CROSS-BIFIX-FREE SETS GENERATION VIA MOTZKIN PATHS*

Elena Barcucci¹, Stefano Bilotta¹, Elisa Pergola¹, Renzo Pinzani¹ and Jonathan Succi¹

Abstract. Cross-bifix-free sets are sets of words such that no proper prefix of any word is a proper suffix of any other word. In this paper, we introduce a general constructive method for the sets of cross-bifix-free q-ary words of fixed length. It enables us to determine a cross-bifix-free words subset which has the property to be non-expandable.

Mathematics Subject Classification. 68R05, 68P30.

1. INTRODUCTION

A cross-bifix-free set of words (also known as non-overlapping code) is a set where, given any two elements of the set, possibly the same, any prefix of the first one is not a suffix of the second one and vice versa (from now on, by abuse of language, we will use the term prefix and suffix instead of proper prefix and proper suffix, respectively). Cross-bifix-free sets are involved in the study of frame synchronization which is an essential requirement in digital communication systems to establish and maintain a connection between a transmitter and a receiver.

Analytical approaches to the synchronization acquisition process and methods for the construction of sequences with the best aperiodic autocorrelation properties [6, 13, 16, 20] have been the subject of numerous analyses in the digital transmission.

The historical engineering approach started with the introduction of bifix, a name proposed by Massey as acknowledged in [17]. It denotes a factor that is both a prefix and suffix of a longer observed sequence.

In [13] the notion of a *distributed sequence* is introduced, where the synchronization word is not a contiguous sequence of symbols but is instead interleaved into the data stream. In [4] it is shown that the distributed sequence entails a simultaneous search for a set of synchronization words. Each word in the set of sequences is required to be bifix-free, moreover no prefix of any length of any word in the set is a suffix of any other word in the set. This property of the set of synchronization words was termed as *cross-bifix-free*.

Keywords and phrases. Codes, Motzkin paths.

^{*} This work has been partially supported by the PRIN project "Automi e linguaggi formali: aspetti matematici ed applicativi" and GNCS project "Strutture discrete con vincoli".

¹ Dipartimento di Matematica e Informatica "U.Dini", Università degli Studi di Firenze, Viale G.B. Morgagni 65, 50134 Firenze, Italy. elena.barcucci@unifi.it; stefano.bilotta@unifi.it; elisa.pergola@unifi.it; renzo.pinzani@unifi.it; jons10@hotmail.it

The problem of determining such sets is also related to several other scientific applications, for instance in pattern matching [12], automata theory [7] and pattern avoidance theory [8].

Several methods for constructing cross-bifix-free sets have been recently proposed as in [2,9,11]. In particular, once the cardinality q of the alphabet and the length n of the words are fixed, a matter is the construction of a cross-bifix-free set with the cardinality as large as possible. An interesting method has been proposed in [2] (see also [3]) for words on a binary alphabet. This specific construction reveals interesting connections to the Fibonacci sequence of numbers. In a recent paper [11] the authors revisit the construction in [2] and generalize it obtaining cross-bifix-free sets having greater cardinality over an alphabet of any size q. They also show that their cross-bifix-free sets have a cardinality close to the maximum possible. To our knowledge this is the best result in the literature about the greatest size of cross-bifix-free sets. See also [10] for the "optimal cardinality whenever n divides q".

For the sake of completeness we note that an intermediate step between the original method [2] and its generalization [11] has been proposed in [9] and it is constituted by a different construction of binary crossbifix-free sets based on lattice paths which allows to obtain greater values of cardinality if compared to the ones in [2].

In this study, we revisit the construction in [9]. We give a new construction of cross-bifix-free sets that generalizes the construction in [9] to q-ary alphabets, for each q > 2, by means of some particular lattice paths in the discrete plane called k-colored Motzkin paths [5]. This approach enables us to obtain cross-bifix-free sets having greater cardinality than the ones presented in [11], for the initial values of n. This new result extends the theory of cross-bifix-free sets and it could be used to improve some technical applications.

This paper is organized as follows. In Section 2 we give some preliminaries and describe the adopted notation. In Section 3 we present a new construction of cross-bifix-free sets in the q-ary alphabet and in Section 4 we analyze the sizes of the sets of our construction in comparison to the ones in the literature.

2. Basic definitions and notations

Let $\mathbb{Z}_q = \{0, 1, \dots, q-1\}$ be an alphabet of q elements. A (finite) sequence of elements in \mathbb{Z}_q is called (finite) word. The set of all words over \mathbb{Z}_q having length n is denoted by \mathbb{Z}_q^n . A consecutive sequence of m element $a \in \mathbb{Z}_q$ is denoted by the short form a^m . Let $w \in \mathbb{Z}_q^n$, then $|w|_a$ denotes the number of occurrences of a in w, being $a \in \mathbb{Z}_q$, and |w| = n. Let w = uzv then u is called a *prefix* of w and v is called a *suffix* of w. A *bifix* of wis a factor of w that is both its prefix and suffix. We recall that, for any word w we only consider prefixes and suffixes that are proper, that is, which have length strictly less than the length of w.

A word $w \in \mathbb{Z}_q^n$ is said to be *bifix-free* or *unbordered* [18] if and only if no prefix of w is also a suffix of w. Therefore, w is bifix-free if and only if w = uzu implies that u is empty word. Obviously, a necessary condition for w to be bifix-free is that the first and the last letters of w must be different.

Example 2.1. In $\mathbb{Z}_2 = \{0, 1\}$, the word 111010100 of length n = 9 is bifix-free, while the word 101001010 contains two bifixes, 10 and 1010.

Let $BF_q(n)$ denote the set of all bifix-free words of length n over an alphabet of fixed size q (for more details about this topic see [18]).

Given q > 1 and n > 1, two distinct words $w, w' \in BF_q(n)$ are said to be *cross-bifix-free* [4] if and only if no strict prefix of w is also a suffix of w' and vice versa.

Example 2.2. The binary words 111010100 and 110101010 in $BF_2(9)$ are cross-bifix-free, while the binary words 111001100 and 110011010 in $BF_2(9)$ have the cross-bifix 1100.

A subset of $BF_q(n)$ is said to be a cross-bifix-free set if and only if for each w, w', with $w \neq w'$, in this set, w and w' are cross-bifix-free. This set is said to be non-expandable on $BF_q(n)$ if and only if the set obtained by adding any other word in $BF_q(n)$ is not a cross-bifix-free set. The set having maximal cardinality is called a maximal cross-bifix-free set (optimal non-overlapping code) on $BF_q(n)$.

Symbol	Step	Color	Representation
0	fall	_	
1	rise	_	
2	level	Black	<u> </u>

TABLE 1. Equivalence between symbols and steps for $\mathbb{Z}_3 = \{0, 1, 2\}$.

Let C(n,q) denote the cardinality of the maximal cross-bifix-free set of length n over an alphabet of size q. In [14], it is proven that

$$C(n,q) \le \frac{1}{n} \left(\frac{n-1}{n}\right)^{n-1} q^n.$$

$$(2.1)$$

In a recent paper [11] the authors provide a general construction of cross-bifix-free sets over a q-ary alphabet. Below, we recall such generation for the family of cross-bifix-free sets in \mathbb{Z}_q^n .

For any $2 \le k \le n-2$, the cross-bifix-free set $\mathcal{S}_{k,q}(n)$ in [11] is the set of all words $s = s_1 s_2 \dots s_n$ in \mathbb{Z}_q^n that satisfy the following two properties:

1) $s_1 = \cdots = s_k = 0, \ s_{k+1} \neq 0 \text{ and } s_n \neq 0;$

2) the factor $s_{k+2} \dots s_{n-1}$ does not contain k consecutive 0's.

Let

$$F_{k,q}(n) = \begin{cases} q^n & \text{if } 0 \le n < k, \\ (q-1) \sum_{l=1}^k F_{k,q}(n-l) & \text{if } n \ge k, \end{cases}$$
(2.2)

be the sequence enumerating the words in \mathbb{Z}_q^n avoiding k consecutive zero's [15]. Then, from the above definition of $\mathcal{S}_{k,q}(n)$, we have

$$|\mathcal{S}_{k,q}(n)| = (q-1)^2 F_{k,q}(n-k-2).$$
(2.3)

For any fixed n and q, the largest size of $|S_{k,q}(n)|$ is denoted by S(n,q) and it is given by the following expression as in [11]

$$S(n,q) = \max_{k=2,\dots,n-2} |S_{k,q}(n)|.$$
(2.4)

This result allows to obtain non-expandable cross-bifix-free sets in the q-ary alphabet having cardinality close to the maximum.

In the present paper we introduce an alternative constructive method for the generation of cross-bifix-free set in \mathbb{Z}_q . Our approach is based on the study of lattice paths in the discrete plane and it moves from the construction in [9].

Each word $w \in \mathbb{Z}_q^n$ can be represented as a lattice path of \mathbb{N}^2 running from (0,0) to (n,h), with $-n \leq h \leq n$, having the following properties:

- the element 0 corresponds to a *fall step* running from (x, y) to (x + 1, y 1);
- the element 1 corresponds to a *rise step* running from (x, y) to (x + 1, y + 1);
- the elements $2, \ldots, q-1$ correspond respectively to a *colored level step* running from (x, y) to (x+1, y) and it is labeled by one of the q-2 fixed colors.

For example, Tables 1 and 2 show an equivalence between elements and steps of lattice paths in the alphabets \mathbb{Z}_3 and \mathbb{Z}_4 , respectively.

From now on, we will refer interchangeably to words or their graphical representations on the discrete plane, that are paths. The definition of bifix-free and cross-bifix-free can be easily extended to paths.

	Symbol	Step	Color	Representation
	0	fall	-	
	1	rise	—	
	2	level	Black	
	3	level	Red	
	~			
_			,	\wedge
			_ /	
1	2 1 () 0 2	2 1	$1 0 0 2 1 \vdots$

TABLE 2. Equivalence between symbols and steps for $\mathbb{Z}_4 = \{0, 1, 2, 3\}$.

FIGURE 1. Words 121002, 100212 and the equivalent paths. The first one is a Motzkin word.

A k-colored Motzkin path of length n is a lattice path of \mathbb{N}^2 running from (0,0) to (n,0) that never goes below the x-axis and whose admitted steps are rise steps, fall steps and k-colored level steps (for more details about this topic see [5]).

For example, the left side of Figure 1 shows a Motzkin path in \mathbb{Z}_3 having length 6, while the path in its right side is not a Motzkin path since it crosses the x-axis.

We denote by $\mathcal{M}_k(n)$ the set of all k-colored Motzkin paths of length n, and let $\mathcal{M}_k(n)$ be the size of $\mathcal{M}_k(n)$.

The following proposition can be easily generalized from the recurrence of the Motzkin numbers in [1] (case k = 1).

Proposition 2.3. For any $n \ge 0$ and $k \ge 1$, $M_k(n)$ is given by the following expression

$$M_k(n+1) = kM_k(n) + \sum_{i=0}^{n-1} M_k(i)M_k(n-1-i)$$
(2.5)

with $M_k(0) = 1$ and $M_k(1) = k$.

In [19], a generating function for $M_k(n)$ is derived as:

$$M_k(x) = \sum_{n \ge 0} M_n(k) x^n = \frac{1 - kx - \sqrt{(1 - kx)^2 - 4x^2}}{2x^2},$$
(2.6)

and the following formula, which is related to the well-known Catalan numbers $C_n = \frac{1}{n+1} {\binom{2n}{n}}$ with $n \ge 0$, is also presented

$$M_k(n) = \sum_{r=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2r} C_r k^{n-2r}.$$
 (2.7)

FIGURE 2. An example of elevated 2-colored Motzkin words.

FIGURE 3. Graphical representation of the set $\mathcal{A}_q(n), n \geq 3$.

A word $w \in \mathbb{Z}_q^n$ is called (q-2)-colored Motzkin word if the equivalent lattice path is a (q-2)-colored Motzkin path.

For our purposes, it is useful to denote by $\hat{\mathcal{M}}_{q-2}(n)$ the set of all elevated (q-2)-colored Motzkin words of length n, defined as:

$$\hat{\mathcal{M}}_{q-2}(n) = \{1\alpha 0 : \alpha \in \mathcal{M}_{q-2}(n-2)\}.$$

For example, in Figure 2 two words in $\hat{\mathcal{M}}_2(6)$ are depicted.

In the next section of the present paper we are interested in determining one among all the possible nonexpandable cross-bifix-free sets of words of fixed length n > 1 on \mathbb{Z}_q^n by means of (q-2)-colored Motzkin words. We denote this set by $\operatorname{CBFS}_{q}(n)$.

3. On the non-expandability of $\text{CBFS}_{a}(n)$

In this section we define the set $\text{CBFS}_q(n)$, with $q \geq 3$ and $n \geq 3$, which is formed by the union of three disjoint sets: a set of (q-2)-colored Motzkin paths of length n denoted by $\mathcal{A}_q(n)$, a set of paths, denoted by $\mathcal{B}_q(n)$, formed by a rise step followed by a (q-2)-colored Motzkin path of length n-1, and a set of paths, denoted by $C_q(n)$, formed by a (q-2)-colored Motzkin path of length n-1 followed by a fall step. Let

$$\mathcal{A}_{q}(n) = \bigcup_{0 \le i \le \left\lfloor \frac{n}{2} \right\rfloor} \left\{ \alpha\beta : \alpha \in \mathcal{M}_{q-2}(i), \ \beta \in \hat{\mathcal{M}}_{q-2}(n-i) \right\} \setminus \left\{ \alpha\beta : \alpha, \beta \in \hat{\mathcal{M}}_{q-2}\left(\frac{n}{2}\right) \right\}$$

be the set of words composed by a (q-2)-colored Motzkin word α of length i, and a elevated (q-2)-colored Motzkin word β of length n-i (see Fig. 3). If n is even, we need to remove the words composed by two elevated subwords of the same length. On the other side, if n is odd, we assume the set $\left\{\alpha\beta:\alpha,\beta\in\hat{\mathcal{M}}_{q-2}\left(\frac{n}{2}\right)\right\}$ empty, since it does not exists any path of non-integer length.

FIGURE 4. Graphical representation of the set $\mathcal{B}_q(n), n \geq 3$.

FIGURE 5. Graphical representation of the set $C_q(n)$, $n \ge 3$.

Then, the enumeration of the set $\mathcal{A}_q(n)$ is given by the following expression

$$|\mathcal{A}_q(n)| = \left(\sum_{i=0}^{\lfloor n/2 \rfloor} M_{q-2}(i)M_{q-2}(n-i-2)\right) - \left(M_{q-2}\left(\frac{n}{2}-2\right)\right)^2.$$
(3.1)

Let

$$\mathcal{B}_q(n) = \bigcup_{0 \le i \le \lfloor \frac{n}{2} \rfloor - 1} \left\{ 1\alpha\beta : \alpha \in \mathcal{M}_{q-2}(i), \ \beta \in \hat{\mathcal{M}}_{q-2}(n-i-1) \right\}$$

be the set of words composed by a rise step, a (q-2)-colored Motzkin word α of length *i*, and a elevated (q-2)-colored Motzkin word β of length n-i-1 (see Fig. 4).

Then, the enumeration of the set $\mathcal{B}_q(n)$ is given by the following expression

$$|\mathcal{B}_q(n)| = \sum_{i=0}^{\lfloor n/2 \rfloor - 1} M_{q-2}(i) M_{q-2}(n-i-3).$$
(3.2)

Let

$$\mathcal{C}_q(n) = \left\{ \gamma 0 : \gamma \in \mathcal{M}_{q-2}(n-1), \, \gamma \neq u \beta v, \, \beta \in \hat{\mathcal{M}}_{q-2}(j), \, j \ge \left\lceil \frac{n}{2} \right\rceil \right\}$$

be the set of words composed by a (q-2)-colored Motzkin word γ of length n-1 that avoids elevated (q-2)colored Motzkin words of length j, and a fall step (see Fig. 5).

Then, the enumeration of the set $C_q(n)$ is given by the following expression

$$|\mathcal{C}_q(n)| = M_{q-2}(n-1) - \sum_{k=\lceil n/2 \rceil}^{n-1} \sum_{i=0}^{n-1-k} M_{q-2}(i) M_{q-2}(k-2) M_{q-2}(n-1-i-k).$$
(3.3)

FIGURE 6. Graphical representation of the set $CBFS_3(4)$.

Note that, in order to obtain the size $|\mathcal{C}_q(n)|$ we need to subtract from all words γ of length n-1 those containing a elevated Motzkin subword β of length greater than or equal to $\lceil n/2 \rceil$, and γ can contain one of those subwords at most. Then, for $k = \lceil n/2 \rceil, \ldots, n-1$ we need to remove the words $u\beta v$, with $u \in \mathcal{M}_{q-2}(i)$, $\beta \in \hat{\mathcal{M}}_{q-2}(k), v \in \mathcal{M}_{q-2}(n-1-i-k)$ and $0 \le i \le n-1-k$.

At this point, we define the set $CBFS_q(n)$ as follows

$$CBFS_q(n) = \mathcal{A}_q(n) \cup \mathcal{B}_q(n) \cup \mathcal{C}_q(n)$$

that is the union of the above described sets. For instance, in Figure 6 the set $CBFS_3(4)$ is depicted, where $\mathcal{A}_3(4) = \{1220, 1100, 2120, 2210\}, \mathcal{B}_3(4) = \{1120, 1210\} \text{ and } \mathcal{C}_3(4) = \{2220\}.$

Proposition 3.1. The set $\text{CBFS}_q(n)$ is a cross-bifix-free set on $\text{BF}_q(n)$, for any $q \ge 3$ and $n \ge 3$.

Proof. Let $w, w' \in \text{CBFS}_q(n)$. Let u be a prefix of w, and v be a suffix of w' such that |u| = |v|. We need to check that in each case the prefix u does not match with the suffix v.

(1) Let $w \in \mathcal{A}_q(n)$ and $w' \in \mathcal{A}_q(n) \cup \mathcal{B}_q(n)$.

For each prefix u of w we have $|u|_0 \le |u|_1$ and if $|u| > \lfloor \frac{n}{2} \rfloor$, then $|u|_0 < |u|_1$. For each suffix v of w' we have $|v|_0 \ge |v|_1$ and if $|v| < \lfloor \frac{n+1}{2} \rfloor$, then $|v|_0 > |v|_1$.

Let $|u| = |v| = \ell$, if either $\ell < \lfloor \frac{n+1}{2} \rfloor$ or $\ell > \lfloor \frac{n}{2} \rfloor$, then u does not match with v. So we have to check the case $\lfloor \frac{n+1}{2} \rfloor \le \ell \le \lfloor \frac{n}{2} \rfloor$.

If n is odd, there does not exist an integer ℓ satisfying $\lfloor \frac{n+1}{2} \rfloor \leq \ell \leq \lfloor \frac{n}{2} \rfloor$, otherwise if n is even, the case $\lfloor \frac{n+1}{2} \rfloor \leq \ell \leq \lfloor \frac{n}{2} \rfloor$ is verified only for $\ell = \frac{n}{2}$. Therefore let n be even and $\ell = \frac{n}{2}$. In this case $|u|_0 \leq |u|_1$ and $|v|_0 \geq |v|_1$. At this point u can match with v only if $|v|_0 = |v|_1$, and this can happen only if v is a elevated Motzkin word. Suppose now that u = v, so u should be a elevated Motzkin word too, and they have both length $\frac{n}{2}$. In this case, w should be a word composed of two elevated Motzkin subwords of the same length,

but such a word does not exist in $\text{CBFS}_q(n)$ since the set $\left\{\alpha\beta : \alpha, \beta \in \hat{\mathcal{M}}_{q-2}\left(\frac{n}{2}\right)\right\}$ is not included in it, thus u does not match with v.

- (2) Let $w \in \mathcal{B}_q(n)$ and $w' \in \mathcal{A}_q(n) \cup \mathcal{B}_q(n)$. For each prefix u of w we have $|u|_0 < |u|_1$, and for each suffix v of w' we have $|v|_0 \ge |v|_1$, thus u does not match with v.
- (3) Let $w \in \mathcal{C}_q(n)$ and $w' \in \mathcal{A}_q(n) \cup \mathcal{B}_q(n)$. For each prefix u of w we have $|u|_0 \le |u|_1$. For each suffix v of w' we have $|v|_0 \ge |v|_1$ and if $|v| < \lfloor \frac{n+1}{2} \rfloor$, then $|v|_0 > |v|_1$. Let $|u| = |v| = \ell$. If $\ell < \lfloor \frac{n+1}{2} \rfloor$, then u does not match with v. So we have to check the case $\ell \ge \lfloor \frac{n+1}{2} \rfloor$. In this case u contains a closet of Metallin subword of length $\lfloor \frac{n+1}{2} \rfloor = \lfloor \frac{n}{2} \rfloor$ at least, and u does not match with

Let |u| = |v| = v. If $v \in \lfloor \frac{v}{2} \rfloor$, then u does not match with v. So we have to check the case $v \geq \lfloor \frac{v}{2} \rfloor$. In this case v contains a elevated Motzkin subword of length $\lfloor \frac{n+1}{2} \rfloor = \lceil \frac{n}{2} \rceil$ at least, and u does not match with v, since u avoids such subwords.

(4) Let $w \in \text{CBFS}_q(n)$ and $w' \in \mathcal{C}_q(n)$.

FIGURE 7. Graphical representation of w, in the case h > 0.

For each prefix u of w we have $|u|_0 \leq |u|_1$, and for each suffix v of w' we have $|v|_0 > |v|_1$, thus u cannot match with v.

We proved that $\text{CBFS}_q(n)$ is a cross-bifix-free set on $\text{BF}_q(n)$, for any $q \ge 3$ and $n \ge 3$.

Proposition 3.2. The set $\text{CBFS}_q(n)$ is a non-expandable cross-bifix-free set on $\text{BF}_q(n)$, for any $q \ge 3$ and $n \ge 3$.

Proof. Let $w \in BF_q(n) \setminus CBFS_q(n)$ and $W = CBFS_q(n) \cup \{w\}$. If w begins with 0 then W is not cross-bifix-free since any word in $CBFS_q(n)$ ends with 0. If w ends with 1 then W is not cross-bifix-free since any word in $\mathcal{A}_q(n)$ begins with 1. If w ends with a letter $k \neq 0, 1$ then W is not cross-bifix-free since the suffix k of w matches, for instance, with the prefix k of the word $k^{n-1} 0 \in C_q(n)$. Consequently we have to consider w as a word beginning with a non-zero letter and ending with 0.

Let $h = |w|_1 - |w|_0$ be the ordinate of the last point of the path corresponding to w. We now need to distinguish three different cases: h > 0, h < 0 and h = 0.

If h > 0, w can be written as (see Fig. 7)

$$w = \phi \ 1 \ \mu_1 \ 1 \ \mu_2 \ \dots \ 1 \ \mu_h,$$

where ϕ is a word satisfying $|\phi|_1 = |\phi|_0$ and not beginning with 0, and μ_1, \ldots, μ_h are (q-2)-colored Motzkin words with μ_h non-empty as w ends with 0.

In this case, if $|\mu_h| = \ell \leq n-2$, considering for instance the word $u = 1\mu_h 2^{n-\ell-2}0 \in \mathcal{A}_q(n)$ we can clearly see that $1\mu_h$ is a cross-bifix between w and u, and then W is not cross-bifix-free. On the other hand, if $|\mu_h| = n-1$, then necessarily h = 1 and $w = 1\mu_1$. So, w can be written as $w = 1\alpha\beta$, where $\alpha \in \mathcal{M}_{q-2}(i)$, $\beta \in \hat{\mathcal{M}}_{q-2}(n-i-1)$ with $i > \lfloor \frac{n}{2} \rfloor$ (otherwise $w \in \mathcal{B}_q(n)$). In this case, for instance, the word $\beta 12^{i-1}0 \in \mathcal{A}_q(n)$ has a cross-bifix with w, thus W is not a cross-bifix-free-set.

If h < 0, w can be written as (see Fig. 8)

$$w = \mu_{-h} \ 0 \ \dots \ \mu_2 \ 0 \ \mu_1 \ 0 \ \phi$$

where ϕ is a word satisfying $|\phi|_1 = |\phi|_0$ and ending with 0, and μ_1, \ldots, μ_{-h} are (q-2)-colored Motzkin words with μ_{-h} non-empty as w begins with a non-zero letter.

In this case, if $|\mu_{-h}| = \ell \leq n-2$, considering for instance the word $u = 12^{n-\ell-2}\mu_{-h}0 \in \mathcal{A}_q(n)$ we can clearly see that $\mu_{-h}0$ is a cross-bifix between w and u, and then W is not cross-bifix-free. On the other hand, if $|\mu_{-h}| = n-1$, then necessarily h = -1 and $w = \mu_1 0$. So, w can be written as $w = \alpha\beta\delta 0$, where $\beta \in \hat{\mathcal{M}}_{q-2}(j)$ with $j \geq \lceil \frac{n}{2} \rceil$ (otherwise $w \in \mathcal{C}_q(n)$), and α, δ any two (q-2)-colored Motzkin words of the appropriate length. In this case, for instance, the word $2^{n-j-|\alpha|}\alpha\beta \in \mathcal{A}_q(n)$ has a cross-bifix with w, thus W is not a cross-bifix-free-set.

Finally, if h = 0, the path associated to w can either remain above x-axis or fall below it.

FIGURE 8. Graphical representation of w, in the case h < 0.

In the first case let i, with $\lfloor \frac{n}{2} \rfloor \leq i < n$, be the last x-coordinate of the path intercepting the x-axis. Notice that i can not be less than $\lfloor \frac{n}{2} \rfloor$, otherwise $w \in \mathcal{A}_q(n)$. We can write $w = \alpha\beta$, where α is a non-empty word in $\mathcal{M}_{q-2}(i)$ and $\beta \in \hat{\mathcal{M}}_{q-2}(n-i)$. We now need to take into consideration two different cases: $i = \lfloor \frac{n}{2} \rfloor$ and $i > \lfloor \frac{n}{2} \rfloor$. If $i = \lfloor \frac{n}{2} \rfloor$ then $\alpha \in \hat{\mathcal{M}}_{q-2}(\frac{n}{2})$, otherwise $w \in \mathcal{A}_q(n)$, so for instance, the word $2^{n/2}\alpha \in \mathcal{A}_q(n)$ has a cross-bifix with w. If $i > \lfloor \frac{n}{2} \rfloor$ then, for instance, the word $\beta 2^{i-1} 0 \in \mathcal{C}_q(n)$ has a cross-bifix with w, so that W is not a cross-bifix-free-set.

In the other case the path associated to w crosses the x-axis. Let i, with 0 < i < n, be the first x-coordinate of the path crossing x-axis. We can write $w = \alpha 0\phi$, where α is a non-empty word in $\mathcal{M}_{q-2}(i)$. In this case, for instance, the word $12^{n-i-2}\alpha 0 \in \mathcal{A}_q(n)$ has a cross-bifix with w, then W is not a cross-bifix-free-set.

We proved that $\text{CBFS}_q(n)$ is a non-expandable cross-bifix-free set on $\text{BF}_q(n)$, for any $q \ge 3$ and $n \ge 3$. \Box

4. Sizes of cross-bifix-free sets for small lengths

In this section we present some results concerning the size of $\text{CBFS}_q(n)$ compared to the ones in [11]. For fixed n and q, we recall that the size of q-ary cross-bifix-free sets given in [11] is obtained by

$$S(n,q) = \max\{(q-1)^2 F_{k,q}(n-k-2) : 2 \le k \le n-2\}$$
(4.1)

which is proved to be nearly optimal.

In Table 3 the values of $|\text{CBFS}_q(n)|$ and S(n,q) for $3 \le q \le 6$ and $n \le 16$ are shown. For the initial values of n, we can observe that the sizes obtained by our construction are greater than the size S(n,q). In particular, the number of the initial values of n, for which $|\text{CBFS}_q(n)|$ is greater than S(n,q), grows together with q and this trend can be easily verified by experimental results.

In order to improve the values of the size S(n,q) for the initial size of n, we can consider the following expression

$$S^*(n,q) = \max\{(q-1)^2 F_{k,q}(n-k-2) : 1 \le k \le n-2\},$$
(4.2)

where k can assume also the value 1. When k = 1, in the case of small n and large q, we obtain cross-bifix-free sets having cardinality greater than the one proposed in [11]. A similar argument is also discussed in [10], where a construction giving the maximal cardinality $C(n,q) = \frac{1}{n} (\frac{n-1}{n})^{n-1} q^n$ is presented when n divides q. Such a particular case requires that the size q of the alphabet must be greater than the length n of the words, whereas $S^*(n,q)$ gives an exact cardinality for all possible values of q and n, with n, q > 2.

Table 4 shows the values of $|\text{CBFS}_q(n)|$, $S^*(n,q)$ and C(n,q) for $3 \le q \le 6$ and $n \le 16$. Also in this situation, we can observe that the sizes obtained by our construction are greater than the size $S^*(n,q)$ in a range of values of n. In particular, the range of values of n, for which $|\text{CBFS}_q(n)|$ is greater than $S^*(n,q)$, grows together with q and this trend can be easily verified by experimental results.

n	$ CBFS_3(n) $	S(n,3)	$ CBFS_4(n) $	S(n, 4)
3	4	4	9	9
4	7	4	25	9
5	16	12	72	36
6	36	32	223	135
7	87	88	712	513
8	210	240	$2 \ 334$	1 944
9	535	656	7 868	7 371
10	1 350	1 792	26 731	27 945
11	3 545	4 896	93 175	105 948
12	9 205	13 376	324 520	401 679
13	24 698	36 544	$1\ 157\ 031$	1 522 881
14	$65 \ 467$	99 840	$4 \ 104 \ 449$	$5\ 773\ 680$
15	$178 \ 375$	272 768	14 874 100	21 889 683
16	$480\ 197$	$745 \ 216$	$53 \ 514 \ 974$	82 990 089
n	$ CBFS_5(n) $	S(n,5)	$ CBFS_6(n) $	S(n,6)
$\frac{n}{3}$	$\frac{ \text{CBFS}_5(n) }{16}$	S(n, 5) 16	$ CBFS_6(n) $ 25	S(n, 6) 25
$\frac{n}{3}$	$\frac{ \text{CBFS}_5(n) }{16}$ 61	$\begin{array}{c}S(n,5)\\16\\16\end{array}$	$\frac{ \text{CBFS}_6(n) }{25}$ 121	$\begin{array}{r} S(n,6) \\ 25 \\ 25 \end{array}$
$\frac{n}{3}$ 4 5	$\frac{ \text{CBFS}_5(n) }{16} \\ 61 \\ 224$	S(n,5) 16 16 80	CBFS ₆ (n) 25 121 550	S(n, 6) 25 25 150
$n = - \frac{n}{3} + \frac{3}{5} + \frac{3}{6} $	CBFS ₅ (n) 16 61 224 900		CBFS ₆ (n) 25 121 550 2 739	S(n, 6) 25 25 150 875
n 3 4 5 6 7	CBFS ₅ (n) 16 61 224 900 3 595	$\frac{S(n,5)}{16} \\ 16 \\ 80 \\ 384 \\ 1856$	CBFS ₆ (n) 25 121 550 2 739 13 260	S(n, 6) 25 25 150 875 5 125
$n \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8$	CBFS ₅ (n) 16 61 224 900 3 595 15 014	$\begin{array}{c} S(n,5) \\ 16 \\ 16 \\ 80 \\ 384 \\ 1856 \\ 8960 \end{array}$	CBFS ₆ (n) 25 121 550 2 739 13 260 67 740	$\begin{array}{r} S(n,6) \\ 25 \\ 25 \\ 150 \\ 875 \\ 5 125 \\ 30 000 \end{array}$
$n \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9$	$\begin{array}{c c} {\rm CBFS}_5(n) & 16 \\ & 61 \\ & 224 \\ & 900 \\ & 3 595 \\ & 15 014 \\ & 63 135 \end{array}$	$\begin{array}{r} S(n,5) \\ 16 \\ 16 \\ 80 \\ 384 \\ 1856 \\ 8960 \\ 43264 \end{array}$	CBFS ₆ (n) 25 121 550 2 739 13 260 67 740 342 676	$\begin{array}{r} S(n,6) \\ 25 \\ 25 \\ 150 \\ 875 \\ 5 125 \\ 30 000 \\ 175 625 \end{array}$
$n \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10$	CBFS ₅ (n) 16 61 224 900 3 595 15 014 63 135 271 136 16	$\begin{array}{r} S(n,5) \\ 16 \\ 16 \\ 80 \\ 384 \\ 1 856 \\ 8 960 \\ 43 264 \\ 208 896 \end{array}$	CBFS ₆ (n) 25 121 550 2 739 13 260 67 740 342 676 1 787 415 15	$\begin{array}{r} S(n,6) \\ 25 \\ 25 \\ 150 \\ 875 \\ 5 125 \\ 30 \ 000 \\ 175 \ 625 \\ 1 \ 028 \ 125 \end{array}$
$n \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11$	$\begin{array}{r cmc} {\rm CBFS}_5(n) & 16 \\ & 61 \\ & 224 \\ & 900 \\ & 3 595 \\ & 15 014 \\ & 63 135 \\ & 271 136 \\ & 1 178 677 \end{array}$	$\begin{array}{r} 5(n,5) \\ 16 \\ 16 \\ 80 \\ 384 \\ 1 856 \\ 8 960 \\ 43 264 \\ 208 896 \\ 1 008 640 \end{array}$	$\begin{array}{r cm} {\rm CBFS}_6(n) \\ 25 \\ 121 \\ 550 \\ 2 \ 739 \\ 13 \ 260 \\ 67 \ 740 \\ 342 \ 676 \\ 1 \ 787 \ 415 \\ 9 \ 324 \ 647 \end{array}$	$\begin{array}{r} S(n,6) \\ 25 \\ 25 \\ 150 \\ 875 \\ 5 125 \\ 30 000 \\ 175 625 \\ 1 028 125 \\ 6 018 750 \end{array}$
$ \begin{array}{r} n \\ \hline n \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array} $	$\begin{array}{r cmm} {\rm CBFS}_5(n) & 16 \\ & 61 \\ & 224 \\ & 900 \\ & 3 595 \\ & 15 014 \\ & 63 135 \\ & 271 136 \\ & 1 178 677 \\ & 5 167 953 \end{array}$	$\begin{array}{c} S(n,5) \\ 16 \\ 16 \\ 80 \\ 384 \\ 1856 \\ 8960 \\ 43264 \\ 208896 \\ 1008640 \\ 4870144 \end{array}$	$\begin{array}{r cm $	$\begin{array}{r} S(n,6) \\ 25 \\ 25 \\ 150 \\ 875 \\ 5 125 \\ 30 \ 000 \\ 175 \ 625 \\ 1 \ 028 \ 125 \\ 6 \ 018 \ 750 \\ 35 \ 234 \ 375 \end{array}$
$ \begin{array}{r} $	CBFS ₅ (n) 16 61 224 900 3 595 15 014 63 135 271 136 1 178 677 5 167 953 22 986 100	$\begin{array}{c} S(n,5) \\ 16 \\ 16 \\ 80 \\ 384 \\ 1856 \\ 8960 \\ 43264 \\ 208896 \\ 1008640 \\ 4870144 \\ 23515136 \end{array}$	$\begin{array}{ cmm } cmmm{CBFS}_6(n) \\ 25 \\ 121 \\ 550 \\ 2 739 \\ 13 260 \\ 67 740 \\ 342 676 \\ 1 787 415 \\ 9 324 647 \\ 49 456 240 \\ 263 776 127 \end{array}$	$\begin{array}{r} S(n,6) \\ 25 \\ 25 \\ 150 \\ 875 \\ 5125 \\ 30\ 000 \\ 175\ 625 \\ 1\ 028\ 125 \\ 6\ 018\ 750 \\ 35\ 234\ 375 \\ 206\ 265\ 625 \end{array}$
$ \begin{array}{r} $	CBFS ₅ (n) 16 61 224 900 3 595 15 014 63 135 271 136 1 178 677 5 167 953 22 986 100 102 403 229 102 403 229	$\begin{array}{r} S(n,5) \\ & 16 \\ & 16 \\ & 80 \\ & 384 \\ & 1856 \\ & 8960 \\ & 43264 \\ & 208896 \\ & 1008640 \\ & 4870144 \\ & 23515136 \\ & 113541120 \end{array}$	$\begin{array}{r cm} {\rm CBFS}_6(n) \\ 25 \\ 121 \\ 550 \\ 2 \ 739 \\ 13 \ 260 \\ 67 \ 740 \\ 342 \ 676 \\ 1 \ 787 \ 415 \\ 9 \ 324 \ 647 \\ 49 \ 456 \ 240 \\ 263 \ 776 \ 127 \\ 1 \ 417 \ 981 \ 855 \end{array}$	$\begin{array}{r} S(n,6) \\ 25 \\ 25 \\ 150 \\ 875 \\ 5125 \\ 30\ 000 \\ 175\ 625 \\ 1\ 028\ 125 \\ 6\ 018\ 750 \\ 35\ 234\ 375 \\ 206\ 265\ 625 \\ 1\ 207\ 500\ 000 \end{array}$
$ \begin{array}{r} n \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \end{array} $	CBFS ₅ (n) 16 61 224 900 3 595 15 014 63 135 271 136 1 178 677 5 167 953 22 986 100 102 403 229 463 098 075	$\begin{array}{r} S(n,5) \\ 16 \\ 16 \\ 80 \\ 384 \\ 1856 \\ 8960 \\ 43264 \\ 208896 \\ 1008640 \\ 4870144 \\ 23515136 \\ 113541120 \\ 548225024 \end{array}$	$\begin{array}{r cmmplefted{CBFS_6(n)} & 25\\ & 121\\ & 550\\ 2 & 739\\ 13 & 260\\ 67 & 740\\ 342 & 676\\ 1 & 787 & 415\\ 9 & 324 & 647\\ 49 & 456 & 240\\ 263 & 776 & 127\\ 1 & 417 & 981 & 855\\ 7 & 688 & 015 & 908\\ \end{array}$	$\begin{array}{r} S(n,6) \\ 25 \\ 25 \\ 150 \\ 875 \\ 5 125 \\ 30 \ 000 \\ 175 \ 625 \\ 1 \ 028 \ 125 \\ 6 \ 018 \ 750 \\ 35 \ 234 \ 375 \\ 206 \ 265 \ 625 \\ 1 \ 207 \ 500 \ 000 \\ 7 \ 068 \ 828 \ 125 \end{array}$

TABLE 3. Comparing the values from [11] with $\text{CBFS}_q(n)$, for $3 \le q \le 6$.

TABLE 4. Comparing the values from $S^*(n,q)$ and C(n,q) with $\operatorname{CBFS}_q(n)$, for $3 \le q \le 6$.

n	$ CBFS_n(n) $	$S^{*}(n \ 3)$	C(n,3)	$ CBFS_4(n) $	$S^{*}(n, 4)$	C(n, 4)
3	4	4	4	0	0	C(n, 4)
4	7		т	25	97	27
5	16	16		20	81	21
6	36	32		223	243	
7	87	88		712	729	
8	210	240		2 334	2 187	
9	535	656		7 868	7 371	
10	1 350	1 792		26 731	27 945	
11	3 545	4 896		93 175	105 948	
12	9 205	13 376		324 520	401 679	
13	24 698	36 544		1 157 031	1 522 881	
14	65 467	99 840		4 104 449	5 773 680	
15	178 375	272 768		14 874 100	21 889 683	
16	480 197	745 216		53 514 974	82 990 089	
		110 110		00 011 011	01 000 000	
n	$ CBFS_5(n) $	$S^*(n,5)$	C(n,5)	$ CBFS_6(n) $	$S^{*}(n, 6)$	C(n, 6)
$\frac{n}{3}$	$\frac{ \text{CBFS}_5(n) }{16}$	$S^*(n,5)$ 16	C(n,5)	$\frac{ \text{CBFS}_6(n) }{25}$	$\frac{S^*(n,6)}{25}$	$\frac{C(n,6)}{32}$
n 3 4	$\frac{ \operatorname{CBFS}_5(n) }{16}$		C(n,5)	$\frac{ \text{CBFS}_6(n) }{25}$ 121	$ \frac{S^*(n,6)}{25} 125 $	$\frac{C(n,6)}{32}$
n 3 4 5	$\frac{ \text{CBFS}_5(n) }{16} \\ 61 \\ 224$		C(n,5) 256	$\frac{ \text{CBFS}_6(n) }{25}$ 121 550		$\frac{C(n,6)}{32}$
n 3 4 5 6	$\frac{ \text{CBFS}_{5}(n) }{16} \\ 61 \\ 224 \\ 900$		C(n,5) 256	$\frac{ \text{CBFS}_6(n) }{ \text{CBFS}_6(n) }$ $\frac{25}{121}$ 550 $2 739$		C(n, 6) 32 3125
n 3 4 5 6 7	$\begin{array}{c} \text{CBFS}_5(n) \\ 16 \\ 61 \\ 224 \\ 900 \\ 3 595 \end{array}$		C(n,5) 256	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$		C(n, 6) 32 3125
$n \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8$	$\begin{array}{c c} \text{CBFS}_5(n) \\ \hline 16 \\ 6 \\ 1 \\ 224 \\ 900 \\ 3 595 \\ 15 014 \end{array}$	$\begin{array}{r} 110 \\ \hline S^*(n,5) \\ \hline 64 \\ 256 \\ 1 024 \\ 4 096 \\ 16 384 \end{array}$	C(n,5) 256	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$		C(n, 6) 32 3125
$n \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9$	$\begin{array}{c} \text{CBFS}_5(n) \\ 16 \\ 61 \\ 224 \\ 900 \\ 3 595 \\ 15 014 \\ 63 135 \end{array}$	$\begin{array}{r} 16216 \\ \hline S^*(n,5) \\ \hline 16 \\ 64 \\ 256 \\ 1 024 \\ 4 096 \\ 16 384 \\ 65 536 \end{array}$	C(n,5) 256	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} \begin{array}{r} S^{*}(n,6) \\ \\ \hline \\ S^{*}(n,6) \\ \\ 125 \\ 625 \\ 3 \\ 125 \\ 15 \\ 625 \\ 78 \\ 125 \\ 390 \\ 625 \end{array}$	C(n, 6) 32 3125
$n \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10$	$\begin{array}{c} {\rm CBFS}_5(n) \\ 16 \\ 61 \\ 224 \\ 900 \\ 3 595 \\ 15 014 \\ 63 135 \\ \textbf{271 136} \end{array}$	$\begin{array}{r} 16216 \\ \hline S^*(n,5) \\ \hline 16 \\ 64 \\ 256 \\ 1 \ 024 \\ 4 \ 096 \\ 16 \ 384 \\ 65 \ 536 \\ 262 \ 144 \end{array}$	C(n,5) 256	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} 52 \ 625 \ 625 \ 625 \ 625 \ 3 \ 125 \ 625 \ 5 \ 625 \ 78 \ 125 \ 625 \ 78 \ 125 \ 625 \ 78 \ 125 \ 625 \ 78 \ 125 \ 625 \ 78 \ 125 \ 625 \ 1 \ 953 \ 125 \ 625 \ 1 \ 953 \ 125 \ 6$	$\frac{C(n,6)}{32}$ 3125
$n \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11$	$\begin{array}{c} {\rm CBFS}_5(n) \\ 16 \\ 61 \\ 224 \\ 900 \\ 3 595 \\ 15 014 \\ 63 135 \\ 271 136 \\ 1 178 \ 677 \end{array}$	$\begin{array}{r} 16216\\\hline S^*(n,5)\\\hline 16\\64\\256\\1\ 024\\4\ 096\\16\ 384\\65\ 536\\262\ 144\\1\ 048\ 576\\\end{array}$	C(n,5) 256	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} S^{*}(n,6)\\ \\ \hline \\ S^{*}(n,6)\\ \\ 125\\ 625\\ 3125\\ 15\ 625\\ 78\ 125\\ 390\ 625\\ 1\ 953\ 125\\ 9\ 765\ 625\\ \end{array}$	C(n, 6) 32 3125
$n \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12$	$\begin{array}{r c \mathrm{BFS}_5(n) } \\ & 16 \\ & 61 \\ & 224 \\ & 900 \\ & 3 595 \\ & 15 014 \\ & 63 135 \\ 271 136 \\ 1178 677 \\ 5 167 953 \end{array}$	$\begin{array}{r} 110 \ 210 \\ \hline \\ S^*(n,5) \\ \hline 16 \\ 64 \\ 256 \\ 1 \ 024 \\ 4 \ 096 \\ 16 \ 384 \\ 65 \ 536 \\ 262 \ 144 \\ 1 \ 048 \ 576 \\ 4 \ 870 \ 144 \end{array}$	C(n,5) 256	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} S^{*}(n,6)\\ \\ \\ S^{*}(n,6)\\ \\ 125\\ 625\\ 3125\\ 15\ 625\\ 78\ 125\\ 390\ 625\\ 1\ 953\ 125\\ 9\ 765\ 625\\ 48\ 828\ 125\\ \end{array}$	C(n, 6) 32 3125
$n \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13$	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} 18210\\\hline S^*(n,5)\\\hline 16\\64\\256\\1\ 024\\4\ 096\\16\ 384\\65\ 536\\262\ 144\\1\ 048\ 576\\4\ 870\ 144\\23\ 515\ 136\\\end{array}$	C(n,5) 256	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} S^{*}(n,6) \\ \\ \hline S^{*}(n,6) \\ \\ 125 \\ 625 \\ 3 125 \\ 15 625 \\ 78 125 \\ 390 625 \\ 1 953 125 \\ 9 765 625 \\ 48 828 125 \\ 244 140 625 \end{array}$	C(n, 6) 32 3125
$n \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14$	$\begin{array}{c} {\rm CBFS}_5(n) \\ 16 \\ 61 \\ 224 \\ 900 \\ 3 595 \\ 15 014 \\ 63 135 \\ \textbf{271 136} \\ \textbf{1 178 677} \\ \textbf{5 167 953} \\ 22 986 100 \\ 102 403 229 \end{array}$	$\begin{array}{r} 18210\\\hline S^*(n,5)\\\hline 16\\64\\256\\1024\\4096\\16384\\65536\\262144\\1048576\\4870144\\23515136\\113541120\\\end{array}$	<i>C</i> (<i>n</i> , 5) 256	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} \begin{array}{r} & 25 & 0.00 & 0.00 \\ \hline S^*(n,6) & 25 \\ & 125 \\ & 625 \\ & 3 & 125 \\ & 15 & 625 \\ & 78 & 125 \\ & 390 & 625 \\ & 1 & 953 & 125 \\ & 9 & 765 & 625 \\ & 48 & 828 & 125 \\ & 48 & 828 & 125 \\ & 244 & 140 & 625 \\ & 1 & 220 & 703 & 125 \end{array}$	C(n, 6) 32 3125
$egin{array}{c} n \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{array}$	$\begin{array}{c} {\rm CBFS}_5(n) \\ 16 \\ 61 \\ 224 \\ 900 \\ 3 595 \\ 15 014 \\ 63 135 \\ \textbf{271 136} \\ \textbf{1 178 677} \\ \textbf{5 167 953} \\ 22 986 100 \\ 102 403 229 \\ 463 098 075 \end{array}$	$\begin{array}{r} 16210\\ \hline \\ \hline \\ S^*(n,5)\\ \hline \\ 16\\ 64\\ 256\\ 1024\\ 4096\\ 16384\\ 65536\\ 262144\\ 1048576\\ 4870144\\ 23515136\\ 11351120\\ 548225024\\ \end{array}$	C(n,5) 256	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} \begin{array}{r} & 25 \\ \hline S^*(n,6) \\ \hline \\ & 25 \\ 125 \\ 625 \\ 3 \\ 125 \\ 15 \\ 625 \\ 15 \\ 625 \\ 18 \\ 125 \\ 390 \\ 625 \\ 1 \\ 9 \\ 765 \\ 625 \\ 48 \\ 125 \\ 9 \\ 765 \\ 625 \\ 48 \\ 125 \\ 244 \\ 140 \\ 625 \\ 1 \\ 220 \\ 7 \\ 068 \\ 828 \\ 125 \end{array}$	C(n, 6) 32 3125

CROSS-BIFIX-FREE SETS GENERATION VIA MOTZKIN PATHS

5. Conclusions and further developments

In this paper, we introduce a general constructive method for cross-bifix-free sets in the q-ary alphabet based upon the study of lattice paths on the discrete plane. This approach enables us to obtain the cross-bifix-free set $\text{CBFS}_q(n)$ having greater cardinality than the ones proposed in [11], for the initial values of n.

Moreover, we prove that $\operatorname{CBFS}_q(n)$ is a non-expandable cross-bifix-free set on $\operatorname{BF}_q(n)$, *i.e.* $\operatorname{CBFS}_q(n) \cup \{w\}$ is not a cross-bifix-free set on $\operatorname{BF}_q(n)$, for any $w \in \operatorname{BF}_q(n) \setminus \operatorname{CBFS}_q(n)$.

The non-expandable property is obviously a necessary condition to obtain a maximal cross-bifix-free set on $BF_q(n)$, anyway the problem of determine maximal cross-bifix-free sets is still open and no general solution has been found yet.

References

- [1] M. Aigner, Motzkin numbers. Eur. J. Combin. 19 (1998) 663-675.
- [2] D. Bajic, On construction of cross-bifix-free kernel sets, in Proc. of Conference on 2nd MCM COST 2100 (2007) TD(07)237.
- [3] D. Bajic and T. Loncar-Turukalo, A simple suboptimal construction of cross-bifix-free codes. Cryptogr. Commun. 6 (2014) 27–37.
- [4] D. Bajic and J. Stojanovic, Distributed sequences and search process, in Proc. of IEEE International Conference on Communications ICC 2004 (2004) 514–518.
- [5] E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, A construction for enumerating k-coloured Motzkin paths. Lect. Notes Comput. Sci. 959 (1995) 254–263.
- [6] R.H. Barker, Group Synchronizing of Binary Digital Systems, Communication theory, London, Butterworth (1953) 273–287.
- [7] J. Berstel, D. Perrin and C. Reutenauer, Codes and Automata. Encycl. Math. Appl. Cambridge University Press (2009).
- [8] S. Bilotta, E. Grazzini, E. Pergola and R. Pinzani, Avoiding cross-bifix-free binary words. Acta Inform. 50 (2013) 157–173.
- [9] S. Bilotta, E. Pergola and R. Pinzani, A new approach to cross-bifix-free sets. IEEE Trans. Inform. Theory 58 (2012) 4058–4063.
- [10] S. Blackburn. Non-overlapping codes. IEEE Trans. Inform. Theory 61 (2015) 4890–4894.
- [11] Y.M. Chee, H.M. Kiah, P. Purkayastha and C. Wang, Cross-bifix-free codes within a constant factor of optimality. IEEE Trans. Inform. Theory 59 (2013) 4668–4674.
- [12] M. Crochemore, C. Hancart and T. Lecroq, Algorithms on Strings. Cambridge University Press (2007).
- [13] A.J. De Lind Van Wijngaarden and T.J. Willink, Frame Synchronization Using Distributed Sequences. *IEEE Trans. Commun.* 48 (2000) 2127–2138.
- [14] V.I. Levenshtein, Maximun number of words in codes without overlaps. Probl. Inf. Transm. 6 (1970) 355–357.
- [15] C. Levesque, On mth order linear recurrences. Fibonacci Quart. 23 (1985) 290-293.
- [16] J. Lindner, Binary sequences up to length 40 with best possible autocorrelation function. Electron. Lett. 11 (1975) 507.
- [17] P.T. Nielsen, On the expected duration of a search for a fixed pattern in random data. *IEEE Trans. Inform. Theory* **29** (1973) 702–704.
- [18] P.T. Nielsen. A note on bifix-free sequences. IEEE Trans. Inform. Theory 29 (1973) 704–706.
- [19] A. Sapounakis and P. Tsikouras, On k-colored Motzkin words. J. Integer Seq. 7 (2004) 04.2.5.
- [20] R.A. Scholtz, Frame synchronization techniques. *IEEE Trans. Commun.* 20 (1980) 1204–1213.

Communicated by D. Jamet.

Received March 24, 2016. Accepted March 24, 2016.