τ
r2

H(IDg ) , (g−
1
ν

3 ·
gr2)

1
H(IDg ) } to the adversaryA. Setting r′2 = (r2− b

ν )· 1
H(IDg) , gsk{IDg} = {y0, y1} = {gb4·μr

′
2·H(IDg)·τr′2 , gr′2}

is a valid private key, where we assure that ν ·H(IDg) �= 0 mod q.
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• Join-User queries : Given the public parameters TIBGK, the identity IDg of the group and the identity
IDi of the group member, the algorithm chooses random r2, r3, r4 ∈ Zq and computes

v0 = g
− 1

ν
3 · μr2 · g−

λ
ν · 1

H(IDg)

3 · τ
r2

H(IDg) · ϑr3·H(IDi) · ψr3 ·�r4 ,

v1 = e
(
ϑr3·H(IDi) · ψr3 , g

)
,

v2 = gr4 , v3 = (g−
1
ν

3 · gr2) 1
H(IDg) , v4 = gr3.

Finally, the algorithm outputs a member private key usk{IDi} = {v0, v1, v2, v3, v4} to the adversary A.
Similarly, setting r′2 = (r2− b

ν ) · 1
H(IDg) , usk{IDi} = {v0, v1, v2, v3, v4} = {gb4 ·μr

′
2·H(IDg) ·τr′2 ·ϑr3·H(IDi) ·ψr3 ·

�r4 , e(ϑr3·H(IDi) ·ψr3 , g), gr4 , gr′2 , gr3} is a valid private key, where we assure that ν ·H(IDg) �= 0 mod q.

Remark B.6. Where we maximize the adversary’s advantage, thus v4 is also passed to A.

• Revoke-User : Given the public parameters TIBGK, the identity IDi of the revoked group member and
the revocation list RLtID of the last duration t (RLtID = ∅ when t = 0), the algorithm chooses random
r1, r3, r4 ∈ Zq and computes

T = e(ϑH(IDi) · ψ, (g−
1
�

1 · gr1) 1
H(IDi) ) · e(ϑr3·H(IDi) · ψr3 , g),

v2 = gr4 .

Finally, the algorithm outputs and adds a tuple [IDi, T, v2] to the revocation list RLtID, and then an updated
revocation list RLt+1

ID is published to the adversary A. Similarly, setting r′1 = (r1 − a
� ) · 1

H(IDi)
,

T = e

(
ϑH(IDi) · ψ,

(
g
− 1

�
1 · gr1

) 1
H(IDi)

)
· e
(
ϑr3·H(IDi) · ψr3 , g

)
= e

(
ϑH(IDi) · ψ, g(r1− a

� )· 1
H(IDi)

)
· e
(
ϑr3·H(IDi) · ψr3 , g

)
= e

(
ϑH(IDi) · ψ, gr′1

)
· e
(
ϑr3·H(IDi) · ψr3 , g

)
= e

(
ϑ(r′1+r3)·H(IDi) · ψ(r′1+r3), g

)
,

thus the tuple [IDi, T, v2] is a valid data, where we assure that � ·H(IDi) �= 0 mod q.
• Sign queries : Given the public parameters TIBGK, the identity IDg of the group, the identity IDi of the

group member and the message M, the algorithm chooses random r2, r3, r4, r5 ∈ Zq and computes

σ0 = g
− 1

ν
3 · μr2 · g−

λ
ν · 1

H(IDg )

3 · τ
r2

H(IDg ) · ϑr3·H(IDi) · ψr3 ·�r4 · g− 1
α

1 · χr5 · g−
π
α · 1

H(M)
1 · κ r5

H(M) ,

σ1 = e(ϑr3·H(IDi) · ψr3 , g),
σ2 = gr4 ,

σ3 = (g−
1
ν

3 · gr2) 1
H(IDg ) ,

σ4 = (g−
1
α

1 · gr5) 1
H(M) ,

σ5 = gr3 .

Finally, the algorithm outputs a signature Φ = {σ0, σ1, σ2, σ3, σ4, σ5} to the adversary A. Similarly, we
maximize the adversary’s advantage, thus σ5 is also passed to the adversary A. Setting r′2 = (r2− b

ν ) · 1
H(IDg)

and r′5 = (r5− a
α ) · 1

H(M) , Φ = {σ0, σ1, σ2, σ3, σ4, σ5} is a valid signature, where we assure that ν ·H(IDg) �=
0 mod q and α ·H(M) �= 0 mod q.
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Challenge: If the algorithm B does not abort as a consequence of one of the queries above, the adversary A will
send its forgery (M∗, ID∗

g , RLtID∗
g
) and two group member identities ID∗

0 and ID∗
1 that belong to the group

named by the group identity ID∗
g to the challenger. The forgery satisfies the following conditions:

(a) A did not query Group-Setup on input ID∗
g ;

(b) A did not query Join-User on inputs ID∗
g , ID

∗
0 (and ID∗

1);
(c) A did not query Revoke-User on inputs ID∗

g , ID
∗
0 (and ID∗

1) and RLt−1
ID∗

g
.

The challenger picks a random bit x ∈ {0, 1}, and runs Φ∗ = {σ∗
0 , σ

∗
1 , σ

∗
2 , σ

∗
3 , σ

∗
4 , σ

∗
5}

←Sign(TIBGK, skID∗
x
, M∗), and then outputs Φ∗ = {σ∗

0 , σ
∗
1 , σ

∗
2 , σ

∗
3 , σ

∗
4} to A, where

σ∗
0 = ga2 · gb4 · ϑr

∗
2 ·H(ID∗

x) · ψr∗2 · μr∗3 ·H(ID∗
g ) · τr∗3 ·�r∗4 · χr∗5 ·H(M∗) · κr∗5 ,

σ∗
1 = e(ϑr

∗
2 ·H(ID∗

x) · ψr∗2 , g),
σ∗

2 = gr
∗
4 ,

σ∗
3 = gr

∗
3 ,

σ∗
4 = gr

∗
5 ,

σ∗
5 = gr

∗
2 .

Queries Phase 2: Similarly, when running the adversary A, the relevant queries can occur according to the
algorithm BA TIBGS of Definition 5.3. The algorithm B answers these in the following way:

• Group-Setup queries: Given the public parameters TIBGK and the identity IDg of the group, the algorithm

B similarly constructs a group private key gsk{IDg} = {y0, y1} = {g− 1
ν

3 · μr2 · g−
λ
ν · 1

H(IDg)

3 · τ
r2

H(IDg ) , (g−
1
ν

3 ·
gr2)

1
H(IDg ) } to the adversaryA. Setting r′2 = (r2− b

ν )· 1
H(IDg) , gsk{IDg} = {y0, y1} = {gb4·μr

′
2·H(IDg)·τr′2 , gr′2}

is a valid private key, where we assure that ν ·H(IDg) �= 0 mod q.
• Join-User queries : Given the public parameters TIBGK, the identity IDg of the group and the identity
IDi of the group member (where IDg �= ID∗

g and IDi /∈ {ID∗
0 , ID

∗
1}), the algorithm chooses random

r2, r3, r4 ∈ Zq and computes

v0 = g
− 1

ν
3 · μr2 · g−

λ
ν · 1

H(IDg)

3 · τ
r2

H(IDg) · ϑr3·H(IDi) · ψr3 ·�r4 ,

v1 = e(ϑr3·H(IDi) · ψr3 , g),

v2 = gr4 , v3 =
(
g
− 1

ν
3 · gr2

) 1
H(IDg )

, v4 = gr3 .

Finally, the algorithm outputs a member private key usk{IDi} = {v0, v1, v2, v3, v4} to the adversary A.
Similarly, setting r′2 = (r2− b

ν ) · 1
H(IDg) , usk{IDi} = {v0, v1, v2, v3, v4} = {gb4 ·μr

′
2·H(IDg) ·τr′2 ·ϑr3·H(IDi) ·ψr3 ·

�r4 , e(ϑr3·H(IDi) ·ψr3 , g), gr4 , gr′2 , gr3} is a valid private key, where we assure that ν ·H(IDg) �= 0 mod q.

Remark B.7. Where we maximize the adversary’s advantage, thus v4 is also passed to A.

• Revoke-User : Given the public parameters TIBGK, the identity IDi of the revoked group member and the
revocation list RLtID of the last duration t (RLtID = ∅ when t = 0 and A did not query Revoke-User on
inputs ID∗

g, ID∗
0 (and ID∗

1)), the algorithm chooses random r1, r3, r4 ∈ Zq and computes

T = e(ϑH(IDi) · ψ,
(
g
− 1

�
1 · gr1

) 1
H(IDi)

) · e(ϑr3·H(IDi) · ψr3 , g),

v2 = gr4 .
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Finally, the algorithm outputs and adds a tuple [IDi, T, v2] to the revocation list RLtID, and then an updated
revocation list RLt+1

ID is published to the adversary A. Similarly, setting r′1 = (r1 − a
� ) · 1

H(IDi)
,

T = e

(
ϑH(IDi) · ψ,

(
g
− 1

�
1 · gr1

) 1
H(IDi)

)
· e
(
ϑr3·H(IDi) · ψr3 , g

)

= e
(
ϑH(IDi) · ψ, g(r1− a

� )· 1
H(IDi)

)
· e
(
ϑr3·H(IDi) · ψr3 , g

)
= e

(
ϑH(IDi) · ψ, gr′1

)
· e
(
ϑr3·H(IDi) · ψr3 , g

)
= e

(
ϑ(r′1+r3)·H(IDi) · ψ(r′1+r3), g

)
,

thus the tuple [IDi, T, v2] is a valid data, where we assure that � ·H(IDi) �= 0 mod q.
• Sign queries : Given the public parameters TIBGK, the identity IDg of the group, the identity IDi of the

group member and the message M, the algorithm chooses random r2, r3, r4, r5 ∈ Zq and computes

σ0 = g
− 1

ν
3 · μr2 · g−

λ
ν · 1

H(IDg )

3 · τ
r2

H(IDg ) · ϑr3·H(IDi) · ψr3 ·�r4 · g− 1
α

1 · χr5 · g−
π
α · 1

H(M)
1 · κ r5

H(M) ,

σ1 = e(ϑr3·H(IDi) · ψr3 , g),
σ2 = gr4 ,

σ3 =
(
g
− 1

ν
3 · gr2

) 1
H(IDg)

,

σ4 =
(
g
− 1

α
1 · gr5

) 1
H(M)

,

σ5 = gr3 .

Finally, the algorithm outputs a signature Φ = {σ0, σ1, σ2, σ3, σ4, σ5} to the adversary A. Similarly, we
maximize the adversary’s advantage, thus σ5 is also passed to the adversary A. Setting r′2 = (r2− b

ν ) · 1
H(IDg)

and r′5 = (r5− a
α ) · 1

H(M) , Φ = {σ0, σ1, σ2, σ3, σ4, σ5} is a valid signature, where we assure that ν ·H(IDg) �=
0 mod q and α ·H(M) �= 0 mod q.

Guess : if the algorithm B does not abort as a consequence of one of the queries above, the adversary A
will, with probability at least ε (ε ≥ 1

2 ) output a bit x′ ∈ {0, 1} and succeed (x′ = x). We assume that
Φ∗′

= {σ∗′
0 , σ

∗′
1 , σ

∗′
2 , σ

∗′
3 , σ

∗′
4 , σ

∗′
5 }, where

σ∗′
0 = ga2 · gb4 · ϑr

∗
2 ·H(ID∗

x′ ) · ψr∗2 · μr∗3 ·H(ID∗
g ) · τr∗3 ·�r∗4 · χr∗5 ·H(M∗) · κr∗5 ,

σ∗′
1 = e(ϑr

∗
2 ·H(ID∗

x′ ) · ψr∗2 , g),
σ∗′

2 = gr
∗
4 ,

σ∗′
3 = gr

∗
3 ,

σ∗′
4 = gr

∗
5 ,

σ∗′
5 = gr

∗
2 .

So, compared with Φ∗ = {σ∗
0 , σ

∗
1 , σ

∗
2 , σ

∗
3 , σ

∗
4 , σ

∗
5} ←Sign(TIBGK, skID∗

x
, M∗) in the Queries Phase 1, if x′ = x,

we can get the followings:
If � ·H(ID∗

x′) �= 0 mod q, or ν · H(ID∗
g) �= 0 mod q or α · H(M∗) �= 0 mod q, then the algorithm B will

abort.
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If � · H(ID∗
x′) = 0 mod q, and ν · H(ID∗

g) = 0 mod q and α · H(M∗) = 0 mod q, then the algorithm B
computes and outputs

2

√
σ∗′

0

g−x1
1 · g−x2

3 · gr∗2 ·H(ID∗
x′ ) · gr∗2 ·∂ · gr∗3 ·H(ID∗

g ) · gr∗3 ·λ · gr∗4 ·η · gr∗5 ·H(M∗) · gr∗5 ·π

= 2

√
ga2 · gb4 · ϑr

∗
2 ·H(ID∗

x′ ) · ψr∗2 · μr∗3 ·H(ID∗
g ) · τr∗3 ·�r∗4 · χr∗5 ·H(M∗) · κr∗5

g−x1
1 · g−x2

3 · gr∗2 ·H(ID∗
x′ ) · gr∗2 ·∂ · gr∗3 ·H(ID∗

g ) · gr∗3 ·λ · gr∗4 ·η · gr∗5 ·H(M∗) · gr∗5 ·π

= 2

√
(gb ·g−x1)a ·(ga ·g−x2)b ·(g�2 ·g)r

∗
2·H(ID∗

x′ ) ·(g∂)r∗2 ·(gν4 ·g)r
∗
3·H(ID∗

g ) ·(gλ)r∗3 ·(gη)r∗4 ·(gα2 ·g)r∗5·H(M∗) ·(gπ)r∗5
g−x1
1 · g−x2

3 · gr∗2 ·H(ID∗
x′ ) · gr∗2 ·∂ · gr∗3 ·H(ID∗

g ) · gr∗3 ·λ · gr∗4 ·η · gr∗5 ·H(M∗) · gr∗5 ·π
= ga·b,

which is the solution to the given CDH problem.
Now, we analyze the probability of the algorithm B not aborting. For the simulation to complete without

aborting, we require that all Group-Setup queries will have ν ·H(IDg) �= 0 mod q, all Join-User queries will have
ν ·H(IDg) �= 0 mod q, all Revoke-User queries will have � ·H(IDi) �= 0 mod q, and all Sign queries will have
ν ·H(IDg) �= 0 mod q and α ·H(M) �= 0 mod q in the queries Phase 1 and 2, and that � ·H(ID∗

x′) = 0 mod q,
and ν ·H(ID∗

g) = 0 mod q and α ·H(M∗) = 0 mod q in guess. If the algorithm B does not abort, then the
following conditions must hold:

(a) ν ·H(IDgi) �= 0 mod q in Group-Setup queries, with i = 1, 2 . . . qg1 ;
(b) ν ·H(IDgi) �= 0 mod q in Join-User queries, with i = 1, 2 . . . qj1 ;
(c) � ·H(IDi) �= 0 mod q in Revoke-User queries, with i = 1, 2 . . . qr1 ;
(d) ν ·H(IDgi) �= 0 mod q and α ·H(Mi) �= 0 mod q in Sign queries, with i = 1, 2 . . . qs1 ;
(e) ν ·H(IDgi) �= 0 mod q in Group-Setup queries, with i = 1, 2 . . . qg2 ;
(f) ν ·H(IDgi) �= 0 mod q in Join-User queries, with i = 1, 2 . . . qj2 ;
(g) � ·H(IDi) �= 0 mod q in Revoke-User queries, with i = 1, 2 . . . qr2 ;
(h) ν ·H(IDgi) �= 0 mod q and α ·H(Mi) �= 0 mod q in Sign queries, with i = 1, 2 . . . qs2 ;
(i) the algorithm B does not abort in guess, namely � ·H(ID∗

x′) = 0 mod q, and ν ·H(ID∗
g) = 0 mod q and

α ·H(M∗) = 0 mod q.

Then we will define the events D1i , F1i , E1i , T1i , L1i , D2i , F2i , E2i , T2i , L2i , R∗, F ∗, S∗ as

D1i : ν ·H(IDgi) �= 0 mod q, with i = 1, 2 . . . qg1 ;
F1i : ν ·H(IDgi) �= 0 mod q, with i = 1, 2 . . . qj1 ;
E1i : � ·H(IDi) �= 0 mod q, with i = 1, 2 . . . qr1 ;
T1i : ν ·H(IDgi) �= 0 mod q, with i = 1, 2 . . . qs1 ;
L1i : α ·H(Mi) �= 0 mod q, with i = 1, 2 . . . qs1 ;
D2i : ν ·H(IDgi) �= 0 mod q, with i = 1, 2 . . . qg2 ;
F2i : ν ·H(IDgi) �= 0 mod q, with i = 1, 2 . . . qj2 ;
E2i : � ·H(IDi) �= 0 mod q, with i = 1, 2 . . . qr2 ;
T2i : ν ·H(IDgi) �= 0 mod q, with i = 1, 2 . . . qs2 ;
L2i : α ·H(Mi) �= 0 mod q, with i = 1, 2 . . . qs2 ;
R∗: � ·H(ID∗

x′) = 0 mod q;
F ∗: ν ·H(ID∗

g) = 0 mod q;
S∗: α ·H(M∗) = 0 mod q.
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The probability of B not aborting is

Pr(not abort) = Pr

(qg1⋂
i=1

D1i ∧
qj1⋂
i=1

F1i ∧
qr1⋂
i=1

E1i ∧
qs1⋂
i=1

(T1i ∧ L1i) ∧
qg2⋂
i=1

D2i ∧
qj2⋂
i=1

F2i ∧
qr2⋂
i=1

E2i

∧
qs2⋂
i=1

(T2i ∧ L2i) ∧R∗ ∧ F ∗ ∧ S∗
)
.

It is easy to see that the events
qg1⋂
i=1

D1i ,
qj1⋂
i=1

F1i ,
qr1⋂
i=1

E1i ,
qs1⋂
i=1

T1i ,
qs1⋂
i=1

L1i ,
qg2⋂
i=1

D2i ,
qj2⋂
i=1

F2i ,
qr2⋂
i=1

E2i ,
qs2⋂
i=1

T2i ,
qs2⋂
i=1

L2i ,

R∗, F ∗ and S∗ are independent. Then we may compute

Pr

(qg1⋂
i=1

D1i

)
= 1− Pr

(qg1⋃
i=1

¬D1i

)
= 1− qg1 ·

1k

1k · q = 1− qg1
q

;

Pr

(qg2⋂
i=1

D2i

)
= 1− Pr

(qg2⋃
i=1

¬D2i

)
= 1− qg2 ·

1k

1k · q = 1− qg2
q

;

Pr

(qj1⋂
i=1

F1i

)
= 1− Pr

(qj1⋃
i=1

¬F1i

)
= 1− qj1 ·

1k

1k · q = 1− qj1
q

;

Pr

(qj2⋂
i=1

F2i

)
= 1− Pr

(qj2⋃
i=1

¬F2i

)
= 1− qj2 ·

1k

1k · q = 1− qj2
q

;

Pr

(qr1⋂
i=1

E1i

)
= 1− Pr

(qr1⋃
i=1

¬E1i

)
= 1− qr1 ·

1k

1k · q = 1− qr1
q

;

Pr

(qr2⋂
i=1

E2i

)
= 1− Pr

(qr2⋃
i=1

¬E2i

)
= 1− qr2 ·

1k

1k · q = 1− qr2
q

;

Pr

(qs1⋂
i=1

T1i

)
= 1− Pr

(qs1⋃
i=1

¬T1i

)
= 1− qs1 ·

1k

1k · q = 1− qs1
q

;

Pr

(qs2⋂
i=1

T2i

)
= 1− Pr

(qs2⋃
i=1

¬T2i

)
= 1− qs2 ·

1k

1k · q = 1− qs2
q

;

Pr

(qs1⋂
i=1

L1i

)
= 1− Pr

(qs1⋃
i=1

¬L1i

)
= 1− qs1 ·

1k

1k · q = 1− qs1
q

;

Pr

(qs2⋂
i=1

L2i

)
= 1− Pr

(qs2⋃
i=1

¬L2i

)
= 1− qs2 ·

1k

1k · q = 1− qs2
q

;

Pr(R∗) =
1k

1k · q =
1
q
; Pr(F ∗) =

1k

1k · q =
1
q
; Pr(S∗) =

1k

1k · q =
1
q
·
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So,

Pr(not abort) = Pr

(qg1⋂
i=1

D1i ∧
qj1⋂
i=1

F1i ∧
qr1⋂
i=1

E1i ∧
qs1⋂
i=1

(T1i ∧ L1i) ∧
qg2⋂
i=1

D2i ∧
qj2⋂
i=1

F2i ∧
qr2⋂
i=1

E2i

∧
qs2⋂
i=1

(T2i ∧ L2i) ∧R∗ ∧ F ∗ ∧ S∗
)

=
(

1− qg1
q

)
·
(

1− qj1
q

)
·
(

1− qr1
q

)
·
(

1− qs1
q

)2

·
(

1−qg2
q

)
·
(

1− qj2
q

)
·
(

1− qr2
q

)
·
(

1− qs2
q

)2

· 1
q3
·

Then we can get that

ε′ =
(

1− qg1
q

)
·
(

1− qj1
q

)
·
(

1− qr1
q

)
·
(

1− qs1
q

)2

·
(

1− qg2
q

)
·
(

1− qj2
q

)
·
(

1− qr2
q

)
·
(

1− qs2
q

)2

· ε−
1
2

q3
·

If the simulation does not abort, the adversary A will break the anonymity with probability at least ε− 1
2 .

The algorithm B can then compute ga·b from the forgery as shown above. The time complexity of the algorithm
B is dominated by the time for the exponentiations and multiplications in the queries. We assume that the time
for integer addition and integer multiplication, and the time for hash computation can both be ignored, then
the time complexity of the algorithm B is

�
′ = � +O((qg1 + qg2) · (5 · Cexp + 4 · Cmul1) + (qj1 + qj2) · (10 · Cexp + 7 · Cmul1 + 1 · Cpair)

+ (qr1 + qr2) · (6 · Cexp + 3 · Cmul1 + 2 · Cpair + Cmul2) + (qs1 + qs2) · (15 · Cexp + 12 · Cmul1 + 1 · Cpair)).

Thus, Theorem 7.3 follows. �
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