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COMPUTING DEPTHS OF PATTERNS

F. Blanchet-Sadri1 and Andrew Lohr2

Abstract. Pattern avoidance is an important research topic in combinatorics on words which dates
back to Thue’s construction of an infinite word over three letters that avoids squares, i.e., a sequence
with no two adjacent identical factors. This result finds applications in various algebraic contexts
where more general patterns than squares are considered. A more general form of pattern avoidance
has recently emerged to allow for undefined positions in sequences. New concepts on patterns such as
depth have been introduced and a number of questions have been raised, some of them we answer. In
the process, we prove a strict bound on the number of square occurrences in an unavoidable pattern,
and consequently, any pattern with more square occurrences than distinct variables is avoidable over
three letters. We also provide an algorithm that determines whether a given pattern is of bounded
depth, and if so, computes its depth.

Mathematics Subject Classification. 68R15.

1. Introduction

A pattern is a word (or sequence) over an alphabet Δ of variables, denoted by A,B,C, . . . A pattern p
is avoidable over some finite alphabet Σ if there exists an infinite word over Σ with no occurrence of p.
The terminology of avoidable pattern, although studied by Thue at the beginning of the twentieth century,
was introduced much later by Bean et al. [1] and by Zimin [18] who described a simple procedure to decide
avoidability. The problem of deciding whether a pattern is k-avoidable, i.e., avoidable over k letters, has however
remained open. Thus the problem of classifying the avoidability indices of all patterns over a fixed number of
variables has become subject of investigation [9, 16] (the smallest k such that a pattern is k-avoidable is its
avoidability index). Chapter 3 of [14] provides background on avoidable patterns. Currie [11] formulates a
number of open problems in pattern avoidance. Among recent results, let us mention that an eighteen-year old
conjecture from Cassaigne [9] regarding strict bounds for pattern avoidance got finally settled independently by
Blanchet-Sadri and Woodhouse [8] and by Ochem and Pinlou [17].

A more general form of pattern avoidance has recently emerged to allow for undefined positions. In this
context, partial words are sequences that may have such positions, called don’t care symbols or holes, that match
any letter of the alphabet (partial words without holes are total words). The occurrences of the same variable in a
pattern are replaced with pairwise “compatible” partial words. For example, an occurrence of the pattern AAA
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has the form uvw where u is compatible with both v and w, and v is compatible with w. Constructing an infinite
partial word with infinitely many holes that avoids a given pattern amounts to constructing an infinite set of
infinite total words that avoid the pattern. New research topics are being developed such as pattern avoidance
with respect to hole sparsity [2], abelian pattern avoidance [3], pattern avoidance using entropy compression [12],
pattern avoidance in partial permutations [10], to name a few.

Clearly AA is unavoidable due to occurrences of trivial squares of the form a� or �a, where a is a letter and
� is the hole symbol. In [15], it was shown that there exists a partial word with infinitely many holes over two
letters that avoids the pattern An, n ≥ 3, and so its avoidability index in partial words is 2. Reference [4, 5, 7]
provide, using “division” of patterns, the avoidability indices of all binary patterns, those over A and B, and
almost all ternary patterns, those over A, B and C, except for four patterns whose avoidability index was shown
to be between 2 and 5. To calculate the avoidability index of a pattern p, the lower bound is usually computed
using backtracking. For the upper bound, a HD0L system is built that consists of an inner morphism φ and of
an outer morphism ψ. Then ψ(φω(a)) is shown to avoid p, for some letter a.

In the process of classifying the ternary patterns with respect to partial word avoidability, new concepts such
as depth and shallowness, were introduced. More precisely, a k-unavoidable pattern p is (h, k)-deep if there
exists some m ∈ N such that every partial word w over a k-letter alphabet meets p whenever w has at least h
holes separated pairwise from each other and from the first and final position of w by factors of length m or
greater. A function δ : N \ {0, 1} → N is the depth function of an unavoidable pattern p if for all k the pattern
p is (δ(k), k)-deep and p is not (h, k)-deep for any h < δ(k). When the depth function of p is bounded, its
supremum is the depth of p. A pattern p is k-shallow if p is (0, k)-deep or (1, k)-deep. If p is k-shallow for all k,
then p is shallow.

A number of questions were raised [5]. Among them are the following:

1. If p1Ap2 is k-shallow and p1 and p2 are (h1, k)-deep and (h2, k)-deep respectively, is p1Ap2 (h1 +h2, k)-deep?
In general, what relation does the depth of p1Ap2 have with the depth of p1 and p2?

2. Can every partial word unavoidable pattern, that is not total word unavoidable, be written in the form of
([5], Cor. 2)? More precisely, let p be a pattern of only distinct variables over Δ and let 0 ≤ i < |p|. Define
digi(p) as a partial pattern that matches p except at position i where it is a hole. The corollary states that
if p0, p1, . . . , pn ∈ Δ∗ are compatible with factors of some digi(p) and A1, . . . , An are distinct variables not
in Δ, then p0A1p1 . . . Anpn is partial word unavoidable.

In relation to Question 1, it was mentioned that the classification of the depths of patterns may give insight;
this classification was completed in [5] though the problem remained open. In this paper, among other things,
we answer these questions.

The contents of our paper are as follows. In Section 2, we review a few basic concepts and notations. In
Section 3, we prove, in particular, a strict bound on the number of square occurrences in a pattern that is
partial word unavoidable, and consequently, any pattern with more square occurrences than distinct variables
is 3-avoidable in partial words. In Section 4, we exhibit an unavoidable pattern that cannot be written in the
form of ([5], Cor. 2), negatively answering Question 2 above. In Section 5, we answer Question 1 above. We
also provide an algorithm that determines if a given pattern has bounded depth, and if so, outputs its depth.
Finally in Section 6, we conclude with some open problems.

2. Basic concepts and notations

Let Σ be a finite alphabet of letters. Define Σ� = Σ∪{�}, where � �∈ Σ represents an undefined position or a
hole. A partial word over Σ is a sequence constructed from the concatenation of symbols from Σ� while a total
word over Σ is a partial word over Σ with no �’s. The symbol at position i of partial word w is denoted by w[i],
where the labelling of positions starts at 0. The length of a partial word w over Σ is the number of symbols
from Σ� that it contains; it is denoted by |w|. The empty word is denoted by ε; it is the sequence of length zero.
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The set of all total words (respectively, non-empty total words) over Σ is denoted by Σ∗ (respectively, Σ+),
while the set of all partial words (respectively, non-empty partial words) over Σ by Σ∗� (respectively, Σ+� ). The
sets Σ∗ and Σ∗

� equipped with the associative operation of concatenation form monoids, where ε acts as identity.
Similarly, the sets Σ+ and Σ+

� equipped with the associative operation of concatenation form semigroups.
If u, v are partial words over Σ of equal length, then u, v are compatible, denoted u ↑ v, if u[i] = v[i] for all i

such that u[i], v[i] ∈ Σ. If u, v are non-empty and compatible, then uv is a square. For example, ab�b is a square.
A partial word u is a factor of a partial word v if there exist x, y such that v = xuy. We denote by v[i..j]

(respectively, v[i..j)) the factor v[i] . . . v[j] (respectively, v[i] . . . v[j − 1]). A total word is a subword of v if it is
compatible with a factor of v. For example if we consider the partial word v = abcacb�bcbac over the alphabet
{a, b, c}, then u = cb�b is a factor of v and cbab, cbbb, cbcb are the three subwords of v compatible with u. A
completion of a partial word is a total word compatible with it. Returning to our example, cbab is one of the
three completions of cb�b.

Let Δ be an alphabet of variables, Σ∩Δ = ∅, and let p = A0 . . . An−1, where Ai ∈ Δ, be a pattern. The set of
distinct variables that occur in p is denoted by α(p). If a variable occurs only once in p, it is a singleton variable.
Define an occurrence of p in a partial word w over an alphabet Σ as a factor u0 . . . un−1 of w, where for all i,
ui �= ε, and for all i, j, if Ai = Aj , then ui ↑ uj . In other words, u0 . . . un−1 ↑ ϕ(p), where ϕ is any non-erasing
morphism from Δ∗ to Σ∗. We call such ϕ a meeting morphism. The partial word w meets the pattern p, or p
occurs in w, if for some factorization w = xuy, we have that u is an occurrence of p in w; otherwise, w avoids p
or w is p-free. For instance, ab�ba�bba meets ABBA (take the morphism ϕ(A) = bb and ϕ(B) = a), while �babb
avoids ABBA. These definitions also apply to (one-sided) infinite partial words over Σ, which are functions
from N to Σ�.

A pattern p ∈ Δ∗ is k-avoidable in partial words if for every integer h > 0 there is a partial word with h
holes over a k-letter alphabet that avoids p. If there is an infinite partial word over a k-letter alphabet with
infinitely many holes that avoids p, then p is obviously k-avoidable. On the other hand, if, for some integer
h ≥ 0, every long enough partial word in Σ∗� with h holes meets p, then p is k-unavoidable (it is unavoidable
over Σ). Finally, a pattern which is k-avoidable for some k is avoidable, and a pattern which is k-unavoidable for
every k is unavoidable. The avoidability index of a pattern p is the smallest integer k such that p is k-avoidable,
or is ∞ if p is unavoidable. Note that k-avoidability implies (k + 1)-avoidability.

If a pattern p occurs in a pattern q, then p divides q and denote this by p | q; for instance, AA � ABA but
AA | ABAB. Note that if p | q and an infinite partial word avoids p then it also avoids q, and so the avoidability
index of q is less than or equal to the avoidability index of p.

Throughout the paper, avoidable means avoidable in partial words unless otherwise stated.

3. Avoiding patterns

Any infinite partial word with at least one hole must meet A2, so A2 is clearly unavoidable in partial words.
The theorem below addresses the avoidability of all other patterns where each variable occurs at least twice.

Theorem 3.1. Let p be a pattern with |p| > 2 such that each variable in p occurs at least twice. Then p can be
avoided by an infinite total word over k letters, for some k, and there exists a partial word with infinitely many
holes over an alphabet of size k + 5 that avoids p. Moreover, if there are no squares of length two in p, there
exists a partial word with infinitely many holes over an alphabet of size k + 3 that avoids p.

Proof. By ([14], Cor. 3.2.10), p can be avoided by an infinite total word if each of its variables occurs at least
twice. Therefore, let w be an infinite total word over an alphabet Σ of cardinality k, such that w avoids p. Take
k′ = 1 if there are no squares of length two in p and k′ = 2 otherwise. There exist some a0, a1, . . . , a2k′ ∈ Σ (not
necessarily distinct) such that a0a1 . . . a2k′ occurs infinitely often as a factor ofw. We create a sequence of integers
{kj} as follows. Let k0 be the smallest positive integer where a0a1 . . . a2k′ = w[k0−k′]w[k0−(k′−1)] . . . w[k0+k′].
Define kj recursively so that kj+1 is the smallest integer with kj+1 > 4kj and a0a1 . . . a2k′ = w[kj+1−k′]w[kj+1−
(k′ − 1)] . . . w[kj+1 + k′].
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Define the alphabet Σ′ = Σ ∪ {b0, b1, . . . , b2k′}, where bi /∈ Σ for all i. We define the partial word w′ as
follows. If j ≡ 0 mod 6|p|, for 0 ≤ i ≤ k′ − 1 let w′[kj + i+1] = bk′+i+1 and w′[kj − i− 1] = bk′−i−1; also define
w′[kj ] = �. If j �≡ 0 mod 6|p|, let w′[i] = bk′ if i = kj , and let w′[i] = w[i] otherwise. Note that w′ is basically
w, except the factor b0 . . . bk′−1 � bk′+1 . . . b2k′ is inserted infinitely often, and between each two occurrences of
this factor, there are 6|p| − 1 instances of bk′ , where the distance between any two such instances is greater
than or equal to the distance from the first bk′ to the beginning of the partial word w′. This construction also
guarantees that for any i with w′[i] = b0, we must have w′[i + k′] = �. Likewise, for any i with w′[i] = b2k′ ,
w′[i− k′] = �. Thus b0 and b2k′ can be viewed as “sentinel” letters on the left and right of the holes in w′.

The partial word w′ is well-defined, and its letters come from an alphabet of size k + 2k′ + 1. We show that
w′ avoids p by assuming that w′ meets p and reaching a contradiction. Set p = A0 . . . A|p|−1, where each Ai is
a variable in Δ. Define j0 and j1 so that u = u0 . . . u|p|−1 = w′[j0..j1] is a factor of w′ such that if Ai = Aj then
ui ↑ uj , i.e., u is an occurrence of p in w′.

Two occurrences of the same variable A in p, say Ai and Ai′ , where i < i′, correspond to partial words ui, ui′

such that ui ↑ ui′ . Moreover, there exist s, t, and n, s ≤ s+ n < t ≤ t + n, so that ui = w′[s] . . . w′[s+ n] and
ui′ = w′[t] . . . w′[t + n]. Let J1 = {j | s ≤ kj ≤ s + n} and J2 = {j | t ≤ kj ≤ t + n}. We show that |J2| ≤ 1,
thus |J1| ≤ 2. Assume for the sake of contradiction that |J2| > 1, so there exists j ∈ J2 such that j + 1 ∈ J2.
However,

n = t+ n− t ≥ kj+1 − kj > kj > s+ n ≥ n,

a contradiction. For the second inequality, if we assume |J1| > 2, there are at least two occurrences of the letter
bk′ in ui, and for each such occurrence there must also be an occurrence of bk′ or � in ui′ . This would imply the
contradiction |J2| > 1, therefore |J1| ≤ 2.

Since each variable in p occurs at least twice, |J1| ≤ 2 and |J2| ≤ 1 imply there are at most 2|p| non-negative
integers j with j0 ≤ kj ≤ j1. By construction of w′, there are 6|p| − 1 integers j such that w′[kj ] = bk′ between
any two holes in w′. Thus u contains at most one hole. It remains to show that u actually contains no holes.

First, suppose that |ui| > 1 and ui contains a hole. Then either bk′−1 or bk′+1 must occur in ui. Assume bk′−1

occurs in ui (the other case is similar). Then ui′ , with ui′ ↑ ui, must contain bk′−1 or � in the corresponding
position. If ui′ contains bk′−1, by construction of w′, the next letter in ui′ must be a hole. So ui′ contains �.
But then u contains two holes, contradicting the above statement that u contains at most one hole.

Now, suppose ui = � and k′ = 1. Note that the theorem assumes |p| > 2. Either i > 0 or i < |p| − 1. Assume
i > 0 (the other case is similar). Then, since k′ = 1 indicates that there are no squares of length two in p,
Ai−1 �= Ai, so ui−1 must end with bk′−1 = b0. Consider one other instance of variable Ai−1, say Aj , with j �= i.
Then uj must end with b0 or a hole. If uj ends with a hole, there are two holes in u, a contradiction. If uj

ends with b0 (a sentinel letter for a hole by construction of w′), the letter in w′ following uj must be a hole
and cannot be the hole in Ai. Thus w′[j0..j1 + 1] contains at least two holes. We showed above that there are
at most 2|p| non-negative integers j with j0 ≤ kj ≤ j1, hence there are at most 2|p|+ 1 non-negative integers j
with j0 ≤ kj ≤ j1 + 1. But by construction of w′, there are 6|p| − 1 integers j such that w′[kj ] = bk′ between
any two holes in w′, a contradiction.

Finally, suppose ui = � and k′ = 2. Assume i > 0 as before (the other case is similar). If Ai−1 �= Ai, the same
argument as in the k′ = 1 case leads to a contradiction. Thus, assume Ai−1 = Ai. Then i > 1 or i < |p| − 1, so
assume i > 1 (the other case is similar). If Ai−2 = Ai−1, an argument similar to the one in the k′ = 1 case leads
to a contradiction. Thus, assume Ai−2 �= Ai−1 = Ai. Since ui = �, |ui| = |ui−1| = 1, hence ui−2 must end with
bk′−2 = b0. Consider one other instance of variable Ai−2, say Aj , with j /∈ {i− 1, i}. Then uj must end with b0
or a hole. If uj ends with a hole, there are two holes in u, a contradiction. If uj ends with b0, the letter in w′

two positions from the end of uj must be a hole and cannot be the hole in Ai. Thus w′[j0..j1 + 2] contains at
least two holes. We showed above that there are at most 2|p| non-negative integers j with j0 ≤ kj ≤ j1, hence
there are at most 2|p| + 2 non-negative integers j with j0 ≤ kj ≤ j1 + 2. But by construction of w′, there are
6|p| − 1 integers j such that w′[kj ] = bk′ between any two holes in w′, a contradiction.
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Thus u contains no holes. Define ϕ : (Σ′)∗ → Σ∗ with ϕ(a) = a if a ∈ Σ and ϕ(bi) = ai for 0 ≤ i ≤ 2k′. By
construction ϕ(u) is a factor of w that represents an occurrence of p, contradicting the fact that w avoids p. �

The next theorem provides a bound on the number of square occurrences in a pattern that is partial word
unavoidable. This bound cannot be improved. For a variable alphabet of size n, the pattern

A0A0A1A0A0A2A0A0 . . . A0A0An−1A0A0

has n square occurrences, and is unavoidable in partial words (there has to be a factor “a�” that occurs infinitely
often for some letter a).

Theorem 3.2. The number of square occurrences in a pattern that is partial word unavoidable is less than or
equal to the number of distinct variables used. Moreover, any pattern with more square occurrences than distinct
variables is 3-avoidable.

Proof. If any square occurrence in the pattern is of length greater than two, it is divisible by ABAB, which
is 3-avoidable [7], so, we restrict to only when we have a single variable squared. Also, no square occurrences
are adjacent, otherwise the pattern would be divisible by AABB, which is 3-avoidable [7]. Lastly, no square
occurrences overlap, because an overlap of two length two square occurrences is an occurrence of AAA, which
is 2-avoidable [7].

Suppose that p is a partial word unavoidable pattern over an alphabet of n variables Δ. Proceeding by
contradiction, write

p = A1A1p1A2A2 . . . AnAnpnAn+1An+1

where, Ai ∈ Δ and pi ∈ Δ+ for all i (we can ignore the ends of p before A1A1 and after An+1An+1). Let
Δ1 = {A1, A2, . . . , An+1}.

First, we claim that pi /∈ Δ1
+ for all i. Suppose towards a contradiction that there is an i such that pi ∈ Δ1

+.
Let Σ = {a, b, c} and let θ : Σ∗ → Σ∗ be the morphism defined by θ(a) = abc, θ(b) = ac, and θ(c) = b. Define
the morphism φ : Σ∗ → Σ∗� as θ3 with the factor bab of θ3(a) changed to b�b, i.e.,

φ(�) =

⎧⎪⎨
⎪⎩
abcacb�bcbac, if � = a;
abcacbac, if � = b;
abcb, if � = c.

Let w = φ ◦ θω(a) and let 〈im〉 be the sequence of indices of holes of w, i.e., w[j] = � if and only if j ∈ 〈im〉.
Let 〈jm〉 be any subsequence of 〈im〉 such that jm+1 > 2jm+7+2|pi|. We construct a partial wordw′ from w by

replacing, for all im, w[im−1..im+1] with b�b if im ∈ 〈jm〉 or with bab if not. Note that filla(w) = filla(w′) = θω(a)
which is known to be square-free [13] (here filla fills the holes with letter a). It follows that any square-compatible
factor of w′, i.e., a factor of w′ compatible with a total word that is a square, must contain a �.

We show that the set of square subwords of w′ is exactly {bb, cbcb, bcbc}. Note that any length five or greater
factors of w′ containing � are always equal whenever they are compatible, as the length five factors of w′

containing � are
cacb�, acb�b, cb�bc, b�bcb, �bcba,

which are all pairwise incompatible. It follows that if there exists any length ten or more square-compatible
factor y = y1y2 where y1 ↑ y2, it satisfies y1 = y2 which implies filla(y1) = filla(y2), so filla(y) is a square factor
of θω(a), a contradiction. Therefore, every square-compatible factor has length less than ten and must be a
factor of φ(�a) or φ(a�) where � ∈ {b, c}. It is easy to see that the only such square subwords have length two
or four and belong to {bb, cbcb, bcbc}.

Since we assumed that the pattern p is partial word unavoidable, the partial word w′ meets p, or p occurs
in w′. Let ϕ be a non-erasing morphism from Δ∗ to Σ∗ such that ϕ(p) is a subword of w′. In particular, ϕ(AjAj)
is a square subword of w′ for all j. This implies that |ϕ(Aj)| ≤ 2 for all j. So, we have |ϕ(pi)| ≤ 2|pi| since
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we assumed that pi ∈ Δ+
1 . And, since for all j, ϕ(AjAj) must have its ends within three positions of a �, there

is some m such that |ϕ(pi)| ≥ jm+1 − jm − 6, which implies that 2|pi| ≥ jm+1 − jm − 6 > jm + 1 + 2|pi|, which
in turn implies, 0 > jm + 1, a contradiction. So pi /∈ Δ1

+ for all i, proving our claim.
Now, because |Δ \ Δ1| < n, there must be some i such that there is some mapping f from α(pi) \ Δ1 to

{1, . . . , i − 1} such that for every A ∈ α(pi) \ Δ1, the membership A ∈ α(pf(A)) holds. In other words, every
variable that occurs in pi has to either appear in a square occurrence or at some point further left in p. We
know such an i exists because with each j, pj can either use a variable from Δ \ Δ1 that has not been used
before, or it can only use variables that occurred before. Because there are more pj’s than variables in Δ \Δ1

to introduce for the first time, at least one of the pj ’s has to not introduce any new variables from Δ \Δ1, this
is the pi we want. Let Δ2 = α(pi) \Δ1 and let g : Δ→ N map A to the number of times A appears in pi.

Next, we construct a partial word w′′ with infinitely many holes over three letters whose construction is
similar to the one of the partial word w′. Instead of requiring that 〈jm〉 be any subsequence of 〈im〉 such that
jm+1 > 2jm + 7 + 2|pi|, we require that 〈jm〉 be any subsequence of 〈im〉 such that

jm+1 >

(
1 +

∑
A∈Δ2

g(A)

)
jm + 6 + 2

∑
A∈Δ1

g(A). (1)

We construct w′′ from w by replacing, for all im, w[im − 1..im + 1] with b�b if im ∈ 〈jm〉 or with bab if not.
Since p is partial word unavoidable, the partial word w′′ meets p, or p occurs in w′′. Let ϕ be a non-erasing

morphism from Δ∗ to Σ∗ such that ϕ(p) is a subword of w′′. Note that, for every A ∈ Δ2, pf(A) contains A
means |ϕ(pf(A))| ≥ |ϕ(A)|. Then because each square occurrence in p has its ends within three positions of
a �, there is a function gap mapping pj , j ≤ i, to jm′ − jm where the two terms jm and jm′ , which belong
to the selected subsequence of 〈im〉, are the positions of the two holes that the ends of pj are near, i.e., jm
is the position of the last hole in AjAj and jm′ is the position of the first hole in Aj+1Aj+1. This means
gap(pj) ≥ |ϕ(pj)| ≥ gap(pj) − 6 for all j ≤ i.

Note that for every j′ < j ≤ i, gap(pj′) + 6 < gap(pj). So for every A ∈ Δ2, if f(A) �= i− 1 then

|ϕ(A)| ≤ |ϕ(pf(A))| ≤ gap(pf(A)) < gap(pi−1) − 6 ≤ |ϕ(pi−1)|.

Let m and m′ be such that gap(pi) = jm′ − jm. Then using Equation (1),

|ϕ(pi)| ≥ jm+1 − jm − 6 >
(∑

A∈Δ2
g(A)

) |ϕ(pi−1)| + 2
∑

A∈Δ1
g(A)

≥ (∑A∈Δ2
g(A)|ϕ(A)|) + 2

∑
A∈Δ1

g(A),

which contradicts the fact that

|ϕ(pi)| =
∑
A∈Δ

g(A)|ϕ(A)| ≤
( ∑

A∈Δ2

g(A)|ϕ(A)|
)

+ 2
∑

A∈Δ1

g(A).

Thus we have proved that the number of square occurrences in a pattern that is partial word unavoidable is
less than or equal to the number of distinct variables used.

We have also proved that the partial word w′′ with infinitely many holes over three letters avoids p, so any
pattern with more square occurrences than distinct variables is 3-avoidable. �

The proof of our next theorem refers to avoidability of simple formulas. We extend this concept, defined for
total words in ([13], Problem 3.1.2), to partial words.

Definition 3.3. Let Σ be an alphabet of letters and Δ be an alphabet of variables such that Σ ∩Δ = ∅.
• A simple formula f is a finite set of patterns p1, . . . , pn over Δ, denoted by f = p1 · . . . · pn, where the order

of the patterns p1, . . . , pn is not important.
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• A partial word w over Σ meets a simple formula f = p1 · . . . · pn if there exists a non-erasing morphism ϕ
from Δ∗ to Σ∗ such that all the total words ϕ(p1), . . . , ϕ(pn) are compatible with factors of w.

• Avoidability and k-avoidability in partial words of simple formulas is defined as for patterns.

We next state a couple of lemmas regarding avoidability of simple formulas.

Lemma 3.4. The simple formula f = p1 · . . . · pn is avoidable in total (respectively, partial) words over Σ if
and only if the pattern p1A1 . . . pn−1An−1pn is avoidable in total (respectively, partial) words over Σ, where
A1, . . . , An−1 are distinct variables that do not occur in f .

Note that the pattern p1A1 . . . pn−1An−1pn in Lemma 3.4 is said to be obtained from the simple formula
p1 · . . . · pn (and vice versa).

Lemma 3.5. Let f be a simple formula consisting of patterns of length at most two, none of which are squares,
and every variable in f occurs at most twice. Then f is unavoidable.

Proof. The proof is by induction on the number of distinct variables in f . For the basis, the result holds for a
number of two distinct variables A and B in f because AB · BA is unavoidable (we can remove the patterns
of length one). For the inductive step, construct the adjacency graph G of the pattern p obtained from the
simple formula f . This undirected graph G is the bipartite graph with two copies of α(p) as vertices, denoted
by α(p)L = {AL | A ∈ α(p)}, called the set of left vertices, and α(p)R = {AR | A ∈ α(p)}, called the set of right
vertices, and with an edge between AL and BR if and only if AB is a factor of p.

We show that there is a free set for p. Recall that a non-empty subset of α(p) is a free set if there exists no
path in G connecting a left vertex AL to a right vertex BR with A and B in the free set. Finding the connected
components of G helps us find the free sets, so edges involving vertices corresponding to singleton variables can
be ignored.

Say we are left with 2n vertices corresponding to n distinct variables. Each pattern in f contributes at most
one edge to G, and there are at most n patterns in f (this comes from the fact that every variable occurs at
most twice, and we also remove the patterns of length one). There are at least n connected components in G
because at least 2n− 1 edges are needed to have it connected, and we have n − 1 fewer edges than that. The
only way we can partition the 2n vertices into n connected components so that there is no free set is if for every
variable A, the left vertex AL is connected to the right vertex AR by an edge. This would mean however that
each of the length two patterns in f is a square, which we ruled out any of them from being. So we have a free set
F containing one variable. Delete all occurrences of this variable from the pattern p to obtain a pattern q, then
use the inductive hypothesis on q. Thus, q is unavoidable. For sake of completeness, we recall the arguments
from ([13], Lem. 3.2.2) to show that p is also unavoidable (and so is f).

To show this, we introduce some notation. Given a set X of vertices of G, we denote by C(X) the set of
vertices of G that belong to the same connected component as an element of X , and by CL(X) (respectively,
CR(X)) the set of variables A ∈ α(p) such that AL ∈ C(X) (respectively, AR ∈ C(X)). The set F being a free
set translates as F ⊆ CL(FL)\CR(FL), where FL is the singleton set consisting of the left vertex of the variable
in F .

We now show that p is unavoidable over any alphabet Σ by induction on |Σ|. The basis |Σ| = 1 is obvious.
For the inductive step, suppose that p is unavoidable over an alphabet Σ′, and let Σ = Σ′ ∪ {a} where a is a
new letter not in Σ′. Let Γ be a new alphabet, whose letters are words in Σ∗, defined as follows:

Γ = {aiwaj | w ∈ (Σ′)+, w avoids p, 0 < i < |p|, 0 ≤ j < |p|}.
Note that Γ is finite since p is unavoidable over Σ′. Each word over Σ, that avoids p and that starts with a, is
either a non-empty power of a or is a non-empty concatenation of letters in Γ . Let ι : Γ ∗ → Σ∗ be the identity
morphism.
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Let C be a variable that is not in α(p). Then the pattern qC is unavoidable. So for every w ∈ Γ ∗ sufficiently
long, there exists a non-erasing morphism θ : (α(p) ∪ {C})∗ → Γ ∗ such that θ(qC) is a factor of w. For any
variable A in α(p) ∪ {C}, since θ(A) ∈ Γ+ we have ι(θ(A)) ∈ aΣ+.

Let ψ : α(p)∗ → Σ∗ be the non-erasing morphism defined as follows:

• If A ∈ α(p) \ (CL(FL) ∪ CR(FL)), then ψ(A) = ι(θ(A)).
• If A ∈ CR(FL) \ CL(FL), then aψ(A) = ι(θ(A)).
• If A ∈ CL(FL) \ (CR(FL) ∪ F ), then ψ(A) = ι(θ(A))a.
• If A ∈ CL(FL) ∩ CR(FL), then aψ(A) = ι(θ(A))a.
• If A ∈ F , then ψ(A) = a.

It is easy to check that ψ is well-defined. We claim that ψ(p) is a factor of ι(θ(qC)).
For 1 ≤ k ≤ |p|, let qk be the prefix of q obtained by deleting from p[0..k) all occurrences of variables from F .

By induction on k, we prove that bψ(p[0..k)) = ι(θ(qk))ck, where b = a if p[0] ∈ CR(FL) or b = ε otherwise and
where ck = a if p[k− 1] ∈ CL(FL) or ck = ε otherwise. The basis k = 1 follows from the definition of ψ. For the
inductive step, let p[0..k + 1) = p[0..k)B. Setting p[k − 1] = A, there is an edge from AL to BR in G. We have

bψ(p[0..k + 1)) = bψ(p[0..k))ψ(B) = ι(θ(qk))ckψ(B).

Observe that ck = a if and only if A ∈ CL(FL) if and only if B ∈ CR(FL). This implies that ckψ(B) =
ι(θ(B))ck+1 if B �∈ F or ckψ(B) = ck+1 otherwise. So bψ(p[0..k + 1)) = ι(θ(qk+1))ck+1, where ck+1 = a if
B ∈ CL(FL) or ck+1 = ε otherwise. This shows our claim.

Therefore, the word ι(w) over Σ meets p, which means that the set of words over Σ that avoid p and start
with a is finite. So p is unavoidable over Σ. �

The next theorem will be useful for computing the depth of a given pattern in Section 5. It is based on the
following concept of holeboundedness.

Definition 3.6. Let u0 . . . u|p|−1 be an occurrence of a pattern p in a partial word. Let the function f map
each ui to the variable of p that corresponds to ui. A non-singleton variable A is holebound to position j or
j-holebound if the only ui with f(ui) = A corresponding to any factor other than the factor � is uj. If a variable
is j-holebound for some j, it is holebound.

Theorem 3.7. If p is a pattern with no squares that is k-avoidable in total words, then, for every positive
integers m and h, there is an infinite partial word over k + 4h letters, with h holes each at least m positions
away from each other and the beginning of the partial word, that avoids p.

Proof. Let m and h be positive integers. We do induction on the number of distinct variables in a pattern p
with no squares that is k-avoidable in total words. For the basis, the smallest size of an alphabet of variables Δ
over which it is possible to have a square-free pattern that is avoidable by infinite total words is |Δ| = 3. The
only such ternary pattern with a singleton variable is ABACBAB which, by [5], can be avoided by an infinite
partial word having infinitely many holes over only three letters, using the HD0L system given by φ(θω(a))
where

θ(�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ad, if � = a;
ab, if � = b;
db, if � = c;
c, if � = d;

and φ(�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
bb, if � = a;
caabc, if � = b;
aab�acbaabc, if � = c;
ac, if � = d.

Then we just fill in all but h of the holes, each of these h holes at least m positions away from each other and
the beginning of the partial word. In the case of a pattern p with no singleton variables so each variable in p
occurs at least twice, by Theorem 3.1, p can be avoided by an infinite partial word having infinitely many holes
over k + 3 letters, and we just fill in all but h of the holes that are far enough apart as before. We thus have
our basis with |α(p)| = 3.
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For the inductive hypothesis, assume that if p′ is a pattern with no squares, with |α(p′)| ≥ 3, that is k-
avoidable in total words, then, for every positive integers m and h, there is an infinite partial word over k + 4h
letters, with h holes each at least m positions away from each other and the beginning of the partial word, that
avoids p′.

For the inductive step, let w be an infinite total word over k letters that avoids a pattern p with no squares
and |α(p)| ≥ 4. Let y be a length five factor of w that occurs infinitely often. Let x0, x1, . . . , xh−1 be h disjoint
occurrences of y in w that appear in order at least m positions apart and m positions away from the beginning
of the word. Let {ai, bi, ci, di}0≤i<h be a collection of 4h distinct letters that do not appear in w. Then, for
each i, replace xi with aibi�cidi; call the resulting partial word w′. Our claim is that w′ avoids p because under
the mapping θ(�) = y[0] if � = ai for some i; y[1] if � = bi for some i; y[2] if � = �; y[3] if � = ci for some i; y[4]
if � = di for some i; and � otherwise, θ(w′) = w avoids p. Assume to the contrary that w′ meets p with pattern
occurrence u0 . . . u|p|−1. Then there must be some hole in u0 . . . u|p|−1.

First, suppose towards a contradiction that for every i such that ui contains a hole, i.e., � is a factor of ui,
the variable in p corresponding to ui is a singleton variable. Thus, if ui contains a hole, ui is not required
to be compatible with any uj, j �= i, so, the pattern occurrence u0 . . . u|p|−1 is preserved under applying θ
to w′, contradicting the fact that w is p-free. So let uj be such that it contains a hole and it corresponds to a
non-singleton variable of p.

Second, suppose towards a contradiction that � is at some position other than either the first or last position
of uj . Then there is some j′ such that bj′�cj′ is a factor of uj , but any possible completion of bj′�cj′ is a subword
that only appears in uj, contradicting the fact that uj corresponds to a non-singleton variable. So, uj either
starts or ends with a �.

Third, suppose towards a contradiction that |uj| > 2. Then there is some j′ such that uj has either aj′bj′�
or �cj′dj′ as a suffix or prefix, respectively. Any completion of either however is not a subword that appears
anywhere else. So, uj is � (Case 1), �cj′ for some j′ (Case 2), or bj′� for some j′ (Case 3). Note that Case 3 is
symmetric to Case 2.

The rest of the proof is based on the concept of holeboundedness according to Definition 3.6.

Case 1: uj = �
Let X0 = f(uj), and say that position j of u0 . . . u|p|−1 is visited. Construct a sequence of variables X0, X1, . . .

from the pattern p where, for each i ≥ 0, Xi+1 is a (i′ +1)-holebound variable for some i′ such that f(ui′) = Xi,
f(ui′+1) = Xi+1, ui′ = �, and ui′+1 �= �, or Xi+1 is a (i′ − 1)-holebound variable for some i′ such that
f(ui′) = Xi, f(ui′−1) = Xi+1, ui′ = �, and ui′−1 �= �; in either case, say that position i′ of u0 . . . u|p|−1 is visited.
In other words, Xi+1 is a holebound variable whose only occurrence that corresponds to a non-hole is next to
an occurrence of Xi that corresponds to a hole. If ever there are two such holebound variables, we claim that
only one of them generates a path that visits an occurrence of X0 that corresponds to a non-hole (which means
that the resulting sequence of variables would repeat the variable X0). To show our claim, suppose towards a
contradiction that the two of them generate paths that visit an occurrence of X0 that corresponds to a non-hole.
Then X0 is holebound to two different positions, a contradiction with the definition of holeboundedness. So, if
there are two occurrences of holebound variables that correspond to a non-hole next to occurrences of Xi that
correspond to a hole, take as Xi+1 a holebound variable that does not generate a path that visits an occurrence
of X0 that corresponds to a non-hole.

Each variable in X0, X1, . . ., with the exception of X0, is holebound to a position next to a position that
corresponds to an occurrence corresponding to a hole of a variable before it. For each i, Xi+1 cannot be
holebound to an already visited position, because this occurrence of Xi+1, appearing next to an occurrence
of Xi that corresponds to a hole, cannot correspond to a hole. This implies that either the sequence X0, X1, . . .
repeats X0, and we are in the case below where there exists an integer i, i > 0, such that X0 = Xi, or the
sequence X0, X1, . . . does not repeat X0, and we are in the case below where there exists a non-singleton variable
surrounded by singleton variables, because there are only finitely many variables and X0 is the only variable
in X0, X1, . . . that can repeat.
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We illustrate these two cases with the following diagrams:

. . . bi1 � ci1 . . . bi2 � ci2 . . . bi3 � ci3 . . .
X2 X3 X0 X1 X2 X1

X3

. . . bi1 � ci1 . . . bi2 � ci2 . . . bi3 � ci3 . . .
X2 X1 X0 X1 C X2 D

In the first diagram, the sequence X0, X1, . . . repeats X0, i.e., X0 = X3. In the second diagram, there is no
occurrence of a holebound variable next to the occurrence of X2 corresponding to a hole, so singleton variables C
and D must correspond to words ending in bi3 and beginning in ci3 , respectively (the variables C and D are
singletons since the letters bi3 and ci3 are unique).

First, suppose there exists some integer i, i > 0, such that X0 = Xi. Because there was never a choice to
select a path that did not visit an occurrence of X0 that corresponds to a non-hole, every time we found the
next variable in the sequence, there was only one singleton variable next to the occurrences that correspond
to a hole of the current variable, and only one occurrence that corresponds to a hole of each variable in the
sequence X0, X1, . . .. So, there is a set of i variables Δ′ = {A0, . . . , Ai−1} each occurring exactly twice in the
pattern p, and 2i singleton variables {B0, C0, . . . , Bi−1, Ci−1} such that there are i length two patterns over Δ′,
call them p0, . . . , pi−1, none of which are squares, and

B0p0C0, . . . , Bi−1pi−1Ci−1

occur in p. We define a pattern p′ such that |α(p′)| = |α(p)| − 1. To do this, we use i− 1 variables D0, . . . , Di−2

that appear nowhere in p, replace p0, . . . , pi−2 with them, and delete pi−1. This way, the i variables A0, . . . , Ai−1

present in p0, . . . , pi−1 get removed and the i − 1 variables D0, . . . , Di−2 get added. In other words, we define
the pattern p′ by replacing the i − 1 factors B0p0C0, . . . , Bi−2pi−2Ci−2 with B0D0C0, . . . , Bi−2Di−2Ci−2, re-
spectively, and by replacing the factor Bi−1pi−1Ci−1 with Bi−1Ci−1. Note that by divisibility, any total word
that avoids p′ avoids p. Because the simple formula obtained from {p0, . . . , pi−1} is unavoidable by Lemma 3.5
and over a variable alphabet disjoint from the rest of the pattern p, its removal does not affect the total word
avoidability index. This means that we can apply the inductive hypothesis. Since p′ is a pattern with no squares,
with |α(p′)| ≥ 3, that is k-avoidable in total words, there is an infinite partial word over k + 4h letters, with
h holes each at least m positions away from each other and the beginning of the partial word, that avoids p′.
This partial word with h holes avoids p.

Second, suppose there exists a non-singleton variable surrounded by two singleton variables. Call the non-
singleton variable A and singleton variables C and D, such that CAD appears as a factor of p. Construct the
pattern p′ from p by replacing the factor CAD with C. This implies that if p = p1CADp2, then p′ = p1Cp2.
The patterns p and p′ correspond to the simple formulas fp = p1 · A · p2 and fp′ = p1 · p2 respectively; note
that fp is k-avoidable in total words if and only if fp′ is. Thus, because of Lemma 3.4, p′ has the same total
word avoidability index as p. Since |α(p′)| = |α(p)| − 1, apply the inductive hypothesis. Since p′ is a pattern
with no squares, with |α(p′)| ≥ 3, that is k-avoidable in total words, there is an infinite partial word over k+4h
letters, with h holes each at least m positions away from each other and the beginning of the partial word, that
avoids p′. This partial word with h holes that avoids p′ definitely avoids p since p′ | p.

Case 2: uj = �cj′ for some j′

Let X0 = f(uj). This case is similar to Case 1, except, the sequence X0, X1, . . . constructed can never
repeat X0 because uj having length two means X0 cannot be holebound. So, there is a non-singleton variable
surrounded by two singleton variables. �
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4. Answering a conjecture

We settle a conjecture from [5] that every partial word unavoidable pattern, that is not total word unavoidable,
can be written in the form of ([5], Cor. 2).

First, let p be a pattern of only distinct variables over Δ and let 0 ≤ i < |p|. Define digi(p) as a partial
pattern with exactly one hole over Δ, such that digi(p)[i] = � and digi(p)[j] = p[j] if 0 ≤ j < |p|, j �= i. For
example, if p = ABCDEF , then dig2(p) = AB�DEF .

Now, recall the corollary.

Corollary 4.1 (Cor. 2, [5]). Let p be a pattern of only distinct variables over Δ and let p0, p1, . . . , pn ∈ Δ∗ be
compatible with factors of some digi(p). If A1, . . . , An are distinct variables not in Δ, then p0A1p1 . . . Anpn is
partial word unavoidable.

Next, let Bm, for m ∈ N be different variables. Let Z0 = ε, and for all m ∈ N, let Zm+1 = ZmBm+1Zm;
the Zm’s are the Zimin words well-known to be unavoidable in total words [14]. For example, Z4 =
B1B2B1B3B1B2B1B4B1B2B1B3B1B2B1. Note that Zm is over m distinct variables and |Zm| = 2m − 1.

Next, recall the conjecture.

Conjecture 4.2 ([5]). Every partial word unavoidable pattern, that is not total word unavoidable, can be written
in the form of Corollary 4.1.

Finally, let us prove negatively the conjecture.

Theorem 4.3. Conjecture 4.2 is false.

Proof. It suffices to provide a pattern that is partial word unavoidable and that is neither total word unavoidable
nor of the form of Corollary 4.1. The pattern

q = Z4EFF = ABACABADABACABAEFF

satisfies such property. It is clearly not total word unavoidable because it is divisible by AA and AA is 3-avoidable
in total words. It is also not of the form of Corollary 2. To see this, the only possibilities for A1, . . . , An are
A1 = D and A2 = E as they are the only variables occurring only once. This means that p0 = p1 = ABACABA
and p2 = FF . However, since p0 has A occurring more than twice, it cannot be compatible with a factor of some
digi(p), which is a partial pattern with exactly one hole constructed from a pattern p of only distinct variables,
as is the restriction on p in Corollary 4.1.

To see that q is partial word unavoidable, first note that Z4 is unavoidable in partial words (as mentioned
above, Z4 is unavoidable even in total words). Since Z4 is unavoidable in partial words, there must be some hole
occurring at least two positions to the right of an occurrence of Z4 in any infinite partial word w with infinitely
many holes. Let F map to a letter compatible with the symbol occurring immediately to the right of the hole,
and E map to a total word compatible with the factor of w between the occurrence of Z4 and the hole. �

5. Computing depths of patterns

Recall the definitions of depth and shallowness.

Definition 5.1 ([5]).

• A k-unavoidable pattern p is (h, k)-deep if there exists some m ∈ N such that every partial word w over a
k-letter alphabet meets p whenever w has at least h holes separated pairwise from each other and from the
first and final position of w by factors of length m or greater.

• A function δ : N \ {0, 1} → N is the depth function of an unavoidable pattern p if for all k the pattern p is
(δ(k), k)-deep and p is not (h, k)-deep for any h < δ(k).

• When the depth function of p is bounded, its supremum d is the depth of p and p is d-deep.
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Definition 5.2 ([5]).

• A pattern p is k-shallow if p is (0, k)-deep or (1, k)-deep.
• If p is k-shallow for all k, then p is shallow.
• The pattern p is k-non-shallow if it is k-unavoidable but not k-shallow.

Shallow patterns have some properties in common with total word unavoidable patterns that higher-depth
patterns do not have.

A use of shallowness from [5] states that if p1, p2 are k-unavoidable patterns over an alphabet of variables Δ
and A is a variable which does not appear in p1 or p2, i.e., A ∈ Δ \ (α(p1) ∪ α(p2)), then the pattern p1Ap2 is
k-unavoidable if there exists some k-shallow pattern p such that p1 and p2 are factors of p. Note that it is also
much easier to check that a given pattern is shallow for a given k than to check that it has higher depth. This
is done just by starting with a hole then trying to add a letter on each end, backtracking if no letter works. If
there are only finitely many such partial words, then the pattern is unavoidable with depth 1. This does not
work as easily for higher depths because if the backtracking came up finite, then it could be that the two holes
starting the backtracking were not far enough apart.

The classification of the depths of the 2-unavoidable binary patterns has been completed.

Theorem 5.3 ([5]). The 2-unavoidable binary patterns in partial words fall into five categories with respect to
depth (up to reversal and complement):

(1) The patterns ε, A, AB, and ABA are shallow with depth 0;
(2) The patterns AA and AAB are (0, 2)-deep and (1, k)-deep for all k ≥ 3;
(3) The pattern AABA is (0, 2)-deep, (1, 3)-deep, and (2, k)-deep for all k ≥ 4;
(4) The pattern AABAA has depth function δ satisfying δ(2) = 0 and, for all k ≥ 3, δ(k) = k + 1;
(5) The patterns AABAB, AABB, ABAB, ABBA are (0, 2)-deep.

For example, consider the depth function δ of the pattern AABAA. To have an occurrence, the same square
must occur twice, separated by at least one symbol. First, AABAA is 2-unavoidable in total words, so it is
(0, 2)-deep and δ(2) = 0. Now, let k ≥ 3. If a partial word w over a k-letter alphabet {a1, . . . , ak} has k+1 holes
far enough apart, one of the k letters occurs next to two distinct holes. So the same trivial square occurs twice
in w, which means w meets the pattern. So AABAA is (k + 1, k)-deep and δ(k) ≤ k + 1. An avoiding partial
word with k− 1 holes can be constructed by surrounding them like aka1�a1ak, aka2�a2ak, . . . , akak−1�ak−1ak

which avoids the pattern, to show that AABAA is not (k− 1, k)-deep. Moreover, an avoiding partial word with
k holes can also be constructed by starting with the fixed point at a of the morphism mapping a to abc, b to
ac, and c to b to show that AABAA is not (k, k)-deep and δ(k) ≥ k + 1. Details appear in [5].

The next theorem describes the form of all 1-deep patterns, knowing that the variable that appears squared
cannot appear anywhere else, and the variables appearing around the square occurrence must be singleton
variables. The rest of the pattern must be 0-deep, once the square surrounded by singleton variables is replaced
with a single singleton variable. The proof relies on the following two lemmas.

Lemma 5.4. If the patterns p1 and p2 are (h1, k)-deep and (h2, k)-deep respectively, then p = p1Ap2 is not
(h, k)-deep for any h < h1 + h2.

Proof. Let h < h1 + h2. Suppose that the pattern p needs a minimum hole spacing of m to achieve being
(h, k)-deep, i.e., every partial word over k letters, with h holes separated pairwise from each other and from
the ends of the partial word by factors of length m or greater, must meet p. Since p1 is (h1, k)-deep, there is a
partial word w′ avoiding p1 over k letters, with h1 − 1 holes at least m positions away from each other and the
ends of the partial word. Similarly since p2 is (h2, k)-deep, there is a partial word w′′ avoiding p2 over k letters,
with h2 − 1 holes at least m positions away from each other and the ends of the partial word.
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We claim that the partial word w = w′�w′′ avoids p despite it having h1 + h2 − 1 holes, each at least m
positions away from each other and from the ends of the partial word. To show our claim, suppose towards a
contradiction that there is a non-erasing morphism ϕ such that ϕ(p) is compatible with a factor of w. Because
w′ avoids p1, ϕ(p1) cannot be compatible with a factor of w′. Similarly, ϕ(p2) cannot be compatible with a
factor of w′′. This leads to a contradiction since we only added a single � between w′ and w′′.

Now, let the partial word v be the prefix of w that ends m positions after the hth hole. Because w avoids p,
so does v. This contradicts p being (h, k)-deep with achieved minimum distance between holes m. �

This implies that p is either k-avoidable or (h, k)-deep with h ≥ h1+h2. We do not necessarily have h = h1+h2,
as demonstrated by ABACAA which is 3-deep even though ABA has depth 0 and AA has depth 1.

Lemma 5.5. If the patterns p1 and p2 are both 0-deep, then, taking A to be a variable not appearing in either
p1 or p2, we have p = p1Ap2 is not h-deep for any h > 0.

Proof. Because p1 and p2 are total word unavoidable, they have no squares, so p has no squares. If p is not
0-deep, it has a total word avoidability index of k, say. Therefore, by Theorem 3.7, for any h > 0, there is a
partial word over k + 4h letters with h holes spaced arbitrarily far apart that avoids p meaning that p is not
(h, k + 4h)-deep, so, p is not h-deep. �

Theorem 5.6. The patterns that are 1-deep have exactly one square occurrence.

Proof. We prove our result by induction on the number of distinct variables in the patterns. For the basis, i.e.,
patterns over a single variable, the only 1-deep pattern is AA by Theorem 5.3. For the inductive step, let p be
a 1-deep pattern. Note that p cannot have more than one square occurrence, otherwise it would be (h, 4)-deep
with h > 1 (this follows from Thm. 5.3 and arguments similar to those following it).

So, suppose towards a contradiction that p has no square occurrences. Because p is unavoidable, it must
have a singleton variable, say A (recall that by ([14], Cor. 3.2.10), p can be avoided by an infinite total word if
each of its variables occurs at least twice). By Lemma 5.4, either one end is 1-deep and the other is 0-deep, or
both ends are 0-deep. But not both ends are 0-deep by Lemma 5.5. Let p1 be the end that has non-zero depth,
i.e., we either label p = p1Ap2 or p = p2Ap1. Note that p1 has one less variable than p, it is 1-deep, and it
has no square occurrences because p has no square occurrences. This implies a contradiction with the inductive
hypothesis. �

We now have the necessary machinery to describe Algorithm 1, which finds the depth of an arbitrary pattern p.
Recall from Definition 3.6 that a variable A of p is holebound if all but a single occurrence of A must map to a
� in any meeting morphism. This concept is used in the proof of Theorem 5.8 in which we insert h factors

a0,0 . . . a0,|p|−1 � a0,|p| . . . a0,2|p|−1, . . . , ah−1,0 . . . ah−1,|p|−1 � ah−1,|p| . . . ah−1,2|p|−1

arbitrarily far apart, where each of the ai,j ’s that are used are unique to the h holes.
To help understand our algorithm, consider p = AABCECDFBGD of length 11. Let us discuss an occurrence

that would contain some holes with the following diagram:

. . . ai1,10 � ai1,11 ai1,12 . . . � ai2,11 . . . � . . . � . . .
A A B C C D B D

The pattern p has a square occurrence AA that corresponds to the factor ai1,10�. Since the letter ai1,10 is
unique, the variable A is holebound. Since the letter ai1,11 is also unique and the variable B appears again, B
is holebound and there is an occurrence that must correspond to a hole. The same is true with the variables C
and D. On the other hand, the variables E, F , and G are singleton variables that can correspond to factors of
length larger than one.

The following example illustrates Algorithm 1.
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Algorithm 1. Determine if a pattern has bounded depth, if so, find its depth.
Require: p is a pattern
Ensure: the depth of p if p has bounded depth, FALSE otherwise
1: V ← ∅
2: S ← ∅
3: Sf ← ∅
4: for variables A that appear in a square occurrence in p do
5: if A has two or more square occurrences in p then
6: return FALSE
7: S ← {all maximal occurrences of powers of A} ∪ S
8: V ← {A} ∪ V
9: while S �= ∅ do

10: remove an occurrence O from S
11: Sf ← {O} ∪ Sf

12: for occurrences OB of variables B between O and either the end of the pattern or a singleton variable do
13: if B ∈ V then
14: return FALSE
15: V ← {B} ∪ V
16: S ← {all occurrences of B other than OB} ∪ S
17: f ← simple formula obtained by removing all occurrences in Sf from p
18: if f is total word avoidable (using Zimin’s procedure) then
19: return FALSE
20: return |Sf |

Example 5.7. Let us determine if the pattern p = AABCECDFBGD has bounded depth.

The sets V, S, Sf are initialized with ∅ in lines 1–3. In line 4, the only variable that appears in a square
occurrence in p is A. The variable A has only one square occurrence in p, so S is updated to {p[0]p[1] = AA}
in line 7 and V to {A} in line 8.

For the first pass through the while loop in lines 9–16, the algorithm removes the occurrenceO = p[0]p[1] = AA
from S in line 10 and Sf is updated to {p[0]p[1]} in line 11. There are two occurrences of variables between
O and the singleton variable E, i.e., OB = p[2] and OC = p[3], so the for loop in lines 12–16 has two passes.
After the first pass, V is updated to {A,B} and S to {p[8] = B}, and after the second pass, V is updated to
{A,B,C} and S to {p[8] = B, p[5] = C}.

For the second pass through the while loop, the algorithm removes the occurrence O = p[8] = B from S in
line 10 and Sf is updated to {p[0]p[1], p[8]} in line 11. There is no occurrence of variables between O and the
singleton variable G.

For the third pass through the while loop, the algorithm removes the occurrence O = p[5] = C from S in
line 10 and Sf is updated in line 11 to {p[0]p[1], p[8], p[5]}. There is one occurrence of variables between O and
the singleton variable F , i.e., OD = p[6], so the for loop in lines 12–16 has one pass. After this pass, V is
updated to {A,B,C,D} and S to {p[10] = D}.

For the fourth pass through the while loop, the algorithm removes the occurrence O = p[10] = D from S in
line 10 and Sf is updated in line 11 to {p[0]p[1], p[8], p[5], p[10]}. There is no occurrence of variables between O
and either the end of the pattern or a singleton variable.

In line 17, f is the simple formula obtained by removing all occurrences in Sf = {p[0]p[1], p[8], p[5], p[10]}
from p, i.e., f = BCE ·DF ·G. Since f is not total word avoidable, the algorithm returns |Sf | = 4 in line 20.
Thus, the given pattern p is unavoidable with depth four.
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We now prove that Algorithm 1 behaves as desired.
Theorem 5.8. Given as input a pattern p, Algorithm 1 determines if p has bounded depth, and if so, it outputs
its depth; otherwise, it returns FALSE.

Proof. If the pattern p is total word unavoidable, then it has bounded depth 0. So, suppose that p is total word
avoidable over k letters, and consider an infinite total word w over k letters that avoids p.

First, consider the case where p does not have at least one square occurrence. By Theorem 3.7, for every
positive integers m and h, there is an infinite partial word over k + 4h letters, with h holes each at least m
positions away from each other and the beginning of the partial word, that avoids p. Thus, p cannot have
bounded depth, because it cannot be (h, k + 4h)-deep for any h. In this case, by lines 17–19, f is the simple
formula obtained from p and is total word avoidable, and the algorithm returns FALSE.

Now, consider the case where p has at least one square occurrence. If the same variable A has at least two
square occurrences (not only one occurrence of a power of A), then it appears squared at least twice and p is
divisible by AABAA. This implies that the depth function of p is unbounded by Theorem 5.3, in which case
the algorithm returns FALSE (see lines 5–6). So, assume that each variable has at most one square occurrence
in p.

Let y be a factor of w of length 2|p| + 1 that occurs infinitely often. Let x0, x1, . . . , xh−1 be h disjoint
occurrences of y in w that appear in order arbitrarily far apart and away from the beginning of the word. Let
{a0,0, . . . , a0,2|p|−1, . . . , ah−1,0, . . . , ah−1,2|p|−1} be a collection of 2h|p| distinct letters that do not appear in w.
Then, replace x0 with a0,0 . . . a0,|p|−1 � a0,|p| . . . a0,2|p|−1, x1 with a1,0 . . . a1,|p|−1 � a1,|p| . . . a1,2|p|−1, and so on;
call the resulting partial word w′. Since the total word w avoids p, any occurrence of p in the partial word w′

must contain a hole.
Any square occurrence AA in p must correspond to a factor of w′ of the form a� or �a, where a is a letter

in the alphabet, meaning the variable A is holebound because any letter that appears adjacent to a hole never
appears again in w′. Here V serves to keep track of exactly those variables which have been holebound within two
positions of occurrences of variables already in either S or Sf , i.e., the variables have already been considered
and these occurrences correspond to factors containing holes. This means that if a variable that is in V ever
appears again when considering some different hole-containing occurrence, then that variable is holebound to
two different positions, a contradiction with the definition of holeboundedness. So, w′ would avoid p.

Each time we remove an occurrence O from S in line 10, it either corresponds exactly to a hole, or if it comes
from a square occurrence in the first for loop, it corresponds to a factor of the form a� or �a with a a letter
in the alphabet. Because each of the 2h|p| letters surrounding the holes are distinct, the neighbors of the O
occurrence are either holebound variables or singleton variables. To see this, note that no subword of length
greater than two ever appears again. Holebound variables correspond to factors of length one meaning that we
must eventually reach a singleton variable or the end of the pattern. For the non-singleton variables considered
before reaching a singleton variable, their other occurrences must correspond to holes, so they are added to S
in line 16.

Note then, that splitting p on its singleton variables to create a simple formula, say q1 · . . . · qn, each qi must
consist entirely of variables in V , or have no variables in V . After removing all such chunks of the holebound
variables to create the simple formula f , the corresponding pattern, say pf , is square-free, and if f is total word
avoidable (and so is pf by Lem. 3.4), there is an avoiding partial word over 4h additional letters by Theorem 3.7,
meaning that p is not of bounded depth and the algorithm returns FALSE in line 19. On the other hand, if f is
total word unavoidable, then there is a way of spacing the holes far enough apart so that each hole corresponds
to some occurrence that is in Sf and occurrences of the patterns whose variables are not in V must appear
between the holes. Because the only holes that are used are for occurrences in Sf , and only one hole for each
such occurrence, the depth of p is |Sf | which the algorithm returns in line 20. �

Note that in the above proof, if the pattern pf , after deleting variables occurring in V , is entirely composed
of singleton variables, then we are in the interesting case where p is unavoidable even over an infinite alphabet
so long as there are |Sf | holes spaced far enough apart.
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6. Conclusion and open problems

In Section 3, we proved, in particular, a strict bound on the number of square occurrences in a pattern that is
partial word unavoidable, and consequently, any pattern with more square occurrences than distinct variables
is 3-avoidable in partial words. In Section 4, we exhibited an unavoidable pattern that cannot be written in the
form of Corollary 4.1, settling a conjecture from [5]. In Section 5, we answered a number of questions regarding
the concept of depth of patterns that were raised in [5]. In particular, we examined the relation between the
depth of a pattern of the form p1Ap2, where A is a variable, and the depth of p1 and p2. We also provided an
algorithm that determines if a given pattern has bounded depth, and if so, outputs its depth.

Dealing with unavoidable patterns with unbounded depth functions is much more complicated than dealing
with patterns with bounded ones because letters around holes must be reused at some point. Because our
algorithm uses a construction that introduces 2|p| new letters per hole, every depth function is either bounded
or is in Ω(k) where k is the alphabet size.

Open problem 6.1. Study unavoidable patterns that have an unbounded depth function.

For any n, the pattern
p = A0A0A1A2 . . . An−2An−1A0A0A1A2 . . . An−2

over n variables has depth function in Θ(kn−1). In fact, it has depth function at least (k−3)n−1 +1. To see this,
we construct a partial word w′ over k letters with h = (k − 3)n−1 holes that avoids p. Since p has avoidability
index 3 in total words, we start with a square-free total word w over 3 letters. There are (k − 3)n−1 distinct
total words of length n−1 over the remaining k−3 letters, say x0, . . . , xh−1. To build w′, we insert the h factors
�x0, . . . , �xh−1 exponentially far apart in w, where each of the xi’s are unique to the h holes. Each occurrence
of A0A0 in p would map to a square in any meeting morphism, so each occurrence of A0A0 would correspond
to a factor of w′ that contains a hole, and for every 0 ≤ i < n− 1, Ai would have an image of length one.

Open problem 6.2. Determine whether there are patterns that have a depth function that grows more quickly
than the one of p.
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