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Abstract. Cross-bifix-free sets are sets of words such that no proper prefix of any word is a proper
suffix of any other word. In this paper, we introduce a general constructive method for the sets of
cross-bifix-free q-ary words of fixed length. It enables us to determine a cross-bifix-free words subset
which has the property to be non-expandable.
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1. Introduction

A cross-bifix-free set of words (also known as non-overlapping code) is a set where, given any two elements
of the set, possibly the same, any prefix of the first one is not a suffix of the second one and vice versa (from
now on, by abuse of language, we will use the term prefix and suffix instead of proper prefix and proper
suffix, respectively). Cross-bifix-free sets are involved in the study of frame synchronization which is an essential
requirement in digital communication systems to establish and maintain a connection between a transmitter
and a receiver.

Analytical approaches to the synchronization acquisition process and methods for the construction of se-
quences with the best aperiodic autocorrelation properties [6, 13, 16, 20] have been the subject of numerous
analyses in the digital transmission.

The historical engineering approach started with the introduction of bifix, a name proposed by Massey as
acknowledged in [17]. It denotes a factor that is both a prefix and suffix of a longer observed sequence.

In [13] the notion of a distributed sequence is introduced, where the synchronization word is not a contiguous
sequence of symbols but is instead interleaved into the data stream. In [4] it is shown that the distributed
sequence entails a simultaneous search for a set of synchronization words. Each word in the set of sequences is
required to be bifix-free, moreover no prefix of any length of any word in the set is a suffix of any other word
in the set. This property of the set of synchronization words was termed as cross-bifix-free.

Keywords and phrases. Codes, Motzkin paths.

∗ This work has been partially supported by the PRIN project “Automi e linguaggi formali: aspetti matematici ed applicativi”
and GNCS project “Strutture discrete con vincoli”.
1 Dipartimento di Matematica e Informatica “U.Dini”, Università degli Studi di Firenze, Viale G.B. Morgagni 65, 50134
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The problem of determining such sets is also related to several other scientific applications, for instance in
pattern matching [12], automata theory [7] and pattern avoidance theory [8].

Several methods for constructing cross-bifix-free sets have been recently proposed as in [2,9,11]. In particular,
once the cardinality q of the alphabet and the length n of the words are fixed, a matter is the construction of
a cross-bifix-free set with the cardinality as large as possible. An interesting method has been proposed in [2]
(see also [3]) for words on a binary alphabet. This specific construction reveals interesting connections to the
Fibonacci sequence of numbers. In a recent paper [11] the authors revisit the construction in [2] and generalize
it obtaining cross-bifix-free sets having greater cardinality over an alphabet of any size q. They also show that
their cross-bifix-free sets have a cardinality close to the maximum possible. To our knowledge this is the best
result in the literature about the greatest size of cross-bifix-free sets. See also [10] for the “optimal cardinality
whenever n divides q”.

For the sake of completeness we note that an intermediate step between the original method [2] and its
generalization [11] has been proposed in [9] and it is constituted by a different construction of binary cross-
bifix-free sets based on lattice paths which allows to obtain greater values of cardinality if compared to the ones
in [2].

In this study, we revisit the construction in [9]. We give a new construction of cross-bifix-free sets that
generalizes the construction in [9] to q-ary alphabets, for each q > 2, by means of some particular lattice paths
in the discrete plane called k-colored Motzkin paths [5]. This approach enables us to obtain cross-bifix-free sets
having greater cardinality than the ones presented in [11], for the initial values of n. This new result extends
the theory of cross-bifix-free sets and it could be used to improve some technical applications.

This paper is organized as follows. In Section 2 we give some preliminaries and describe the adopted notation.
In Section 3 we present a new construction of cross-bifix-free sets in the q-ary alphabet and in Section 4 we
analyze the sizes of the sets of our construction in comparison to the ones in the literature.

2. Basic definitions and notations

Let Zq = {0, 1, . . . , q− 1} be an alphabet of q elements. A (finite) sequence of elements in Zq is called (finite)
word. The set of all words over Zq having length n is denoted by Z

n
q . A consecutive sequence of m element

a ∈ Zq is denoted by the short form am. Let w ∈ Z
n
q , then |w|a denotes the number of occurrences of a in w,

being a ∈ Zq, and |w| = n. Let w = uzv then u is called a prefix of w and v is called a suffix of w. A bifix of w
is a factor of w that is both its prefix and suffix. We recall that, for any word w we only consider prefixes and
suffixes that are proper, that is, which have length strictly less than the length of w.

A word w ∈ Z
n
q is said to be bifix-free or unbordered [18] if and only if no prefix of w is also a suffix of w.

Therefore, w is bifix-free if and only if w = uzu implies that u is empty word. Obviously, a necessary condition
for w to be bifix-free is that the first and the last letters of w must be different.

Example 2.1. In Z2 = {0, 1}, the word 111010100 of length n = 9 is bifix-free, while the word 101001010
contains two bifixes, 10 and 1010.

Let BFq(n) denote the set of all bifix-free words of length n over an alphabet of fixed size q (for more details
about this topic see [18]).

Given q > 1 and n > 1, two distinct words w, w′ ∈ BFq(n) are said to be cross-bifix-free [4] if and only if no
strict prefix of w is also a suffix of w′ and vice versa.

Example 2.2. The binary words 111010100 and 110101010 in BF2(9) are cross-bifix-free, while the binary
words 111001100 and 110011010 in BF2(9) have the cross-bifix 1100.

A subset of BFq(n) is said to be a cross-bifix-free set if and only if for each w, w′, with w �= w′, in this set,
w and w′ are cross-bifix-free. This set is said to be non-expandable on BFq(n) if and only if the set obtained
by adding any other word in BFq(n) is not a cross-bifix-free set. The set having maximal cardinality is called a
maximal cross-bifix-free set (optimal non-overlapping code) on BFq(n).
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Table 1. Equivalence between symbols and steps for Z3 = {0, 1, 2}.

Symbol Step Color Representation

0 fall –

1 rise –

2 level Black

Let C(n, q) denote the cardinality of the maximal cross-bifix-free set of length n over an alphabet of size q.
In [14], it is proven that

C(n, q) ≤ 1
n

(
n − 1

n

)n−1

qn. (2.1)

In a recent paper [11] the authors provide a general construction of cross-bifix-free sets over a q-ary alphabet.
Below, we recall such generation for the family of cross-bifix-free sets in Z

n
q .

For any 2 ≤ k ≤ n− 2, the cross-bifix-free set Sk,q(n) in [11] is the set of all words s = s1s2 . . . sn in Z
n
q that

satisfy the following two properties:

1) s1 = · · · = sk = 0, sk+1 �= 0 and sn �= 0;
2) the factor sk+2 . . . sn−1 does not contain k consecutive 0’s.

Let

Fk,q(n) =

{
qn if 0 ≤ n < k,
(q − 1)

∑k
l=1 Fk,q(n − l) if n ≥ k,

(2.2)

be the sequence enumerating the words in Z
n
q avoiding k consecutive zero’s [15]. Then, from the above definition

of Sk,q(n), we have
|Sk,q(n)| = (q − 1)2Fk,q(n − k − 2). (2.3)

For any fixed n and q, the largest size of |Sk,q(n)| is denoted by S(n, q) and it is given by the following
expression as in [11]

S(n, q) = max
k=2,...,n−2

|Sk,q(n)|. (2.4)

This result allows to obtain non-expandable cross-bifix-free sets in the q-ary alphabet having cardinality close
to the maximum.

In the present paper we introduce an alternative constructive method for the generation of cross-bifix-free
set in Zq. Our approach is based on the study of lattice paths in the discrete plane and it moves from the
construction in [9].

Each word w ∈ Z
n
q can be represented as a lattice path of N

2 running from (0, 0) to (n, h), with −n ≤ h ≤ n,
having the following properties:

– the element 0 corresponds to a fall step running from (x, y) to (x + 1, y − 1);
– the element 1 corresponds to a rise step running from (x, y) to (x + 1, y + 1);
– the elements 2, . . . , q − 1 correspond respectively to a colored level step running from (x, y) to (x + 1, y) and

it is labeled by one of the q − 2 fixed colors.

For example, Tables 1 and 2 show an equivalence between elements and steps of lattice paths in the alpha-
bets Z3 and Z4, respectively.

From now on, we will refer interchangeably to words or their graphical representations on the discrete plane,
that are paths. The definition of bifix-free and cross-bifix-free can be easily extended to paths.
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Table 2. Equivalence between symbols and steps for Z4 = {0, 1, 2, 3}.

Symbol Step Color Representation

0 fall –

1 rise –

2 level Black

3 level Red

1 2 1 0 0 2 1 0 0 2 1 2

Figure 1. Words 121002, 100212 and the equivalent paths. The first one is a Motzkin word.

A k-colored Motzkin path of length n is a lattice path of N
2 running from (0, 0) to (n, 0) that never goes

below the x-axis and whose admitted steps are rise steps, fall steps and k-colored level steps (for more details
about this topic see [5]).

For example, the left side of Figure 1 shows a Motzkin path in Z3 having length 6, while the path in its right
side is not a Motzkin path since it crosses the x-axis.

We denote by Mk(n) the set of all k-colored Motzkin paths of length n, and let Mk(n) be the size of Mk(n).
The following proposition can be easily generalized from the recurrence of the Motzkin numbers in [1] (case

k = 1).

Proposition 2.3. For any n ≥ 0 and k ≥ 1, Mk(n) is given by the following expression

Mk(n + 1) = kMk(n) +
n−1∑
i=0

Mk(i)Mk(n − 1 − i) (2.5)

with Mk(0) = 1 and Mk(1) = k.

In [19], a generating function for Mk(n) is derived as:

Mk(x) =
∑
n≥0

Mn(k)xn =
1 − kx − √

(1 − kx)2 − 4x2

2x2
, (2.6)

and the following formula, which is related to the well-known Catalan numbers Cn = 1
n+1

(
2n
n

)
with n ≥ 0, is

also presented

Mk(n) =
[ n
2 ]∑

r=0

(
n

2r

)
Crk

n−2r. (2.7)
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1 3 1 2 0 0 1 2 2 2 3 0

Figure 2. An example of elevated 2-colored Motzkin words.

α ∈ Mq−2(i) β ∈ M̂q−2(n − i)

Figure 3. Graphical representation of the set Aq(n), n ≥ 3.

A word w ∈ Z
n
q is called (q−2)-colored Motzkin word if the equivalent lattice path is a (q−2)-colored Motzkin

path.
For our purposes, it is useful to denote by M̂q−2(n) the set of all elevated (q − 2)-colored Motzkin words of

length n, defined as:

M̂q−2(n) = {1α0 : α ∈ Mq−2(n − 2)}.

For example, in Figure 2 two words in M̂2(6) are depicted.
In the next section of the present paper we are interested in determining one among all the possible non-

expandable cross-bifix-free sets of words of fixed length n > 1 on Z
n
q by means of (q−2)-colored Motzkin words.

We denote this set by CBFSq(n).

3. On the non-expandability of CBFSq(n)

In this section we define the set CBFSq(n), with q ≥ 3 and n ≥ 3, which is formed by the union of three
disjoint sets: a set of (q − 2)-colored Motzkin paths of length n denoted by Aq(n), a set of paths, denoted by
Bq(n), formed by a rise step followed by a (q − 2)-colored Motzkin path of length n − 1, and a set of paths,
denoted by Cq(n), formed by a (q − 2)-colored Motzkin path of length n − 1 followed by a fall step.

Let

Aq(n) =
⋃

0≤i≤�n
2 �

{
αβ : α ∈ Mq−2(i), β ∈ M̂q−2(n − i)

}
\

{
αβ : α, β ∈ M̂q−2

(n

2

)}

be the set of words composed by a (q − 2)-colored Motzkin word α of length i, and a elevated (q − 2)-colored
Motzkin word β of length n− i (see Fig. 3). If n is even, we need to remove the words composed by two elevated
subwords of the same length. On the other side, if n is odd, we assume the set

{
αβ : α, β ∈ M̂q−2

(
n
2

)}
empty,

since it does not exists any path of non-integer length.
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1 α ∈ Mq−2(i) β ∈ M̂q−2(n − i − 1)

Figure 4. Graphical representation of the set Bq(n), n ≥ 3.

γ ∈ Mq−2(n − 1) 0

γ avoids
elevated Motzkin words

of length j ≥ n
2

Figure 5. Graphical representation of the set Cq(n), n ≥ 3.

Then, the enumeration of the set Aq(n) is given by the following expression

|Aq(n)| =

⎛
⎝�n/2�∑

i=0

Mq−2(i)Mq−2(n − i − 2)

⎞
⎠ −

(
Mq−2

(n

2
− 2

))2

. (3.1)

Let
Bq(n) =

⋃
0≤i≤�n

2 �−1

{
1αβ : α ∈ Mq−2(i), β ∈ M̂q−2(n − i − 1)

}

be the set of words composed by a rise step, a (q − 2)-colored Motzkin word α of length i, and a elevated
(q − 2)-colored Motzkin word β of length n − i − 1 (see Fig. 4).

Then, the enumeration of the set Bq(n) is given by the following expression

|Bq(n)| =
�n/2�−1∑

i=0

Mq−2(i)Mq−2(n − i − 3). (3.2)

Let
Cq(n) =

{
γ0 : γ ∈ Mq−2(n − 1), γ �= uβv, β ∈ M̂q−2(j), j ≥

⌈n

2

⌉}
be the set of words composed by a (q − 2)-colored Motzkin word γ of length n− 1 that avoids elevated (q − 2)-
colored Motzkin words of length j, and a fall step (see Fig. 5).

Then, the enumeration of the set Cq(n) is given by the following expression

|Cq(n)| = Mq−2(n − 1) −
n−1∑

k=�n/2�

n−1−k∑
i=0

Mq−2(i)Mq−2(k − 2)Mq−2(n − 1 − i − k). (3.3)
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1 2 2 0 1 1 0 0 2 1 2 0 2 2 1 0

1 1 2 0 1 2 1 0 2 2 2 0

Figure 6. Graphical representation of the set CBFS3(4).

Note that, in order to obtain the size |Cq(n)| we need to subtract from all words γ of length n − 1 those
containing a elevated Motzkin subword β of length greater than or equal to �n/2	, and γ can contain one of
those subwords at most. Then, for k = �n/2	 , . . . , n − 1 we need to remove the words uβv, with u ∈ Mq−2(i),
β ∈ M̂q−2(k), v ∈ Mq−2(n − 1 − i − k) and 0 ≤ i ≤ n − 1 − k.

At this point, we define the set CBFSq(n) as follows

CBFSq(n) = Aq(n) ∪ Bq(n) ∪ Cq(n)

that is the union of the above described sets. For instance, in Figure 6 the set CBFS3(4) is depicted, where
A3(4) = {1220, 1100, 2120, 2210}, B3(4) = {1120, 1210} and C3(4) = {2220}.

Proposition 3.1. The set CBFSq(n) is a cross-bifix-free set on BFq(n), for any q ≥ 3 and n ≥ 3.

Proof. Let w, w′ ∈ CBFSq(n). Let u be a prefix of w, and v be a suffix of w′ such that |u| = |v|. We need to
check that in each case the prefix u does not match with the suffix v.

(1) Let w ∈ Aq(n) and w′ ∈ Aq(n) ∪ Bq(n).
For each prefix u of w we have |u|0 ≤ |u|1 and if |u| > �n

2 �, then |u|0 < |u|1. For each suffix v of w′ we have
|v|0 ≥ |v|1 and if |v| < �n+1

2 �, then |v|0 > |v|1.
Let |u| = |v| = �, if either � < �n+1

2 � or � > �n
2 �, then u does not match with v. So we have to check the

case �n+1
2 � ≤ � ≤ �n

2 �.
If n is odd, there does not exist an integer � satisfying �n+1

2 � ≤ � ≤ �n
2 �, otherwise if n is even, the case

�n+1
2 � ≤ � ≤ �n

2 � is verified only for � = n
2 . Therefore let n be even and � = n

2 . In this case |u|0 ≤ |u|1 and
|v|0 ≥ |v|1. At this point u can match with v only if |v|0 = |v|1, and this can happen only if v is a elevated
Motzkin word. Suppose now that u = v, so u should be a elevated Motzkin word too, and they have both
length n

2 . In this case, w should be a word composed of two elevated Motzkin subwords of the same length,

but such a word does not exist in CBFSq(n) since the set
{
αβ : α, β ∈ M̂q−2

(
n
2

)}
is not included in it,

thus u does not match with v.
(2) Let w ∈ Bq(n) and w′ ∈ Aq(n) ∪ Bq(n).

For each prefix u of w we have |u|0 < |u|1, and for each suffix v of w′ we have |v|0 ≥ |v|1, thus u does not
match with v.

(3) Let w ∈ Cq(n) and w′ ∈ Aq(n) ∪ Bq(n).
For each prefix u of w we have |u|0 ≤ |u|1. For each suffix v of w′ we have |v|0 ≥ |v|1 and if |v| < �n+1

2 �,
then |v|0 > |v|1.
Let |u| = |v| = �. If � < �n+1

2 �, then u does not match with v. So we have to check the case � ≥ �n+1
2 �. In

this case v contains a elevated Motzkin subword of length �n+1
2 � = �n

2 	 at least, and u does not match with
v, since u avoids such subwords.

(4) Let w ∈ CBFSq(n) and w′ ∈ Cq(n).
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φ 1 μ1 1 μ2 · · · 1 μh

Figure 7. Graphical representation of w, in the case h > 0.

For each prefix u of w we have |u|0 ≤ |u|1, and for each suffix v of w′ we have |v|0 > |v|1, thus u cannot
match with v.

We proved that CBFSq(n) is a cross-bifix-free set on BFq(n), for any q ≥ 3 and n ≥ 3. �

Proposition 3.2. The set CBFSq(n) is a non-expandable cross-bifix-free set on BFq(n), for any q ≥ 3 and
n ≥ 3.

Proof. Let w ∈ BFq(n)\CBFSq(n) and W = CBFSq(n)∪{w}. If w begins with 0 then W is not cross-bifix-free
since any word in CBFSq(n) ends with 0. If w ends with 1 then W is not cross-bifix-free since any word in Aq(n)
begins with 1. If w ends with a letter k �= 0, 1 then W is not cross-bifix-free since the suffix k of w matches, for
instance, with the prefix k of the word kn−10 ∈ Cq(n). Consequently we have to consider w as a word beginning
with a non-zero letter and ending with 0.

Let h = |w|1 − |w|0 be the ordinate of the last point of the path corresponding to w. We now need to
distinguish three different cases: h > 0, h < 0 and h = 0.

If h > 0, w can be written as (see Fig. 7)

w = φ 1 μ1 1 μ2 . . . 1 μh,

where φ is a word satisfying |φ|1 = |φ|0 and not beginning with 0, and μ1, . . . , μh are (q − 2)-colored Motzkin
words with μh non-empty as w ends with 0.

In this case, if |μh| = � ≤ n − 2, considering for instance the word u = 1μh2n−�−20 ∈ Aq(n) we can
clearly see that 1μh is a cross-bifix between w and u, and then W is not cross-bifix-free. On the other hand,
if |μh| = n − 1, then necessarily h = 1 and w = 1μ1. So, w can be written as w = 1αβ, where α ∈ Mq−2(i),
β ∈ M̂q−2(n− i − 1) with i > �n

2 � (otherwise w ∈ Bq(n)). In this case, for instance, the word β12i−10 ∈ Aq(n)
has a cross-bifix with w, thus W is not a cross-bifix-free-set.

If h < 0, w can be written as (see Fig. 8)

w = μ−h 0 . . . μ2 0 μ1 0 φ

where φ is a word satisfying |φ|1 = |φ|0 and ending with 0, and μ1, . . . , μ−h are (q − 2)-colored Motzkin words
with μ−h non-empty as w begins with a non-zero letter.

In this case, if |μ−h| = � ≤ n − 2, considering for instance the word u = 12n−�−2μ−h0 ∈ Aq(n) we can
clearly see that μ−h0 is a cross-bifix between w and u, and then W is not cross-bifix-free. On the other hand,
if |μ−h| = n− 1, then necessarily h = −1 and w = μ10. So, w can be written as w = αβδ0, where β ∈ M̂q−2(j)
with j ≥ �n

2 	 (otherwise w ∈ Cq(n)), and α, δ any two (q−2)-colored Motzkin words of the appropriate length. In
this case, for instance, the word 2n−j−|α|αβ ∈ Aq(n) has a cross-bifix with w, thus W is not a cross-bifix-free-set.

Finally, if h = 0, the path associated to w can either remain above x-axis or fall below it.
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μ−h 0 · · · μ2 0 μ1 0 φ

Figure 8. Graphical representation of w, in the case h < 0.

In the first case let i, with �n
2 � ≤ i < n, be the last x-coordinate of the path intercepting the x-axis. Notice

that i can not be less than �n
2 �, otherwise w ∈ Aq(n). We can write w = αβ, where α is a non-empty word

in Mq−2(i) and β ∈ M̂q−2(n − i). We now need to take into consideration two different cases: i = �n
2 � and

i > �n
2 �. If i = �n

2 � then α ∈ M̂q−2(n
2 ), otherwise w ∈ Aq(n), so for instance, the word 2n/2α ∈ Aq(n) has a

cross-bifix with w. If i > �n
2 � then, for instance, the word β2i−10 ∈ Cq(n) has a cross-bifix with w, so that W

is not a cross-bifix-free-set.
In the other case the path associated to w crosses the x-axis. Let i, with 0 < i < n, be the first x-coordinate

of the path crossing x-axis. We can write w = α0φ, where α is a non-empty word in Mq−2(i). In this case, for
instance, the word 12n−i−2α0 ∈ Aq(n) has a cross-bifix with w, then W is not a cross-bifix-free-set.

We proved that CBFSq(n) is a non-expandable cross-bifix-free set on BFq(n), for any q ≥ 3 and n ≥ 3. �

4. Sizes of cross-bifix-free sets for small lengths

In this section we present some results concerning the size of CBFSq(n) compared to the ones in [11].
For fixed n and q, we recall that the size of q-ary cross-bifix-free sets given in [11] is obtained by

S(n, q) = max{(q − 1)2Fk,q(n − k − 2) : 2 ≤ k ≤ n − 2} (4.1)

which is proved to be nearly optimal.
In Table 3 the values of |CBFSq(n)| and S(n, q) for 3 ≤ q ≤ 6 and n ≤ 16 are shown. For the initial values

of n, we can observe that the sizes obtained by our construction are greater than the size S(n, q). In particular,
the number of the initial values of n, for which |CBFSq(n)| is greater than S(n, q), grows together with q and
this trend can be easily verified by experimental results.

In order to improve the values of the size S(n, q) for the initial size of n, we can consider the following
expression

S∗(n, q) = max{(q − 1)2Fk,q(n − k − 2) : 1 ≤ k ≤ n − 2}, (4.2)

where k can assume also the value 1. When k = 1, in the case of small n and large q, we obtain cross-bifix-free
sets having cardinality greater than the one proposed in [11]. A similar argument is also discussed in [10], where
a construction giving the maximal cardinality C(n, q) = 1

n (n−1
n )n−1qn is presented when n divides q. Such a

particular case requires that the size q of the alphabet must be greater than the length n of the words, whereas
S∗(n, q) gives an exact cardinality for all possible values of q and n, with n, q > 2.

Table 4 shows the values of |CBFSq(n)|, S∗(n, q) and C(n, q) for 3 ≤ q ≤ 6 and n ≤ 16. Also in this situation,
we can observe that the sizes obtained by our construction are greater than the size S∗(n, q) in a range of values
of n. In particular, the range of values of n, for which |CBFSq(n)| is greater than S∗(n, q), grows together with q
and this trend can be easily verified by experimental results.
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Table 3. Comparing the values from [11] with CBFSq(n), for 3 ≤ q ≤ 6.

n |CBFS3(n)| S(n, 3) |CBFS4(n)| S(n, 4)

3 4 4 9 9
4 7 4 25 9
5 16 12 72 36
6 36 32 223 135
7 87 88 712 513
8 210 240 2 334 1 944
9 535 656 7 868 7 371
10 1 350 1 792 26 731 27 945
11 3 545 4 896 93 175 105 948
12 9 205 13 376 324 520 401 679
13 24 698 36 544 1 157 031 1 522 881
14 65 467 99 840 4 104 449 5 773 680
15 178 375 272 768 14 874 100 21 889 683
16 480 197 745 216 53 514 974 82 990 089

n |CBFS5(n)| S(n, 5) |CBFS6(n)| S(n, 6)

3 16 16 25 25
4 61 16 121 25
5 224 80 550 150
6 900 384 2 739 875
7 3 595 1 856 13 260 5 125
8 15 014 8 960 67 740 30 000
9 63 135 43 264 342 676 175 625
10 271 136 208 896 1 787 415 1 028 125
11 1 178 677 1 008 640 9 324 647 6 018 750
12 5 167 953 4 870 144 49 456 240 35 234 375
13 22 986 100 23 515 136 263 776 127 206 265 625
14 102 403 229 113 541 120 1 417 981 855 1 207 500 000
15 463 098 075 548 225 024 7 688 015 908 7 068 828 125
16 2 089 302 415 2 647 064 576 41 785 951 916 41 381 640 625

Table 4. Comparing the values from S∗(n, q) and C(n, q) with CBFSq(n), for 3 ≤ q ≤ 6.

n |CBFS3(n)| S∗(n, 3) C(n, 3) |CBFS4(n)| S∗(n, 4) C(n, 4)

3 4 4 4 9 9
4 7 8 25 27 27
5 16 16 72 81
6 36 32 223 243
7 87 88 712 729
8 210 240 2 334 2 187
9 535 656 7 868 7 371
10 1 350 1 792 26 731 27 945
11 3 545 4 896 93 175 105 948
12 9 205 13 376 324 520 401 679
13 24 698 36 544 1 157 031 1 522 881
14 65 467 99 840 4 104 449 5 773 680
15 178 375 272 768 14 874 100 21 889 683
16 480 197 745 216 53 514 974 82 990 089

n |CBFS5(n)| S∗(n, 5) C(n, 5) |CBFS6(n)| S∗(n, 6) C(n, 6)

3 16 16 25 25 32
4 61 64 121 125
5 224 256 256 550 625
6 900 1 024 2 739 3 125 3125
7 3 595 4 096 13 260 15 625
8 15 014 16 384 67 740 78 125
9 63 135 65 536 342 676 390 625
10 271 136 262 144 1 787 415 1 953 125
11 1 178 677 1 048 576 9 324 647 9 765 625
12 5 167 953 4 870 144 49 456 240 48 828 125
13 22 986 100 23 515 136 263 776 127 244 140 625
14 102 403 229 113 541 120 1 417 981 855 1 220 703 125
15 463 098 075 548 225 024 7 688 015 908 7 068 828 125
16 2 089 302 415 2 647 064 576 41 785 951 916 41 381 640 625
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5. Conclusions and further developments

In this paper, we introduce a general constructive method for cross-bifix-free sets in the q-ary alphabet based
upon the study of lattice paths on the discrete plane. This approach enables us to obtain the cross-bifix-free set
CBFSq(n) having greater cardinality than the ones proposed in [11], for the initial values of n.

Moreover, we prove that CBFSq(n) is a non-expandable cross-bifix-free set on BFq(n), i.e. CBFSq(n) ∪ {w}
is not a cross-bifix-free set on BFq(n), for any w ∈ BFq(n)\CBFSq(n).

The non-expandable property is obviously a necessary condition to obtain a maximal cross-bifix-free set on
BFq(n), anyway the problem of determine maximal cross-bifix-free sets is still open and no general solution has
been found yet.
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