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THE AVERAGE LOWER REINFORCEMENT NUMBER OF A GRAPH
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Abstract. Let G = (V (G), E(G)) be a simple undirected graph. The reinforcement number of a graph
is a vulnerability parameter of a graph. We have investigated a refinement that involves the average
lower reinforcement number of this parameter. The lower reinforcement number, denoted by re∗(G),
is the minimum cardinality of reinforcement set in G that contains the edge e∗ of the complement
graph G. The average lower reinforcement number of G is defined by rav(G) = 1

|E(G)|
∑

e∗∈E(G) re∗(G).

In this paper, we define the average lower reinforcement number of a graph and we present the exact
values for some well−known graph families.

Mathematics Subject Classification. 05C40, 05C69, 68M10, 68R10.

1. Introduction

Graph theory has seen an explosive growth due to interaction with areas like computer science, operation
research, etc. Especially, it has become one of the most powerful mathematical tools in the analysis and study
of the architecture of a network. It is known that communication systems are often exposed to failures and
attacks [26, 32]. The problem of quantifying the vulnerability of graphs has received much attention recently,
especially in the field of computer, communication and spy networks. In a network, the vulnerability parameters
measure the resistance of the network to disruption of operation after the failure of certain stations or links [27].
A network is described as an undirected and unweighted graph in which vertices represent the processing and
edges represent the communication channel between them [26,27].

In the literature, various measures have been defined to measure the robustness of network and a variety
of graph theoretic parameters have been used to derive formulas to calculate network vulnerability. The best
known measure of reliability of a graph is its connectivity. The vertex (edge) connectivity is defined to be
the minimum number of vertices (edges) whose deletion results in a disconnected or trivial graph [15]. Then
toughness [12], integrity [7], domination number [17], bondage number [4,5], reinforcement number [23] etc. have
been proposed for measuring the vulnerability of networks. Recently, some average vulnerability parameters
such as average lower independence number [3, 10, 18], average lower domination number [2, 6, 18, 30], average
connectivity number [9,19], average lower connectivity number [1] and average lower bondage number [31] have
been defined.
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Let G = (V (G), E(G)) be a simple undirected graph. We begin by recalling some standard definitions that we
need throughout this paper. For any vertex v ∈ V (G), the open neighborhood of v is NG(v) = {u ∈ V (G)| uv ∈
E(G)} and closed neighborhood of v is NG[v] = NG(v)∪{v}. The degree of vertex v in G denoted by dG(v), that
is the size of its open neighborhood [17]. The maximum degree of G is max {dG(v)| v ∈ V (G)} and denoted by
Δ(G). The complement G of a graph G has V (G)as its vertex sets, but two vertices are adjacent in G if only
if they are not adjacent in G. The largest integer not greater than x is denoted by �x�. A set S ⊆ V (G) is a
dominating set if every vertex in V (G) − S is adjacent to at least one vertex in S. The minimum cardinality
taken over all dominating sets of G is called the domination number of G and it is denoted by γ(G) [17].

The study of domination in graphs is an important research area, perhaps also the fastest-growing area within
graph theory. The reason for the steady and rapid growth of this area may be the diversity of its applications to
both theoretical and real world problems [17]. When investigating the domination number of a given graph G,
one may want to learn the answer of the following question: how many edges need to be added to decrease the
domination number of the original graph? One of the vulnerability parameters known as reinforcement number
in a graph G answers this question. The reinforcement number r(G) was introduced by Kok and Mynhardt [23]
and is defined as follows:

r(G) = min{|R| : R ⊆ E(G), γ(G) > γ(G + R)}.
If γ(G) = 1, then r(G) = 0 is defined. Furthermore, a set R ⊆ E(G) is a reinforcement set if γ(G) > γ(G + R).
The reinforcement problem applies to a variety of settings modeled by graphs where dominators have costs but
where edges can be added to the graph (incurring less cost), eliminating the need for some of the dominators.
For example, in a network it might be very expensive to set up a new mirror of a database, but relatively cheap
to add a link [8]. The reinforcement number has received much research attention (see, for example, [8, 22]),
and its many variations have also been well described and studied in graph theory, including total reinforce-
ment [20,29], independence reinforcement [33], fractional reinforcement [11,13], weak reinforcement [14], strong
reinforcement [16], roman reinforcement [28], signed reinforcement [24], k-reinforcement [8] and so on. Further-
more, the complexities of reinforcement numbers have been studied in [8, 21, 25].

In 2004, Henning introduced the concept of average domination and average independence [18]. Finding
largest dominating sets and independent sets in graphs is the problem which is closely in relation with the
concept of average domination and average independence. Also, the average lower domination and average
lower independence number are the theoretical vulnerability parameters for a network that is represented by a
graph [6, 18]. The average lower domination number of a graph G, denoted by γav(G), is defined as:

γav(G) =
1

|V (G)|
∑

v∈V (G)
γv(G),

where the lower domination number, denoted by γv(G), is the minimum cardinality of a dominating set of the
graph G that contains the vertex v [18].

The average parameters have been found to be more useful in some circumstance than the corresponding
measures based on worst-case situation [19]. Thus incorporating the concept of the reinforcement number and
the idea of the average lower domination number, we will introduce a new graph parameter called the average
lower reinforcement number, denoted by rav(G). This paper is organized as follows: In Section 2, we define
the average lower reinforcement number and determine upper bounds, lower bounds and exact solutions of the
average lower reinforcement number for any graph. In Section 3, we compute the average lower reinforcement
number of well−known families of graphs. In Section 4, we discuss the use of the average number in order to
distinguish between two graphs. Finally, in Section 5, we present our conclusions.

2. The average lower reinforcement number

In this section, we introduce a new graph theoretical parameter, the average lower reinforcement number
For an edge e∗ of a graph G, the lower reinforcement number, denoted by re∗(G), is the minimum cardinality
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Figure 1. The graphs G and its complement graph G.

Table 1. The reinforcement sets and lower reinforcement number of every edge e∗i ∈ E(G).

Edges The reinforcement sets with minimum cardinality re∗i (G)

e∗1 {e∗1, e∗3} , {e∗1, e∗2} 2
e∗2 {e∗2, e∗3} , {e∗2, e∗1} , {e∗2, e∗5} 2
e∗3 {e∗3} 1
e∗4 {e∗4, e∗3} 2
e∗5 {e∗5, e∗3} , {e∗5, e∗2} 2

of reinforcement set in G that contains the edge e∗. Clearly, r(G) = min{re∗(G) | e∗ ∈ E(G)}. Furthermore, the
average lower reinforcement number is defined as:

rav(G) =
1∣∣E(G)
∣∣ ∑e∗∈E(G)

re∗(G).

If γ(G) = 1 then, rav(G) = 0 is defined.

Corollary 2.1. If Kn is a complete graph of order n, then rav(Kn) = 0.

Corollary 2.2. If K1,n is a star graph of order n + 1, then rav(K1,n) = 0.

Definition 2.3 ([17]). The wheel graph W1,n with n spokes is a graph that contains an n-cycle and one
additional central vertex vc that is adjacent to all vertices of the cycle. Wheel graph W1,n has (n + 1)-vertices
and 2n-edges.

Corollary 2.4. If W1,n is a wheel graph of order n + 1, then rav(W1,n) = 0.

Example 2.5. Let the graph G be 4-cycle with one additional vertex and edge. The graph G and its complement
graph G as shown in Figure 1.

The reinforcement sets and lower reinforcement number of every edge e∗i ∈ E(G) is presented in Table 1.
Since we have re∗

1
(G) = 2, re∗

2
(G) = 2, re∗

3
(G) = 1, re∗

4
(G) = 2 and re∗

5
(G) = 2, rav(G) =

(2 + 2 + 1 + 2 + 2)/5 = 1.8.

Theorem 2.6. If G is a connected graph of order n, then

r(G) � rav(G) �
(r(G))2 +

((
n
2

)
− |E(G)| − r(G)

)
(r(G) + 1)(

n
2

)
− |E(G)|

·
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Proof. Let R be the set including the minimum reinforcement sets. We have two cases depending on the
cardinality of R.

Case 1. Let |R| = 1. Clearly the minimum reinforcement set is unique and it is denoted by R∗. Let
e∗1, e∗2, . . . , e

∗
|R∗| be elements of R∗. Then, we get re∗

i
(G) = r(G) for every e∗i ∈ R∗, where i ∈ {1, 2, . . . , |R∗|}. It

is not difficult to see that rei(G) = r(G) + 1 for every ei ∈ E(Kn)\(E(G) ∪ R∗). Thus, we have

rav(G) =
1∣∣E (G)∣∣

⎛
⎝ ∑

e∗
i ∈ R∗

re∗
i
(G) +

∑
ei∈ E(Kn)\(E(G)∪R∗)

rei (G)

⎞
⎠

=
1(

n
2

)
− |E(G)|

(
r(G) |R∗| +

((
n
2

)
− |E(G)| − |R∗|

)
(r(G) + 1)

)
·

Clearly, |R∗| = r(G). So, we have rav(G) =
(r(G))2+

((
n
2

)
−|E(G)|−r(G)

)
(r(G)+1)

(
n
2

)
−|E(G)|

is also an upper bound.

Case 2. Let |R| > 1. If the union of reinforcement set is equal to E(G), then the lower reinforcement number
is r(G) for every edge of E(G). Thus we get r(G) = rav(G). Clearly, if the union of reinforcement set is not
equal to E(G), then we get r(G) < rav(G). So, we have r(G) � rav(G), that is, r(G) is a lower bound for the
average lower reinforcement number.

By Cases 1 and 2, we get r(G) � rav(G) �
(r(G))2+

((
n
2

)
−|E(G)|−r(G)

)
(r(G)+1)

(
n
2

)
−|E(G)|

·

The proof is completed. �
Theorem 2.7. If G is a connected graph of order n with the domination number γ(G) = 2 and a vertex of G
with maximum degree is unique, then

rav(G) =
(n − Δ(G) − 1)2 +

((
n
2

)
+ Δ(G) + 1 − n − |E(G)|

)
(n − Δ(G))(

n
2

)
− |E(G)|

·

Proof. Let G be the connected graph with the domination number γ(G) = 2, and let v be the vertex with
maximum degree. Since the vertex v is unique, the r(G)-reinforcement set is unique. Then this set only includes
edges which are incident to the vertex v. The number of these edges is n−Δ(G)− 1, and let E∗ be the set that
includes these edges. So, these edges are labeled by e∗1, e∗2, . . . , e

∗
n−Δ(G)−1. Clearly, re∗

i
(G) = n − Δ(G) − 1 is

obtained for every edge e∗i of E∗. Furthermore, we get rei (G) = n − Δ(G) for every edge ei ∈ E(G)\E∗, where

i ∈ {1, 2, . . . , ((n
2 ) + Δ(G) + 1 − n − |E(G)|)}.

Thus, we have

rav(G) =
1∣∣E (G)∣∣

⎛
⎝ ∑

e∗
i ∈ E∗

re∗
i
(G) +

∑
ei∈ E(G)\E∗

rei(G)

⎞
⎠

=
1(

n
2

)
− |E(G)|

(
(n − Δ(G) − 1)2 +

((
n
2

)
+ Δ(G) + 1 − n − |E(G)|

)
(n − Δ(G))

)
.

As a result, the proof is completed. �
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Definition 2.8 ([17]). Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2))be graphs. Let G be a join graph
G1+G2. The vertices and edges of join graph G are V (G) = V (G1)∪V (G2) and E(G) = E(G1)∪E(G2)∪{uv| u ∈
V (G1) , v ∈ V (G2)}, respectively.

Theorem 2.9 ([23]). Let G1 be a connected graph of order n1 and size m1, and let G2 be a connected graph
of order n2 and size m2. Let the domination numbers γ(G1) � 2 and γ(G2) � 2 . Then, r(G1 + G2) =
min {n1 − Δ(G1) − 1, n2 − Δ(G2) − 1}.

Theorem 2.10. Let G1 be a connected graph of order n1 and size m1, and let G2 be a connected graph of
order n2 and size m2. If the domination numbers γ(G1) � 2 and γ(G2) � 2, then

(a) If p1 > p2, then rav(G1 + G2) � p2(n2
2−n2−2m2)+(p2+1)(n2

1−n1−2m1)
n2

1+n2
2−(n1+n2)−2(m1+m2)

;

(b) If p2 > p1, then rav(G1 + G2) � p1(n2
1−n1−2m1)+(p1+1)(n2

2−n2−2m2)
n2

1+n2
2−(n1+n2)−2(m1+m2)

;

(c) If p1 = p2, then rav(G1 + G2) � p1,

where p1 = n1 − Δ(G1) − 1 and p2 = n2 − Δ(G2) − 1.

Proof. Let G = G1 + G2. Let e∗1, e∗2, . . . , e
∗
X be edges of G1, where X =

(
n2

1 − n1 − 2m1

)/
2, and let

e∗∗1 , e∗∗2 , . . . , e∗∗Y be edges of G2, where Y =
(
n2

2 − n2 − 2m2

)/
2. Furthermore, we have r(G) = min {p1, p2}

by Theorem 2.3. We analyze three cases depending on p1 and p2.

Case 1. Suppose that p1 > p2. We know r(G) = p2 by Theorem 2.9. If the degree of every vertex of G2 is Δ(G2),
that is the graph G2 is regular, then obviously the cardinality of every reinforcement set is p2. Furthermore,
every edge of G2 belongs to any reinforcement set. So, we have re∗∗

i
(G) = p2 for every e∗∗i ∈ E

(
G2

)
. If the

graph G2 is not regular, some edges may not belong to any reinforcement set. Clearly, we have re∗∗
i

(G) = p2 +1
for these edges. As a result, we get re∗∗

i
(G) = p2 or re∗∗

i
(G) = p2 + 1 for every e∗∗i ∈ E

(
G2

)
, depending on e∗∗i

is or not in a reinforcement set. It is not difficult to see that we get re∗
i
(G) = p2 + 1 for every e∗i ∈ E

(
G1

)
since

e∗i is not in any reinforcement set. Thus,

rav(G) =
1∣∣E (G)∣∣

⎛
⎜⎝ ∑

e∗
i ∈ E(G1)

re∗
i
(G) +

∑
e∗∗

i ∈ E(G2)
re∗∗.

i
(G)

⎞
⎟⎠

� 1∣∣E (G1

)∣∣+ ∣∣E (G2

)∣∣ ((p2 + 1)
∣∣E (G1

)∣∣+ p2

∣∣E (G2

)∣∣)

�
(p2 + 1)

(
n2

1−n1−2m1
2

)
+ p2

(
n2

2−n2−2m2
2

)
n2

1+n2
2−(n1+n2)−2(m1+m2)

2

�
p2

(
n2

2 − n2 − 2m2

)
+ (p2 + 1)

(
n2

1 − n1 − 2m1

)
n2

1 + n2
2 − (n1 + n2) − 2 (m1 + m2)

·

As a result, we get rav(G1 + G2) � p2(n2
2−n2−2m2)+(p2+1)(n2

1−n1−2m1)
n2

1+n2
2−(n1+n2)−2(m1+m2)

.
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Case 2. Suppose that p2 > p1. The proof of Case 2 is similar to that of Case 1 and is omitted.

Case 3. Suppose that p1 = p2. Clearly, r(G) = p1 = p2. If G1 and G2 are regular, then we have re∗
i
(G) = p1 = p2

for every e∗i ∈ E
(
G
)
. As a result, rav(G1+G2) = p1, which is also a lower bound. Then, we get rav(G1+G2) � p1.

By Cases 1, 2 and 3 the proof is completed. �

3. The average lower reinforcement number of some well−known graph

families

In this section, we calculate the average lower reinforcement number of well−known graphs such as the path
graph Pn, cycle graph Cn and complete bipartite graph Ka,b. Now, we recall a basic result for the reinforcement
numbers of path and cycle graph.

Theorem 3.1 ([23]). Let n � 4 be an integer and write n as n = 3k + i, where k is an integer and i ∈ {1, 2, 3}.
Then r(Pn) = r(Cn) = i.

Theorem 3.2. Let Pn be a path graph of order n, where n � 4. Then,

rav(Pn) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

28n2 − 90n + 90
9n2 − 27n + 18

, if n ≡ 0 (mod3);

16n2 − 56n + 40
9n2 − 27n + 18

, if n ≡ 1 (mod3);

22n2 − 76n + 64
9n2 − 27n + 18

, if n ≡ 2 (mod3).

Proof. Let k, m and s be integer, and also let {v1, v2, . . . , vn−1, vn} be the vertices of Pn. Some notations are
used in order to make the proof of theorem understandable. Let vkand vmbe any two vertices of Pn. If these
two vertices are not adjacent in the graphPn, then the edge between these two vertices is denoted by e∗(vk)(vm)

in the graph Pn. Observe that
∣∣E (Pn

)∣∣ = n2−3n+2
2 . Let E

(
Pn

)
= R∗ ∪E∗, where the set R∗ is the set of edges

that are the elements of reinforcement sets. If e∗(vk)(vm) ∈ R∗, then re∗
(vk)(vm)

(Pn) = r(Pn). If e∗(vk)(vm) /∈ R∗,
then we have re∗

(vk)(vm)
(Pn) = r(Pn) + 1. In order to calculate the average lower reinforcement number of Pn,

we analyze three cases depending on n.

Case 1. n ≡ 0 (mod 3).
We have r(Pn) = 3 by Theorem 3.1. The edges do not belong to any reinforcement set as follows:

E∗ =
{

e∗∗(v3k)(v3m+1)| 1 � k � n − 6
3

and k + 1 � m � n − 3
3

}
∪
{
e∗∗(v1)(vn)

}
·

Clearly |E∗| = n2−9n+36
18 . Since

∣∣E(Pn)
∣∣ = |E∗| + |R∗| it is follows that |R∗| = 4n2−9n−9

9 . Let e∗ ∈ R∗ and
e∗∗ ∈ E∗. So, we have re∗(Pn) = 3 and re∗∗(Pn) = 4 for every e∗ ∈ R∗ and e∗∗ ∈ E∗, respectively.

Thus, we get

rav(Pn) =
1

|R∗ ∪ E∗|

( ∑
e∗∈ R∗

re∗(Pn) +
∑

e∗∗∈ E∗
re∗∗(Pn)

)

=
1(

n2−3n+2
2

) (3 |R∗| + 4 |E∗|)

=
28n2 − 90n + 90
9n2 − 27n + 18

·
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Case 2. n ≡ 1 (mod 3).
We have r(Pn) = 1 by Theorem 3.1. The edges belong to any reinforcement set as follows: R∗ ={

e∗(vk)(vk+3m+2)
| (1 � k � n − 2 and k �= 3s) and 0 � m �

⌊
n−1−k

3

⌋ }
.

Clearly |R∗| = n2+n−2
9 . Since

∣∣E(Pn)
∣∣ = |E∗| + |R∗| it is follows that |E∗| = 7n2−29n+22

18 . Let e∗ ∈ R∗ and
e∗∗ ∈ E∗. Thus we have re∗(Pn) = 1 and re∗∗(Pn) = 2 for every e∗ ∈ R∗and e∗∗ ∈ E∗, respectively. Then the
rest of proof is similar to Case 1. As a result, we get rav(Pn) = 16n2−56n+40

9n2−27n+18 .

Case 3. n ≡ 2 (mod 3).
We have r(Pn) = 2 by Theorem 3.1. The edges do not belong to any reinforcement set as fol-
lows: E∗ = E1 ∪ E2, where E1 = {e∗∗(vk)(vk+3m+4)

| 1 � k � n − 4 and 0 � m �
⌊

n−4−k
3

⌋ } and E2 =

{e∗∗(v3k)(v3m)| 1 � k � n−5
3 and k + 1 � m � n−2

3 }. Clearly |E1| = n2−5n+6
6 , and |E2| = n2−7n+10

18 . Since∣∣E(Pn)
∣∣ = |E∗|+ |R∗| it is follows that |R∗| = 5n2−5n−10

18 . Let e∗ ∈ R∗ and e∗∗ ∈ E∗. Thus we have re∗(Pn) = 2
and re∗∗(Pn) = 3 for every e∗ ∈ R∗and e∗∗ ∈ E∗, respectively. Then the rest of proof is similar to Case 1. As a
result, we get rav(Pn) = 22n2−76n+64

9n2−27n+18 .

By Cases 1, 2 and 3 the proof is completed. �

Theorem 3.3. Let Cn be a cycle graph of order n, where n � 4. Then,

rav(Cn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3, if n ≡ 0 (mod3);

5n − 17
3n − 9

, if n ≡ 1 (mod3);

7n − 23
3n − 9

, if n ≡ 2 (mod3).

Proof. Let k, m and s be integer, and also let {v1, v2, . . . , vn−1, vn} be the vertices of Cn. Some notations are
used in order to make the proof of theorem understandable. Let vkand vmbe any two vertices of Cn. If these
two vertices are not adjacent in the graph Cn, then the edge between these two vertices is denoted by e∗(vk)(vm)

in the graph Cn. Observe that
∣∣E (Cn

)∣∣ = n2−3n
2 . Let E

(
Cn

)
= R∗ ∪ E∗ where the set R∗ is the set of edges

that are the elements of reinforcement sets. If e∗(vk)(vm) ∈ R∗, then re∗
(vk)(vm)

(Cn) = r(Cn). If e∗(vk)(vm) /∈ R∗,
then we have re∗

(vk)(vm)
(Cn) = r(Cn) + 1. In order to calculate the average lower reinforcement number of Cn,

we analyze three cases depending on n. �

Case 1. n ≡ 0 (mod 3).
We have r(Cn) = 3 by Theorem 3.1. It is clear that we get re∗(Cn) = 3 for every e∗ ∈ E(Cn). As a result, we
have rav(Cn) = 3.

Case 2. n ≡ 1 (mod 3). We have r(Cn) = 1 by Theorem 3.1. The edges belong to any reinforcement set as
follows: R∗ = {e∗(vk)(vk+3m+2)

| 1 � k � n − 2 ∧ 0 � m �
⌊

n−2−k
3

⌋}. Clearly |R∗| = n2−n
6 . Since

∣∣E(Cn)
∣∣ =

|E∗| + |R∗| it is follows that |E∗| = n2−4n
3 . Let e∗ ∈ R∗ and e∗∗ ∈ E∗. Then we have re∗(Cn) = 1 and

re∗∗(Cn) = 2 for every e∗ ∈ R∗ and e∗∗ ∈ E∗, respectively.
Thus, we get

rav(Cn) =
1

|R∗ ∪ E∗|

( ∑
e∗∈ R∗

re∗(Cn) +
∑

e∗∗∈ E∗
re∗∗(Cn)

)

=
1(

n2−3n
2

) (|R∗| + 2 |E∗|)

=
5n− 17
3n − 9

·
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Case 3. n ≡ 2 (mod 3).
We have r(Cn) = 2 by Theorem 3.1. The edges do not belong to any reinforcement set as fol-
lows: E∗ = E1 ∪ E2, where E1 = {e∗∗(vk)(vk+3m+4)

| 2 � k � n − 4 and 0 � m �
⌊

n−4−k
3

⌋} and E2 =

{e∗∗(vk)(vk+3m+4)
| k = 1 and 0 � m �

⌊
n−6

3

⌋}. Clearly |E∗| = n2−5n
3 . Since

∣∣E(Cn)
∣∣ = |E∗| + |R∗| it is follows

that |R∗| = n2−2n
3 . Let e∗ ∈ R∗ and e∗∗ ∈ E∗. We have re∗(Cn) = 2 and re∗(Cn) = 3 for every e∗ ∈ R∗ and

e∗∗ ∈ E∗, respectively. Then the rest of proof is similar to Case 2. As a result, we get rav(Cn) = 7n−23
3n−9 .

By Cases 1, 2 and 3 the proof is completed.

Theorem 3.4. If Ka,b is a complete bipartite graph of order a + b, where a � 2 and b � 2, then

rav(Ka,b) =

⎧⎨
⎩

a − 1, if a = b;
a(a − 1)2 + ab(b − 1)

a2 + b2 − a − b
, if a < b.

Proof. We have
∣∣E(Ka,b)

∣∣ = |E(Ka+b)| − ab. So,
∣∣E(Ka,b)

∣∣ = a2+b2−a−b
2 . If a � 2 and b � 2, then we have

γ(Ka,b) = 2 [17]. We study two cases depending on a and b. �

Case 1. Suppose that a = b. Let vi be a vertex of Ka,b, let R be the set including the minimum reinforcement
sets, and let Rvi be a minimum reinforcement set that contains the edges which are incident the vertex vi of
the complement graph Ka,b. Due to γ(Ka,b) = 2, we have r(Ka,b) = n − Δ(G) − 1 by Theorem 2.7. So, we get
r(Ka,b) = a− 1. Clearly the union of the sets Rvi is equal to E(Ka,b), and |Rvi | = a− 1 for every vi ∈ Ka,b. So,
we get the lower reinforcement number is a − 1 for every edge of E(Ka,b). Therefore rav(Ka,b) = a − 1.

Case 2. Suppose that a < b. Let V (Ka,b) = S1 ∪ S2, where the set S1 includes vertices with degree b and the
set S2 includes vertices with degree a. Let v1, v2, . . . , v|S1| be vertices of S1. Clearly, we have r(Ka,b) = a − 1
by Case 1 of Theorem 3.4, and there are (a2 − a)

/
2 edges that can be added between each pair of vertices of

S1. Let E1 includes these edges, and let ei be an edge of E1. Then we get rei (Ka,b) = a − 1 for every edge
of E1. Similarly, let v∗1 , v∗2 , . . . , v∗|S2| be vertices of S2. Clearly, there are (b2 − b)

/
2 edges that can be added

between each pair of vertices of S2. Let E2 includes these edges, and let e∗i be an edge of E2. Clearly, we get
re∗

i
(Ka,b) = r(Ka,b) + 1 = a for every edge of E2.
Thus we get

rav(Ka,b) =
1

|E1 ∪ E2|

⎛
⎝ ∑

ei ∈ E1

rei (Ka,b) +
∑

e∗
i ∈ E2

re∗
i
(Ka,b)

⎞
⎠

=
2

a2 + b2 − a − b

((
a2 − a

2

)
(a − 1) +

(
b2 − b

2

)
a

)

=
a(a − 1)2 + ab(b − 1)

a2 + b2 − a − b
·

By Cases 1 and 2 the proof is completed.

4. The vulnerability and the average lower reinforcement number

In this section, the notation of vulnerability of a graph is considered under the reinforcement set. Given
two graphs, one can ask the following question: is the average lower reinforcement number a suitable parame-
ter, regarding vulnerability? In other words, does the average lower reinforcement number distinguish between
them? Let G1 and G2 be the graphs presented in Figure 2. It can be easily seen that the connectivity, domi-
nation number, average lower domination number and reinforcement number of these graphs are equal such as
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Figure 2. The graphs G1 and G2 with 8-vertices and 7-edges.

k(G1) = k(G2) = 1, γ(G1) = γ(G2) = 2, γav(G1) = γav(G2) = 2.75 and r(G1) = r(G2) = 3. Furthermore, the
vertices and edges number of these graphs are equal such as |V (G1)| = |V (G2)| = 8 and |E(G1)| = |E(G2)| = 7.

The average lower reinforcement numbers of these two graphs G1 and G2 are rav(G1) = 81
21 , and rav(G2) = 78

21 .
The results could be checked by readers. Thus, the average lower reinforcement number may be used for
distinguish between these two graphs G1 and G2.

Another example, as one can see, when k � 1, r(P3k+1) = 1, r(P3k+2) = 2 and r(P3k+3) = 3. But, rav(Pn) =
16n2−56n+40
9n2−27n+18 (if n ≡ 1(mod3)), rav(Pn) = 22n2−76n+64

9n2−27n+18 (if n ≡ 2(mod3)), and rav(Pn) = 28n2−90n+90
9n2−27n+18 (if n ≡

0(mod3)). It is easy to see that the reinforcement number of Pn is always constant value. On the other hand,
the average lower reinforcement number of Pn is not constant, that is always variable value. Similarly, this
situation holds for the cycle Cn for n ≡ 1(mod3) and n ≡ 2(mod3).

These examples means that the average lower reinforcement number can be more efficient compared with the
other vulnerability parameters.

5. Conclusion

In this paper, we have presented a new graph theoretical parameter, called the average lower reinforcement
number. The present parameter has been constructed by summing the lower reinforcement number of every
edge of a complement graph G divided by the number of edges of G. Additionally, the stability of popular
interconnection networks has been studied and their average lower reinforcement numbers have been computed.
Then upper bounds, lower bounds and exact formulas of the average lower reinforcement number have been
obtained for any given graph G.

Acknowledgements. The authors are grateful to the editors and the anonymous referees for their constructive comments
and valuable suggestions which have helped us very much to improve the paper.
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[4] A. Aytaç, T. Turacı and Z.N. Odabaş, On The Bondage Number of Middle Graphs. Math. Notes 93 (2013) 803–811.
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