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WHEN INPUT-DRIVEN PUSHDOWN AUTOMATA MEET REVERSIBLITY
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Abstract. We investigate subfamilies of context-free languages that share two important properties.
The languages are accepted by input-driven pushdown automata as well as by a reversible pushdown
automata. So, the languages are input driven and reversible at the same time. This intersection can
be defined on the underlying language families or on the underlying machine classes. It turns out that
the latter class is properly included in the former. The relationships between the language families
obtained in this way and to reversible context-free languages as well as to input-driven languages are
studied. In general, a hierarchical inclusion structure within the real-time deterministic context-free
languages is obtained. Finally, the closure properties of these families under the standard operations
are investigated and it turns out that all language families introduced are anti-AFLs.
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1. Introduction

One extension of finite automata in order to enlarge the underlying language class as well as to preserve many
positive closure properties and decidable questions is represented by input-driven pushdown automata [26, 32].
Such automata share many desirable properties with finite automata, but still are powerful enough to describe
important non-regular behavior. Basically, for such devices the operations on the pushdown store are determined
by the input symbols. The first results show that the membership problem for input-driven PDA can be solved
in logarithmic space, and that nondeterministic and deterministic models are equivalent. The investigation of
input-driven PDA has been renewed in [1,2], where such devices are called visibly PDA or nested word automata.
Important results on the descriptional complexity of input-driven PDA are given, for example, in [9,30,31]. The
minimization of input-driven PDA has been studied in [7], while in [8] the language family described by input-
driven PDA is compared with other subclasses of deterministic context-free languages. Extensions have also
been studied, for example, with respect to multiple pushdown stores in [22], more general auxiliary storages
in [25], stacks in [6], or queues in [19].

Another line of research investigates (logical) reversibility of automata models. The reversibility of a compu-
tation means in essence that every configuration has at most one unique successor configuration and at most one
unique predecessor configuration. The main motivation to study reversible computations is the observation that
loss of information results in heat dissipation [23]. First studies of reversibility computations have been done
for the massively parallel model of cellular automata since the sixties of the last century. Nowadays it is known
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from [27] that every, possibly irreversible, one-dimensional cellular automaton can always be simulated by a
reversible one-dimensional cellular automaton in a constructive way. In [5] reversible Turing machines have been
considered. Again, a fundamental result is that every Turing machine can be made reversible. These two types
of devices received a lot of attention in connection with reversibility. Valuable surveys with further references
to literature are, for example, [11] for cellular automata and [28], where one may find a summary of results
on reversible Turing machines, reversible cellular automata, and other reversible models such as logic gates,
logic circuits, or logic elements with memory (see also [4, 12, 14, 15, 18] for further investigations). Furthermore,
reversibility has been studied for several computational devices such as space-bounded Turing machines [24],
two-way multi-head finite automata [3, 29], one-way multi-head finite automata [17], queue automata [20], and
in particular, pushdown automata [16]. In contrast to Turing machines it turned out that the family of lan-
guages accepted by reversible pushdown automata or reversible finite automata are proper subsets of the general
families.

Here we focus on the essence of both lines of research described. So, we are interested in languages that share
both properties, namely, to be reversible and input driven. The intersection of both worlds can be defined on
the underlying language families or on the underlying machine classes. It turns out that this makes a difference
in the sense that the latter class is properly included in the former. Moreover, the former class is closed under
complementation while the latter is not. So, it is natural to consider the complementary class as well. Together
with the union and intersection of incomparable families we obtain a hierarchical set structure within the family
of real-time deterministic context-free languages as depicted in Figure 1. The innermost class which is defined
as the family of languages so that the language itself as well as its complement are accepted by real-time
deterministic pushdown automata that are input driven and reversible at the same time, is characterized by
the regular languages. So, any non-regular language which is accepted by a pushdown automaton having both
properties under investigation is a witness for the non-closure of that family under complementation.

Following the definition in [1], the input-driven pushdown automata considered so far have the property
that tacitly a new bottom-of-pushdown symbol is placed into the stack when the stack gets empty by a pop
operation. This definition is different from the general definition of pushdown automata saying that a com-
putation halts whenever the last pushdown symbol has been removed from the stack. Thus, we introduce in
Section 4 input-driven automata with this restriction. Again, the intersection of both worlds can be defined
on the underlying language families or on the underlying machine classes. Thus, we investigate the relations
between these classes and between the classes induced by unrestricted input-driven pushdown automata. As
result we obtain that the different restricted and unrestricted variants induce proper inclusions between the
corresponding language families and the restricted variants imply a hierarchical set structure (see Fig. 2) which
is similar to the hierarchies shown for the unrestricted variants in Section 3.

Finally, closure properties of all discussed language families under the standard operations are investigated.
For input-driven pushdown automata, strong closure properties have been derived in [1] provided that all au-
tomata involved share the same partition of the input alphabet. Here we distinguish this important special case
from the general one. The closure properties are summarized in Table 1. It turns out that all newly introduced
language families are anti-AFLs, that is, they are not closed under the operations union, concatenation, Kleene
star, length-preserving homomorphism, inverse homomorphism, and intersection with regular languages.

2. Preliminaries

We write Σ∗ for the set of all words over the finite alphabet Σ. The empty word is denoted by λ, the reversal
of a word w by wR, and for the length of w we write |w|. The number of occurrences of a symbol a ∈ Σ in some
word w is denoted by |w|a. We use ⊆ for inclusions and ⊂ for strict inclusions.

In order to define the particularities of input-driven and reversible pushdown automata, we first consider the
general devices. General deterministic pushdown automata that are not allowed to perform λ-steps are weaker
than deterministic pushdown automata that may move on λ input [10]. However, in [16] it has been shown that
every reversible pushdown automaton can be simulated by a real-time reversible pushdown automaton, that is,



WHEN INPUT-DRIVEN PUSHDOWN AUTOMATA MEET REVERSIBLITY 315

without λ-steps. This real-time reversible machine can effectively be constructed from the given one. Moreover,
input-driven pushdown automata are real-time devices by definition. For this reason and to simplify matters we
do not allow λ-steps from the outset.

A real-time deterministic pushdown automaton (DPDA) is defined as a system M = 〈Q, Σ, Γ, F, q0,⊥, δ〉,
where Q is the finite set of internal states, Σ is the finite set of input symbols, Γ is the finite set of pushdown
symbols, F ⊆ Q is the set of accepting states, q0 ∈ Q is the initial state, ⊥ ∈ Γ is a distinguished pushdown sym-
bol, called the bottom-of-stack symbol, which initially appears on the stack, and the (possibly partial) transition
function δ maps Q × Σ × Γ to Q × Γ ∗.

A configuration of a pushdown automaton is a quadruple (u, q, v, γ), where q is the current state, u ∈ Σ∗ is
the part of the input to the left of the input head, v ∈ Σ∗ is the part of the input to the right of the input head,
and γ ∈ Γ ∗ is the current content of the pushdown store, the leftmost symbol of γ being the top symbol. So,
the input head is positioned at the border between the last symbol of u and the first symbol of v. On input w
the initial configuration is defined to be (λ, q0, w,⊥). For p, q ∈ Q, a ∈ Σ, u, v ∈ Σ∗, β, γ ∈ Γ ∗, and Z ∈ Γ , let
(u, p, av, Zγ) be a configuration. Then its successor configuration is (ua, q, v, βγ), where δ(p, a, Z) = (q, β). We
write (u, p, av, Zγ) � (ua, q, v, βγ) in this case. The reflexive transitive closure of � is denoted by �∗.

To simplify matters, we require that in any configuration the bottom-of-pushdown symbol appears at most
once at the bottom of the pushdown store, that is, it can never appear at some other position in the pushdown
store. Formally, we require that if δ(p, a, Z) = (q, β) then either Z 	= ⊥ and β does not contain ⊥, or Z = ⊥
and β is either β′⊥, where β′ does not contain ⊥, or β is empty. The language accepted by M with accepting
states is

L(M) = {w ∈ Σ∗ | (λ, q0, w,⊥) �∗ (w, q, λ, γ), for some q ∈ F and γ ∈ Γ ∗ }.
In general, the family of all languages accepted by some device of type X is denoted by L (X).

Input-Driven Pushdown Automata

A real-time deterministic pushdown automaton is called input-driven if the next input symbol defines the next
action on the pushdown store, that is, pushing a symbol onto the pushdown store, popping a symbol from the
pushdown store, or changing the state without modifying the pushdown store. To this end, we assume the input
alphabet Σ to be partitioned into the sets ΣN , ΣD, and ΣR, that control the actions state change only (N),
push (D), and pop (R).

So, a DPDA M = 〈Q, Σ, Γ, F, q0,⊥, δ〉 is said to be a deterministic input-driven pushdown automaton
(IDPDA) if Σ is partitioned into the sets ΣD, ΣR, and ΣN , and the transition function δ is accordingly
split into δD, δR, and δN . Here it is understood that, for p ∈ Q, a ∈ Σ, u, v ∈ Σ∗, Z, Z ′ ∈ Γ , Z ′′ ∈ Γ \ {⊥},
and γ ∈ Γ ∗, the only possibilities to obtain successor configurations are as follows:

(1) (u, p, av, Zγ) � (ua, q, v, Z ′Zγ), if and only if a ∈ ΣD and δD(p, a, Z) = (q, Z ′Z),
(2) (u, p, av, Z ′′γ) � (ua, q, v, γ), if and only if a ∈ ΣR and δR(p, a, Z ′′) = (q, λ),
(3) (u, p, av,⊥) � (ua, q, v,⊥), if and only if a ∈ ΣR and δR(p, a,⊥) = (q, λ),
(4) (u, p, av, Zγ) � (ua, q, v, Zγ), if and only if a ∈ ΣN and δN (p, a, Z) = (q, Z).

In particular, this means that at every step at most one symbol can be pushed on the stack, that the topmost
stack symbol cannot be altered, and that tacitly a new bottom-of-pushdown symbol is placed into the stack
when the stack gets empty by a pop operation.

The partition of an input alphabet into the sets ΣD, ΣR, and ΣN is called a signature.

Reversible Pushdown Automata

Now we turn to reversible pushdown automata which have been introduced and studied in [16]. Reversibility is
meant with respect to the possibility of stepping the computation back and forth. To this end, the pushdown
automata have also to be backward deterministic. That is, any configuration must have at most one predecessor
which, in addition, is computable by a DPDA. For reverse computation steps the head of the input tape is always
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moved to the left. Therefore, the automaton rereads the input symbol which has been read in a preceding forward
step. So, for reversible pushdown automata there must exist a reverse transition function.

A reverse transition function δ← : Q×Σ×Γ → Q×Γ ∗ maps a configuration to its predecessor configuration.
For p, q ∈ Q, a ∈ Σ, u, v ∈ Σ∗, Z ∈ Γ , and β, γ ∈ Γ ∗, let (ua, q, v, Zγ) be a configuration. Then its predecessor
configuration is (u, p, av, βγ), where δ←(q, a, Z) = (p, β). We write (ua, q, v, Zγ) �← (u, p, av, βγ) in this case.

A DPDA M = 〈Q, Σ, Γ, F, q0,⊥, δ〉 is said to be reversible (REV-PDA), if there exists a reverse transition
function δ← inducing a relation �← from one configuration to the next, so that

(u, p, v, γ) �← (u′, p′, v′, γ′) if and only if (u′, p′, v′, γ′) � (u, p, v, γ).

The following mandatory properties of reversible pushdown automata have been derived in [16]. In one reverse
step the height of the pushdown store can be decreased by at most one. Therefore, in a forward step the height
of the pushdown store may be increased by at most one, as well. Furthermore, when a forward step pops a
symbol, this operation simply reveals the next-to-top symbol. Therefore, one has to take care that the original
top-of-stack symbol remains unaltered in a forward step in which the height of the pushdown is increased. Thus,
we have: If δ(p, a, Z) = (q, β) and |β| > 1, then β = Y Z for some symbol Y ∈ Γ . So, for a reversible DPDA
there are only the following possibilities:

push: δ(p, a, Z) = (q, Z ′Z) =⇒ δ←(q, a, Z ′) = (p, λ)
change top: δ(p, a, Z) = (q, Z ′) =⇒ δ←(q, a, Z ′) = (p, Z)
pop: δ(p, a, Z) = (q, λ) =⇒ for all X ∈ Γ : δ←(q, a, X) = (p, ZX)

Finally, pushdown automata that have both properties at the same time, that is, which are reversible and in-
put driven, are denoted by REV-IDPDA. Since here we are interested in the essence of input-driven and reversible
context-free languages, it is natural to consider their intersection. However, this intersection can be defined on the
underlying language families or on the underlying machines classes. So, we set Lri = L (REV-PDA)∩L (IDPDA)
which is the intersection of the both languages families, and Mri = L (REV-IDPDA) which are the languages
accepted by the devices from the intersection of both machine classes. The question whether these two defini-
tions of reversible input-driven context-free languages yield the same families or not is considered in the next
section.

In order to clarify our notions we continue with a simple example.

Example 2.1. The context-free language L = { an$bn | n ≥ 0 } is accepted by the REV-IDPDA M =
〈Q, Σ, Γ, F, q0,⊥, δ〉 with Q = {q0, q1, q2, q+}, F = {q+}, Γ = {A, Ā,⊥}, ΣD = {a}, ΣR = {b}, and ΣN = {$}.
The transition functions δ and its reverse δ← are as follows.

REV-IDPDA forward
(1) δ(q0, a,⊥) = (q1, Ā⊥)
(2) δ(q0, a, A) = (q1, ĀA)
(3) δ(q0, a, Ā) = (q1, ĀĀ)
(4) δ(q0, $,⊥) = (q+,⊥)
(5) δ(q1, a,⊥) = (q1, A⊥)
(6) δ(q1, a, A) = (q1, AA)
(7) δ(q1, a, Ā) = (q1, AĀ)
(8) δ(q1, $, A) = (q2, A)
(9) δ(q1, $, Ā) = (q2, Ā)

(10) δ(q2, b, A) = (q2, λ)

(11) δ(q2, b, Ā) = (q+, λ)

REV-IDPDA backward
(1) δ←(q1, a, Ā) = (q0, λ)

(2) δ←(q+, $,⊥) = (q0,⊥)
(3) δ←(q1, a, A) = (q1, λ)

(4) δ←(q2, $, A) = (q1, A)
(5) δ←(q2, $, Ā) = (q1, Ā)
(6) δ←(q2, b,⊥) = (q2, A⊥)
(7) δ←(q2, b, A) = (q2, AA)
(8) δ←(q2, b, Ā) = (q2, AĀ)
(9) δ←(q+, b,⊥) = (q2, Ā⊥)

(10) δ←(q+, b, A) = (q2, ĀA)
(11) δ←(q+, b, Ā) = (q2, ĀĀ)
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The basic idea of the construction is clear, the prefix is pushed on the stack and compared with the suffix.
However, in order to be input driven and reversible, the first symbol pushed has to be marked (Ā). More-
over, to obtain a reversible automaton some transition rules have to be provided that cannot be used in any
reachable configuration. For example, the forward transitions (2) and (3) are used only for unreachable config-
urations. Let the REV-IDPDA perform the transition (λ, q0, a,⊥) � (a, q1, λ, Ā⊥). Then the reverse transition
rule δ←(q1, a, Ā) = (q0, λ) has to be defined. However, applying this rule to the unreachable configuration
(a, q1, λ, ĀĀ) gives the predecessor configuration (λ, q0, a, Ā). This implies that the (forward) transition rule
δ(q0, a, Ā) = (q1, ĀĀ) has to be defined as well.

3. Zooming into the deterministic context-free languages

In this section, we start to explore the relationships between the language families considered. Since they
all are defined by classes of real-time deterministic pushdown automata, we obtain a set structure within the
family L (DPDA) (see Fig. 1). Starting with the superclass defined by the intersection of the context-free and
Church−Rosser languages (see [13]), we obtain the proper inclusion of the deterministic context-free languages
(DCFL). The family of Church−Rosser languages as well as the family of context-free languages contain DCFL
and are closed under reversal. Since DCFL is not closed under reversal the proper inclusion follows. Furthermore,
real-time deterministic pushdown automata are well known to be weaker than deterministic pushdown automata
that may move on λ input [10].

When diving into the family of real-time deterministic pushdown automata one first sees the families
L (IDPDA) and L (REV-PDA). Both are known to be properly included in L (DPDA). For example, it is
known that the following deterministic context-free languages are not accepted by any input-driven pushdown
automaton

Ld = { anb2n | n ≥ 0 }, L′
d = { an$b2n | n ≥ 0 },

Lr = {w$wR | w ∈ {a, b}∗ }, and Ls = { cn$cn | n ≥ 0 }
while Lc = { anbn | n ≥ 0 } as well as its marked variant L′

c = { an$bn | n ≥ 0 } are accepted by some input-
driven pushdown automaton [1]. Since Example 2.1 shows that L′

c belongs to Mri, we know that Mri is a proper
superset of the regular languages. Further it is known that the language Lc is not accepted by a reversible
pushdown automaton while L′

c and Lr are [16]. We derive the following corollary.

Corollary 3.1. The families L (REV-PDA) and L (IDPDA) are incomparable.

So, the families of languages accepted by input-driven pushdown automata and by reversible pushdown
automata are properly contained in the family of real-time deterministic context-free languages. But how about
their union? Is there a real-time deterministic context-free language which is neither input driven nor reversible?
The next theorem answers this question in the affirmative.

Theorem 3.2. The union L (IDPDA) ∪ L (REV-PDA) is properly contained in the family of real-time deter-
ministic context-free languages.

Proof. Consider the language L = { anbn | n ≥ 0 } ∪ { cm$cm | m ≥ 0 }, that is clearly accepted by some
real-time deterministic pushdown automaton.

The family of languages accepted by input-driven pushdown automata is closed under intersection with
regular sets [1]. The intersection L ∩ {c, $}∗ is exactly Ls for which it is known that it is not input driven.
The family of languages accepted by reversible pushdown automata is closed under intersection with reversible
regular sets, for example, with {a, b}∗. The intersection L∩{a, b}∗ gives the language Lc that cannot be accepted
by any reversible pushdown automaton. �

Next we turn to the essence of both worlds and first consider the family of languages that are both, input-
driven and reversible. As mentioned before, the intersection can be defined on the underlying machine classes
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Figure 1. Hierarchical structure of language classes. The class CRL∩CFL denotes the intersec-
tion of the context-free and Church−Rosser languages – a proper superclass of the deterministic
context-free languages (DCFL) which, in turn, form a proper superclass of the real-time deter-
ministic context-free languages (L (DPDA)). (Color online).

or on the underlying language families. So, we study now the relationships of Mri = L (REV-IDPDA) and
Lri = L (REV-PDA) ∩ L (IDPDA). It turns out that these definitions yield different families, where the latter
one is a weaker restriction.

Since all the superclasses of Mri, that is, the classes Lri, L (IDPDA), L (DPDA), L (REV-PDA), and
DCFL, are closed under complementation, but Mri turns out to be not, it is natural to consider the family
co-L (REV-IDPDA) as well. First we show that the union L (REV-IDPDA) ∪ co-L (REV-IDPDA) is properly
contained in Lri.

Theorem 3.3. There is a language in Lri that does not belong to the union of the classes L (REV-IDPDA) ∪
co-L (REV-IDPDA). Therefore, language family L (REV-IDPDA)∪ co-L (REV-IDPDA) is properly contained
in the family Lri.

Proof. The language L = { an$bna�bm | �, m, n ≥ 0 } is a witness for the assertion. First assume L is accepted
by some REV-IDPDA M = 〈Q, Σ, Γ, F, q0,⊥, δ〉 with signature ΣD, ΣR, ΣN . If symbol a does not belong to
ΣD, automaton M runs into a loop for input prefixes of the form a∗ long enough and, thus, cannot accept L.
Therefore, we derive a ∈ ΣD. If ΣR is empty or contains $ only, automaton M cannot utilize its pushdown store
sufficiently and, thus, L must be regular. Therefore, we have b ∈ ΣR.

We consider the computation of M on input a$babm, where m ≥ |Q|+2. After processing the input prefix a$ba,
the pushdown store of M contains a word whose length is two or one dependent on whether the $ belongs to
ΣD or not. Now M starts to read the symbols b whereby it pops one symbol in every step. So, after at most
two steps the pushdown store gets empty. After at most |Q| further steps on input symbols b, automaton M
runs into a loop whose length is at most |Q|. Since M is reversible, the reverse transition function drives M
backwards through the loop and continues this behavior until the symbol a appears in the input. However,
this configuration has an empty pushdown store and, thus, does not match the configuration from the forward
computation. So, M does not accept L.

Next we assume that L is accepted by the REV-IDPDA M . Arguing similar as above, if either ΣD or ΣR

is empty or contains $ only, automaton M cannot utilize its pushdown store sufficiently and, thus, L must be
regular. Since it is not, both sets ΣD and ΣR contain at least one symbol, say a ∈ ΣD and b ∈ ΣR. We consider
the computation of M on input $babm, where m ≥ |Q|+1, and obtain the same contradiction as above. Finally,
if a ∈ ΣR and b ∈ ΣD, the input $bam, where m ≥ |Q| + 2 yields the contradiction.



WHEN INPUT-DRIVEN PUSHDOWN AUTOMATA MEET REVERSIBLITY 319

It remains to be shown that L belongs to the family Lri. The IDPDA with signature ΣD = {a}, ΣR = {b, $},
ΣN = ∅, and F = {q2, q3} which is given through the following transition function accepts L. For example, the
transition rules (11) and (12) are irreversible.

IDPDA
(1) δ(q0, a,⊥) = (q0, A⊥) (7) δ(q2, a,⊥) = (q2, A⊥)
(2) δ(q0, a, A) = (q0, AA) (8) δ(q2, a, A) = (q2, AA)
(3) δ(q0, $,⊥) = (q2, λ) (9) δ(q2, b,⊥) = (q3, λ)
(4) δ(q0, $, A) = (q1, λ) (10) δ(q2, b, A) = (q3, λ)
(5) δ(q1, b, A) = (q1, λ) (11) δ(q3, b,⊥) = (q3, λ)
(6) δ(q1, b,⊥) = (q2, λ) (12) δ(q3, b, A) = (q3, λ)

An equivalent REV-PDA with F = {q2, q3} and Γ = {⊥, A, Q2, Q3} is given through the following transition
functions. The reversibility is easily checked by inspecting the transition rules. The reversibility on the suffix
is ensured by pushing the history on the stack. The corresponding transition rules, for example (4) and (7),
violate the property of being input driven. Let X ∈ Γ .

REV-PDA forward
(1) δ(q0, a, X) = (q0, AX)
(2) δ(q0, $,⊥) = (q2,⊥)
(3) δ(q0, $, A) = (q1, λ)
(4) δ(q1, b, A) = (q1, λ)
(5) δ(q1, b,⊥) = (q2,⊥)
(6) δ(q2, a, X) = (q2, Q2X)
(7) δ(q2, b, X) = (q3, Q2X)
(8) δ(q3, b, X) = (q3, Q3X)

REV-PDA backward
(1) δ←(q0, a, A) = (q0, λ)
(2) δ←(q2, $,⊥) = (q0,⊥)
(3) δ←(q1, $, X) = (q0, AX)
(4) δ←(q1, b, X) = (q1, AX)
(5) δ←(q2, b,⊥) = (q1,⊥)
(6) δ←(q2, a, Q2) = (q2, λ)
(7) δ←(q3, b, Q2) = (q2, λ)
(8) δ←(q3, b, Q3) = (q3, λ)

�

Corollary 3.4. The family Mri is properly contained in Lri.

Next we consider the innermost class, that is, the intersection of the classes L (REV-IDPDA) and its comple-
ment co-L (REV-IDPDA). The next theorem shows that this intersection characterizes the regular languages.

Theorem 3.5. A language belongs to L (REV-IDPDA) ∩ co-L (REV-IDPDA) if and only if it is regular.

Proof. Assume in contrast to the assertion that there is a non-regular language L belonging to
L (REV-IDPDA) ∩ co-L (REV-IDPDA). Since the regular languages are closed under complementation, L is
non-regular as well. Moreover, since all unary context-free languages are regular, the alphabet of L contains at
least two symbols. Now, let M = 〈Q, Σ, Γ, F, q0,⊥, δ〉 with signature ΣD, ΣR, ΣN be a REV-IDPDA accepting
L. If either ΣD or ΣR is empty, automaton M cannot utilize its pushdown store, thus L must be regular. So,
both sets ΣD and ΣR contain at least one symbol, say b ∈ ΣR. We consider the computation of M on some
input vbm, where v ∈ Σ∗

D with |v| ≥ 1 and m ≥ |v| + 3|Q|. After processing the input prefix v, the pushdown
store of M contains a word γ1 whose length is |v|:

(λ, q0, vbm,⊥) �∗ (v, q1, b
m, γ1⊥).

Now M starts to read the symbols b whereby it pops one symbol in every step. So, after another |v| steps the
pushdown store gets empty:

(v, q1, b
m, γ1⊥) �∗ (vb|v|, q2, b

m−|v|,⊥).
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After at most |Q| further steps on input symbols b, automaton M runs into a loop whose length is also at
most |Q|:

(vb|v|, q2, b
m−|v|,⊥) �∗ (vb|v|+i, q3, b

m−|v|−i,⊥) �∗ (vb|v|+i+j , q3, b
m−|v|−i−j,⊥)

where 0 ≤ i ≤ |Q| and 1 ≤ j ≤ |Q|. Since M is reversible, the reverse transition function drives M backwards
through the loop and continues this behavior until the last symbol of v appears in the input:

(vb|v|+i+j , q3, b
m−|v|−i−j,⊥) �←∗ (vb|v|+i, q3, b

m−|v|−i,⊥) �←∗ (v, q4, b
m,⊥)

where q4 is some state in the loop. However, this configuration has an empty pushdown store and, thus, does
not match the configuration from the forward computation. This implies that M is unable to perform the
computation on the inputs of the form considered and has to halt rejecting before it would enter the loop. We
conclude that all words having one of these inputs as prefix do belong to L.

Next, consider a REV-IDPDA M ′ = 〈Q′, Σ, Γ ′, F ′, q′0,⊥, δ′〉 with signature Σ′
D, Σ′

R, Σ′
N that accepts L.

Since L is not regular, we have as above that both sets Σ′
D and Σ′

R contain at least one symbol. Let u = vbm be
one of the words on which M halts rejecting. We consider inputs of the form uv′xk, where x ∈ Σ′

R and v′ ∈ Σ′∗
D

with |v| ≥ 1 and k ≥ |uv′| + 3|Q′|. Along the lines of the argumentation for M we obtain that M ′ has to halt
rejecting on all words having a prefix of this form. This implies that these words are neither accepted by M nor
by M ′. From this contradiction we derive that L must be regular.

Finally, every regular language is accepted by some REV-IDPDA. The idea of the construction is to simulate
a given deterministic finite automaton whereby the state history is pushed on the stack. �

Interestingly, the last result reveals that any non-regular language L which is accepted by a pushdown
automaton that is input driven and reversible at the same time, is a witness for the non-closure of Mri under
complementation.

Theorem 3.6. The families L (REV-IDPDA) and co-L (REV-IDPDA) are incomparable.

Proof. The language L = { an$bn | n ≥ 0 } is not regular and, thus, does not belong to the intersection
L (REV-IDPDA)∩ co-L (REV-IDPDA) by Theorem 3.5. On the other hand, language L belongs to the family
L (REV-IDPDA) by Example 2.1. So, we can conclude L ∈ L (REV-IDPDA) \ co-L (REV-IDPDA) and L ∈
co-L (REV-IDPDA) \ L (REV-IDPDA). �

4. Zooming more closely into input-driven languages

The definition of input-driven pushdown automata given in Section 2 implies that the stack never gets empty
during any computation since tacitly a new bottom-of-pushdown symbol is placed into the stack when the stack
would get empty by a pop operation. This definition is very convenient, since it allows to accept languages
such as { anbm | m > n ≥ 0 } or { anbna�bm | �, m, n ≥ 0 } by IDPDA. However, in the standard definition
of pushdown automata a computation halts when the bottom-of-pushdown symbol has been removed by a
pop operation. In this section, we consider IDPDA and their restricted variants introduced and investigated
in the previous sections with the additional restriction that a computation halts as soon as the bottom-of-
pushdown symbol is removed. If the complete input has not been read up to that time or a non-accepting
state is entered, the input is rejected. IDPDA with this restrictions are denoted IDPDA0 and by REV-IDPDA0

we denote IDPDA0 which are additionally reversible. The language family which contains all languages which
are either accepted by some IDPDA0 or some REV-PDA is denoted by Lri,0. We will also use the notion Mri,0

for the family L (REV-IDPDA0). Before we investigate and compare the computational capacity of these new
language families we prove the following lemma which we will need in the sequel.

Lemma 4.1. Language family L (IDPDA0) is closed under intersection with regular sets.
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Proof. Consider an IDPDA0 M and a deterministic finite automaton A. An IDPDA0 M ′ accepting L(M)∩L(A)
is obtained by the standard cross product between the finite state controls of M and A. The resulting set of
states simulates the computation of M in the first component while the second replicates the behavior of A.
The moves on the stack are governed by the moves of M , since A does not use any memory storage. Finally, the
accepting states of M ′ are exactly those pairs where both components are accepting states of M and A. Since
the stack gets empty in any accepting computation of M at most in the very last step, the same is true for any
(parallel) accepting computation of M and A. Thus, M ′ is again an IDPDA0 which shows the assertion of the
Lemma. �

As first result with respect to the computational capacity we obtain that all variants of IDPDA0 are less
powerful than their unrestricted counterparts.

Theorem 4.2. The following proper inclusions hold.

(1) L (IDPDA0) ⊂ L (IDPDA),
(2) Lri,0 ⊂ Lri,
(3) L (REV-IDPDA0) ⊂ L (REV-IDPDA), and
(4) co-L (REV-IDPDA0) ⊂ co-L (REV-IDPDA).

Proof. All inclusions claimed follow by structural reasons. The first two proper inclusions can be shown using
the witness language L = { an$bm | m > n ≥ 0 }. Clearly, L can be accepted by some IDPDA. Furthermore, L
is accepted by some REV-PDA that first checks the correctness of a prefix an$bn using the construction given
in Example 2.1 and then pushes some new symbol on its pushdown store for every additional b read. Thus, L
belongs to Lri. Let us assume that L is accepted by some IDPDA0 M with signature ΣD, ΣR, and ΣN . Similar
to the proof of Theorem 3.3 we may assume that a ∈ ΣD and b ∈ ΣR. Thus, the word an$bn+3 ∈ L brings M
to halt before the complete input is read, since the stack gets empty. Therefore, this word is not accepted by M
which is a contradiction that shows the first two inclusions to be proper.

For the properness of the third inclusion consider L′ = { an$bn+3 | n ≥ 0 } that can be shown not to belong
to L (IDPDA0) in a similar way as the above proof for the language L. On the other hand, L′ can be accepted
by a REV-IDPDA as follows. First, the construction of Example 2.1 accepting a prefix of the form an$bn is
applied. Then, from state q+ three further input symbols are read while entering three additional states from
which the last one is the only accepting state. The pushdown store remains ⊥ in these three steps. Clearly, this
construction gives an input-driven and reversible DPDA and shows the properness of the third inclusion.

Finally, since L′ belongs to L (REV-IDPDA), the complement L′ belongs to co-L (REV-IDPDA). Now, as-
sume that the complement L′ belongs to the family co-L (REV-IDPDA0). Then L′ belongs to L (REV-IDPDA0)
which is a contradiction. �

Next, we show that it is again a difference whether the family of languages that are input-driven and reversible
is defined on the underlying language families or on the underlying machine classes. It turns out that the latter
language family is a proper subset of the former.

Theorem 4.3. Language family L (REV-IDPDA0) is properly included in Lri,0.

Proof. The inclusion follows for structural reasons. The witness language that separates both classes is L =
{ an$bnc�(ab)m | �, m, n ≥ 0 }. Language L belongs to Lri,0 since we can construct an IDPDA0 as well as
a REV-PDA accepting L. An IDPDA0 for L first checks the correctness of the prefix an$bn as in previous
constructions and then the regular suffix c∗(ab)∗. Since every b ∈ ΣR follows an a ∈ ΣD, it is clear that the
pushdown store never gets empty. Thus, L is accepted by an IDPDA0. A REV-PDA for L checks the correctness
of the prefix an$bn as in previous constructions and the correctness of the suffix by simulating a deterministic
finite automaton whose history is written on the stack.

Next, we show that L even does not belong to L (REV-IDPDA). Contrarily we assume that L is accepted
by a REV-IDPDA M = 〈Q, Σ, Γ, F, q0,⊥, δ〉 with signature ΣD, ΣR, ΣN . As in Theorem 3.3 we can conclude
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that a ∈ ΣD and b ∈ ΣR. Let us assume that c ∈ ΣD ∪ΣN . Then there exist two natural numbers n2 > n1 such
that the computations on input a$bcn1 and a$bcn2 end in the same accepting state p0 with the same topmost
pushdown symbol C ∈ Γ . Thus, we have γ1, γ2 ∈ Γ ∗ such that (λ, q0, a$bcn1 ,⊥) �∗ (a$bcn1 , p0, λ, Cγ1⊥) and
(λ, q0, a$bcn2 ,⊥) �∗ (a$bcn2 , p0, λ, Cγ2⊥). If c ∈ ΣR, we can simply replace Cγ1 and Cγ2 by λ in the rest of the
proof. Now, we consider the computation on further input (ab)∗. Since a ∈ ΣD pushes some pushdown symbol
which is immediately removed by b ∈ ΣR, we know that the topmost pushdown symbol C remains the same for
any further input from (ab)∗. Thus:

(λ, p0, (ab)n, Cγ1⊥) �2 (ab, p1, (ab)n−1, Cγ1⊥) �2 ((ab)2, p2, (ab)n−2, Cγ1⊥) �2 . . .

For n large enough, the computation will enter a loop, that is, there are integers 0 ≤ i < j such that pj = pi.
Since M is reversible, we know that i = 0 and (λ, p0, (ab)j , Cγ1⊥) �2j ((ab)j , p0, λ, Cγ1⊥). Thus, we have the
following computation:

(λ, q0, a$bc
n1(ab)jcn2−n1 ,⊥) �∗ (a$bcn1 , p0, (ab)jcn2−n1 , Cγ1⊥) �∗

(a$bcn1(ab)j , p0, c
n2−n1 , Cγ1⊥) �∗ (a$bcn1(ab)jcn2−n1 , p0, λ, Cγ2⊥).

Since p0 is an accepting state, j ≥ 1, and n2 −n1 ≥ 1, we obtain that an input is accepted that does not belong
to L. This is a contradiction and shows that L cannot be accepted by any REV-IDPDA. �

The relations between the classes L (REV-IDPDA0) and co-L (REV-IDPDA0) are similar to those shown
for L (REV-IDPDA) and co-L (REV-IDPDA) in Theorems 3.5 and 3.6.

Theorem 4.4. The families L (REV-IDPDA0) and co-L (REV-IDPDA0) are incomparable, but their intersec-
tion L (REV-IDPDA0) ∩ co-L (REV-IDPDA0) equals the set of regular languages.

Proof. The incomparability follows by the same argumentation as in the proof of Theorem 3.6 by using language
L′

c = { an$bn | n ≥ 0 }. The inclusions

L (REV-IDPDA0) ∩ co-L (REV-IDPDA0) ⊆ L (REV-IDPDA) ∩ co-L (REV-IDPDA) ⊆ REG

follow for structural reasons and the result of Theorem 3.5. On the other hand, every regular language is accepted
by some REV-IDPDA0 by simulating a given deterministic finite automaton whereby the state history is pushed
on the stack. Thus, REG ⊆ L (REV-IDPDA0) ∩ co-L (REV-IDPDA0) which shows the second claim. �

Finally, we obtain the following incomparability results.

Theorem 4.5. Language family Lri,0 is incomparable with each of the families L (REV-IDPDA),
co-L (REV-IDPDA0), and co-L (REV-IDPDA). Moreover, family L (IDPDA0) is incomparable with each of
the families L (REV-IDPDA), co-L (REV-IDPDA), co-L (REV-IDPDA0), and Lri.

Proof. Language L1 = { an$bm | m > n ≥ 0 } belongs to L (REV-IDPDA), but not to Lri,0, since L1 does not
even belong to L (IDPDA0) by the proof given for Theorem 4.2. Language L2 = { an$bm | 0 ≤ m ≤ n } belongs
to L (REV-IDPDA0). Thus, L3 = L2 belongs to co-L (REV-IDPDA0) as well as to co-L (REV-IDPDA). On
the other hand, L3 does not belong to Lri,0, since L3 does not even belong to L (IDPDA0). Assume by way
of contradiction that L3 belongs to L (IDPDA0). Since L (IDPDA0) is closed under intersection with regular
languages by Lemma 4.1, we obtain that L3∩a∗$b∗ = L1 belongs to L (IDPDA0) which is a contradiction. Now,
consider language L′

c = { an$bn | n ≥ 0 } which belongs to Lri,0, but neither belongs to co-L (REV-IDPDA)
nor to co-L (REV-IDPDA0) by the proof given for Theorem 3.6. Language L4 = { an$bnc�(ab)m | �, m, n ≥ 0 }
belongs to Lri,0, but not to L (REV-IDPDA) by the proof given for Theorem 4.3.

Language Lc = { anbn | n ≥ 0 } belongs to IDPDA0, but not to L (REV-PDA) which is shown in [16].
Thus, Lc does not belong to the classes L (REV-IDPDA), co-L (REV-IDPDA), co-L (REV-IDPDA0), and Lri.
On the other hand, L1 belongs to L (REV-IDPDA) and Lri, but not to L (IDPDA0). Finally, L3 belongs to
co-L (REV-IDPDA0) as well as co-L (REV-IDPDA), but not to L (IDPDA0). This shows all incomparabilities
claimed. �
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Figure 2. The hierarchical structure of the language classes discussed in Section 4. (Color online).

5. Closure properties

In this section, we investigate the closure properties of the language classes Lri, Lri,0, Mri, and Mri,0. The
closure properties of REV-PDA have been studied in [16]. For input-driven pushdown automata, strong clo-
sure properties have been derived in [1] provided that all automata involved share the same partition of the
input alphabet, that is, the same signature. Here we distinguish this important special case from the general
one. We say that two signatures Σ = ΣD ∪ ΣR ∪ ΣN and Σ′ = Σ′

D ∪ Σ′
R ∪ Σ′

N are compatible if and only if⋃
j∈{D,R,N}(Σj \ Σ′

j) ∩ Σ′ = ∅ and
⋃

j∈{D,R,N}(Σ
′
j \ Σj) ∩ Σ = ∅.

In the following, we obtain several non-closure results for the language classes Lri, Lri,0, Mri, and Mri,0. To this
end, the languages

L1 = { an$1b
m$2c

� | �, m, n ≥ 0 and � = m + n },
L2 = { an$1b

m$2c
� | �, m, n ≥ 0 and � = m }, and L12 = L1 ∪ L2

are utilized.

Lemma 5.1. Language L12 is not accepted by any REV-PDA.

Proof. Assume in contrast to the assertion that language L12 is accepted by some REV-PDA M =
〈Q, Σ, Γ, F, q0,⊥, δ〉. Since all REV-PDA can be made real time [16], we may safely assume that M is a real-
time machine. During the computation of M on input prefixes a+ no combination of state and content of the
pushdown store may appear twice. If

(λ, q0, a
n$1b

m$2c
n+m,⊥) �∗ (an1 , q1, a

n−n1$1b
m$2c

n+m, σ1) �+ (an1+n2 , q1, a
n−n1−n2$1b

m$2c
n+m, σ1)

is the beginning of an accepting computation, then so is

(λ, q0, a
n−n2$1b

m$2c
n+m,⊥) �∗ (an1 , q1, a

n−n1−n2$1b
m$2c

n+m, σ1),

but an−n2$1b
m$2c

n+m does not belong to L12. This implies that each height of the pushdown store may appear
only finitely often, thus the height increases arbitrarily. So, M runs into a loop while processing a’s, that is,
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the combination of a state and, for any fixed number k, some k topmost pushdown symbols α appear again
and again. To render the loop more precisely, let (an−x, q, ax$1b

m$2c
n+m, αγ) be a configuration of the loop.

Then (an−x+y, q, ax−y$1b
m$2c

n+m, αβ) is a successor configuration with the same combination of state and
topmost pushdown symbols. We may choose α so that no symbol of γ is touched during the computation
starting in configuration (an−x, q, ax$1b

m$2c
n+m, αγ), that is, αβ = αγ′γ. Thus, the computation continues as

(an−x+y, q, ax−y$1b
m$2c

n+m, αγ′γ) and further to (an−x+2y, q, ax−2y$1b
m$2c

n+m, αγ′γ′γ).
Similarly, M enters a loop while processing infixes b+. Assume that during the computation of M on input

infixes b+ some combination of state and content of the pushdown store appears twice. If

(λ, q0, a
n$1b

m$2c
n+m,⊥) �∗ (an$1b

m1 , q′1, b
m−m1$2c

n+m, σ′
1) �+ (an$1b

m1+m2 , q′1, b
m−m1−m2$2c

n+m, σ′
1)

is the beginning of an accepting computation, then so is

(λ, q0, a
n$1b

m−m2$2c
n+m,⊥) �∗ (an$1b

m1 , q′1, b
m−m1−m2$2c

n+m, σ′
1),

but an$1b
m−m2$2c

n+m does not belong to L12. This implies that each height of the pushdown store may
appear only finitely often and, thus, that the height increases or decreases arbitrarily. Assume that the height
decreases arbitrarily. Then, for infinitely many n and m large enough M enters on input prefix an$1b

m−m1

with 0 ≤ m1 ≤ m a configuration in which the height of the pushdown store is bounded by a fixed number
only. Hence, some height of the pushdown store up to this fixed bound appears infinitely often which is a
contradiction. Thus, the height increases arbitrarily.

Next, we turn to the input suffixes. While M processes the input suffixes c+, again, no combination of state
and content of the pushdown store may appear twice. If

(λ, q0, a
n$1b

m$2c
n+m,⊥) �∗ (an$1b

m$2c
m1 , q′′1 , cn+m−m1 , σ′′

1 ) �+ (an$1b
m$2c

m1+m2 , q′′1 , cn+m−m1−m2 , σ′′
1 )

results in an accepting computation, then so does

(λ, q0, a
n$1b

m$2c
n+m−m2 ,⊥) �∗ (an$1b

m$2c
m1 , q′′1 , cn+m−m1−m2 , σ′′

1 ),

but an$1b
m$2c

n+m−m2 does not belong to L12, if m2 	= n. On the other hand, if m2 = n, we run through the
loop a second time: if

(λ, q0, a
n$1b

m$2c
n+m,⊥) �∗ (an$1b

m$2c
m1 , q′′1 , cn+m−m1 , σ′′

1 ) �+

(an$1b
m$2c

m1+m2 , q′′1 , cn+m−m1−m2 , σ′′
1 ) �+

(an$1b
m$2c

m1+2m2 , q′′1 , cn+m−m1−2m2 , σ′′
1 )

results in an accepting computation, then so does

(λ, q0, a
n$1b

m$2c
n+m−2m2 ,⊥) �∗ (an$1b

m$2c
m1 , q′′1 , cn+m−m1−2m2 , σ′′

1 ),

but an$1b
m$2c

n+m−2m2 = an$1b
m$2c

m−n does not belong to L12, since m2 = n.
This implies that each height of the pushdown store may appear only finitely often. Moreover, in any accepting

computation of inputs from L1 the pushdown store has to be decreased until some symbol of γ appears.
Otherwise, we could increase the number of a’s by y to drive M through an additional loop while processing the
input prefix. The resulting computation would also be accepting but the input does not belong to L12. Together
we conclude that M runs into a loop that decreases the height of the pushdown store while processing the c’s,
and that on inputs from L1 there are only finitely many combinations of state and content of the pushdown
store which are accepting.

Now, consider two different pairs (n1, m1) 	= (n2, m2) having the property � = n1 + m1 = n2 + m2,
n1, n2, m1, m2 > 0, and M accepts an1$1b

m1$2c
� and an2$1b

m2$2c
� in the same combinations of state and
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content of the pushdown store, say in state qa with γa in the pushdown store. We have the forward computa-
tions

(λ, q0, a
n1$1b

m1$2c
�,⊥) �n1+m1+2 (an1$1b

m1$2, q1, c
�, γ1) �� (an1$1b

m1$2c
�, qa, λ, γa), and

(λ, q0, a
n2$1b

m2$2c
�,⊥) �n2+m2+2 (an2$1b

m2$2, q2, c
�, γ2) �� (an2$1b

m2$2c
�, qa, λ, γa).

Since M is reversible, this implies that q1 = q2 and γ1 = γ2. Then, we end up in the same state and pushdown con-
tent on both inputs an1$1b

m1$2 and an2$1b
m2$2. Since an1$1b

m1$2c
m1 ∈ L12 and an2$1b

m2$2c
m2 ∈ L12, we ob-

tain that also the input an1$1b
m1$2c

m2 is in L12 which is a contradiction, since m2 	= m1 and n1 + m1 	= m2. �

Let us now establish closure and non-closure results for the language classes Lri, Lri,0, Mri, and Mri,0 starting
with the Boolean operations union, intersection, and complementation.

Theorem 5.2. Language class Lri is closed under complementation, but the language classes Lri,0, Mri, and
Mri,0 are not. Language classes Mri, and Mri,0 are not closed under union, but closed under intersection with
compatible signatures. Language class Lri is not closed under union and intersection with compatible signatures.
Language class Lri,0 is not closed under union with compatible signatures.

Proof. Language class Lri is closed under complementation, since each of the language classes L (REV-PDA)
and L (IDPDA) is closed under complementation. On the other hand, following the remark after Theorem 3.5
and the proof of Theorem 3.6, language L′

c = { an$bn | n ≥ 0 } is a witness for the non-closure of Mri under
complementation. Since L′

c is also accepted by some REV-IDPDA0, L′
c is also a witness for the non-closure

of Mri,0 under complementation. For the non-closure of Lri,0 under complementation we consider the language
{ an$bm | 0 ≤ m ≤ n } that belongs to Lri,0, but whose complement does not even belong to L (IDPDA0) by the
proof given in Theorem 4.5.

Next, we consider the closure of the language classes Mri,0 and Mri under intersection, which follows from the
standard cross product construction. In detail, let M = 〈Q, Σ, Γ, F, q0,⊥, δ〉 and M ′ = 〈Q′, Σ′, Γ ′, F ′, q′0,⊥, δ′〉
be two REV-IDPDA0, so that Σ and Σ′ are compatible. A REV-IDPDA0

M ′′ = 〈Q × Q′, Σ ∪ Σ′, Γ × Γ ′, F × F ′, (q0, q
′
0), (⊥,⊥), δ′′〉

accepting L(M) ∩ L(M ′) is constructed as follows. Let q, q̂ ∈ Q, q′, q̂′ ∈ Q′, Z ∈ Γ , Ẑ ∈ Γ \ {⊥}, Z ′ ∈ Γ ′, and
Ẑ ′ ∈ Γ ′ \ {⊥}.
• For a ∈ ΣD ∩ Σ′

D, we define δ′′D((q, q′), a, (Z, Z ′)) = ((q̂, q̂′), (Ẑ, Ẑ ′)(Z, Z ′))
with δD(q, a, Z) = (q̂, ẐZ) and δ′D(q′, a, Z ′) = (q̂′, Ẑ ′Z ′).

• For a ∈ ΣR ∩ Σ′
R, we define δ′′R((q, q′), a, (Z, Z ′)) = ((q̂, q̂′), λ)

with δR(q, a, Z) = (q̂, λ) and δ′R(q′, a, Z ′) = (q̂′, λ).
• For a ∈ ΣN ∩ Σ′

N , we define δ′′N ((q, q′), a, (Z, Z ′)) = ((q̂, q̂′), (Z, Z ′))
with δN (q, a, Z) = (q̂, Z) and δ′N (q′, a, Z ′) = (q̂′, Z ′).

• If δX or δ′X with X ∈ {D, R, N} is undefined for some triple (q, a, Z) or (q′, a, Z ′), then δ′′X is undefined as
well. Moreover, δ′′X with X ∈ {D, R, N} is undefined for all remaining input symbols a ∈ Σ ∪ Σ′.

Clearly, M ′′ accepts L(M) ∩ L(M ′). By construction, M ′′ is an IDPDA0. Furthermore, since M and M ′ are
reversible and both transition functions are simulated at the same time in one component each, it is possible to
compute the reverse transition in each component uniquely. Thus, M ′′ is reversible as well. The construction
for two given REV-IDPDA is identical.

To show the non-closure under union, we consider the witness language L12. By Lemma 5.1 it is sufficient to
show that L1 as well as L2 are accepted by REV-IDPDA0 with compatible signatures.

The basic idea to accept L1 is to push one symbol A for every a and b read and to pop one symbol A for
every c read. The detailed construction is similar to the construction given in Example 2.1. Again, the first a
read is marked by a special symbol Ā on the stack. Additionally, we have to take care of the special cases that
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the number of a’s or b’s might be zero. To be reversible in situations when the reverse transition function pops
some symbol, we add forward transitions for all possible symbols on top of the stack. Formally, we construct
a REV-IDPDA0 M1 = 〈Q1, Σ, Γ1, F1, q0,⊥, δ1〉 with state set Q1 = {q0, q1, . . . , q6, q+, q′+}, accepting states
F1 = {q+, q′+}, Γ1 = {A, Ā, B, B̄,⊥}, ΣD = {a, b}, ΣR = {c}, and ΣN = {$1, $2}. The transition functions δ1

and its reverse δ←1 are as follows. Let X denote all possible pushdown symbols from Γ1 and Y ∈ {A, Ā}.

REV-IDPDA0 forward
(1) δ1(q0, a, X) = (q1, ĀX)
(2) δ1(q0, $1,⊥) = (q4,⊥)
(3) δ1(q1, a, X) = (q1, AX)
(4) δ1(q1, $1, Y ) = (q2, Y )
(5) δ1(q2, b, X) = (q2, AX)
(6) δ1(q2, $2, Y ) = (q3, Y )
(7) δ1(q3, c, A) = (q3, λ)
(8) δ1(q3, c, Ā) = (q+, λ)
(9) δ1(q4, b, X) = (q5, ĀX)

(10) δ1(q4, $2,⊥) = (q′+,⊥)
(11) δ1(q5, b, X) = (q5, AX)
(12) δ1(q5, $2, Y ) = (q6, Y )
(13) δ1(q6, c, A) = (q6, λ)
(14) δ1(q6, c, Ā) = (q′+, λ)

REV-IDPDA0 backward
(1) δ←1 (q1, a, Ā) = (q0, λ)
(2) δ←1 (q4, $1,⊥) = (q0,⊥)
(3) δ←1 (q1, a, A) = (q1, λ)
(4) δ←1 (q2, $1, Y ) = (q1, Y )
(5) δ←1 (q2, b, A) = (q2, λ)
(6) δ←1 (q3, $2, Y ) = (q2, Y )
(7) δ←1 (q3, c, X) = (q3, AX)
(8) δ←1 (q+, c, X) = (q3, ĀX)
(9) δ←1 (q5, b, Ā) = (q4, λ)

(10) δ←1 (q′+, $2,⊥) = (q4,⊥)
(11) δ←1 (q5, b, A) = (q5, λ)
(12) δ←1 (q6, $2, Y ) = (q5, Y )
(13) δ←1 (q6, c, X) = (q6, AX)
(14) δ←1 (q′+, c, X) = (q6, ĀX)

The construction of a REV-IDPDA0 M2 for L2 is similar. The basic idea to accept L2 is to push one
symbol A for every a read and one symbol B for every b read, while one symbol B is popped for every c. Again,
the first a or b read is marked by a special symbol Ā or B̄ on the stack. M2 = 〈Q2, Σ, Γ2, F2, q0,⊥, δ2〉 with
Q2 = {q0, q1, q2, q3, q4, q+}, F2 = {q+}, Γ2 = {A, Ā, B, B̄,⊥}, ΣD = {a, b}, ΣR = {c}, and ΣN = {$1, $2}. The
transition functions δ2 and its reverse δ←2 are as follows. Let X denote all possible pushdown symbols from Γ2.

REV-IDPDA0 forward
(1) δ2(q0, a, X) = (q1, ĀX)
(2) δ2(q0, $1,⊥) = (q2,⊥)
(3) δ2(q1, a, X) = (q1, AX)
(4) δ2(q1, $1, A) = (q2, A)
(5) δ2(q1, $1, Ā) = (q2, Ā)
(6) δ2(q2, b, X) = (q3, B̄X)
(7) δ2(q2, $2,⊥) = (q+,⊥)
(8) δ2(q3, b, X) = (q3, BX)
(9) δ2(q3, $2, B) = (q4, B)

(10) δ2(q3, $2, B̄) = (q4, B̄)
(11) δ2(q4, c, B) = (q4, λ)
(12) δ2(q4, c, B̄) = (q+, λ)

REV-IDPDA0 backward
(1) δ←2 (q1, a, Ā) = (q0, λ)
(2) δ←2 (q2, $1,⊥) = (q0,⊥)
(3) δ←2 (q1, a, A) = (q1, λ)
(4) δ←2 (q2, $1, A) = (q1, A)
(5) δ←2 (q2, $1, Ā) = (q1, Ā)
(6) δ←2 (q3, b, B̄) = (q2, λ)
(7) δ←2 (q+, $2,⊥) = (q2,⊥)
(8) δ←2 (q3, b, B) = (q3, λ)
(9) δ←2 (q4, $2, B) = (q3, B)

(10) δ←2 (q4, $2, B̄) = (q3, B̄)
(11) δ←2 (q4, c, X) = (q4, BX)
(12) δ←2 (q+, c, X) = (q4, B̄X)

Altogether, we obtain that L1 as well as L2 are accepted by REV-IDPDA0 having the same signature. On
the other hand, Lemma 5.1 shows that the union of L1 and L2 does not even belong to Lri. Thus, Mri,0 and Lri,0

as well as Mri and Lri are not closed under union. Since Lri is closed under complementation, we can conclude
that Lri is not closed under intersection as well. �
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We continue with the closure properties under the operations concatenation, iteration, reversal, length-
preserving homomorphism, and inverse homomorphism, and obtain the non-closure under every such operation
for the language classes Lri, Lri,0, Mri, and Mri,0.

Theorem 5.3. Language classes Lri, Lri,0, Mri, and Mri,0 are neither closed under concatenation with compatible
signatures nor under iteration.

Proof. Let us first note that it can be shown similar to the proof given in Lemma 5.1 that language L′
12 =

{ an$1#bm$2c
� | �, m, n ≥ 0 and (� = m+n or � = m) } is not accepted by any REV-PDA. Now, we consider the

following languages L′
1 = { an$1#bm$2c

� | �, m, n ≥ 0 and � = m + n } ∪ { #bm$2c
m | m ≥ 0 } and L′

2 = { an$1 |
n ≥ 0 }. We give an informal description of the constructions only, since the formal constructions are similar to
those presented in the proof of Theorem 5.2. First, we describe how L′

1 can be accepted by some REV-IDPDA0.
The basic idea is to check whether or not the input starts with a∗$1 and to store this information in the state
set. If the input starts with a∗$1, then symbols A while reading a’s and b’s are pushed on the stack which are
popped while reading c’s. The input is accepted if it is correctly formatted and the stack is empty up to ⊥.
If the input starts with #b∗$2, then symbols A while reading b’s are pushed on the stack which are popped
while reading c’s. Again, the input is accepted if it is correctly formatted and the stack is empty up to ⊥. A
REV-IDPDA0 accepting L′

2 pushes symbols A while reading a’s and accepts if the input is correctly formatted.
Thus, L′

1 and L′
2 are accepted by REV-IDPDA0 with compatible signatures.

Next, we show that L′
2L

′
1 is not accepted by any REV-PDA, and therefore does not belong to Lri. Assume

that L′
2L

′
1 is accepted by some REV-PDA. Since L (REV-PDA) is closed under intersection with reversible

regular languages [16], we obtain that L′
2L

′
1 ∩ a∗$1#b∗$2c

∗ = L′
12 is accepted by some REV-PDA which is a

contradiction.
To obtain the non-closure under iteration we first show that L′

1 ∪ L′
2 belongs to Mri,0. The construction

is nearly identical to the above-described construction of a REV-IDPDA0 for L′
1. The only difference is that

an accepting state is also entered after reading some prefix a∗$1. Now, we assume that Mri,0, Mri, Lri,0, or Lri

is closed under iteration. Then (L′
1 ∪ L′

2)∗ ∩ a∗$1#b∗$2c
∗ = L′

12 belongs to L (REV-PDA) which is again a
contradiction. �

Theorem 5.4. Language classes Lri, Lri,0, Mri, and Mri,0 are not closed under reversal.

Proof. We consider L′ = { c�$2b
m$1a

n | �, m, n ≥ 0 and (� = m or � = m + n) } which can be accepted by a
REV-IDPDA which is similarly constructed as in the proofs of Theorems 5.2 and 5.3. Basically, symbols A are
pushed on the stack while reading c’s which are popped while reading b’s and a’s. The input is accepted if it is
correctly formatted and the stack is empty up to ⊥ after reading $1 or at the end of the input. On the other
hand, the reversal (L′)R equals L12 = L1 ∪ L2 which does not belong to Lri due to Lemma 5.1. This shows the
non-closure under reversal for the classes Lri and Mri.

Next, consider language L′′ = { bm$an | m > n ≥ 0 }. Clearly, L′′ can be accepted by some REV-IDPDA0

and, therefore, L′′ belongs to Mri,0 as well as Lri,0. On the other hand, (L′′)R = { an$bm | m > n ≥ 0 }. It is
shown in the proof of Theorem 4.2 that (L′′)R is not even accepted by any IDPDA0. This shows the non-closure
under reversal for the classes Lri,0 and Mri,0. �

Theorem 5.5. Language classes Lri, Lri,0, Mri, and Mri,0 are not closed under intersection with regular languages,
but closed under intersection with reversible regular languages.

Proof. We consider the Dyck language

L′ = {w ∈ {a, b}∗ | |w|a = |w|b and |w′|a ≥ |w′|b for every prefix w′ of w }
and present a REV-IDPDA0 accepting L′. Let M = 〈Q, Σ, Γ1, F, q0,⊥, δ〉 with Q = {q0, q1}, F = {q0}, Γ =
{A, Ā,⊥}, ΣD = {a}, ΣR = {b}, and ΣN = ∅. The transition functions δ and its reverse δ← are as follows. Let
X denote all possible pushdown symbols from Γ .
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REV-IDPDA0 forward
(1) δ(q0, a, X) = (q1, ĀX)
(2) δ(q1, a, X) = (q1, AX)
(3) δ(q1, b, A) = (q1, λ)
(4) δ(q1, b, Ā) = (q0, λ)

REV-IDPDA0 backward
(1) δ←(q1, a, Ā) = (q0, λ)
(2) δ←(q1, a, A) = (q1, λ)
(3) δ←(q1, b, X) = (q1, AX)
(4) δ←(q0, b, X) = (q1, ĀX)

Assume that Lri is closed under intersection with regular languages. Then L′ ∩ a∗b∗ = Lc belongs to Lri which
is a contradiction.

The closure under intersection with reversible regular languages can be shown similar to the constructions
for IDPDA0 in Lemma 4.1 and for REV-PDA given in [16]. The basic idea is to use the standard cross product
construction and to simulate a reversible deterministic finite automaton in a second component. �

Theorem 5.6. Language classes Lri, Lri,0, Mri, and Mri,0 are neither closed under length-preserving homomor-
phism nor under inverse homomorphism.

Proof. Language L′
c = { an$bn | n ≥ 0 } belongs to Mri,0. On the other hand, let us consider the length-preserving

homomorphism h mapping a to c, $ to $, and b to c. Then, h(L′
c) = { cn$cn | n ≥ 0 } = Ls which is not accepted

by any IDPDA.
To show the non-closure under inverse homomorphism, we consider the language L′′ = { a2n$b2n | n ≥ 0 }

which clearly belongs to Mri,0 and a homomorphism h mapping a to aa, $ to $, and b to b. Then h−1(L′′) =
{ an$b2n | n ≥ 0 } = L′

d which is not accepted by any IDPDA. �

Corollary 5.7. Language classes Lri, Lri,0, Mri, and Mri,0 are anti-AFLs.

Remark 5.8. The closure properties discussed in this section are summarized in Tables 1 and 2, where also
the closure properties of the language classes REG, DCFL, L (IDPDA), and L (REV-PDA) are listed. The
proofs for the latter classes may be found in [1, 2, 16]. The non-closure of the class L (IDPDA) under union,
intersection, and concatenation in case of incompatible signatures is discussed in [21]. To obtain the non-
closure of Lri, Lri,0, Mri, and Mri,0 under intersection we consider the languages { an$1b

n$2c
m | n, m ≥ 0 } and

{ an$1b
m$2c

m | n, m ≥ 0 }. It is not difficult to show following the previous constructions that each language
can be accepted by some REV-IDPDA0. However, the intersection of both languages yields a non-context-free
language. The non-closure under union and concatenation of Lri, Lri,0, Mri, and Mri,0 in case of incompatible
signatures follows from the non-closure results for the corresponding operations with compatible signatures.

Table 1. Closure properties of the language classes discussed. Symbols ∪c and ∩c denote
union and intersection with compatible signatures. Such operations are not defined for finite
automata, deterministic pushdown automata, and REV-PDA and marked with ‘—’.

∪ ∪c ∩ ∩c ∩REG ∩REGrev

REG yes yes — yes — yes yes

DCFL yes no — no — yes yes

L (IDPDA) yes no yes no yes yes yes

L (IDPDA0) no no yes no yes yes yes

L (REV-PDA) yes no — no — no yes

Lri yes no no no no no yes

Lri,0 no no no no ? no yes

Mri no no no no yes no yes

Mri,0 no no no no yes no yes
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Table 2. Further closure properties of the language classes discussed. Symbol ·c denotes con-
catenation with compatible signatures. By hl.p. we denote length-preserving homomorphisms.

· ·c ∗ hl.p. h−1 R

REG yes — yes yes yes yes

DCFL no — no no yes no

L (IDPDA) no yes yes no no yes

L (IDPDA0) no yes yes no no no

L (REV-PDA) no — no no yes no

Lri no no no no no no

Lri,0 no no no no no no

Mri no no no no no no

Mri,0 no no no no no no

Remark 5.9. Finally, we have to discuss the closure properties of language class L (IDPDA0). The closure
under union, intersection, and concatenation with compatible signatures and under iteration can be shown
the same way as for language class L (IDPDA). The constructions for union and intersection are standard
cross product constructions in which both IDPDA0 are simulated at the same time. For union we should note
that both IDPDA are prepared in such a way that they enter a non-accepting state whenever they would
remove the symbol ⊥. This avoids that the overall simulation gets stuck in case of one IDPDA0 getting stuck.
The non-closure under union, intersection and concatenation follows from Remark 5.8. The non-closure under
complementation can be shown using language { an$bm | 0 ≤ m ≤ n } and its complement that does not belong
to L (IDPDA0). The non-closure under reversal, length-preserving homomorphism, and inverse homomorphism
follows by the same arguments as given in Theorems 5.4 and 5.6. The closure under intersection with regular
languages is shown in Lemma 4.1.

6. Conclusions

In this paper, we have investigated variants of real-time deterministic pushdown automata restricted to re-
versible, input-driven, or reversible and input-driven computations. It turned out that each restriction leads to
a different language class properly lying inside the real-time deterministic context-free languages. In the second
part of the paper, we have also studied the closure properties of these language classes and we obtained results
for all of the commonly studied closure properties such as the Boolean operations, concatenation, Kleene star,
reversal, homomorphism, and inverse homomorphism. One topic of further research may be the investigation of
decidability questions for these restricted real-time deterministic pushdown automata. It may happen that ques-
tions which are undecidable for real-time deterministic pushdown automata become decidable for the restricted
variants. On the other hand, questions which are decidable for real-time deterministic pushdown automata may
exhibit another computational complexity in the restricted cases.
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