
RAIRO-Theor. Inf. Appl. 50 (2016) 371–386 Available online at:

DOI: 10.1051/ita/2016017 www.rairo-ita.org

HOMING VECTOR AUTOMATA ∗

Özlem Salehi1, A.C. Cem Say1 and Flavio D’Alessandro2,3

Abstract. We introduce homing vector automata, which are finite automata augmented by a vector
that is multiplied at each step by a matrix determined by the current transition, and have to return the
vector to its original setting in order to accept the input. The computational power and properties of
deterministic, nondeterministic, blind, non-blind, real-time and one-way versions of these machines are
examined and compared to various related types of automata. A generalized version of the Stern−Brocot
encoding method, suitable for representing strings on arbitrary alphabets, is also developed.

Mathematics Subject Classification. 68Q45, 68Q05.

1. Introduction

The idea of augmenting the classical finite automaton model with an external storage unit that can hold
unlimited amounts of information, yet can be accessed in a limited mode, is a celebrated topic of automata
theory, with pushdown automata [2] and counter machines [5] as the most prominent examples.

Focusing on finite automata equipped with a register containing a singleton, one can list automata with mul-
tiplication [10], extended finite automata (EFA’s) [15] (also known as “group automata”), and M-automata [11]
among the many such proposed models. In these machines, the register can respectively store rational numbers,
elements from a group, or a monoid, and can be modified by multiplication. A computation is deemed successful
if the register, which is initialized to the identity element, is equal to the identity element at the end.

Generalizing the idea of finite automata equipped with a register, we have previously introduced vector
automata in [18]. A vector automaton is a finite automaton which is endowed with a vector, and which can
multiply this vector with an appropriate matrix at each step. One of the entries of this vector can be tested for
equality to a rational number. The machine accepts an input string if the computation ends in an accept state,
and the test for equivalence succeeds.

Many important models of probabilistic and quantum computation [13,20] can be viewed in terms of vectors
being multiplied by matrices. Vector automata are useful for focusing on this matrix multiplication view of
programming, abstracting the remaining features of such models away. In order to incorporate the aforemen-
tioned notion of the computation being successful if the register/counter returns to its initial value at the end

Keywords and phrases. Vector automata, group automata, Stern−Brocot.

∗ The first author is partially supported by TÜBİTAK (Scientific and Technological Research Council of Turkey).

1 Boǧaziçi University, Department of Computer Engineering, Bebek 34342, Istanbul, Turkey.
ozlem.salehi@boun.edu.tr; say@boun.edu.tr

2 Boğaziçi University, Department of Mathematics, Bebek 34342, Istanbul, Turkey. dalessan@mat.uniroma1.it
3 Università di Roma “La Sapienza”, Dipartimento di Matematica, Piazzale Aldo Moro 2, 00185 Roma, Italy.

Article published by EDP Sciences © EDP Sciences 2016

http://dx.doi.org/10.1051/ita/2016017
http://www.rairo-ita.org
http://www.edpsciences.org

372 Ö. SALEHI ET AL.

of the computation to this setup, we propose the new homing vector automaton (HVA) model in this paper. A
homing vector automaton can multiply its vector with an appropriate matrix at each step and can check the
entire vector for equivalence to the initial value of the vector. The acceptance criterion is ending up in an accept
state with the value of the vector being equal to the initial vector.

We examine these machines under several different regimes, enabling us to determine the effect of definitional
parameters such as whether the input is scanned in “real time” or pausing the head on an input symbol for several
steps is allowed, whether the machine can read its register during computation or is “blind”, with acceptance
possible only if the register has returned to its initial value at the end, and whether nondeterminism confers
any additional recognition power over deterministic programs. We demonstrate a close relationship between
the nondeterministic one-way blind variant of the HVA model and the EFA’s of [15], which we believe to be
important for the following reasons.

The study of EFAs until now essentially covered the cases of free (non commutative) groups, and free abelian
groups, together with their algebraic extensions of finite index (virtually free groups), where some theorems of
algebraic nature characterize the power of such models and the properties of the languages recognized by these
automata [3, 4, 10, 11]. There are no comparable general results for EFA’s associated with groups other than
the ones mentioned above. In this theoretical setting, a model that seems natural to investigate is the linear
one, that is, the one defined by a group, or more generally, by a semigroup of matrices over the field of rational
numbers.

Even in the cases of groups of matrices of low dimension (that are not of the types mentioned above), the
study of HVA’s and EFA’s becomes quickly nontrivial, and there are remarkable classes of linear groups for
which little is known about the EFA and HVA models that they define. The same consideration obviously holds
for the more general case of machines defined by semigroups of matrices.

Under this respect, the relationship among the two models exhibited here, and the fact that the new techniques
(like the adaptation of the Stern−Brocot encoding method to HVA “programming” in Sect. 6) in this paper
can be ported to proofs about EFA’s, provide a new opening for EFA research.

The rest of this paper is structured as follows: Section 2 contains definitions of basic terminology and the
machine models that will be compared to several restricted versions of our model. Section 3 defines the homing
vector automaton in its most general (nondeterministic, one-way, non-blind) form, and introduces the various
limited versions that we will use to examine the nature of the contribution of different aspects of the definition
to the power of the machine. In Section 4, we discuss the relationship between the nondeterministic one-way
blind version of the HVA model and the extended finite automata of [15], and use this link to prove that
these machines can recognize any Turing recognizable language, even when the vector dimension is restricted
to four. We then focus on HVA’s with real-time access to their input, providing an exact characterization of
the class of languages recognized by these machines for the case where the alphabet is unary, and showing
that the nondeterministic version is stronger than its deterministic counterpart, recognizing some NP-complete
languages, in Section 5. A method we use for encoding strings on an alphabet of arbitrary size in a blind homing
vector automaton, based on Stern−Brocot trees [1, 19], may be of independent interest. Section 6 contains a
hierarchy result based on the dimension of the vector when the matrix entries belong to a restricted set. Further
results regarding the model’s relation with counter automata and closure properties are presented in Sections 7
and 8. Section 9 lists some open questions.

2. Preliminaries

The following notation will be used throughout the paper: Q is the set of states, where q0 ∈ Q denotes the
initial state, Qa ⊂ Q denotes the set of accepting states, and Σ is the input alphabet. Σ+ denotes the set of
all nonempty words over Σ. An input string w is placed between two endmarker symbols on an infinite tape in
the form ¢w$. By wr , we represent the reverse of the string w. wi denotes the i’th symbol of w. The length of
w is denoted by |w|.

HOMING VECTOR AUTOMATA 373

A machine can be real-time or one-way depending on the allowed tape head movements. If the tape head is
allowed to stay put during some steps of its left-to-right traversal, then the machine is one-way, and can make
ε (empty string) transitions without consuming any input symbol. A machine is real-time if the tape head can
only move to the right at each step.

A machine M is said to recognize a language L if M accepts all and only the members of L. For a machine
model A, L(A) denotes the class of languages recognized by machines of type A.

Let K = (M, ◦, e) be a group under the operation denoted by ◦ with the neutral element denoted by e. An
extended finite automaton [4] over the group K = (M, ◦, e) (EFA(K)) is a 6-tuple

E = (Q,Σ,K, δ, q0, Qa)

where the transition function δ is defined as

δ : Q× (Σ ∪ {ε}) → P(Q×M).

An extended finite automaton can be viewed as a nondeterministic finite automaton equipped with a register
in which any element of M can be written. δ(q, σ) = (q′,m) means that when E reads the symbol (or empty
string) σ ∈ Σ ∪{ε} in state q, it will move to state q′, and write x ◦m in the register, where x is the old content
of the register. The initial value of the register is the neutral element e of the group K. The string is accepted
if after completely reading the string, E enters an accept state, with the content of the register being equal to
the neutral element of K.

A real-time deterministic k-counter automaton (rtDkCA) [6] is a 5-tuple

M = (Q,Σ, δ, q0, Qa).

The transition function δ of M is specified so that δ(q, σ, θ) = (q′, c) means that M moves the head to the
next symbol, switches to state q′, and updates its counters according to the list of increments represented by
c ∈ {−1, 0, 1}k, if it reads symbol σ ∈ Σ, when in state q ∈ Q, and with θ ∈ {=, �=}k describing whether the
respective counter values equal zero or not. At the beginning of the computation, the tape head is placed on
the symbol ¢, and the counters are set to 0. At the end of the computation, that is, after the right endmarker
$ has been scanned, the input is accepted if M is in an accept state.

A real-time deterministic blind k-counter automaton (rtDkBCA) [9] M is a DkCA which can check the
value of its counters only at the end of the computation. Formally, the transition function is now replaced by
δ(q, σ) = (q′, c). The input is accepted at the end of the computation if M enters an accept state, and all counter
values are equal to 0.

3. Homing vector automata

A one-way nondeterministic homing vector automaton (1NHVA(k)) is a 6-tuple

V = (Q,Σ, δ, q0, Qa,v),

where v is a k-dimensional initial row vector, and the transition function δ is defined as

δ : Q× (Σ ∪ {ε}) ×Ω → P(Q× S),

such that Ω = {=, �=}, where = indicates equality to the initial vector v, and �= otherwise, P(A) denotes the
power set of the set A, and S is the set of k × k rational-valued matrices. The initial vector is freely chosen by
the designer of the automaton.

Specifically, (q′,M) ∈ δ(q, σ, ω) means that when V consumes σ ∈ Σ ∪ {ε} in state q, with its current vector
corresponding to ω ∈ Ω (ω having the value = if and only if the current vector equals the initial vector),

374 Ö. SALEHI ET AL.

it switches to state q′, multiplying its current vector with the matrix M ∈ S on the right. Thus the vector vi

at step i is obtained by multiplying the vector vi−1 at step i− 1 by a specified matrix M so that vi = vi−1M .
The string is accepted if V enters an accept state, and the vector is equal to the initial vector v as a result of
arriving upon the right end-marker symbol $.

A one-way nondeterministic blind homing vector automaton (1NBHVA(k)) is a 1NHVA(k) which is not
allowed to check the vector until the end of the computation. The transition function δ is defined as

δ : Q× (Σ ∪ {ε}) → P(Q× S),

where (q′,M) ∈ δ(q, σ) means that when V consumes σ ∈ Σ ∪{ε} in state q, it switches to state q′, multiplying
its current vector with the matrix M ∈ S on the right. The acceptance condition is the same as for 1NHVA(k)’s.

A real-time deterministic homing vector automaton (rtDHVA(k)) V is a 1NHVA which is not allowed to make
any nondeterministic moves and operates in real-time. The transition function δ is defined as

δ : Q×Σ ×Ω → Q× S.

A real-time deterministic blind homing vector automaton (rtDBHVA(k)) is just a rtDHVA(k) which is not
allowed to check the vector until the end of the computation. The transition function δ is now replaced by

δ : Q×Σ → Q× S.

4. Relationship with extended finite automata

In this section, we will exploit a relationship between 1NBHVA(k)’s and the extended finite automata of [15]
over free groups to demonstrate the power of homing vector automata.

The two models seem to be linked in the case of extended finite automata over matrix groups, as the register
is multiplied with a matrix at each step of the computation. Let us emphasize that the two models are different
in the following sense. In a homing vector automaton, there is an initial vector v, and the accepted strings are
those which label a computation path along which the product of the sequence of matrices on the transitions is a
matrix P, such that v = vP. In the most general setting, the set of transition matrices belongs to the semigroup
of rational matrices. In other words, in an accepting computation, the multiplied matrices belong to the stabilizer
semigroup of the set of rational matrices with respect to v. In contrast, in an extended finite automaton over
a matrix group, accepting computations are those in which the product of the transition matrices equals the
identity matrix. In that sense, one-way nondeterministic blind homing vector automata can be seen as akin
to what someone who wanted to define a version of EFA’s associated with general matrix semigroups, rather
than groups, would come up with. Some open questions regarding the link between the two models are listed
in Section 9.

We assume a familiarity of the reader with some basic notions from free group theory (see [12,14] for classical
references of this topic). Let us denote by Fr the free noncommutative group over r generators. Let us first recall
some known results on such groups. A well-known theorem by Nielsen and Schreier states that every subgroup
of a free group is free (see [14], Prop. 2.11). In particular, for every r there is a set X of r elements so that the
subgroup generated by X is isomorphic to Fr.

We focus our attention on F2. It is well known that F2 admits a representation by using matrices of the
group of all invertible matrices of dimension 2 over the ring of integers. In the sequel, id stands for the identity
matrix. Let n be a positive integer and consider the group Kn of matrices generated by

Ma =
[

1 n
0 1

]
, Mb =

[
1 0
n 1

]
.

The following result holds (see [12], Thm. 14.2.1).

HOMING VECTOR AUTOMATA 375

Fact 4.1. The group Kn is isomorphic to F2. Moreover, if v =
[
1 0

]
, for every matrix M of Kn which is not

a power of Mb, vM �= v.

As a straightforward consequence, there exists a subgroup H of Kn which is isomorphic to F2 and such that:

∀ M ∈ H \ {id}, vM �= v. (4.1)

Indeed, let H be the subgroup of Kn generated by MaMbM
2
a and M2

aMbMa. By the theorem of Nielsen and
Schreier mentioned above, H is freely generated by the latter two elements. In particular, no element of H
equals a power of Mb. This implies that (4.1) holds for H . Denote

ϕ : F2 → H, (4.2)

the isomorphism from F2 onto H .
Now we show that every extended finite automaton over a free group can be simulated by a suitably defined

homing vector automaton that is of dimension 2, nondeterministic, and one-way. Precisely, we prove the following
result.

Theorem 4.2. L(EFA(F2)) ⊆ L(1NBHVA(2)).

Proof. Let E = (Q,Σ,F2, δ, q0, Qa) be an extended finite automaton on F2. Starting from E , we construct a
1NBHVA(2) V = (Q,Σ, μ, q0, Qa,v) as follows. Let L be the finite set of elements of F2 defined as

L = {l ∈ F2 : ∃ p, q ∈ Q, ∃ σ ∈ Σ ∪ {ε} (q, l) ∈ δ(p, σ)}.
Set an enumeration on L such that L = {l1, . . . , lr}, with r ≥ 1 and let N = {N1, . . . , Nr}, where, for every
i = 1, . . . , r, Ni = ϕ(li) is the image under the morphism (4.2) of li. The transition function of V

μ : Q× (Σ ∪ {ε}) → P(Q×K2)

is defined as: for every p, q ∈ Q, and for every σ ∈ Σ ∪ {ε}
(q, li) ∈ δ(p, σ) ⇔ (q,Ni) ∈ μ(p, σ),

where li ∈ L,Ni ∈ N and Ni = ϕ(li). Finally, we set v =
[
1 0

]
.

Let LE and LV be the languages accepted by E and V respectively. Let us show that the two languages are
equal. If w = ε, the claim is trivial. Suppose then w ∈ Σ+. If w ∈ LE , then there exists a computation of E

c = q0
σ1,g1−→ q1

σ2,g2−→ q2−→· · · σk,gk−→ qk,

from q0 to a final state qk ∈ Qa such that w = σ1 · · ·σk and the element g ∈ F2 associated with c is g =
g1 · · · gk = e. By the definition of V , there exists a computation of V

q0
σ1,M1−→ q1

σ2,M2−→ q2−→· · · σk,Mk−→ qk,

such that, for every i = 1, . . . , k, Mi = ϕ(gi). Set M = M1 · · ·Mk = ϕ(g1) · · ·ϕ(gk) = ϕ(g). Since M = id we
get vM = v, and w ∈ LV .

Suppose now that w ∈ LV . Then there exists a computation of V

q0
σ1,M1−→ q1

σ2,M2−→ q2−→· · · σk,Mk−→ qk,

from q0 to a final state qk ∈ Qa, where w = σ1 · · ·σk and the vector associated with c is vM , with M =
M1 · · ·Mk. Since w is accepted by V , then vM = v. By (4.1), then one has M = id. On the other hand, let the
computation of E

q0
σ1,g1−→ q1

σ2,g2−→ q2−→· · · σk,gk−→ qk,

where, for every i = 1, . . . , k, ϕ(gi) = Mi. Then the element g = g1 · · · gk ∈ F2 is such that M = ϕ(g). Hence
id = ϕ(g) implies g = e and thus w ∈ LE . �

376 Ö. SALEHI ET AL.

This allows us to draw the following conclusion about the class of languages recognized by 1NBHVA(2)’s.

Theorem 4.3. The family of context-free languages is included in L(1NBHVA(2)).

Proof. Dassow and Mitrana [4] provided (see [3, 11] for alternative proofs that fix some details in the original
proof) a characterization of context-free languages in terms of automata over a free group, namely, they stated
that L(EFA(F2)) is the family context-free languages. The result then follows by Theorem 4.2. �

Let F2 × F2 be the group given by the direct product of F2 by F2. The following theorem characterizes the
family of recursively enumerable languages.

Theorem 4.4. [16] L(EFA(F2 × F2)) is the family of recursively enumerable languages.

We can now demonstrate the huge power of 1NBHVA(4)’s.

Theorem 4.5. The family of recursively enumerable languages is included in L(1NBHVA(4)).

Proof. We will show how to simulate an EFA(F2 × F2) by a 1NBHVA(4). The result then follows from
Theorem 4.4.

Let H be the group of matrices of dimension 4

⎧⎪⎨
⎪⎩

⎡
⎢⎣

M1
0 0
0 0

0 0
M20 0

⎤
⎥⎦ , M1, M2 ∈ H

⎫⎪⎬
⎪⎭ .

Since, by (4.2), ϕ is an isomorphism from F2 onto the group of matrices H , the mapping ψ : F2 × F2 −→ H
defined as:

∀ (g1, g2) ∈ F2 × F2, ψ(g1, g2) = (ϕ(g1), ϕ(g2)),

is an isomorphism from F2 × F2 onto H.
Let E = (Q,Σ,F2×F2, δ, q0, Qa) be an extended finite automaton over F2×F2. Starting from E , we construct

a 1NBHVA(4) V = (Q,Σ, μ, q0, Qa,v) as follows. Let L be the finite set of elements of F2 × F2 defined as

L = {l ∈ F2 × F2 : ∃ p, q ∈ Q, ∃ σ ∈ Σ ∪ {ε} (q, l) ∈ δ(p, σ)}.

Set an enumeration on L such that L = {l1, . . . , lr}, with r ≥ 1 and let N = {n1, . . . , nr}, where, for every
i = 1, . . . , r, ni = ψ(li) is the image under the morphism ψ of li. The transition function of V

μ : Q× (Σ ∪ {ε}) → P(Q×H)

is defined as: for every p, q ∈ Q, and for every σ ∈ Σ ∪ {ε}

(q, li) ∈ δ(p, σ) ⇔ (q, ni) ∈ μ(p, σ),

where li ∈ L, ni ∈M and ni = ψ(li). Finally, we set v =
[
1 0 1 0

]
.

Let LE and LV be the languages accepted by E and V respectively. By using the very same argument of the
proof of Theorem 4.2, one verifies LE = LV . �

HOMING VECTOR AUTOMATA 377

5. Real-time homing vector automata

In the previous section, we have seen that allowing one-way access to the input tape raises nondeterministic
blind homing vector automata of small vector dimension to Turing equivalence. For this reason, we will be
focusing on real-time input in the rest of the paper.

Another way in which one can examine the nature of the computational power of homing vector automata is
by examining models in which the matrices used at each step for transforming the vectors are restricted in some
way. Although the definition given in Section 3 allows arbitrary rational matrices, we are going to constrain
the matrix entries to belong to a particular set. In most automaton algorithms in this paper, the entries of
the matrices belong to the set {−1, 0, 1}, as this basic set will be seen to already capture many capabilities of
homing vector automata. Let us note that multiplications with matrices whose entries belong to this set can be
used to perform additions, subtractions, resets, and swaps between the vector entries. It is possible to recognize
some of the languages in the following discussion with homing vector automata of lower dimension when a larger
set of matrix entries is allowed. Some related open questions can be found in Section 9.

We start by comparing the deterministic blind and non-blind versions of our model.

Theorem 5.1.
⋃

k L(rtDBHVA(k)) �
⋃

k L(rtDHVA(k)).

Proof. It is obvious that any rtDBHVA(k) can be simulated by a rtDHVA(k). We are going to prove that the
inclusion is proper by the witness language L = {anba1aa2 |n = a1 or n = a1 + a2}. Let us first construct a
rtDHVA(2) V recognizing L. The idea is to simulate a counter with the help of the matrices. Starting with the
initial vector

[
1 1

]
, V multiplies the vector with the matrix M+ for each a it reads before the b’s, incrementing

the first entry of the vector with each such multiplication. After finishing reading the first segment of a’s, V
multiplies the vector with the matrix M−, decrementing the first entry of the vector for each b.

M+ =
[

1 0
1 1

]
M− =

[
1 0

−1 1

]

At each step, V checks the current value of the vector for equality to
[
1 1

]
. If the equality is detected right

after finishing reading the b’s, it is the case that n = a1, and V multiplies the vector with the identity matrix at
each step for the rest of the computation. If that is not the case, V continues to multiply the vector with matrix
M− for each a after the b’s. The value of the vector will be equal to

[
1 1

]
at the end of the computation if and

only if n = a1 or n = a1 + a2.
Note that L can be also recognized by a rtDHVA(1) by using the matrices M+ = 2 and M− = 1

2 .
Now we are going to show that L can not be recognized by any rtDBHVA(k). Suppose for a contradiction that

L is recognized by some rtDBHVA(k) V ′. After reading a prefix of a’s, the computation of V ′ on a sufficiently
long suffix of b’s will go through a sequence of states, followed by a state loop. Suppose that V ′ is in the same
state after reading two different strings anbm and anbn, m < n. Now consider the strings u = anbman−m ∈ L
and w = anbnan−m ∈ L. After reading any one of these strings, V ′ should be in the same accept state, and
the vector should be at its initial value. Assume that the strings in question are both extended with one more
a. Since the same vector is being multiplied with the same matrix associated with the same state during the
processing of that last a, it is not possible for V ′ to give different responses to anbnan−m+1 and anbman−m+1.
Noting that anbnan−m+1 ∈ L, whereas anbman−m+1 /∈ L, we conclude that L can not be recognized by any
rtDBHVA(k). �

We can give the following characterization when the alphabet is unary.

Theorem 5.2. For any k, all languages over Σ = {a} accepted by a rtDHVA(k) are regular.

Proof. Let L be a unary language accepted by a rtDHVA(k) V and let v be the initial vector of V . We are going
to construct a DFA recognizing L to prove that L is regular. We assume that L is infinite and make the following

378 Ö. SALEHI ET AL.

observation. Since V has finitely many states, at least one of the accept states of V will be accepting more
than one string. Let w1 and w2 be the shortest strings accepted by an accept state qa with |w1| < |w2|. When
accepting w1 and w2, V is in state qa and the value of the vector is equal to v. After reading w2, V is in the same
configuration as it was after reading w1 and this configuration will be repeated inside a loop of |w2| − |w1| = p
steps. Therefore, we can conclude that all strings of the form a|w1|+lp for some positive integer l will be accepted
by qa.

Between consecutive times qa accepts a string, some other strings may be accepted by some other accept
states. Let u be a string accepted by qb with |w1| < |u| < |w2|. Then all strings of the form a|u|+lp for some
positive integer l will be accepted by qb since every time V enters the accepting configuration at state qa, V
will enter the accepting configuration at state qb after |u| − |w1| steps. The same reasoning applies to any other
accepting configuration inside the loop.

Now, let us construct a DFA D accepting L. D has |w1|+1+(p−1) states. The first |w1|+1 states correspond
to the strings of length at most |w1| and the state q|w| is an accept state for all w ∈ L that is of length at most
|w1|. q|w1| and the next p−1 states ql2 , . . . , qlp stand for the configuration loop. States corresponding to accepting
configurations inside the loop are labeled as accept states.

The transitions of the DFA are as follows:

δ(qi, a) = qi+1 for i = 0, . . . , |w1| − 1
δ(q|w1|, a) = ql2

δ(qli , a) = qli+1 for i = 2, . . . , p− 1
δ(qlp , a) = q|w1|

Since L can be recognized by a DFA, L is regular. We conclude that any unary language accepted by a
rtDHVA(k) is regular. �

In the following theorem, we show that nondeterministic real-time homing vector automata are more powerful
than their deterministic versions, both in the blind and nonblind cases.

Theorem 5.3.

(i)
⋃

k L(rtDBHVA(k)) �
⋃

k L(rtNBHVA(k)).
(ii)

⋃
k L(rtDHVA(k)) �

⋃
k L(rtNHVA(k)).

Proof.

(i) It is obvious that a rtDBHVA(k) can be simulated by a rtNBHVA(k). We are going to show that the
inclusion is proper by constructing a rtNBHVA(3) V recognizing the unary nonregular language UPOW′ =
{an+2n |n ≥ 1}. Starting with the initial vector

[
1 1 1

]
, V multiplies the vector with matrix U1 when reading

each a. The idea is to add the first and second entries together repeatedly to obtain powers of 2, so that
after reading k symbols the value of the vector is equal to

[
2k 2k 1

]
. V nondeterministically guesses n and

starts decrementing the first entry from that point on by multiplying the vector with the matrix U2 which
fixes the second entry to 1 immediately. At the end of the computation, the value of the vector is equal to[
1 1 1

]
if and only if the input string is of the form an+2n

for some n.

U1 =

⎡
⎣1 1 0

1 1 0
0 0 1

⎤
⎦ U2 =

⎡
⎣ 1 0 0

0 0 0
−1 1 1

⎤
⎦

From Theorem 5.2, we know that every unary language recognized by a rtDHVA(k) is regular, concluding
that UPOW′ /∈ ⋃

k L(rtDBHVA(k)).

HOMING VECTOR AUTOMATA 379

(ii) It is obvious that a rtDHVA(k) can be simulated by a rtNHVA(k). The inclusion is proper as we have shown
that UPOW′ can be recognized by a rtNHBVA(3), a feat that is impossible for rtDHVA(k)’s for any k. �

In the following theorem, we show that by allowing nondeterminism it is possible to recognize an NP-complete
language in real-time and with matrices which are restricted to have integer entries. SUBSETSUM is the NP-
complete language which is the collection of all strings of the form t#a1# . . .#an#, such that t and the ai’s
are numbers in binary notation (1 ≤ i ≤ n), and there exists a set I ⊆ {1, ..., n} satisfying

∑
i∈I ai = t, where

n > 0. We define SUBSETSUMr = {tr#ar
1# . . .#ar

n# |∃I ⊆ {1, ..., n} s.t.
∑

i∈I ai = t} in which the binary
numbers appear in reverse order. It is obvious that SUBSETSUMr ∈ NP, since SUBSETSUM ∈ NP. It is possible to
reduce SUBSETSUM to SUBSETSUMr in polynomial time by reversing the binary numbers that appear in the input.
Therefore, we can conclude that SUBSETSUMr is NP-complete.

Theorem 5.4. SUBSETSUMr ∈ L(rtNBHVA(5)).

Proof. We construct a rtNBHVA(5) V recognizing SUBSETSUMr. The idea of this construction is to read the
binary numbers in the string to entries of the vector, and to nondeterministically select the set of numbers that
add up to t. We let the initial vector equal

[
0 0 1 1 1

]
. We first encode t to the first entry of the vector as

follows: While scanning the symbols of t, V multiplies the vector with the matrix MT0 (resp. MT1) for each
scanned 0 (resp. 1). The powers of 2 required for the encoding are obtained by adding the third and fourth
entries, which always contain identical numbers, to each other, creating the effect of multiplication by 2. When
V reads a #, V multiplies the vector with the matrix M# which subtracts the second entry from the first entry
and resets the second entry back to 0, and the third and fourth entries back to 1.

MT0 =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦ MT1 =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
1 0 1 1 0
0 0 1 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦ M# =

⎡
⎢⎢⎢⎣

1 0 0 0 0
−1 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 1 1 1

⎤
⎥⎥⎥⎦

In the rest of the computation, V nondeterministically decides which ai’s to subtract from the first entry.
Each selected ai is encoded using the same technique into the second entry of the vector. While scanning the
symbols of ai, V multiplies the vector with the matrix MA0 (resp. MA1) for each scanned 0 (resp. 1).

MA0 =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦ MA1 =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 1 1 1 0
0 0 1 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦ .

V chooses another aj if it wishes, and the same procedure is applied. At the end of the input, V accepts if
the vector is equal to

[
0 0 1 1 1

]
, which requires that the first entry of the vector is equal to 0. This is possible

iff there exists a set of ai’s whose sum add up to t. �

A language L is in class TISP(t(n), s(n)) if there is a deterministic Turing machine that decides L within t(n)
time and s(n) space where n is the length of the input. Since the numbers in the vector can grow by at most
a fixed number of bits in each multiplication, a Turing machine simulating a rtDHVA(k) requires only linear
space [18]. Since the numbers in the vector can have length O(n), whereas the matrix dimensions and entries
are independent of the input length n, multiplication of a vector and a matrix requires O(n) time for each input
symbol. We can conclude that

⋃
k L(rtDHVA(k))⊆ TISP(n2, n).

380 Ö. SALEHI ET AL.

6. Encoding strings with homing vector automata

6.1. Stern−Brocot encoding

The Stern−Brocot tree is an infinite complete binary tree whose nodes correspond one-to-one to positive
rational numbers [1, 19]. Crucially for our purposes, the Stern−Brocot tree provides a basis for representing
strings as vectors of integers, as suggested for binary alphabets in [8]. The fractions in the Stern−Brocot tree
can be stored as vectors of dimension 2, where the vector entries are the denominator and the numerator of
the fraction. This representation allows us to perform the binary encoding easily in homing vector automata,
as follows.

The empty string is represented by [1 1]. Now suppose that we want to encode a binary string w of length n.
For i = 1 to n, if wi = 0, we add the value of the first entry to the second one, and if wi = 1, we add the value
of the second entry to the first one, multiplying the vector with the appropriate one of the following matrices
M0 and M1:

M0 =
[

1 1
0 1

]
M1 =

[
1 0
1 1

]

A list of some binary strings and their encodings follows. A proof on the uniqueness of the encoding can be
found in [8].

0 [1 2] 00 [1 3] 10 [2 3] 000 [1 4] 010 [3 5]
1 [2 1] 01 [3 2] 11 [3 1] 001 [4 3] 011 [5 2]

Given the vector representation vw of a string w, it is also possible to decode the string with the following
procedure: Let |w| = n and vw = [a b]. Set wn = 0 if b > a, and wn = 1 otherwise. Subtract the smaller entry
from the larger one to obtain vn−1

w and repeat this routine until you obtain the vector [1 1]. When the given
vector is not a valid representation of a string, then it is not possible to obtain [1 1]. The matrices required for
this procedure are N0, which has the effect of subtracting the value of the first entry of the vector it is multiplied
with from the second entry, and N1, for the symmetric action. Note that N0 = M−1

0 and N1 = M−1
1 .

N0 =
[

1 −1
0 1

]
N1 =

[
1 0

−1 1

]

6.2. Generalized Stern−Brocot encoding

We generalize the scheme mentioned above to strings on alphabets of arbitrary size and present a new method
for encoding strings. Let Σ = {a1, a2, . . . , ak}, and w ∈ Σ∗. With the generalized Stern−Brocot encoding method
described below, it is possible to uniquely encode w using a vector of size k and k × k matrices whose entries
belong to the set {−1, 0, 1}. Let us note that one can use other methods to encode strings on arbitrary alphabet
size using a vector of a smaller dimension but matrices whose entries belong to a larger set.

We start with the k dimensional vector [1 1 . . . 1], which represents the empty string. Suppose that |w| = n.
To encode w, for i = 1 to n, if wi = aj , the vector is multiplied with the matrix Aj , the k dimensional identity
matrix whose j’th column is replaced with a column of 1’s. Multiplication with Aj causes the j’th entry of the
vector to be replaced by the sum of all the entries in the vector.

Among the different generalizations of the Stern−Brocot fractions, one that appears in [7] under the name
of “Stern’s triatomic sequence” is similar to the encoding we propose for the case k = 3. The similarity lies in
the construction of the sequence, but that sequence is not used for the purpose of encoding. As far as we know,
no such generalization exists for the case k > 3.

In the following lemma, we prove the uniqueness of this generalized encoding.

HOMING VECTOR AUTOMATA 381

Lemma 6.1. No two distinct strings on Σ (|Σ| = k) can be represented by the same vector of size k using the
generalized Stern−Brocot encoding.

Proof. We will prove by induction on n that if a k-dimensional vector v is the generalized Stern−Brocot encoding
of a string of length n, then v is not the encoding of any other string of length at most n.

The empty string is represented by the k-dimensional vector of 1’s. The claim clearly holds for n = 0, since
no other strings of at most this length exist. Now assume that the claim holds for all natural numbers up to
n− 1. Let w be a string of length n. The vector vw representing w is obtained by multiplying the vector vn−1

w ,
representing the first n − 1 symbols of w, with Aj if wn = aj . We will examine various possibilities regarding
this final multiplication. Note that at a single step, it is possible to modify only a single entry of each vector.
Now consider any string u �= w with |u| = l and l ≤ n. If w and u have the same first n − 1 symbols, then
vn−1

w = vl−1
u , the last symbols of the two strings are unequal, and it is not possible to obtain vw = vu since

the same vector is multiplied by different matrices. In the remaining case, we know by the induction hypothesis
that vn−1

w �= vl−1
u . If these vectors disagree in more than two entries, there is no way that one can obtain the

same vector by multiplying them once with some matrices of the form Aj . So we consider the case of the two
vectors disagreeing in at most two entries.

Suppose that vn−1
w and vl−1

u differ only in the i’th entry. If the final multiplications both work on the i’th
entries, they will be adding the same number to them, resulting again in vectors differing in their i’th entries.
If one or more of the final multiplications deals with another entry, then the final vectors will surely disagree in
that entry. It is not possible in any case to end up with equal vectors,

Now suppose that vn−1
w and vl−1

u differ in two entries. If the final multiplications work on the same entry,
then the final vectors will disagree in at least one entry. In the only remaining case, each one of the vectors
is multiplied by a matrix updating a different one of the disagreeing entries. Let us represent the disagreeing
entries of the vectors vn−1

w and vn−1
u by the pairs (a, b) and (c, d), respectively. Let x be the sum of the remaining

k − 2 entries in which the vectors agree. Without loss of generality, say that the entries become (a, a + b + x)
and (c + d + x, d) after the final multiplication. But if the final vectors are equal, these pairs should also be
equal, implying c+ b+ 2x = 0, an impossibility.

We therefore conclude that it is not possible to have vw = vu for any string u of length at most n. �

Like in the binary case, given the vector representation of a string, it is possible to reconstruct the string.
The all-ones vector corresponds to the empty string. Any other vector vw encoding a string w of length n in this
encoding has a unique maximum entry, say at position j. Then wn is aj , and we obtain vn−1

w by subtracting
the sum of the other entries from the greatest entry. One repeats this procedure, reconstructing the string from
right to left, until one ends up with the all-ones vector. In terms of matrices, multiplications with the inverses
of Aj ’s capture this process.

6.3. A hierarchy result

We will now use the generalized Stern−Brocot encoding to show a hierarchy result based on the dimension
of the vector when an additional restriction is imposed on the matrices.

Theorem 6.2. Let S be the set of matrices whose entries belong to the set {−m,−m+ 1, . . . , 0, . . . ,m− 1,m}
for some positive integer m, and let a rtDHVA(k) that is restricted to using members of S in its matrices and
initial vector be denoted a rtDHVAS(k). Then L(rtDHVAS(k)) � L(rtDHVAS(l)) for l > (km)k.

Proof. Using the generalized Stern−Brocot encoding, first we will show that it is possible to recognize MPALl =
{w#wr |w ∈ {a1, a2, . . . , al}∗} by a rtDHVAS(l) V .

The input alphabet is {a1, a2, . . . , al}, and the corresponding matrices are {A1, A2, . . . , Al}, described in
Section 6.2. Starting with the l dimensional vector of 1’s, V encodes the string by multiplying its vector with
the matrix Aj whenever it reads an aj until it encounters a #. After reading the #, V starts decoding by
multiplying the vector with matrix A−1

j whenever it reads an aj .

382 Ö. SALEHI ET AL.

If the string is of the form w#wr , the vector will be multiplied with the inverse matrices in the correct order
and the resulting value of the vector will be [1 1 . . . 1].

We also need to show that the input string is not accepted when it is not of the form w#wr . Consider an
input string x#yr and suppose that it is accepted by V . Let v′ denote the vector after reading x# and let
Y denote the product of the matrices the vector is multiplied while reading yr. Since the string is accepted,
v′Y = [1 1 . . . 1] must be true. Since the matrices A−1

j are invertible, Y is also invertible, which implies that
v′ must be unique. Since y#yr ∈ MPAL, then v′ must be the vector obtained after reading y. From Lemma 6.1,
we know that every string has a unique representation and we conclude that x and y are identical.

We are now going to show that MPALl /∈ L(rtDHVAS(k)) for l > (km)k. We first note that the value of any
entry of a vector of size k can be at most mn+1kn after reading n symbols. This is possible by letting the initial
vector have m in all entries, and multiplying the vector with the matrix with all entries equal to m at each step.
Similarly, the smallest possible value of an entry is −mn+1kn, and so the number of possible different values for
a single entry is 2mn+1kn + 1. If the machine has s states, s(2mn+1kn + 1)k is an upper bound for the number
of different reachable configurations after reading n symbols. Since there are ln strings of length n when the
alphabet consists of l symbols, for large n and l > (km)k, the machine will end up in the same configuration
after reading two different strings u and w. This will cause the strings u#wr and w#ur which are not in MPALl
to be accepted by the machine. Therefore, we conclude that MPALl /∈ L(rtDHVAS(k)).

Since a vector automaton with a larger vector size can trivially simulate a vector automaton with a smaller
vector size, the result follows. �

7. Relationship with real-time counter automata

A real-time deterministic homing vector automaton with a vector of dimension two can simulate a real-time
deterministic one counter automaton (rtD1CA) which accepts with the condition that the counter is empty (See
the proof of Thm. 5.1). The fact that the individual entries of the vector can not be checked prevents us from
simulating a real-time deterministic multicounter automaton.

In the following theorem, we show that a rtDBHVA(2) can recognize a language which is not recognizable
by any multicounter machine and we conclude that the language recognition powers of homing vector au-
tomata and multi-counter machines are incomparable. Note that the result also implies the incomparability of⋃

k L(rtDHVA(k)) and
⋃

k L(rtDkCA). This is not the case for the blind versions, as we prove in the second
part of the theorem.

Theorem 7.1.

(i)
⋃

k L(rtDBHVA(k)) and
⋃

k L(rtDkCA) are incomparable.
(ii)

⋃
k L(rtDkBCA) �

⋃
k L(rtDBHVA(k)).

Proof.

(i) We know that MPAL2 = {w#wr |w ∈ {0, 1}∗} can be recognized by a rtDBHVA(2) by Theorem 6.2. In [17],
it is proven that no counter machine with k counters operating in time O(2n/k) can recognize MPAL2. Since
we are working with real-time machines, the result follows.
On the other hand, it is known that the nonregular unary language UGAUSS = {an2+n|n ∈ N} can be rec-
ognized by a rtD2CA [18]. By Theorem 5.2, we know that rtDHVA(k)’s and inherently rtDBHVA(k)’s can
recognize only regular languages in the unary case. Hence, we conclude that the two models are incompa-
rable.

(ii) Let us simulate a given rtDkBCA M by a rtDBHVA(k + 1). Let [1 1 . . . 1] be the initial vector of V .
k+1’st entry of the vector will remain unchanged throughout the computation which will allow the counter
updates. At each step of the computation, V will multiply the vector with the appropriate matrix M ∈ S
where S is the set of all (k + 1) × (k + 1) matrices corresponding to possible counter updates. Since each

HOMING VECTOR AUTOMATA 383

counter can be decremented, incremented or left unchanged, |S| = 3k. All matrices will have the property
that M(i, i) = 1 and M(k + 1, k + 1) = 1. When the i’th counter is incremented and decremented, then
M(k + 1, i) = 1 and M(k + 1, i) = −1, respectively. At the end of the computation, the input will be
accepted if the vector is equal to [1 1 . . . 1], which happens iff all counters have value 0.
The inclusion is proper by the witness language MPAL2. �

We have mentioned that deterministic blind homing vector automaton can recognize the language MPAL2 which
is not recognizable by any counter machine. Consider the language POW = {anb2

n |n ≥ 0}, whose Parikh image
is not semilinear, which proves that the language is not context-free. Let us note that it is also possible to
recognize POW by a rtDBHVA(3) by using the same idea in the proof of Theorem 5.3.

8. Closure properties

In this section, we examine the closure properties of the class of languages recognized by real-time homing
vector automata. We start with a lemma which will be useful in our proofs. The languages mentioned below
are from [10].

Lemma 8.1.

(i) UNION = {anbn|n ≥ 0} ∪ {anb2n|n ≥ 0} /∈ ⋃
k L(rtDHVA(k)).

(ii) Lbab = {bn(anbn)k|n, k ≥ 1} /∈ ⋃
k L(rtDHVA(k)).

(iii) IJK = {aibjck|i �= j or j > k} /∈ ⋃
k L(rtDHVA(k)).

(iv) UNIONc = {anbn|n ≥ 0} ∪ {anb2nc|n ≥ 0} /∈ ⋃
k L(rtDHVA(k)).

Proof. We can show all these languages to be unrecognizable by rtDHVA’s by applying the following common
reasoning. Assume that the language L in question is recognized by some rtDHVA(k) V . Since there are finitely
many states, one of the states of V will end up accepting more than one member of the language. For each
language, we will focus on two such members u and v. Note that V is in the same configuration (since it has
also returned to its initial vector) after reading both u and v. We then append another string x to both strings,
selected so that ux ∈ L and vx /∈ L. The responses of V to the ux and vx has to be identical, since it will
have returned to the same configuration after processing both strings. We conclude that V can not distinguish
between these two strings, and therefore that L /∈ ⋃

k L(rtDHVA(k)). All that remains is to provide the strings
u, v, and x for the languages in the statement of the lemma. In the following, i, j > 1 and i �= j.

(i) u = aibi, v = ajbj , and x = bi.
(ii) u = biaibi, v = bjajbj and x = aibi.
(iii) u = aibic, v = ajbjc, and x = cj−1 for i > j.
(iv) u = aibi, v = ajbj , and x = bic. �

Theorem 8.2.

(i)
⋃

k L(rtDHVA(k)) is closed under the following operations:
(a) intersection with a regular set

(ii)
⋃

k L(rtDHVA(k)) is not closed under the following operations:
(a) union
(b) concatenation
(c) intersection
(d) star
(e) homomorphism
(f) reversal
(g) complementation

384 Ö. SALEHI ET AL.

Proof. 4

(i) (a) Let LV be recognized by a rtDHVA(k) V = (Q1, Σ1, δ1, q1, Qa1 , v) and LM be a regular language
recognized by a finite state automaton M = (Q2, Σ2, δ2, q2, Qa2). Let us construct a rtDHVA(k) V ′ =
(Q,Σ, δ, q0, Qa, v) recognizing L = LV ∩ LM. V ′ keeps track of the vector and the current state of V as well
as the current state of M. Let Q′ = Q1 ×Q2 be the state set of V ′ and Σ = Σ1 ∪Σ2. For each (qi, qj) ∈ Q,
σ ∈ Σ and ω ∈ Ω, δ((qi, qj), σ, ω) = ((q′i, q

′
j),M) where δ1(qi, σ, ω) = (q′i,M) and δ2(qj , σ) = q′j . q0 is the

pair (q1, q2) and Qa is the set of pairs of states where both of the states are accept states of V or M. We
obtain a rtDHVA(k) V ′ recognizing L.
(a) Let L1 = {anbn|n ≥ 0} and L2 = {anb2n|n ≥ 0}. L1 and L2 can be recognized by a rtDBHVA(2) which

simulates a deterministic blind one-counter automaton whereas L1 ∪ L2 = UNION can not be recognized
by any rtDHVA(k) for any k by Lemma 8.1.

(b) For the languages L1 = {anbn|n ≥ 0} and L2 = {anb2n|n ≥ 0}, L1L2 ∩ a∗b∗ = UNION, which can not be
recognized by any rtDHVA(k) for any k by Lemma 8.1 and Part (i).a of this theorem.

(c) Let L1 = {b+(anbn)∗|n ≥ 1} and L2 = {(bnan)∗b+|n ≥ 1}. Both L1 and L2 can be recognized
by rtDHVA(2)’s which simulate deterministic one-counter automata, whereas L1 ∩ L2 = Lbab =
{bn(anbn)k|n, k ≥ 1} can not be recognized by any rtDHVA(k) for any k by Lemma 8.1.

(d) Let L = {anbn|n ≥ 0} ∪ {canb2n|n ≥ 0}. A rtDBHVA(2) V recognizing L branches into one of two
computation paths depending on the first scanned symbol σ1. If σ1 = a, V simulates a deterministic
blind one-counter automaton recognizing {an−1bn|n ≥ 0} and if σ1 = c, V simulates a deterministic
blind one-counter automaton recognizing {anb2n}. Now suppose L∗ ∈ ⋃

k L(rtDHVA(k)). Then L′ =
L∗ ∩ {caibj |i, j ≥ 0} = {canbn|n ≥ 0} ∪ {canb2n|n ≥ 0} ∈ ⋃

k L(rtDHVA(k)). A rtDHVA(k) recognizing
L′ can be easily modified to obtain a rtDHVA(k) recognizing the language UNION = {anbn|n ≥ 0} ∪
{anb2n|n ≥ 0}, which is not in L(rtDHVA(k)) by Lemma 8.1.

(e) Let L = {anbn|n ≥ 0} ∪ {can−1b2n|n ≥ 0}. A rtDBHVA(k) recognizing L works similarly to the
one in part d). Now consider the homomorphism h such that h(a) = a, h(b) = b and h(c) = a.
h(L) = {anbn|n ≥ 0} ∪ {anb2n} = UNION, which can not be recognized by any rtDHVA(k) for any k by
Lemma 8.1.

(f) Let L = {bnan|n ≥ 0} ∪ {cb2nan|n ≥ 0}. A rtDBHVA(k) recognizing L works similarly to the one in
part d). Now consider the reverse of L, UNIONc = {anbn|n ≥ 0} ∪ {anb2nc|n ≥ 0}, which can not be
recognized by any rtDHVA(k) for any k by Lemma 8.1.

(g) Consider L = {ambmcn|0 ≤ m ≤ n}, which can be recognized by a rtDHVA(3). L̄∩{aibjck|i, j, k ≥ 0} =
{aibjck|i �= j or j > k} = IJK can not be recognized by any rtDHVA(k) by Lemma 8.1. �

The set of languages recognized by real-time nondeterministic homing vector automata is closed under union,
star and concatention. The constructions are fairly simple and omitted.

Theorem 8.3.

(i)
⋃

k L(rtDBHVA(k)) is closed under the following operations:
(a) intersection

(ii)
⋃

k L(rtDBHVA(k)) is not closed under the following operations:
(a) union
(b) concatenation
(c) star
(d) homomorphism
(e) reversal
(f) complementation

4Let us note that it is possible to recognize the languages mentioned in the proofs with rtDHVA(k)’s of smaller vector size when
the vector entries are not restricted to be integers.

HOMING VECTOR AUTOMATA 385

Proof.

(i) (a) Let LV1 and LV2 be recognized by rtDBHVA(k1) V1 = (Q1, Σ1, δ1, q1, Qa1 , v1) and rtDBHVA(k2) V2 =
(Q2, Σ2, δ2, q2, Qa2 , v2), respectively. Let us construct a rtDBHVA(k) V = (Q,Σ, δ, q0, Qa, v) recognizing
L = LV1 ∩ LV2 where k = k1 + k2. Let Q = Q1 × Q2 be the state set of V and Σ = Σ1 ∪ Σ2. For each
(qi, qj) ∈ Q and σ ∈ Σ, δ((qi, qj), σ) = ((q′i, q

′
j),M), where δ1(qi, σ) = (q′i,M1), δ2(qj , σ, ω) = (q′j ,M2) and

M is a k× k block diagonal matrix with M1 and M2 on its diagonal. q0 is the pair (q1, q2), and Qa is the set
of pairs of states where both of the states are accept states of M1 or M2. The initial vector v of V is of the
form [v1 v2] and has dimension k. V keeps track of the current states and the current values of both vectors
by simultaneously multiplying its vector with the appropriate matrices. Since the computation is blind, the
value of the vector is checked only at the end of the computation, and an input string is accepted if the
vector is equal to its initial value.

(ii) The proofs for the non-blind version also apply here. The proof for part f) follows from the fact that⋃
k L(rtDBHVA(k)) is closed under intersection but not union. �

The set of languages recognized by real-time nondeterministic blind homing vector automata is closed under
union and intersection. The construction for union is straightforward, and the construction for intersection is
identical to the deterministic case.

9. Open questions

What can we say about the relationship between real-time homing vector automata and one-way homing
vector automata? We conjecture that one-way nondeterministic blind homing vector automata are more powerful
than their real-time versions. Our candidate language is UPOW = {a2n |n ≥ 0}, which can be recognized by a
1NBHVA(2). Note that when the machine in consideration is deterministic and blind, the real-time and one-way
versions are equivalent in power. One can use the argument in Theorem 8 of [18] to prove this fact.

Can we show a separation result between the class of languages recognized based on the set of matrices used
during the transitions of a homing vector automaton? Is it possible to recognize, for instance, the language
POWr = {a2n

bn|n ≥ 0} when the matrix entries are restricted to be integers? Note that it is possible to construct
a rtDBHVA(2) recognizing POWr with the initial vector

[
0 1

]
and the matrices

Ma =
[

1 0
1 1

]
and Mb =

[
1
2 0
0 1

]
.

Can we show a hierarchy result between the classes of languages recognized by deterministic homing vector
automata of dimensions k and k + 1 for some k > 1, maybe when the matrix entries are restricted to the set
{−1, 0, 1}? Consider the family of languages POW(k) = {anbk

n |n ≥ 0}. We conjecture that it is not possible
to recognize POW(k) with a homing vector automaton of dimension less than k + 1 with the restricted set of
matrices.

Define a 1NBHVA(k)G to be a 1NBHVA(k) where all transition matrices are elements of a matrix group G.
Can we always construct a 1NBHVA(k)G recognizing the same language as a given EFA(G)? (Note that we
have proven that this is the case for 1NBHVA(2)F2

and EFA(F2).) Suppose that one can always find a suitable
initial vector v such that for every M ∈ G except the identity matrix, vM �= M . Then one could construct the
required 1NBHVA(k)G from the given EFA(G) directly. For which groups G is it always possible to find such a
vector?

What can we say about the reverse direction? For instance, is every language recognized by some
1NBHVA(2)F2

necessarily in L(EFA(F2))?

Acknowledgements. We thank Ryan O’Donnell and Abuzer Yakaryılmaz for their helpful answers to our questions, and
the anonymous reviewers for their constructive comments.

386 Ö. SALEHI ET AL.

References

[1] A. Brocot, Calcul des rouages par approximation, nouvelle méthode. Revue Chronométrique 3 (1861) 186–194.
[2] N. Chomsky, Context-free grammars and pushdown storage. M. I. T. Res. Lab. Electron. Quart. Prog. Report. 65 (1962)

187–194.
[3] J.M. Corson, Extended finite automata and word problems. Int. J. Algebra Comput. 15 (2005) 455–466.
[4] J. Dassow and V. Mitrana, Finite automata over free groups. Int. J. Algebra Comput. 10 (2000) 725–737.
[5] P.C. Fischer, A.R. Meyer and A.L. Rosenberg, Real time counter machines. In Proc. of the 8th Annual Symposium on Switching

and Automata Theory (SWAT 1967), FOCS ’67 (1967) 148–154.
[6] P.C. Fischer, A.R. Meyer and A.L. Rosenberg, Counter machines and counter languages. Math. Syst. Theory 2 (1968) 265–283.
[7] Th. Garrity, A multidimensional continued fraction generalization of sterns diatomic sequence. J. Integer Seq. 16 (2013) 3.
[8] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science. Addison Wesley

(1989).
[9] S.A. Greibach, Remarks on blind and partially blind one-way multicounter machines. Theor. Comput. Sci. 7 (1978) 311–324.

[10] O.H. Ibarra, S.K. Sahni and Ch.E. Kim, Finite automata with multiplication. Theor. Comput. Sci. 2 (1976) 271–294.
[11] M. Kambites, Formal languages and groups as memory. Commun. Algebra 37 (2009) 193–208.
[12] M.I. Kargapolov and J.I. Merzljakov, Fundamentals of the Theory of Groups. Springer Verlag (1979).
[13] R.J. Lipton and K.W. Regan, Quantum Algorithms via Linear Algebra. MIT Press (2014).
[14] R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory. Springer Verlag (1977).
[15] V. Mitrana and R. Stiebe, The accepting power of finite automata over groups. In New Trends in Formal Languages. Springer

Verlag (1997) 39–48.
[16] V. Mitrana and R. Stiebe, Extended finite automata over groups. Discrete Appl. Math. 108 (2001) 287–300.
[17] H. Petersen, Simulations by time-bounded counter machines. Int. J. Found. Comput. Sci. 22 (2011) 395–409.

[18] Ö. Salehi, A. Yakaryılmaz and A.C.C. Say, Real-time vector automata. In Proc. of the 19th International Conference on
Fundamentals of Computation Theory, FCT’13. Springer Verlag (2013) 293–304.

[19] M.A. Stern, Über eine zahlentheoretische Funktion. J. Reine Angew. Math. 55 (1858) 193–220.
[20] P. Turakainen, Generalized automata and stochastic languages. Proc. of the American Mathematical Society 21 (1969) 303–309.

Communicated by N. Moreira.
Received December 20, 2015. Accepted August 8, 2016.

	Introduction
	Preliminaries
	Homing vector automata
	Relationship with extended finite automata
	Real-time homing vector automata
	Encoding strings with homing vector automata
	Stern-Brocot encoding
	Generalized Stern-Brocot encoding
	A hierarchy result

	Relationship with real-time counter automata
	Closure properties
	Open questions
	References

