
RAIRO-Theor. Inf. Appl. 50 (2016) 295–311 Available online at:

DOI: 10.1051/ita/2016003 www.rairo-ita.org

A PUMPING LEMMA FOR FLIP-PUSHDOWN LANGUAGES ∗

Peter Kostolányi

Abstract. Flip-pushdown automata are pushdown automata with an extra ability to reverse the
contents of the pushdown store. A generalisation of the Pumping lemma for context-free languages
is presented, which applies to the families of languages accepted by flip-pushdown automata with
k pushdown flips, for an arbitrary constant k. The presented result gives rise to a new technique
for disproving existence of flip-pushdown automata with a constant number of flips, which is significantly
simpler compared to methods used for this purpose so far.

Mathematics Subject Classification. 68Q45.

1. Introduction

Flip-pushdown automata can be described as ordinary nondeterministic pushdown automata with special
transitions that can be used to reverse – or flip – the contents of the pushdown store. The model as such has
been introduced by Sarkar [16], and many of its fundamental properties have been resolved soon after by Holzer
and Kutrib [11, 12].

Already Sarkar has observed [16] that flip-pushdown automata with an unbounded number of pushdown
flips are Turing-complete. For this reason, the research has focused mainly on the setting, in which the number
of flips is viewed as a limited computational resource. In particular, the most interesting results so far have
been obtained on flip-pushdown automata with the number of pushdown flips limited by a constant. By the
Hierarchy theorem of Holzer and Kutrib [11], flip-pushdown automata with k + 1 flips are (strictly) stronger
than flip-pushdown automata with k flips.

With the aim to provide some new proof techniques, two families of grammars have recently been introduced
by the present author [14], which are equivalent to flip-pushdown automata with a constant number of flips:
reversal-generating context-free grammars and parallel interleaving grammar systems. The latter grammatical
characterisation has already been applied in [14] to resolve the relation between flip-pushdown automata with
a constant number of flips and ET0L-systems, answering a question of Holzer and Kutrib [11].

In this paper, we take advantage of the characterisation in terms of reversal-generating grammars and prove
a pumping lemma for languages accepted by flip-pushdown automata with k flips, for all k ≥ 1. This pumping
lemma can be viewed as a generalisation of the classical Pumping lemma for context-free languages [2, 13],

Keywords and phrases. Pumping lemma, flip-pushdown automaton, flip-pushdown language, reversal-generating context-free
grammar.

∗ This work has been supported in part by the grant VEGA 1/0967/16.

1 Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava,
Mlynská dolina, 842 48 Bratislava, Slovakia. kostolanyi@fmph.uniba.sk

Article published by EDP Sciences c© EDP Sciences 2016

http://dx.doi.org/10.1051/ita/2016003
http://www.rairo-ita.org
http://www.edpsciences.org

296 P. KOSTOLÁNYI

and we demonstrate that it may be used to disprove the existence of flip-pushdown automata for some specific
languages. Such proofs appear to be significantly simpler compared to proofs via previously known techniques.
We provide some representative examples in a separate section.

In addition, we show that the presented Pumping lemma for flip-pushdown languages is optimal, in the sense
that the bounds on subword lengths occurring in its statement cannot be improved any further.

2. Flip-pushdown automata

Let us briefly review the fundamental definitions and results related to flip-pushdown automata, which we
shall use later in this paper. The following definition appeared for the first time in the paper of Sarkar [16].

Definition 2.1. A (nondeterministic) flip-pushdown automaton (abbr. NFPDA) is an octuple A = (K, Σ, Γ ,
δ, Δ, q0, Z0, F), where K is a finite set of states, Σ is an input alphabet, Γ is a pushdown alphabet, δ is an
“ordinary” transition function from K× (Σ∪{ε})×Γ to finite subsets of K×Γ ∗, Δ is a flip transition function
from K to subsets of K, q0 in K is an initial state, Z0 in Γ is a bottom-of-pushdown symbol, and F ⊆ K is a
set of accepting states.

A configuration of the NFPDA A is a triple (q, w, s) in K × Σ∗ × Γ ∗, interpreted in the same way as for
“ordinary” PDA.

A computation step of the NFPDA A is a relation �A on its configurations, defined separately for “ordinary”
transitions (in the same way as for PDA), and for flip transitions, which result in flipping the pushdown store.
The formal definition goes as follows: let p, q be in K, a be in Σ ∪ {ε}, u be in Σ∗, s, t be in Γ ∗, and Z be
in Γ . For “ordinary” transitions, we define (p, au, sZ) �A (q, u, st) if (q, t) is in δ(p, a, Z). For flip transitions,
we define (p, u, Z0s) �A (q, u, Z0s

R) if q is in Δ(p). If A is understood, we write � instead of �A.

Remark 2.2. Two details in the definition of the computation step call for special attention. First, when a
flip transition is executed, the pushdown store is reversed except for the bottom-of-pushdown symbol. However,
this (usual) definition is clearly equivalent to an alternative one, in which the entire pushdown store is reversed.
Indeed, let us abbreviate such “alternative” flip-pushdown automata by NFPDA′. Then it is clear that each
NFPDA′ can be simulated by an NFPDA – it suffices to add a new bottom-of-pushdown symbol, which is
not altered during the computation. Conversely, each NFPDA can be simulated by an NFPDA′ – instead of
a flip transition of the NFPDA (which does not change the position of Z0 on the bottom of the pushdown),
it is sufficient to push Z0 to the top of the pushdown, then flip the pushdown store (including the bottom-of-
pushdown symbol), and finally pop Z0 from its top. It is clear that in both simulations above, the number of
pushdown flips executed remains unchanged.

Secondly, flip transitions can be executed only when Z0 takes place on the bottom of the pushdown store.
Once again, this is the usual definition, which poses no significant restriction: each flip-pushdown automaton
can be transformed into a normal form, in which the symbol on the bottom of the pushdown is always Z0.

The language L(A) accepted by A by final state is defined, similarly as for “ordinary” PDA, by

L(A) = {w ∈ Σ∗ | ∃q ∈ F, s ∈ Γ ∗ : (q0, w, Z0) �∗ (q, ε, s)},

and the language N(A) accepted by empty pushdown is defined by

N(A) = {w ∈ Σ∗ | ∃q ∈ K : (q0, w, Z0) �∗ (q, ε, ε)}.

We say that the NFPDA A operates in at most (exactly) k flips, if in every of its computations, flip transitions
are performed at most (exactly) k times.

Several results relating families of NFPDAs are known up to now. Holzer and Kutrib have proved [11] the
equivalence of NFPDA accepting by final state and NFPDA accepting by empty pushdown, and have argued

A PUMPING LEMMA FOR FLIP-PUSHDOWN LANGUAGES 297

that the simulations involved do not change the number of flips performed. Furthermore, NFPDA operating in
at most k flips are proved to be equivalent to NFPDA operating in exactly k flips [11]. Finally, without any
restriction on the number of pushdown flips, NFPDA are known to be equivalent to Turing machines [16].

Definition 2.3. The family of languages accepted by NFPDA operating in k flips is denoted by L (NFPDAk).
Furthermore,

L (NFPDAfin) :=
∞⋃

k=0

L (NFPDAk).

The family of languages accepted by arbitrary NFPDA, equal to the family of recursively enumerable lan-
guages [16], may occasionally be denoted by L (NFPDA).

Remark 2.4. This definition of the families L (NFPDAk) slightly differs from the original definition used,
e.g., by Holzer and Kutrib [11,12]. There, a language Lk(A) is defined for every k and for every flip-pushdown
automaton A – it consists of all words accepted by A in at most k pushdown flips. The family L (NFPDAk) is
then defined to contain languages Lk(A) for all flip-pushdown automata A (and to contain no other languages).
However, it is clear that for all NFPDA A operating in k pushdown flips we have Lk(A) = L(A). Conversely, to
any NFPDA A it is possible to construct an NFPDA A′ operating in k pushdown flips, such that L(A′) = Lk(A) –
this may store the number of pushdown flips executed so far in its state and reject if this number should exceed k.

This means that our definition of the families L (NFPDAk) is equivalent to the original definition used
previously.

Holzer and Kutrib have proved [11] that the families L (NFPDAk) form an infinite hierarchy with respect
to k. We shall refer to this fundamental result as to the Hierarchy theorem.

Theorem 2.5 (Holzer and Kutrib [11]). The families L (NFPDAk) form an infinite hierarchy with respect to k:

L (CF) = L (NFPDA0) � L (NFPDA1) � L (NFPDA2) � . . .

Finally in this section, let us state the important Flip-pushdown input-reversal theorem, proved by Holzer
and Kutrib in [11] (the theorem has been originally stated in a slightly different form).

Theorem 2.6 (Holzer and Kutrib [11]). Let k be in N. A language L is accepted by empty pushdown by a
NFPDA A1 = (K, Σ, Γ, δ, Δ, q0, Z0, ∅) operating in k + 1 pushdown flips if and only if the language

LR = {uvR | (q0, u, Z0) �∗
A1

(q1, ε, Z0s) with k flips, q2 ∈ Δ(q1),

and (q2, v, Z0s
R) �∗

A1
(q3, ε, ε) without any flip}

is accepted by empty pushdown by some NFPDA A2 operating in k pushdown flips. The same statement holds
for NFPDA accepting by final state.

3. Reversal-generating grammars

Two characterisations of flip-pushdown automata in terms of grammars have recently been introduced by
the present author [14]. In this paper, we shall make use of the characterisation relating NFPDA to reversal-
generating context-free grammars (RGCFG). Essentially, RGCFGs can be described as “ordinary” context-free
grammars with an extra ability to generate reversals along with ordinary terminal symbols. In what follows, we
shall briefly review some of the basic definitions and results related to RGCFGs.

Definition 3.1. A reversal-generating context-free grammar (abbr. RGCFG) is a quintuple G = (N, T, P, σ,�),
where (N, T, P, σ) is a context-free grammar, and � in T is a special reversal symbol.

298 P. KOSTOLÁNYI

The definition of a derivation step is the same as for context-free grammars – that is, for a reversal-generating
grammar G = (N, T, P, σ,�), we write u ⇒G v if and only if u ⇒G′ v, where G′ is the context-free grammar
G′ = (N, T, P, σ).

For a RGCFG G = (N, T, P, σ,�), we shall denote by LCF (G) the language L(G′) generated by the context-
free grammar G′ = (N, T, P, σ). The language generated by the RGCFG G = (N, T, P, σ,�) consists of words
generated by the context-free grammar G′ – that is of words from LCF (G) – with the �-symbols interpreted
in the left-to-right order as reversals of the remaining part of the word. Formally,

L(G) = {�(w) | w ∈ LCF (G)},

where � : T ∗ → (T − {�})∗ is the reversal-interpreting function defined by

�(w) =
{

w for w without an occurrence of �,
u�(vR) for w = u�v, u without an occurrence of �, and v in T ∗.

For c in T and w in T ∗, we denote by |w|c the number of occurrences of c in w. The RGCFG G is said to
generate at most (exactly) k reversals, if for all words w from LCF (G), |w|� ≤ k (|w|� = k).

Let us now establish some simple properties of reversal-generating context-free grammars. First, let us prove
a proposition relating the language L(G) to the language LCF (G).

Proposition 3.2. Let G = (N, T, P, σ,�) be a RGCFG. Then

L(G) = {w1w
R
2nw2w

R
2n−1 . . . wnwR

n+1 | w1�w2� . . .�w2n ∈ LCF (G)} ∪
∪ {w1w

R
2n+1w2w

R
2n . . . wnwR

n+2wn+1 | w1�w2� . . .�w2n+1 ∈ LCF (G)}.

Proof. By definition, L(G) = {�(w) | w ∈ LCF (G)}, where � is the reversal-interpreting function. Thus, it is
sufficient to prove that for all n in N and all words w1, . . . , w2n+1 in (T − {�})∗,

�(w1�w2� . . .�w2n) = w1w
R
2nw2w

R
2n−1 . . . wnwR

n+1

and
�(w1�w2� . . .�w2n+1) = w1w

R
2n+1w2w

R
2n . . . wnwR

n+2wn+1.

By induction on n. The claim is trivial for n = 0, as �(ε) = ε and �(w1) = w1.
Now, let us suppose that the claim holds for n = k. We shall prove that it holds for n = k + 1. Indeed, we

have

�(w1�w2� . . .�w2k+2) = w1�(wR
2k+2�wR

2k+1� . . .�wR
2)

= w1w
R
2k+2w2w

R
2k+1 . . . wk+1w

R
k+2,

where the first equality is by definition of the reversal-interpreting function � and the second equality follows
by the induction hypothesis. Similarly,

�(w1�w2� . . .�w2k+3) = w1�(wR
2k+3�wR

2k+2� . . .�wR
2)

= w1w
R
2k+3w2w

R
2k+2 . . . wR

k+3wk+2,

where the first equality is by the definition of � and the second equality follows by what we have proved above.
The proposition is proved. �

The following proposition implies that the “usual” normal forms for context-free grammars, such as the
Chomsky normal form [5, 13], generalize directly to reversal-generating grammars.

A PUMPING LEMMA FOR FLIP-PUSHDOWN LANGUAGES 299

Proposition 3.3. Let G1 = (N1, T1, P1, σ1,�1) and G2 = (N2, T2, P2, σ2,�2) be RGCFGs. If LCF (G1) =
LCF (G2), then L(G1) = L(G2).

Proof. Let LCF (G1) = LCF (G2). Then it follows that

L(G1) = {�(w) | w ∈ LCF (G1)} = {�(w) | w ∈ LCF (G2)} = L(G2)

and the proposition is proved. �

Each reversal-generating context-free grammar G = (N, T, P, σ,�) unambiguously determines an “ordinary”
context-free grammar G′ = (N, T, P, σ), such that L(G′) = LCF (G). To transform the “ordinary” context-free
grammar G′ into some normal form means to construct an “ordinary” context-free grammar G′′, such that
L(G′′) = L(G′) = LCF (G) and G′′ satisfies some condition. However, we can view the grammar G′′ as a
reversal-generating context-free grammar G′′′, for which Proposition 3.3 implies L(G′′′) = L(G).

As a result, every reversal-generating context-free grammar can be transformed, e.g., into the Chomsky
normal form [5, 13], into the Greibach normal form [10, 13], or into the Double Greibach normal form [9, 15].
Moreover, the number of reversal symbols generated by the grammars obviously remains unchanged under these
transformations.

Remark 3.4. The converse of the implication of Proposition 3.3 does not hold. To see this, let us consider a
reversal-generating grammar G1 = (N1, T1, P1, σ1,�1), such that N1 = {σ1}, T1 = {a,�}, and P1 = {σ1 → a}.
Moreover, let us take a reversal-generating grammar G2 = (N2, T2, P2, σ2,�2), such that N2 = {σ2}, T2 =
{a,�}, and P2 = {σ2 → a�}. As can be easily observed, we obtain LCF (G1) = {a} �= {a�} = LCF (G2).
However, L(G1) = L(G2) = {a}.

Next, we shall prove that for each RGCFG generating at most k reversals, there is an equivalent RGCFG
generating exactly k reversals. So the situation appears to be similar as for flip-pushdown automata, where
NFPDA operating in exactly k pushdown flips have the same computational power as NFPDA operating in at
most k pushdown flips.

Proposition 3.5. Let G1 be a RGCFG generating at most k reversal symbols. Then a RGCFG G2 exists, such
that L(G2) = L(G1) and G2 generates exactly k reversal symbols.

Proof. Let G = (N, T, P, σ,�) be a RGCFG in Chomsky normal form, generating at most k reversals, such
that L(G) = L(G1). We shall construct a RGCFG G2 = (N2, T, P2, σ2,�), generating exactly k reversals, such
that L(G2) = L(G).

The main idea is that in each derivation, the grammar G2 first “guesses” the number m ≤ k of reversal symbols
to be generated by the grammar G. Next, the derivation proceeds in the same way as in the grammar G, but
it is allowed to generate a terminal word only if it indeed produces m reversal symbols – that is, the “guess”
from the beginning has to be verified.

At the end of the derivation, k − m additional reversal symbols are produced at the position where they
have no effect on the interpretation of the generated word. By Proposition 3.2, this is always alongside the
(m + 1)/2�th reversal symbol of the original generated word.

In order to add the right number of reversal symbols in the end, the number m has to be stored as an
additional component in nonterminals used in the derivation after making the initial “guess”.

Moreover, in order to be able to identify the (m + 1)/2�th reversal symbol, the nonterminals are further
extended by numbers 1 ≤ i ≤ j ≤ m, meaning that the given nonterminal generates the ith to the jth
reversal symbol of the resulting word. If a nonterminal generates no reversal symbols, then i = j = 0. When a
nonterminal is being rewritten to two nonterminals, it is “guessed” how these values are distributed between
them. These “guesses” are then verified when producing reversal symbols (then i = j �= 0 has to hold) and
“ordinary” terminal symbols (then i = j = 0 has to hold). This also verifies the number m “guessed” in the
beginning of the derivation.

300 P. KOSTOLÁNYI

Formally, N2 = {σ2} ∪ N × {1, . . . , k}3 ∪ N × {1, . . . , k} × {(0, 0)}, σ2 is a new nonterminal, and the set of
production rules P2 is given by

P2 = {σ2 → (σ, 0, 0, 0)�k} ∪ {σ2 → (σ, m, 1, m) | 1 ≤ m ≤ k}
∪ {(ξ, m, i, j) → (α, m, i, t)(β, m, t+1, j) | 1 ≤ i ≤ t < j ≤ m ≤ k; ξ → αβ ∈ P}
∪ {(ξ, m, i, j) → (α, m, i, j)(β, m, 0, 0) | 1 ≤ i ≤ j ≤ m ≤ k; ξ → αβ ∈ P}
∪ {(ξ, m, i, j) → (α, m, 0, 0)(β, m, i, j) | 1 ≤ i ≤ j ≤ m ≤ k; ξ → αβ ∈ P}
∪ {(ξ, m, 0, 0) → (α, m, 0, 0)(β, m, 0, 0) | 0 ≤ m ≤ k; ξ → αβ ∈ P}
∪ {(ξ, m, (m + 1)/2�, (m + 1)/2�) →�k−m+1 | 1 ≤ m ≤ k; ξ →� ∈ P}
∪ {(ξ, m, i, i) →� | 1 ≤ i ≤ m ≤ k; i �= (m + 1)/2�; ξ →� ∈ P}
∪ {(ξ, m, 0, 0) → c | 0 ≤ m ≤ k; c ∈ (T − {�}) ∪ {ε}; ξ → c ∈ P}.

It should be clear that L(G2) = L(G) and that G2 always generates exactly k reversal symbols. The proposition
is proved. �

We shall call the normal form introduced by the following proposition the Reversal-aware normal form.
Intuitively, a reversal-generating grammar is in the reversal-aware normal form if each nonterminal always
generates the same occurrences of �-symbols. That is, a nonterminal is always “aware” of which reversal
symbols it produces.

Proposition 3.6. Let G1 = (N1, T, P1, σ1,�) be a RGCFG generating exactly k reversals. Then a RGCFG
G2 = (N2, T, P2, σ2,�) generating k reversals exists, such that L(G2) = L(G1) and for each ξ in N2, one of
the following two properties holds:

(i) The nonterminal ξ does not generate reversal symbols. That is, |w|� = 0 holds for all w in T ∗, such that
ξ ⇒∗ w.

(ii) Numbers i, j in {1, . . . , k} do exist, such that the nonterminal ξ always generates the ith to the jth reversal
symbol of the final word. That is, for all x, y, w in T ∗, such that σ2 ⇒∗ xξy ⇒∗ xwy, |x|� = i − 1, and
|y|� = k − j.

Proof. The idea is very similar to the one used in the proof of Proposition 3.5 – to each nonterminal, we add two
numbers i and j providing information about the reversal symbols it produces. Such a grammar is obviously in
the reversal-aware normal form.

Formally, let G = (N, T, P, σ,�) be a RGCFG in Chomsky normal form, equivalent to G1 and generating
exactly k reversals. We shall construct the grammar G2 = (N2, T, P2, σ2,�) as follows: N2 = N ×{1, . . . , k}2 ∪
N × {(0, 0)}, σ2 = (σ, 1, k), and

P2 = {(ξ, i, j) → (α, i, t)(β, t + 1, j) | 1 ≤ i ≤ t < j ≤ k; ξ → αβ ∈ P}
∪ {(ξ, i, j) → (α, i, j)(β, 0, 0) | 1 ≤ i ≤ j ≤ k; ξ → αβ ∈ P}
∪ {(ξ, i, j) → (α, 0, 0)(β, i, j) | 1 ≤ i ≤ j ≤ k; ξ → αβ ∈ P}
∪ {(ξ, 0, 0) → (α, 0, 0)(β, 0, 0) | ξ → αβ ∈ P}
∪ {(ξ, i, i) →� | 1 ≤ i ≤ k; ξ →� ∈ P}
∪ {(ξ, 0, 0) → c | c ∈ (T − {�}) ∪ {ε}; ξ → c ∈ P}.

The grammar G2 is obviously equivalent to G and in the reversal-aware normal form. The proposition is
proved. �

The families of languages generated by reversal-generating context-free grammars are denoted in analogy
with the families of languages accepted by flip-pushdown automata.

A PUMPING LEMMA FOR FLIP-PUSHDOWN LANGUAGES 301

Definition 3.7. The family of languages generated by RGCFG producing k reversal symbols is denoted by
L (RGCFGk). Furthermore,

L (RGCFGfin) :=
∞⋃

k=0

L (RGCFGk).

The following theorem proved by the present author [14] asserts that RGCFG producing k reversal symbols
are equivalent to flip-pushdown automata operating in k flips.

Theorem 3.8 (K. [14]). For all k in N, L (NFPDAk) = L (RGCFGk) holds. As a direct consequence,
L (NFPDAfin) = L (RGCFGfin).

Proof. Follows by Lemma 3.9, by Lemma 3.10, and by the fact that NFPDA accepting by empty pushdown
store have the same computational power as NFPDA accepting by final state [11]. �

Lemma 3.9. Let k be in N and G = (N, T, P, σ,�) be a RGCFG generating at most k reversals. Then a
flip-pushdown automaton A = (K, Σ, Γ, δ, Δ, q0, Z0, F) exists, such that A operates in at most k pushdown flips
and N(A) = L(G).

Proof. We shall modify the standard simulation [13] of a leftmost derivation of an “ordinary” context-free
grammar by an “ordinary” pushdown automaton. During the entire computation of A, a special symbol Z0 will
be placed on the bottom of the pushdown store – the simulation itself will take place above this special symbol.
If an “ordinary” terminal symbol c in T − {�} is found at the top of the pushdown, the automaton A pops
this symbol from the pushdown and reads the same symbol from the input. If � is found at the top of the
pushdown, the automaton A flips its pushdown store. Finally, if a nonterminal ξ in N is found at the top of the
pushdown, the automaton A nondeterministically rewrites it according to some production rule ξ → x ∈ P –
if the number of pushdown flips performed so far is even, then ξ is replaced by x and if the number of flips is
odd, then ξ is replaced to xR. This means that the parity of the number of pushdown flips performed (or the
number of �-symbols processed) has to be stored in the state of the automaton A.

Formally, let us take K = {qinit, qeven, qodd, q
′
even, q′odd, qfin}, Σ = T − {�}, Γ = N ∪ T ∪ {Z0}, q0 = qinit,

let Z0 be a new symbol, F = ∅, and let the transition functions δ and Δ be given as follows:

δ(qinit, ε, Z0) � (qeven, Z0σ),
δ(qeven, c, c) � (qeven, ε) for all c in T − {�},
δ(qodd, c, c) � (qodd, ε) for all c in T − {�},

δ(qeven, ε,�) � (q′even, ε),
δ(qodd, ε,�) � (q′odd, ε),

Δ(q′even) � {qodd},
Δ(q′odd) � {qeven},

δ(qeven, ε, ξ) � (qeven, xR) for all ξ → x in P,

δ(qodd, ε, ξ) � (qodd, x) for all ξ → x in P,

δ(qeven, ε, Z0) � (qfin, ε),
δ(qodd, ε, Z0) � (qfin, ε).

No further transitions are defined in A. Let us note that the same automaton with F = {qfin} instead of F = ∅
accepts the same language by accepting state.

Without loss of generality, we may suppose that the original grammar G is in the Reduced normal form (see,
e.g., [13]), in which at least one terminal word can be derived from each sentential form (to be more precise,
this is not true if L(G) = ∅, but this case is trivial). Then, obviously, each sentential form of G contains at most
k reversal symbols. As a result, A operates in at most k pushdown flips. �

302 P. KOSTOLÁNYI

Lemma 3.10. Let k be in N and A = (K, Σ, Γ, δ, Δ, q0, Z0, F) be an NFPDA operating in exactly k pushdown
flips. Then a reversal-generating context-free grammar G = (N, T, P, σ,�) exists, such that G generates exactly
k reversals and L(G) = L(A)

Proof. By a minor change to the transition function of A, it is obviously possible to obtain a flip-pushdown
automaton A′, which operates in the same way as A, but which has to read some new special symbol # before
each pushdown flip (and the only thing A′ may do after reading # is to flip the pushdown store).

Formally, the construction goes as follows: A′ = (K ′, Σ′, Γ ′, δ′, Δ′, q′0, Z
′
0, F

′), where K ′ = K × {1, 2}, Σ′ =
Σ ∪ {#}, Γ ′ = Γ , q′0 = (q0, 1), Z ′

0 = Z0, F ′ = F × {1}, and the transition functions δ′ and Δ′ are given as
follows:

δ′((q, 1), c, Z) = {((p, 1), t) | (p, t) ∈ δ(q, c, Z)} for all q in K, c in Σ, Z in Γ,

δ′((q, 1), #, Z) = {((p, 2), Z) | p ∈ Δ(q)} for all q in K, Z in Γ,

Δ′((q, 2)) = {(q, 1)} for all q in K.

The language L(A′) obviously consists of words u = u1#u2# . . . #uk+1, such that u1u2 . . . uk+1 is accepted
by A with k pushdown flips on the positions marked by #. If k is odd, it is easy to prove by induction that by
applying Theorem 2.6 k times, we obtain the language

L′ = {u1#u3# . . . #uk#uR
k+1#uR

k−1# . . . #uR
2 | u1#u2# . . . #uk+1 ∈ L(A′)}.

Similarly, if k is even, the k-fold application of Theorem 2.6 yields the language

L′ = {u1#u3# . . . #uk+1#uR
k #uR

k−2# . . . #uR
2 | u1#u2# . . . #uk+1 ∈ L(A′)}.

By Theorem 2.6, the language L′ is context-free in both cases. Let us now consider a context-free grammar G′,
such that L(G′) = L′. Let G be a reversal-generating context-free grammar defined in the same way as G′,
except that it produces reversal symbols � instead of symbols #. It then follows by Proposition 3.2 that

L(G) = {u1u2 . . . uk+1 | u1#u2# . . . #uk+1 ∈ L(A′)} = L(A),

and the lemma is proved. �

4. The pumping lemma

Let us now present the main result of this paper: the Pumping lemma for flip-pushdown languages. Our
pumping lemma is a generalisation of the well-known Pumping lemma for context-free languages [2] (for an
expository treatment, see, e.g., [13]), and can be used as an efficient tool for proving that a given language
is not in L (NFPDAk) for some particular k (or for all k). In the proof of the Pumping lemma, we shall rely
on Theorem 3.8 – we shall base our argumentation on reversal-generating grammars instead of directly on
flip-pushdown automata.

The classical Pumping lemma for context-free languages can be stated either with two constants p and q, or
with only one constant, which can be chosen to be the maximum of p and q. The situation in our case is similar.
For aesthetic reasons, we shall state the Pumping lemma for flip-pushdown languages with only one constant q,
but it can be restated with three different constants as well.

Theorem 4.1. Let k ≥ 1 be a positive integer and L be a language in L (NFPDAk). Then a nonnegative
integer q exists, such that for all w in L, |w| ≥ q, words x, u, y, v, z can be found, satisfying the following
conditions:

(1) The word w can be factored as w = xuyvz.
(2) Either |uyv| ≤ q, or |uyv| ≥ |w|

2k − q with |uv| ≤ q.

A PUMPING LEMMA FOR FLIP-PUSHDOWN LANGUAGES 303

σ

.

ξ

s
w′

Reversal symbols in w′

“Pumpable” subtree
(if |s| ≥ q1)

Figure 1. If a non-reversal-generating nonterminal ξ produces at least q1 terminals, the corre-
sponding subtree can be pumped according to the Pumping lemma for context-free languages.

(3) The word uv is nonempty.
(4) For all i in N, xuiyviz is in L.

Proof. Let L be in L (NFPDAk). We shall specify q at the end of the proof, although we shall make several
assumptions of the form q ≥ q′ during the course of the proof. By Theorem 3.8, Propositions 3.5, and 3.6, there
is a reversal-generating context-free grammar G′ = (N ′, T, P ′, σ,�) in the Reversal-aware normal form and
always generating exactly k reversals, such that L(G′) = L. The Reversal-aware normal form allows us to divide
the set of nonterminals of G′ into reversal-generating and non-reversal-generating nonterminals – we shall rely
on this distinction in what follows.

Let w be a word in L and w′ be a word in LCF (G′), such that one gets w after interpreting the reversal
symbols in w′. Let a derivation tree R′ of w′ in G′ be fixed. Let q1 be a constant that is guaranteed for G′,
viewed as a context-free grammar, by the classical Pumping lemma for context-free languages2. We shall later
choose the value of q so that q ≥ q1.

Now, suppose there is a node in the derivation tree R′, corresponding to some non-reversal-generating non-
terminal ξ, such that at least q terminal symbols are among its descendants – that is σ ⇒∗ rξt ⇒∗ rst = w′ for
some ξ in N , r, t in T ∗, and s in (T − {�})∗ with |s| ≥ q. Then s can be pumped according to the Pumping
lemma for context-free languages, i.e., s = s1s2s3s4s5, |s2s3s4| ≤ q1 ≤ q, s2s4 is nonempty, and rs1s

i
2s3s

i
4s5t is

in LCF (G′) for all i in N. This situation is depicted in Figure 1.
As ξ is non-reversal-generating, s does not contain any reversal symbol, which means that either w =

r′s1s2s3s4s5t
′ for some r′, t′ and r′s1s

i
2s3s

i
4s5t

′ is in L for all i in N, or w = r′′sR
5 sR

4 sR
3 sR

2 sR
1 t′′ for some r′′, t′′

and r′′sR
5 (sR

4)isR
3 (sR

2)isR
1 t′′ is in L for all i in N.

It is obvious that in the first case we have |s2s3s4| ≤ q and that in the second case we have |sR
4 sR

3 sR
2 | ≤ q.

This means that the conditions from the statement of our lemma are satisfied either with x = r′s1, u = s2,
y = s3, v = s4, z = s5t

′, or with x = r′′sR
5 , u = sR

4 , y = sR
3 , v = sR

2 , z = sR
1 t′′.

2 If the Pumping lemma is stated with two constants, q1 is the maximum of these two constants. Furthermore, we assume that
the same constant applies to all grammars obtained from G′ by changing the initial nonterminal. Again, this is easily assured by
taking the maximum.

304 P. KOSTOLÁNYI

Let us now consider the remaining case, in which there is no such nonterminal ξ in the derivation tree R′.
This means that if a non-reversal-generating nonterminal occurs in the tree, then it has less than q1 ≤ q terminal
descendants.

Under this assumption, let us define a reversal-generating context-free grammar G = (N, T, P, σ,�) as follows:

(1) The set of terminals T , the initial nonterminal σ, and the reversal symbol � are the same as for G′.
(2) The set of nonterminals N consists precisely of the reversal-generating nonterminals from N ′ (and as k ≥ 1,

σ is in N).
(3) The set of production rules P is obtained from P ′ by deleting production rules from non-reversal-generating

nonterminals, and by replacing non-reversal-generating nonterminals on the right hand sides of the rest
of the rules by all possible terminal words shorter than q1, derivable in G′ from the original non-reversal-
generating nonterminal.
Formally, let η → u1ξ1u2 . . . ξjuj+1 be a production rule from the original set P ′, such that η is a reversal-
generating nonterminal from N ′, ξ1, . . . , ξn are non-reversal-generating nonterminals from N ′, and words
u1, . . . , uj+1 consist solely of terminal symbols and reversal-generating nonterminals from N ′. Moreover, let
x1, . . . , xj be words in T ∗, such that |x1|, . . . , |xj | < q1 and ξi ⇒∗

G′ xi for i = 1, . . . , j – clearly, the set of all
such x1, . . . , xj is finite. Then P contains the production rule η → u1x1u2 . . . xjuj+1. The set P contains no
other production rules.

Obviously, LCF (G) ⊆ LCF (G′) and L(G) ⊆ L(G′) = L. Moreover, it is clear that w′ is in LCF (G) – hence w
is in L(G). This altogether means that it suffices to “prove the lemma for L(G) instead of L”. The grammar G
clearly is in the Reversal-aware normal form as well, and contains only reversal-generating nonterminals.

In order to simplify the analysis, we shall assume that the right hand side of each production rule of G either
consists of at most one terminal and at most one nonterminal, or consists only of nonterminals. This normal
form can easily be achieved by introducing new reversal-generating nonterminals and replacing production rules
by “chains” of new production rules. Obviously, all properties of G listed above remain unchanged under this
transformation.

So let us focus on the grammar G and fix a derivation tree R of w′ (that is, w without interpreted reversal
symbols) in G. In the rest of the proof, we shall assume that the number k of reversal symbols generated is
odd – in other words, k + 1 = 2n for some n in N. The proof for k even is similar.

By Proposition 3.2, the word w′ generated by G viewed as a context-free grammar, and the word w obtained
by the interpretation of reversal symbols in w′, may be written as

w′ = w1�w2� . . .�wn�wn+1� . . .�w2n � w1w
R
2nw2w

R
2n−1 . . . wnwR

n+1 = w

for some w1, . . . , w2n in (T − {�})∗. The key to the proof is to inspect which production rules have lead to the
production of particular symbols occurring in w1, . . . , w2n, while using the fact that G is in the Reversal-aware
normal form and has only reversal-generating nonterminals.

Let us first introduce some notation. The functions ζ1, ζ2 : N → {1, . . . , k} assign to a given nonterminal ξ
the index of the leftmost and the rightmost reversal symbol generated by ξ, respectively. For i = 1, . . . , 2n, the
annotation of wi is a word A(wi) in N∗, such that the symbol on the jth position of A(wi), denoted by A(wi)[j],
is ξ if and only if the symbol wi[j] has been (directly) produced, in the derivation tree R, by some production
rule from the nonterminal ξ. This notation extends to subwords of wi as well.

Now, let us make some observations, largely based on elementary properties of derivation trees:

1. For j = 1, . . . , |w1|, we have ζ1(A(w1)[j]) = 1.
2. For j = 1, . . . , |w2n|, we have ζ2(A(w2n)[j]) = k.

The situation described in observations 1 and 2 is depicted in Figure 2.

3. For i = 2, . . . , 2n − 1, the word wi can be factorized into two possibly empty factors, wi = yizi, so that
ζ2(A(yi)[j]) = i − 1 for j = 1, . . . , |yi| and ζ1(A(zi)[j]) = i for j = 1, . . . , |zi|.

A PUMPING LEMMA FOR FLIP-PUSHDOWN LANGUAGES 305

w1 w2 w2n.

σ

.

ξ η

Figure 2. Each terminal symbol of w1 has to be produced from some reversal-generating
nonterminal ξ. Necessarily, ζ1(ξ) = 1. Similarly for the terminal symbols of w2n (recall that
k + 1 = 2n).

wi

yi zi

σ

.

ξ η

α β

Figure 3. According to our assumptions, if a terminal is on the right hand side of a production
rule, then this right hand side contains at most one nonterminal. This implies observation 3.
observation 4 should be clear from the figure.

4. In addition to the observation above, ζ1 is always less than or equal to i− 1 on each A(yi), and ζ2 is always
greater than or equal to i and decreasing on each A(zi) (but it is not globally decreasing).

The situation described in observations 3 and 4 is depicted in Figure 3.

306 P. KOSTOLÁNYI

wi

. . .

σ

. . .

ξ

ξ

Figure 4. A pumpable subword of wi and its associated subword.

5. If A(wi)[j] = A(wi)[j′] for some i and j < j′, then either the subword wi[j] . . . wi[j′ − 1] or the subword
wi[j +1] . . .wi[j′] can be pumped in w′, together with some other associated subword s of w′. This is because
the grammar is in the reversal-aware normal form, has no non-reversal-generating nonterminals, and each
production rule generates at most one terminal symbol. Thus, if two distinct terminal symbols wi[j] and
wi[j′] are generated by the same nonterminal ξ, it means that there is an ancestral chain in the tree R,
beginning and ending in ξ, with wi[j] being the child of the upper ξ and wi[j′] being the child of the lower ξ,
or vice versa. In the first case, the subword wi[j] . . . wi[j′ − 1] can be pumped and in the second case, the
subword wi[j + 1] . . . wi[j′] can be pumped, since the ancestral chain can be arbitrarily repeated. Returning
to observations 1–3, the first case occurs if and only if i = 1 or both wi[j] and wi[j′] belong to zi, and the
second case occurs if and only if i = 2n or both wi[j] and wi[j′] belong to yi. The main aim in what follows is
to make the associated subword s to be furthest possible from wi[j] . . . wi[j′−1] resp. wi[j +1] . . . wi[j′] after
interpreting the reversal symbols. Now, one should see that obtaining the gap of |w|

2k − q would essentially
prove the Pumping lemma. In the sequel, we shall call words wi[j] . . . wi[j′ − 1] (resp. wi[j + 1] . . . wi[j′]) as
above pumpable subwords, although possibly some other subwords may be pumped as well.

The situation described in observation 5 is depicted in Figure 4.
We are now prepared to make the key observation. Recall that for the interpretation of reversal symbols

in w′, we have

w′ = w1�w2� . . .�wn�wn+1� . . .�w2n � w1w
R
2nw2w

R
2n−1 . . . wnwR

n+1 = w.

As w1 appears at the beginning of w, all pumpable subwords in w1 have their associated subwords on the right
of w1 (in w, i.e., after interpreting the reversal symbols). Similarly, wn+1 appears (reversed) at the end of w,
so all pumpable subwords in wn+1 have their associated subwords in w on the left of wR

n+1.
Now, take wi = yizi for some i, 2 ≤ i ≤ n. It is a direct corollary of observation 3 above that all pumpable

subwords of yi have their associated subwords in some of the subwords w1, . . . , wi−1. All these subwords are on
the left of wi after interpreting the reversal symbols. Again by observation 3, all pumpable subwords of zi have
their associated subwords in some of the subwords wi+1, . . . , w2n. Moreover, it follows from observation 4 that

A PUMPING LEMMA FOR FLIP-PUSHDOWN LANGUAGES 307

for all j1, j2, such that i+1 ≤ j1 < j2 ≤ 2n, the pumpable subwords of zi having their associated subwords in wj2

appear before the pumpable subwords of zi having their associated subwords in wj1 . In particular, pumpable
subwords of zi having their associated subwords in w on the left of wi appear before pumpable subwords of zi

having their associated subwords on the right of wi. To sum up, the word wi can be divided as wi = liri, where
all pumpable subwords of li have, after the interpretation of reversal symbols, their associated subwords on the
left of wi, and all pumpable subwords of ri have their associated subwords on the right of wi.

A symmetrical reasoning can be performed for i with n + 2 ≤ i ≤ 2n, resulting in a factorization wR
i = lRi rR

i ,
where all pumpable subwords of lRi have, after the interpretation of reversal symbols, their associated subwords
on the left of wR

i , and all pumpable subwords of rR
i have their associated subwords on the right of wR

i . Moreover,
in accordance with what has been observed above, we shall denote r1 = w1 and lRn+1 = wR

n+1.
Thus, the word w can be written as

w = r1l
R
2nrR

2nl2r2l
R
2n−1r

R
2n−1 . . . lnrnlRn+1,

with the word w being factored into exactly 2(2n)− 2 = 2k subwords. By the Pigeonhole principle, at least one
of these subwords is of length at least |w|

2k . Suppose that this subword is li for some i, 1 ≤ i ≤ n (the reasoning
for the case that this subword is ri, lRi or rR

i is absolutely identical). Recall the definition of pumpable subwords
given above. As there are only finitely many nonterminals in N , it follows by the Pigeonhole principle that a
constant q2 (dependent only on the grammar G) exists, such that there has to be a pumpable subword v′ in
the suffix of li of length q2, provided |w|

2k ≥ q2. As v′ is a subword of a suffix of length q2, |v′| ≤ q2. Now, let
us take a look at the associated subword u′ of v′. This may be arbitrarily long and appears on the left of v′.
If |u′| ≤ q2, let us denote u = u′ and v = v′. If |u′| > q2, then it follows by the Pigeonhole principle that u′

contains a pumpable subword u of length at most q2. It should be clear that the associated subword of u – let
us denote it by v – lies within v′.

Thus, in both cases we have two subwords, u and v of w, yielding a factorization

w = xuyvz.

It follows that |uyv| ≥ |li|−q2 ≥ |w|
2k −q2 and |uv| ≤ 2q2. Furthermore, we have already mentioned the condition

|w|
2k ≥ q2, which implies that the reasoning is valid only for w, such that |w| ≥ 2kq2. Thus, the Pumping lemma
is proved for q = max{q1, 2kq2}. �

Remark 4.2. In the Introduction, we have claimed that our Pumping lemma for flip-pushdown languages is
a generalisation of the classical Pumping lemma for context-free languages. This assertion may be viewed as
slightly problematic, as the Pumping lemma for flip-pushdown languages only holds for L (NFPDAk) with k ≥ 1,
while the family of context-free languages identifies with L (NFPDA0) (and it is known that L (NFPDAi) �

L (NFPDAi+1) for all i in N). However, setting k = 0, the term |w|
2k − q intuitively becomes ∞, thus the

condition |uyv| ≥ |w|
2k − q cannot be satisfied and might be omitted. In this way we obtain the Pumping lemma

for context-free languages, which justifies our claim.

Remark 4.3. For all k ∈ N, k ≥ 1, the language Lk defined by

Lk = {#w1$w1#w2$w2# . . . #wk$wk# | w1, . . . , wk ∈ {a, b}∗}

is in L (NFPDAk) [11]. Intuitively, it is obvious that the only possible way of pumping words w from Lk is
to pump two occurrences of some wi, while both occurrences have to be pumped “approximately at the same
position”, so the distance between both pumped factors is approximately the length of wi. If the words wi are
of the same length for all i, then the length of each wi is approximately |w|

2k . As a consequence, the bound
|uyv| ≥ |w|

2k − q of our Pumping lemma cannot be improved by more than a constant.

308 P. KOSTOLÁNYI

5. Example applications

In the proof of their Hierarchy theorem [11], Holzer and Kutrib have considered languages of the following
form, defined for all positive integers k:

Lk = {#w1$w1#w2$w2# . . . #wk$wk# | w1, . . . , wk ∈ {a, b}∗}.

As they have observed, the language Lk+1 is in L (NFPDAk+1), but is not in L (NFPDAk). The original proof
of the latter result is somewhat complicated – it is first argued that if Lk+1 is in L (NFPDAk), then one
can transform Lk+1 to a context-free language by applying exactly k times the Flip-pushdown input-reversal
theorem [11] (reproduced as Thm. 2.6 in the present paper). Next, a generalized Ogden’s lemma of Bader and
Moura [1] is applied to this context-free language, and finally the Flip-pushdown input-reversal theorem is
undone.

In what follows, we shall use our Pumping lemma to obtain the same result. Our proof shall be significantly
simpler than the original one by Holzer and Kutrib [11].

Example 5.1. In order to demonstrate the main idea, we shall first prove that the language

L2 = {#w1$w1#w2$w2# | w1, w2 ∈ {a, b}∗}.

is not in L (NFPDA1). We shall tackle the general case later in Example 5.2.
Suppose that L2 is in L (NFPDA1). Let q be a constant guaranteed for L2 by the Pumping lemma for

languages in L (NFPDA1).
Without loss of generality, assume q > 0 and take

w = #a2qb2q$a2qb2q#a2qb2q$a2qb2q#.

Then, by the Pumping lemma, words x, u, y, v, z can be found, such that the properties (1)–(4) are satisfied. By
the second condition, either |uyv| ≤ q, or |uyv| ≥ |w|

2 − q with |uv| ≤ q. It can be easily verified that the case
|uyv| ≤ q immediately leads to a contradiction, as the language L2 is not context-free.

Let us suppose that |uyv| ≥ |w|
2 − q. In other words,

|uyv| ≥ |w|
2

− q =
16q + 5

2
− q > 7q + 2.

As |uv| ≤ q, we obtain
|uy| > 6q + 2.

It should be clear that in order for xu2yv2z to be in L2, u and v have to be both nonempty and their first
letters have to be the same. Moreover, neither u nor v may contain # or $.

Given |uy| > 6q+2, the above requirements are satisfied only if y contains the middle # – that is, if u belongs
to the first half of w, and v belongs to the second half of w. However, the contradiction is immediate in this
case.

Example 5.2. Let k ≥ 1. We shall prove that the language

Lk+1 = {#w1$w1#w2$w2# . . .#wk+1$wk+1# | w1, . . . , wk+1 ∈ {a, b}∗}

is not in L (NFPDAk).
Suppose that Lk+1 is in L (NFPDAk). Let q be a constant guaranteed for Lk+1 by the Pumping lemma for

languages in L (NFPDAk).

A PUMPING LEMMA FOR FLIP-PUSHDOWN LANGUAGES 309

Without loss of generality, we may assume q > 0. Let us set

w1 = w2 = . . . = wk+1 =
(
a2qb2q

)k

and take
w = #w1$w1#w2$w2# . . . #wk+1$wk+1#.

Clearly, w is in Lk+1, so the Pumping lemma implies the existence of words x, u, y, v, z, such that the proper-
ties (1)–(4) are satisfied. By the second condition, either |uyv| ≤ q, or |uyv| ≥ |w|

2k − q with |uv| ≤ q. The case
|uyv| ≤ q immediately leads to a contradiction, as the language Lk+1 is not context-free.

For this reason, we may suppose that |uyv| ≥ |w|
2k − q. In other words,

|uyv| ≥ |w|
2k

− q =
8k(k + 1)q + 2k + 3

2k
− q > (4k + 3)q + 1.

As |uv| ≤ q, we obtain
|uy| > (4k + 2)q + 1.

In order for xu2yv2z to be in Lk+1, u and v have to be both nonempty and their first letters have to be the
same. Moreover, neither u nor v may contain # or $.

If uyv is not contained in a subword wi$wi for some i, then the contradiction is immediate. So let us suppose
that uyv is contained in such a subword.

The word wi is, by definition, composed of k “blocks” of the form a2qb2q, and the total length of wi is 4kq.
Given |uy| > (4k + 2)q + 1, the above requirements can be satisfied only if u does not begin in the same block
of wi (in the first occurrence of wi) as v (in the second occurrence of wi). The contradiction follows easily.

Example 5.3. As a last example, we shall prove that the language

L = {anbncn | n ∈ N}

is not in L (NFPDAfin). This fact is well-known and can easily be proved using alternative methods [11].
However, our aim is to demonstrate that the Pumping lemma for flip-pushdown languages can be utilized to
prove that a language is not in L (NFPDAfin).

Suppose that L is in L (NFPDAk) for some k ≥ 1. Let q be a constant guaranteed for L by the Pumping
lemma.

Take w = aqbqcq in L. It follows that there are words x, u, y, v, z, such that the properties (1)–(4) of the
Pumping lemma are satisfied for w. It can be easily seen that if u or v contains two or more different symbols,
then xu2yv2z does not belong to a∗b∗c∗, and hence is not in L. On the other hand, if u ∈ e∗ and v ∈ f∗ for
some e and f in {a, b, c}, then clearly xu2yv2z = aibjck, where either i �= j, or i �= k. Thus, xu2yv2z is not in
L and a contradiction follows.

It should be noted that the bound |uyv| ≥ |w|
2k − q is irrelevant when proving that a language is not in

L (NFPDAfin), as k can be arbitrarily large.

6. Conclusion

We have formulated and proved a pumping lemma for the families of languages accepted by flip-pushdown
automata with a number of flips limited by a constant. The lemma provides an efficient tool for disproving
existence of flip-pushdown automata for specific languages. In particular, it is possible to apply the lemma to
prove that a given language does not belong to L (NFPDAk) for some specific k or that the language does not
belong to L (NFPDAfin). As demonstrated by the examples of Section 4, in particular by Example 5.2, proofs
using our pumping lemma might be significantly simpler compared to proofs via previously known techniques.

310 P. KOSTOLÁNYI

In addition to proving the result for its own sake, the techniques used have hopefully convinced the reader
about the power of the grammatical viewpoint on flip-pushdown automata.

In [14], the present author has described two families of grammars, which are (after some suitable restriction)
equivalent to flip-pushdown automata with a constant number of flips: reversal-generating context-free grammars
(RGCFG) and parallel interleaving grammar systems (PIGS). Holzer and Kutrib [11] have asked a question
regarding the relation of flip-pushdown automata with a constant number of flips to E0L systems and to ET0L
systems. The former question has already been successfully settled by Ďurǐs and Košta [7], who have proved that
the families L (NFPDAfin) and L (E0L) are incomparable. As an example application of parallel interleaving
grammar systems, it has been proved in [14] that flip-pushdown automata with a constant number of flips are
strictly weaker than ET0L systems, which has settled the latter problem.

The characterisation in terms of reversal-generating context-free grammars has only been used in [14] to
prove the characterisation in terms of PIGS. That is, the pumping lemma presented in this paper is the first
direct application of reversal-generating grammars to the theory of flip-pushdown languages.

Of course, the presented pumping lemma is not the only possible application of RGCFGs that naturally
comes to mind. For instance, Ďurǐs and Košta have obtained a relatively technical proof [6] of the fact that
spontaneous transitions in flip-pushdown automata with a constant number of flips can be removed (without
affecting the number of flips). The proof via reversal-generating grammars is considerably simpler: as every
reversal-generating context-free grammar G can be viewed as an “ordinary” context-free grammar, the result
can be established relatively easily by using the fact that G can be transformed into the Double Greibach normal
form [9, 15].

In a similar spirit, the simulation of reversal-generating grammars by flip-pushdown automata (described in
the proof of Lem. 3.9) solves in affirmative an open problem of Ďurǐs and Košta [6], who have asked if each
language from L (NFPDAfin) can be accepted by a flip-pushdown automaton with a constant number of states
(that is independent of the number of flips).

The author also believes that reversal-generating context-free grammars may be used to unify certain con-
cepts. In particular, Bordihn, Holzer, and Kutrib have introduced so called input-reversal pushdown automata [3],
a model in some sense symmetric to flip-pushdown automata, for which they have proved its equivalence to
linear indexed grammars [8]. It should be immediate that input-reversal pushdown automata are equivalent to
a modification of RGCFGs, in which reversal symbols are interpreted in the right-to-left order. This makes the
symmetry between input-reversal and flip-pushdown automata even more evident.

Finally, it seems likely that a RGCFG-like characterisation may be obtained for several other families of
automata, such as hairpin automata of Bordihn, Holzer, and Kutrib [4].

References

[1] C. Bader and A. Moura, A generalization of Ogden’s lemma. J. ACM 29 (1982) 404–407.
[2] Y. Bar-Hillel, M. Perles and E. Shamir, On formal properties of simple phrase structure grammars. Z. Phonetik. Sprachwiss.

Kommunikationsforsch. 14 (1961) 143–172.
[3] H. Bordihn, M. Holzer and M. Kutrib, Input Reversals and Iterated Pushdown Automata: A New Characterization of Khabbaz

Geometric Hierarchy of Languages. DLT 2004, edited by C.C. Calude, E. Calude and M.J. Dinneen. In vol. 3340 of Lect. Notes
Comput. Sci. Springer (2004) 102–113.

[4] H. Bordihn, M. Holzer and M. Kutrib, Hairpin finite automata. J. Autom. Lang. Comb. 16 (2011) 71–74.
[5] N. Chomsky, On certain formal properties of grammars. Inf. Control 2 (1959) 167–167.
[6] P. Ďurǐs and M. Košta, Flip-Pushdown Automata: Nondeterministic ε-Moves Can Be Removed, edited by M. Lopatková. In

ITAT 2011 (2011) 15–22.
[7] P. Ďurǐs and M. Košta, Flip-pushdown automata with k pushdown reversals and E0L systems are incomparable. Inf. Process.

Lett. 114 (2014) 417–420.
[8] J. Duske and R. Parchmann, Linear indexed languages. Theoret. Comput. Sci. 32 (1984) 47–60.
[9] J. Engelfriet, An elementary proof of Double Greibach normal form. Inf. Process. Lett. 44 (1992) 291–293.

[10] S.A. Greibach, A new normal-form theorem for context-free phrase structure grammars. J. ACM 12 (1965) 42–52.
[11] M. Holzer and M. Kutrib, Flip-Pushdown Automata: k + 1 Pushdown Reversals are Better Than k. ICALP 2003, edited by

J.C.M. Baeten et al. In vol. 2719 of Lect. Notes Comput. Sci. Springer (2003) 490–501.

A PUMPING LEMMA FOR FLIP-PUSHDOWN LANGUAGES 311

[12] M. Holzer and M. Kutrib, Flip-Pushdown automata: Nondeterminism is better than determinism. DLT 2003, edited by Z.
Ésik and Z. Fülöp. In vol. 2710 of Lect. Notes Comput. Sci. Springer (2003) 361–372.

[13] J.E. Hopcroft, R. Motwani and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, 3rd edition.
Pearson (2006).

[14] P. Kostolányi, Two grammatical equivalents of flip-pushdown automata. SOFSEM 2015, edited by G.F. Italiano et al. In
vol. 8939 of Lect. Notes Comput. Sci. Springer (2015) 302–313.

[15] D.J. Rosenkrantz, Matrix equations and normal forms for context-free grammars. J. ACM 14 (1967) 501–507.
[16] P. Sarkar, Pushdown Automaton With the Ability to Flip its Stack. Electronic Colloquium on Computational Complexity

(ECCC) 8 (2001).

Communicated by N. Moreira.
Received December 16, 2015. Accepted March 24, 2016.

	Introduction
	Flip-pushdown automata
	Reversal-generating grammars
	The pumping lemma
	Example applications
	Conclusion
	References

