
RAIRO-Theor. Inf. Appl. 50 (2016) 101–103 Available online at:

DOI: 10.1051/ita/2016007 www.rairo-ita.org

A SHORT PROOF THAT SHUFFLE SQUARES
ARE 7-AVOIDABLE

Guillaume Guégan1 and Pascal Ochem2

Abstract. A shuffle square is a word that can be partitioned into two identical words. We obtain a
short proof that there exist exponentially many words over the 7 letter alphabet containing no shuffle
square as a factor. The method is a generalization of the so-called power series method using ideas
of the entropy compression method as developped by Gonçalves et al. [Entropy compression method
applied to graph colorings. arXiv:1406.4380]
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1. Introduction

Entropy compression has been used to avoid squares [5] and patterns [9] in infinite words over a small
alphabet. The proofs require many features (an algorithm, a record, an analysis of the size the record, . . . ).
Gonçalves, Montassier, and Pinlou [4] have recently obtained a generic way of using the entropy compression
method in the context of graph coloring that avoids a lot of these technicalities.

In a recent paper [8], we have used ideas from the entropy compression method to generalize the power
series method as used in combinatorics on words by Bell and Goh [1], Rampersad [10], and Blanchet–Sadri and
Woodhouse [2]. We describe this method in Section 2 to make the paper self-contained.

A shuffle square is a word that can be partitioned into two identical words. For example, every square is a
shuffle square, aabbcc and abacbc are shuffle squares of abc, and ccbcbaca is a shuffle square of cbca.

Recently, Currie [3] has answered a question of Karhumäki by showing that there exist infinite words over a
finite (but large) alphabet containing no shuffle square as a factor using the Lovász local lemma. Then Müller
has lowered the alphabet size to 10 in his thesis [7] and has also proved that shuffle cubes are avoidable over
the 6 letter alphabet. We apply the method in Section 2 to obtain the following result in Section 3.

Theorem 1.1. There exist at least 5.59n words of length n over the 7 letter alphabet containing no shuffle
square as a factor.

Grytczuk et al. [6] have an independent proof of the list version of Theorem 1.1 using another flavor of
entropy compression and different parameters. Notice that words avoiding shuffle squares avoid in particular
the patterns AA and ABACBC. We have checked that words over 3 letters avoiding AA and ABACBC have
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finite length, so at least 4 letters are needed to avoid shuffle squares. Thus, the minimum alphabet size for an
infinite word avoiding shuffle squares remains an open problem and is between 4 and 7.

2. Description of the method

Let Σm = {0, 1, . . . , m − 1} be the m-letter alphabet and let L ⊂ Σ∗
m be a factorial language defined by a set

F of forbidden factors of length at least 2. We denote the factor complexity of L by ni = L∩Σi
m. We define L′

as the set of words w such that w is not in L and the prefix of length |w| − 1 of w is in L. For every forbidden
factor f ∈ F , we choose a number 1 � sf � |f |. Then, for every i � 1, we define an integer ai such that

ai � max
u∈L

∣∣{v ∈ Σi
m | uv ∈ L′, uv = bf, f ∈ F, sf = i

}∣∣ . (2.1)

We consider the formal power series P (x) = 1 − mx +
∑

i�1 aix
i. If P (x) has a positive real root x0, then

ni � x−i
0 for every i � 0.

Let us rewrite that P (x0) = 1 − mx0 +
∑

i�1 aix
i
0 = 0 as:

m −
∑
i�1

aix
i−1
0 = x−1

0 . (2.2)

Since n0 = 1, we will prove by induction that ni

ni−1
� x−1

0 in order to obtain that ni � x−i
0 for every i � 0. By

using (2.2), we obtain the base case: n1
n0

= n1 = m � x−1
0 . Now, for every length i � 1, there are:

• mi words in Σi
m;

• ni words in L;
• at most

∑
1�j�i ni−jaj words in L′;

• m(mi−1 − ni−1) words in Σi
m \ {L ∪ L′}.

This gives ni +
∑

1�j�i njai−j + m(mi−1 − ni−1) � mi, that is, ni � mni−1 −
∑

1�j�i ni−jaj .

ni

ni−1
� m − ∑

1�j�i aj
ni−j

ni−1

� m − ∑
1�j�i ajx

j−1
0 By induction

� m − ∑
j�1 ajx

j−1
0

= x−1
0 By (2.2).

3. Avoiding shuffle squares

We apply the method of the previous section to the avoidance of shuffle squares. The q-prefix (resp. q-suffix )
of a word is its prefix (resp. suffix) of length q. A shuffle square is minimal if it does not contain a smaller shuffle
square as a factor. A shuffle square is small if its length is two and is large otherwise. The set F of forbidden
factors contains every minimal shuffle square. We set sf = 1 if f ∈ F is small and sf = |f | − 2 otherwise.

We set a1 = 1 because sf = 1 only for small shuffle squares and there is only one way to extend a prefix by
one letter to obtain a suffix xx with x ∈ Σm. To obtain reasonable upper bounds at for t � 2, we need to bound
the number of large minimal shuffle squares. To every shuffle square f of a word w of length i, we associate the
height function h : [0, . . . , 2i] → Z defined as follows:

• h(0) = 0.
• For 0 < j � 2i, h(j) = h(j − 1) + 1 if the jth letter of f belongs to the subword w containing the first letter

of f , and h(j) = h(j − 1) − 1 otherwise.
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Since f is a shuffle square, we have h(2i) = 0. Moreover, if h(j) = 0 for some 0 < j < 2i, then the prefix of
length j of f is a shuffle square. So, if h is the height function of a minimal shuffle square, then h(j) > 0 for
every 0 < j < 2i. Thus, every height function of a minimal shuffle square is associated to a unique Dyck word
of length 2i− 2. The number of height functions is thus at most (2i−2)!

i! (i−1)! . According to (2.1), we need to bound
the number of solutions to uv = bf such that u is fixed and |v| = sf = |f |−2 = 2i−2. The 2-prefix of f is fixed
since it corresponds to the 2-suffix of u. Notice that the 2-prefix of a large minimal shuffle square of a word w
is equal to the 2-prefix of w, so the 2-prefix of w is also fixed. Thus, there are at most mi−2 possibilities for w.
Since f is determined by w and its height function, there are at most mi−2 (2i−2)!

i! (i−1)! possibilities for f . So we set

a2i−2 = mi−2 (2i−2)!
i! (i−1)! and consider the polynomial

P (x) = 1 − mx + x +
∑

i�2 mi−2 (2i − 2)!
i! (i − 1)!

x2i−2

= 1 − (m − 1)x +
(

2x

1 +
√

1 − 4mx2

)2

·

For m = 6, P (x) has no positive root. For m = 7, we have P (x0) = 0 with x0 = 0.1788487593 . . . So there exists
at least αn words of length n over Σ7 that avoid shuffle squares, where α = x−1

0 = 5.5913163944 . . .
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