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REDUCING THE GRADEDNESS PROBLEM OF STRING
REWRITING SYSTEMS TO A TERMINATION

PROBLEM ∗

Itamar Stein
1

Abstract. A finite string rewriting system (SRS) is called graded if
every word over its alphabet is equivalent to only a finite number of
other words. We consider the problem of deciding whether a given finite
SRS is graded. We show that, in general, this problem is not decidable.
Moreover we show that for many SRSs (including all one-rule SRSs),
one can convert the SRS to another SRS such that the original one is
graded if and only if the converted one is terminating. Since there are
computer programs that can decide for many cases whether a given SRS
is terminating or not, this can give us a method to prove automatically
if a given SRS is graded or not.
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1. Introduction

A monoid M is called graded with respect to S where S is a finite set of genera-
tors, if every element of M can be written as a word over S in only finitely many
ways. The notion of a graded monoid was introduced by Margolis et al. in [7],
where they discussed the membership problem in the case of a graded monoid.
A finite string rewriting system (SRS) 〈A | R〉 is called graded if every word is
equivalent to only a finite number of other words. In other words, 〈A | R〉 is graded
if and only if the monoid it presents is graded with respect to A. It was proved
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in [7] that if M is a graded monoid then any finite SRS 〈A | R〉 that presents M
is graded as long as any letter a ∈ A is not equivalent to 1. From a combinatorial
point of view, graded monoids have some useful properties. For instance, they have
a decidable word problem. Note that any free monoid A∗ is a graded monoid with
the special property that any word can be written in only one way using the gen-
erators A. Given a finite SRS 〈A | R〉, we want to decide whether it is graded or
not. We will show that, in general, this question is not decidable. Our main result
is, that certain types of SRSs can be converted into another SRS, such that the
original SRS is graded if and only if the other SRS is terminating. There is a lot
of research about proving termination for SRSs, and there are computer programs
that can solve automatically many cases [5, 11]. So this can give us a method to
prove automatically if a given SRS is graded or not.

2. Preliminaries

Let A be a finite alphabet. The free monoid generated by A is denoted by A∗

and the free semigroup is denoted by A+.
Let M be a monoid. A congruence on M is an equivalence relation R with the

property that aRb and cRd implies acRbd. If R is a congruence, then M/R is a
monoid with respect to the multiplication [a]R · [b]R = [ab]R where [x]R denotes
the equivalence class of x.

Let A be a set and let R = {(ui, vi) | i ∈ I} be a relation on A∗. The tuple
T = 〈A | R〉 is called a string rewriting system (SRS) and it is usually written
〈A | ui → vi〉, where every ui → vi is called a rule. We denote the left hand sides
of the rules and the right hand sides by lhs(T ) and rhs(T ) respectively, that is,
lhs(T ) = {ui | i ∈ I} and rhs(T ) = {vi | i ∈ I}. We will only discuss finite SRSs,
i.e., both A and R are finite. The single-step reduction relation induced by R is
denoted by →R and defined by

w→R w′ if w = xuy and w′ = xvy for some x, y ∈ A∗, (u, v) ∈ R.

We denote by ↔R and ∗→R the symmetric and the transitive reflexive closures
of→R. We also use ∗←→R to denote the reflexive symmetric transitive closure of→R.
Note that ∗←→R is the congruence generated by R, that is, the least congruence that
contains R. We say that two words w, w′ over A are equivalent if w ∗↔R w′. Usually
we will omit the R and write →, ↔, ∗−→ and ∗←→. We will say that 〈A | R〉 presents
the monoid A∗/ ∗↔, or that 〈A | R〉 is a presentation of A∗/ ∗↔ with generators A
and rules R. If only the generated monoid is of interest, the convention is to write
rules in the form u = v instead of u→ v.

The reduction graph of an SRS T = 〈A | R〉, denoted GT , is the directed graph
(V,E) where V = A∗ and (a, b) ∈ E if a→R b. The conversion graph of T , denoted
CT , is the undirected graph (V,E) where V = A∗ and (a, b) ∈ E if a ↔R b. A
path in the reduction (conversion) graph is called a reduction (conversion) of T .
We sometimes call a reduction (conversion) of length 1, a step. Note that, since
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there are only a finite number of rules, the degree of every vertex in the reduction
(conversion) graph is finite. In other words, every vertex has only a finite number
of adjacent vertices.

An SRS 〈A | R〉 is called confluent if u ∗→ x and u
∗→ y implies that there

is a v ∈ A∗ such that both x
∗→ v and y

∗→ v. It is called terminating if there
is no infinite sequence x1, x2, x3 . . . of words such that xi → xi+1 for all i > 0.
In other words, T is terminating if it has no infinite reduction. It is well-known
([3], Lems. 2.2.4 and 2.2.5) that an SRS is terminating if and only if → is acyclic
and globally finite. Acyclic means that there are no cycles u → . . .→ u, i.e., the
transitive closure of → is irreflexive. Globally finite means that for every u ∈ A∗

the number of v such that u ∗→ v is finite.
We denote by OVL∗(u, v) and OVL(u, v) the sets of overlaps and proper overlaps

of u with v, respectively.

OVL∗(u, v) = {w ∈ A+ | ∃x, y ∈ A∗ : u = xw ∧ v = wy}
and

OVL(u, v) = {w ∈ A+ | ∃x, y ∈ A∗ : u = xw ∧ v = wy ∧ x 
= 1 ∧ y 
= 1}.
In addition, OVL∗(u) = OVL∗(u, u) and OVL(u) = OVL(u, u) are the sets of
overlaps and proper overlaps of u with itself. Note that OVL∗(u) = OVL(u)∪{u}.

It is undecidable whether or not a given finite string-rewriting system is conflu-
ent or terminating ([4], Thms. 2.5.13 and 2.5.14). It is known [10] that a one-rule
SRS T = 〈A | u → v〉 such that v is not a factor of u, is confluent if and only if
OVL(u) ⊆ OVL(v).

Assume that w is a factor of x. Note that w may appear in x more than once.
When we want to distinguish a specific factor w of x, we will speak of the factor
w of x at position p where p is an integer between 0 and |x|. Position p in x means
the location between y and z in yz if x = yz and |y| = p. For instance, in the word
abaab, the factor abaab is at position 0 where the factor abaab is at position 3.

Let T = 〈A | R〉 be an SRS. When regarding a reduction or conversion in GT

or CT we will often be interested not only in the words involved but in the specific
rewritings as well. We will do so by writing the respected rule below the arrow
and the position above the arrow. Hence, when we rewrite the factor u of w1 at
position p to v and we get the word w2, we will write this as w1

p−−−→
u→v

w2. For

instance, there is a difference between aa
0−−−→

a→ab
aba and aa

1−−−→
a→ba

aba, or even

between aa
0−−−−→

a→aa
aaa and aa

1−−−−→
a→aa

aaa (both steps use the rule a → aa but in

different positions).

3. Graded SRSs

Definition 3.1. An SRS T = 〈A | R〉 is called graded if every w ∈ A∗ is equivalent
to only a finite number of other words.
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In other words, T is graded if and only if every connected component in its con-
version graph is finite. If T = 〈A | ui → vi〉 is a length preserving finite SRS
(i.e. |ui| = |vi| for every i), then it is clearly graded since there are only a finite
number of words of a given length. On the other hand, any finite SRS of the form
〈A | u→ v〉 where u is a proper factor of v is clearly not graded. More generally,
it is clear that any acyclic non-terminating SRS is not graded.

Definition 3.2. Let M be a monoid generated by a finite set S ⊆M . M is graded
with respect to S if every member of M can be written as a word over S in only
finitely many ways. M is called graded if it is graded with respect to some set of
generators S.

The term graded comes from a property proved in [7]: if M is graded with respect
to S, then the function λS : M → N defined by

λS(g) = max{k | g = s1s2 . . . sk, for some si ∈ S, i = 1, . . . , k}

is a grading function for M , that is, λS(m) = k if and only if m ∈ T k\T k+1 where
T = M\{1}.

It is clear that if 〈A | R〉 is a graded SRS then the monoid it presents is also
graded (with respect to A).

Note that if M is graded with respect to S and e ∈ M is an idempotent then
e = 1. For assume not and e can be written as a non-trivial word over S, say,
e = s1s2 . . . sk where si ∈ S. Then (s1s2 . . . sk)l are all equivalent for every l ≥ 1
which contradicts the gradedness of M .

The following are immediate corollaries of ([7], Props. 1.6 and 1.15).

Proposition 3.3. Let 〈A | R〉 be a finite SRS that presents the monoid M . If
every a ∈ A is not equivalent to 1 in M then 〈A | R〉 is a graded SRS if and only
if M is a graded monoid.

Note that the condition that no a ∈ A is equivalent to 1 is essential. For instance,
the non-graded SRS T = 〈a, b | 1 → b〉 presents the free (hence graded) monoid
N = 〈a〉.

Proposition 3.4. Let T = 〈A | ui → vi〉 be an acyclic confluent SRS. Then T
is graded if and only if both 〈A | ui → vi〉 and its converse 〈A | vi → ui〉 are
terminating.

Remark 3.5. If a one-rule SRS 〈A | u → v〉 is length increasing, i.e., |u| <
|v|, then its converse is clearly terminating. Such SRS is confluent if and only
if OVL(u) ⊆ OVL(v). In particular, T is confluent if it is non-overlapping, i.e.,
OVL(u) = ∅. Hence, Proposition 3.4 implies that gradedness and termination are
equivalent for non-overlapping length-increasing one-rule SRSs. The decidability
status of the termination problem for such SRSs is still open.
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Example 3.6. Consider the SRS T = 〈a, b | ambl → bkan〉 where m, l, k, n ≥ 1.
Since

OVL(ambl) = OVL(bkan) = ∅
both 〈a, b | ambl → bkan〉 and 〈a, b | bkan → ambl〉 are confluent and they are
clearly acyclic. According to [12] the SRS 〈a, b | ambl → bkan〉 is terminating if
and only if one of the following holds:

1. n ≤ m or k ≤ l.
2. m ≤ n ≤ 2m and k 
≡ 0 (mod l).
3. l ≤ k ≤ 2l and n 
≡ 0 (mod m).

Using Proposition 3.4 we can deduce a criterion for the gradedness of T .

4. Undecidability result

Let the gradedness problem for the class C of SRSs be the following problem.
Instance: some T ∈ C. Question: is T graded? We will show that the gradedness
problem for the class of all finite SRSs is undecidable.

We will use a generalization of Markov’s theorem due to [6], regarding monoids
with word problem decidable in linear time.

Definition 4.1. Let C be some class of monoids. A property P is called a Markov
property with respect to C if the following conditions hold

1. If M1 satisfies P and M1
∼= M2 then M2 satisfies P .

2. There is a monoid M ∈ C that satisfies P .
3. There is a monoid M1 ∈ C that does not satisfy P and cannot be embedded in

a monoid M2 ∈ C that satisfies P .

It is well-known that if C is the class of all finitely presented monoids, then any
Markov property is undecidable. It is proved in ([6], Thm. 3.2) that even if C is
the class of all finitely presented monoids with word problem decidable in linear
time, any Markov property is undecidable. Note that being a graded monoid is a
Markov property, since conditions 1 and 2 clearly hold and condition 3 is fulfilled
by any monoid with an idempotent other than the identity. For instance, take the
monoid presented by 〈a | a→ aa〉.
Corollary 4.2. The gradedness problem for monoids is undecidable for the class
of finitely presented monoids that have a word problem decidable in linear time.

Definition 4.3. For an SRS T = 〈A | R〉 let trim(T ) be defined by trim(T ) =
〈A′ | R′〉 where B denotes the set of letters from A that are equivalent to 1,
A′ = A\B and R′ is derived from R by deleting all occurences of letters from B.

Note that T and trim(T ) present the same monoid.

Lemma 4.4. The monoid M presented by the finite SRS T is graded if and only
if the SRS trim(T ) is graded.
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Proof. Since trim(T ) = 〈A′ | R′〉 also presents M and no letter from A′ is equiva-
lent to 1 the statement follows immediately from Proposition 3.3. �

Proposition 4.5. The gradedness problem for SRSs is undecidable for the class
of finite SRSs that have a word problem decidable in linear time.

Proof. Assume it is decidable. Let M be a monoid presented by T = 〈A | R〉 such
that the word problem for this SRS is decidable in linear time. We can compute
trim(T ) since the word problem for T is decidable. It is clear that the word problem
for trim(T ) is also decidable in linear time so we can decide if trim(T ) is graded. By
Lemma 4.4 we can decide whetherM is graded. This contradicts Corollary 4.2. �

Remark 4.6. We remark that similar problems for Term Rewriting Systems
(TRS) are discussed in [8]. It is proved ([8], Thm. 1) that the problem of de-
termining, given a finite TRS and a term t, whether the equivalence class of t is
finite is undecidable, even if the reduction relation is terminating and the left hand
sides of the rules are non-overlapping. It is also undecidable whether all equivalence
classes are finite. On the other hand ([8], Thm. 2), both problems are decidable
for TRSs of ground terms.

5. Converting into termination problem

In this section we will prove that certain types of SRSs T can be converted into
another SRS ST , such that T is graded if and only if ST is terminating. This will be
done in several steps. In Section 5.1 we show that under some assumptions on T ,
T is graded if and only if it has no infinite conversion without reversals (notion
that will be defined in Def. 5.2). In Section 5.2 we define compatible SRSs and
prove that if S is an SRS compatible with T , lhs(S) ∩ rhs(S) = ∅ and there is no
infinite conversion of T without reversals, then S is terminating. In Section 5.3
we show that (under some assumptions on T ) we can construct from T a specific
SRS ST which satisfies the above condition. In addition, we prove that if ST is
terminating then there is no infinite conversion of T without reversals. So we get
the desired result.

5.1. Reversals in a conversion

From now on, we will always assume that the empty word does not appear in
the rules of the SRSs we discuss. Since SRSs with the empty word in the rules are
clearly not graded, this does not restrict the generality of our results.

Definition 5.1. Let T be an SRS and let

w1
p−−−→

u→v
w2

be some step in GT or CT . Assume that z is a factor of w1 at position q with
factorization w1 = x1zy1. We say that z is not affected in this step if the following
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conditions hold:

• w2 can be factored as w2 = x2zy2 for some x2, y2 ∈ A∗.
• One of the following two conditions hold

– y1 = y2 and x1
p−−−→

u→v
x2.

– x1 = x2 and y1
p−|x1z|−−−−−→

u→v
y2.

The position of z in w2 (that is, |x2|) will be called the corresponding position in
w2. Similarly, if P is a reduction (conversion) of T

w1
p1−−−−→

u1→v1
w2

p2−−−−→
u2→v2

w3 → . . .→ wn

we say that the factor z at position q1 in w1 is not affected in this reduction
(conversion) if z is not affected in the step w1

p1−−−−→
u1→v1

w2 with corresponding

position q2 in w2 and z at position q2 in w2 is not affected in the step w2
p2−−−−→

u2→v2
w3

and so on. Eventually z has a corresponding position qn in wn.

Definition 5.2. Let T = 〈A | R〉 be an SRS. Let P be a finite conversion of T

w0 → w1 → . . .→ wn (2 ≤ n).

We will say that P is a reversal if the following conditions hold.

• The first step is w0
p−−−→

u→v
w1.

• The factor v at position p of w1 is not affected in the conversion

w1 → w2 → . . .→ wn−1

where p′ is the corresponding position of v in wn−1.

• The last step is wn−1
p′
−−−→
v→u

wn.

In other words, we rewrite u to v, then we do not “affect” the factor v for n − 2
steps and then rewrite it back to u. Similarly, if P is a conversion (finite or infinite)
of T

w0 → w1 → . . .→ wk → . . .

We will say that P has a reversal if there are some i, j ∈ N (i+ 1 < j) such that

wi → wi+1 → . . .→ wj

is a reversal.

We will present some results from [1] about reversals.

Lemma 5.3 ([1], Chap. II Lem. 1). Let T = 〈A | R〉 be an SRS. Let P be a
conversion of T , between the words x, y ∈ A∗. If P has reversals, then there is a
shorter conversion between x and y that has no reversals.
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Recall that a multigraph is a graph G = (V,E), where E is a multiset. In other
words, multiple edges are permitted.

Definition 5.4. The left pair of the rule ui → vi is the unordered pair of letters
{a, b}, where a is the first letter of the word ui and b is the first letter of the word
vi. If {a, b} are the last letters of ui, vi they are called the right pair of the rule
ui → vi.

Definition 5.5. Let T be a finite SRS 〈A | R〉. The left (right) graph of T is the
multigraph whose vertices are the letters A and whose edges are the left (right)
pairs of the rules in R. If there are n rules with the same left (right) pair the
respective edge occurs n times in the left (right) graph. We will say that T has no
left (right) cycles if its left (right) graph has no cycles.

Example 5.6. The left and right graphs of the SRS

T = 〈a, b, c | ab→ ba2, ac→ c2b〉

are:

So both graphs have no cycles. The left and right graphs of the SRS

T = 〈a, b | aa→ ba, aa→ bb〉

are:

In this case, both graphs have cycles.

Proposition 5.7 ([1], Chap. II, Lem. 2). Let T = 〈A | R〉 be an SRS with no left
cycles. If there exists a ∈ A and a conversion

w0 = aw′
0 → w1 → . . .→ aw′

k = wk

with no reversals, then for all 0 < r < k, there exists w′
r ∈ A∗ such that

wr = aw′
r
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and
w′

0 → w′
1 → . . .→ w′

k−1 → w′
k

is also a conversion without reversals. A dual result holds for SRSs with no right
cycles.

Definition 5.8. We will call an SRS border-acyclic if it has no left cycles or no
right cycles.

Corollary 5.9. Let T = 〈A | R〉 be a border-acyclic SRS. Let P be a conversion

w0 → w1 → . . .→ wk−1 → wk

with no reversals and assume that w0 = wk. Then, k = 0 and the conversion
consists of only one element. In other words, a conversion without reversals does
not contain repeated vertices.

Proof. Using Proposition 5.7 |w0| times we get a conversion

1→ x1 → . . .→ xk−1 → 1

but |ui|, |vi| > 0 so there can be no steps 1→ x1. So k = 0. �

Now we can prove one direction of our argument.

Corollary 5.10. Let T = 〈A | R〉 be a border-acyclic SRS. If T has an infinite
conversion without reversals then it is not a graded SRS.

Proof. It is clear that T is graded if and only if every connected component of
CT is finite. Assume that there is an infinite conversion without reversals in CT .
By Corollary 5.9 it does not contain repeated vertices, so it contains an infinite
number of different vertices. Hence, T cannot be graded. �

The converse of Corollary 5.10 is also true, even without the requirement of border-
acyclicity. In order to prove it we need another notion.

Definition 5.11. Let G be an undirected graph. The distance between two ver-
tices x and y is the length (that is, the number of steps) of a shortest path from
x to y.

Definition 5.12. Let G be an undirected graph and let P be a path (finite or
infinite) in G.

P = x0 → x1 → . . .→ xk → . . .

The path P is called geodesic if for all k, the distance between x0 and xk is k.

Note that if P is geodesic then the distance between xi and xj for i < j is j − i.
Let G be an undirected graph and let x0 be a vertex. Denote by Adj(x0) the

set of adjacent vertices of x0, and more generally, Adj(X) =
⋃

x∈X

Adj(x) where X

is any set of vertices. Also denote by Bk(x0) the set of vertices whose distance
from x0 is less than or equal to k. It is clear that B0(x0) = {x0} and Bk+1(x0) =
Bk(x0) ∪Adj(Bk(x0)).
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Lemma 5.13. Let T = 〈A | ui → vi〉 be a non-graded SRS such that |ui|, |vi| > 0.
Let H be an infinite connected component of CT . Then, for every k ∈ N and every
vertex x0 ∈ H, CT contains a geodesic conversion of length k ∈ N that starts
with x0.

Proof. Note that every vertex has a finite degree since the number of rules in T is
finite. The equality Bk+1(x0) = Bk(x0)∪Adj(Bk(x0)) implies that Bk(x0) is finite
for any k ∈ N. We claim that for every k ∈ N there is a vertex xk whose distance
from x0 is k. For assume there are no such vertices, then Bk(x0) = Bk−1(x0).
Hence Bm(x0) = Bk−1(x0) for every m > k − 1. So

H =
⋃

m∈N

Bm(x0) = Bk−1(x0)

which contradicts the fact that H is infinite. So we have proved that there is an
xk whose distance from x0 is k. A conversion of length k from x0 to xk has to be
geodesic, so we are done. �

Proposition 5.14. Let T = 〈A | ui → vi〉 be an SRS such that |ui|, |vi| > 0. T is
non-graded if and only if it has an infinite geodesic conversion.

Remark 5.15. Note that the “only if” part of Proposition 5.14 is slightly stronger
than the well-known König’s lemma, which says that there is an infinite simple
conversion.

Proof. If T has an infinite geodesic conversion x0 → x1 → . . . then the set {xi |
i ≥ 0} is infinite whence T is not graded. For the other direction, we will build
the required conversion step by step. The first step is to define P0 = x0, where x0

belongs to an infinite connected component of CT . P0 is a conversion of length 0.
Note that by Lemma 5.13, the length of geodesic conversions that starts with x0

is not bounded above. In the ith step, Pi will be a geodesic conversion of length i,
starting from x0 with the property that the length of geodesic conversions starting
with Pi is not bounded. Denote this conversions by

Pi = x0 → . . .→ xi.

In the (i + 1)st step, we observe that there is a finite number of vertices y such
that

Py = x0 → . . .→ xi → y

is a geodesic conversion (for one thing, they all have to be in Adj(xi) which is a
finite set). For at least one of them, say y0, the length of geodesic conversions start-
ing with Py is not bounded above (otherwise, the length of geodesic conversions
starting with Pi will be bounded above). Then define xi+1 = y0 and Pi+1 = Py0 .
Continuing this process we can build an infinite geodesic conversion that starts
with x0. �

To conclude this section, we have the following theorem.
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Theorem 5.16. Let T = 〈A | ui → vi〉 be an SRS such that |ui|, |vi| > 0. If T is
not graded, it has an infinite conversion without reversals. If T is border-acyclic,
then the converse also holds.

Proof. By Lemma 5.3, geodesic conversions cannot have reversals so the first state-
ment follows from Proposition 5.14. The second statement is Corollary 5.10. �

Remark 5.17. A graded SRS T cannot have an infinite geodesic conversion by
Proposition 5.14. However, if T is not border-acyclic, it may have an infinite con-
version without reversals. For instance, consider the SRS

T = 〈a, b | a2b2a→ a5b, b2a3 → a3ba2〉.

Define f : {a, b}∗ → N by
f(u) = |u|a + 2|u|b

where |u|a and |u|b are the number of times that a and b appear in u. Since

f(a2b2a) = f(a5b) = 7, f(b2a3) = f(a3ba2) = 7

it is clear that f is constant on equivalence classes, hence the length of words in
any equivalence class is bounded and T is graded. On the other hand, the infinite
conversion

a5ba2 0−−−−−−−→
a5b→a2b2a

a2b2a3 2−−−−−−−−→
b2a3→a3ba2

a5ba2 −→ a2b2a3 −→ a5ba2 → . . .

has no reversals.

5.2. Compatible SRSs

Let T be an SRS. Now we start the construction of another SRS that is not
terminating (i.e., has an infinite reduction) if and only if T has an infinite con-
version without reversals. In this section, we present a type of SRS that satisfies
one direction of the required result. Namely, that if it is not terminating, T has
an infinite conversion without reversals.

Definition 5.18. Let T = 〈A | R〉 be an SRS. Let Λ be a set and let S be
an SRS over the alphabet A × Λ. We will call the elements of Λ labels. S is
called compatible with T if πA(u) ↔R πA(v) for every rule u → v in S. Here
πA : (A × Λ)∗ → A∗ denotes the standard projection to the first component
extended to a homomorphism.

In a compatible SRS S, it is clear that any step w1
p−−−→

u→v
w2 in the reduction

graph of S, GS , corresponds to a step

πA(w1)
p−−−−−−−−−→

πA(u)→πA(v)
πA(w2)
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in the conversion graph of T , CT . In order to simplify notation, when the set A is
clear we will usually write u instead of πA(u).

It is clear that if z at position q1 of w1 is not affected in the step w1
p−−−→

u→v
w2

and the corresponding position in w2 is q2 then z at position q1 of w1 is not affected
in the step w1

p−−−→
u→v

w2 and the corresponding position in w2 is also q2.

Moreover, assume that w1
p−−−→

u→v
w2 and z′ at position q1 of w1 is not affected in

the step w1
p−−−→

u→v
w2 and the corresponding position in w2 is q2. Then it is clear

that the factor z of w1 at position q1 and length |z′| satisfies that z = z′, it is not
affected in the step w1

p−−−→
u→v

w2 and the corresponding position in w2 is q2.

Proposition 5.19. Let T = 〈A | R〉 be an SRS and let S be a compatible SRS
over A× Λ such that lhs(S) ∩ rhs(S) = ∅. If P is a finite reduction of S

w0 → w1 → . . .→ wn

then the corresponding conversion P of T

w0 → w1 → . . .→ wn

is not a reversal.

Proof. Assume that P is a reversal. This means that for some rule u → v in S
the first step of P is w0

p−−−→
u→v

w1. The factor v at position p is not affected in the
conversion

w1 → w2 → . . .→ wn−1

where p′ is the corresponding position in wn−1 and the last step is wn−1
p′
−−−→
v→u

wn.

Hence, we can also say that in the reduction P the factor v at position p of w1

is not affected in the reduction

w1 → w2 → . . .→ wn−1

and the corresponding position of v in wn−1 is p′. Also the last step is wn−1
p′
−−−→
v→z

wn , where z = u (note that in general z 
= u because they might have different
labels). But this means that both u→ v and v → z are rules in S in contradiction
to the assumption. �

Corollary 5.20. Let T = 〈A | R〉 be an SRS and let S be a compatible SRS over
A×Λ such that lhs(S)∩ rhs(S) = ∅. If S is not terminating then T has an infinite
conversion without reversals.
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5.3. The SRS ST

For a given SRS T , we will construct another SRS ST and we will prove that
(under some assumptions on T ), T is graded if and only if ST is terminating.

We will use the following set of labels Λ = {s,m, e} that stand for start, middle
and end. We denote by πA and πΛ the projections to the first and second com-
ponents extended to homomorphisms. In order to simplify notation, when dealing
with words over A × Λ we will write the labels in subscript. For instance, if we
want to write the word w ∈ (A × Λ)∗ such that πA(w) = abb and πΛ(w) = mes,
we will write ambebs or (abb)mes instead of (a,m)(b, e)(b, s). Hence, when writing
uα as a word over A × Λ we always mean that u ∈ A∗, α ∈ Λ∗ and |u| = |α|. If
u ∈ A∗ and |u| > 1 we will write uSME for the word usm...me, that is, the first
label is s, the last is e and the |u| − 2 middle labels (no labels if |u| = 2) are m.

Definition 5.21. Let T = 〈A | ui → vi〉 be an SRS with a finite set of rules
(1 ≤ i ≤ m), and assume that |ui|, |vi| > 1 for all i. An SRS over the alphabet
A × Λ, denoted ST , will be defined in the following way: For every rule u → v of
T , the SRS ST has the following rules:

uα → vSME

vβ → uSME

where α, β can be any words over Λ as long as uα 
= uSME and vβ 
= vSME.
The total number of rules in ST is

∑m
i=1(3

|ui| + 3|vi| − 2).

Example 5.22. If T = 〈a, b | ab→ bbaa〉 an example for a reduction of ST will be:

amambm
1−−−−−−−−−−−−→

ambm→bsbmamae

ambsbmamae →
→ bsbmamaebmamae → bsbmambsbmamaeamae → . . .

Note that ST is compatible with T and that lhs(ST ) ∩ rhs(ST ) = ∅ so Corol-
lary 5.20 holds for ST . The goal of this section is to prove the other direction,
namely, that if T has an infinite conversion without reversals, then ST is not
terminating (although we will need another condition on T for this to be true).

The first step is to prove the following property of ST : given a reduction of ST

x0 → x1 → . . .→ xk
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such that πΛ(x0) = m . . .m, and assume that wSME is a factor of xk (w ∈ A∗).
Then, all the letters of wSME “appear” in the reduction at the same step. More
precisely:

Lemma 5.23. Given a reduction P of ST

x0 → x1 → . . .→ xk

such that πΛ(x0) = m . . .m, and assume that wSME is a factor of xk at position
p (w ∈ A∗). Then, there is a j ≤ k such that the jth step in the reduction is

xj−1
q−−−−−−−→

uα→wSME

xj

(where uα → wSME is one of the rules of ST ), the factor wSME of xj at position
q is not affected in the reduction xj → . . .→ xk and the corresponding position in
xk is p.

Before we can give a precise proof, we will introduce another tool. If P is a re-
duction of ST , then we will define a sequence of words over A × Λ × N, denoted
P̃ . The part over A × Λ will be precisely P and we will number the letters in
the path according to the step in which they “appear” in P . For instance, let
T = 〈a, b | ab→ bbaa〉 and let P be the reduction of ST :

amambm → ambsbmamae → bsbmamaebmamae → bsbmambsbmamaeamae → . . .

then P̃ is:

am,0am,0bm,0 → am,0bs,1bm,1am,1ae,1 → bs,2bm,2am,2ae,2bm,1am,1ae,1 →
→ bs,2bm,2am,2bs,3bm,3am,3ae,3am,1ae,1 → . . .

We will call these numbers origin labels because they show in which step the letter
originated.

Now we can prove Lemma 5.23.

Proof of Lemma 5.23. Let P̃ be the reduction over A×Λ×N corresponding to P
(as above):

x̃0 → x̃1 → . . .→ x̃k.

Write wSME,μ for the factor of x̃k corresponding to wSME (where μ ∈
{0, 1, . . . , k}∗). We will prove the result by showing that there is an 0 < j ≤ k
such that μ = j . . . j. In other words, every origin label of μ is the same (positive)
number.

First note the following property which follows from the structure of ST : if

(a1, λ1, μ1)(a2, λ2, μ2)

(where ai ∈ A, λi ∈ Λ, and μi ∈ {0, 1, . . . , k}) are two adjacent letters in x̃k such
that μ1 < μ2 then λ2 = s. For if λ2 
= s then (a2, λ2, μ2) is not the leftmost letter
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that has been written in the μ2th step, hence, a letter of a “later” stage (hence
with grater or equal origin label) should be to the left of (a2, λ2, μ2). Similarly, if
μ1 > μ2 then λ1 = e. Now we can complete the proof: assuming that wSME,μ is
of length l, let us write explicitly its letters:

wSME,μ = (w1, λ1, μ1)(w2, λ2, μ2) . . . (wl, λl, μl)

where λ1 = s, λl = e and λ2 = . . . = λl−1 = m. Now, define j = max{μ1, . . . , μl}
and let μr1 , . . . , μr2 be a maximal sequence of j-s in μ, that is,

μr1 = μr1+1 = . . . = μr2 = j

and if r1 > 1 (r2 < l) then μr1−1 < j (μr2+1 < j). Now, assume that r1 > 1 so
μr1−1 < μr1 and hence λr1 = s by the above observation, which contradicts the
fact that λr1 = m. So r1 = 1 and similarly we prove that r2 = l. So we have proved
that μ = j . . . j and it remains to show that j > 0. Indeed, if j = 0 then wSME,μ is
a factor of x̃0 and then πΛ(wSME,μ) = m . . .m 
= sm . . .me, a contradiction. �

Now we can prove our desired result:

Proposition 5.24. Let T be an SRS 〈A | ui → vi〉 such that |ui|, |vi| > 1 for all
i and any word ui, vi from the rules of T , appear in the rules only once. If T has
an infinite conversion without reversals, then ST is non-terminating.

Proof. Assume that P is an infinite conversion without reversals:

x0 → x1 → . . .→ xk → . . .

We will build an infinite reduction of ST in the following way:
First define y0 = (x0)m...m it is clear that y0 = x0. Now, assume that we have

already defined

y0 → y1 → . . .→ yk−1

such that yi = xi for every i, and assume that the kth step of P is

xk−1
p−−−→

u→v
xk

where u→ v or v → u is a rule of T . Denote the factor of yk−1 at position p with
length |u| by uα (uα = u). If uα 
= uSME the kth step in the reduction of SP

will be

yk−1
p−−−−−−−→

uα→vSME

yk.
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This leaves to prove that uα 
= uSME. Indeed, if uα = uSME, then according to
Lemma 5.23, there is some j such that the jth step is:

yj−1
q−−−−−−−→

zβ→uSME

yj ,

the factor uSME of yj at position q is not affected in the reduction

yj → . . .→ yk−1

and the corresponding position in yk−1 is p. This says, that the jth step in P is:

xj−1
q−−−→

z→u
xj

(z = zβ), the factor u of xj at position q is not affected in

xj → . . .→ xk−1,

and the corresponding position in xk−1 is p. Note also that either u→ v or v → u
is a rule in T , and either u → z or z → u is a rule in T . The condition that no
word appears in the rules twice says that this is the same rule. Hence z = v, and
then

xj−1 → . . .→ xk−1 → xk

is a reversal in P , a contradiction. �

To conclude, we will state our main result:

Theorem 5.25. Let T be an SRS 〈A | ui → vi〉 such that |ui|, |vi| > 1 for all i
and any word ui, vi from the rules of T , appear in the rules only once. If ST is
terminating then T is graded. If T is border-acyclic, then the converse also holds.

Proof. Combine Theorem 5.16, Corollary 5.20 and Proposition 5.24. �

Example 5.26. Consider the SRS T = 〈a, b, c | cc→ cbacb〉. OVL(cc) = {c} and
OVL(cbacb) = {cb} so it does not have a confluent orientation and we cannot
use Proposition 3.4 to determine if it is graded. Note that T does not have right
cycles so by Theorem 5.25 it is graded if and only if ST is terminating. The SRS
ST has 32 + 35 − 2 = 250 rules over the letters {as, am, ae, bs, bm, be, cs, cm, ce}.
We have used the application called TORPA [11] to prove that ST is terminating,
hence, T is graded. Regarding the termination status of ST , there is another point
worth mentioning. It is a common situation that simple argument can reduce the
number of rules we need to check. In our case, note that if w ∈ rhs(ST ) then w
does not contain the letters as,ae and bs because the words of the rules start with
c and end with b, c. Hence, if w1 → w2 is a rule in ST such that w1 contains as,ae
or bs it cannot be used an infinite number of times. So we can omit those rules and
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see that ST is terminating if and only if the SRS with the following 43 rules is
terminating:

csbmamcsbm → csce csbmamcsbe → csce csbmamcmbm → csce

csbmamcebm → csce csbmamcebe → csce csbeamcsbm → csce

csbeamcsbe → csce csbeamcmbm → csce csbeamcmbe → csce

csbeamcebm → csce csbeamcebe → csce cmbmamcsbm → csce

cmbmamcsbe → csce cmbmamcmbm → csce cmbmamcmbe → csce

cmbmamcebm → csce cmbmamcebe → csce cmbeamcsbm → csce

cmbeamcsbe → csce cmbeamcmbm → csce cmbeamcmbe → csce

cmbeamcebm → csce cmbeamcebe → csce cebmamcsbm → csce

cebmamcsbe → csce cebmamcmbm → csce cebmamcmbe → csce

cebmamcebm → csce cebmamcebe → csce cebeamcsbm → csce

cebeamcsbe → csce cebeamcmbm → csce cebeamcmbe → csce

cebeamcebm → csce cebeamcebe → csce.

cscs → csbmamcmbe cscm → csbmamcmbe cmcs → csbmamcmbe

cmcm → csbmamcmbe cmce → csbmamcmbe cecs → csbmamcmbe

cecm → csbmamcmbe cece → csbmamcmbe

As mentioned above, this SRS is terminating.
As another example, we can consider the SRS T = 〈a, b | aba→ abbaab〉. Again,

we can construct the SRS ST and using the same argument as before we can omit
rules that contain bs. We obtain an SRS with 232 rules, the termination question
of which TORPA currently cannot answer.

6. One-rule SRSs

For Theorem 5.25 to be true, we had some conditions on the SRS. We will show
in this section that for a one-rule SRS T = 〈A | u → v〉, these conditions do not
restrict the generality of our results. Since the gradedness problem for 〈A | u→ v〉
and 〈A | v → u〉 is the same, we may assume without loss of generality that
|u| ≤ |v|. Moreover, if |u| = |v| then T is trivially graded so we may assume
|u| < |v|. T is not graded if u is a factor of v, in particular, it is not graded if
u = 1. If |u| = 1 then T is confluent so Proposition 3.4 implies that T is graded if
and only if T is terminating, i.e., if u is not a factor of v. Hence, considering the
conditions of Theorem 5.25, we see that if |u| ≤ 1 or if two words in the rules are
equal, the gradedness problem is trivial. Now, regarding the last condition that
was left, T may have both left and right cycles, but we will show in this section
that we can use Adyan reductions [2] in order to reduce it to a one-rule SRS T̂ such
that T̂ is border-acyclic and T̂ is graded if and only if T is. We will mention that
Shikishima−Tsuji et al. [9] have already used this approach for the termination
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problem, and some of the arguments below are similar to theirs. We will describe
briefly the Adyan reductions and show that in each reduction, the reduced SRS is
graded if and only if the original SRS is graded.

6.1. First reduction

Let T = 〈A | u→ v〉 be a one-rule SRS. We will say that T is unbordered if

OVL∗(u) ∩OVL∗(v) = ∅

otherwise, it is called bordered.
The first Adyan reduction constructs from a bordered SRS an unbordered SRS.
Let T = 〈A | u → v〉 be a bordered SRS. Define K to be the shortest element

of OVL∗(u) ∩ OVL∗(v). It is easy to check that K exists and that OVL(K) = ∅.
A word w ∈ A∗ is called bordered with K if w = K or it can be written as

w = Kw′K

for some w′ ∈ A∗, we will denote by BordK the set of all words bordered with K.
Note that both u and v are bordered with K.

Every word w ∈ A∗ that has K as a factor, can be written in the form

w = wLwwR

where w ∈ BordK and K is not a factor of wL, wR. It is also clear that this
decomposition is unique.

The following is a restatement of a fact that was observed in ([2], Thm. 3)

Lemma 6.1. Let w ∈ A∗ be a word that has K as a factor. Then, the connected
components of w and w̄ (in CT ) have the same number of vertices.

Proof. Since u, v ∈ BordK and OVL(K) = ∅, it is easy to check that if two words
x, y ∈ A∗ are adjacent in CT then xL = yL, xR = yR and x is adjacent to ȳ. Hence,
z �→ z̄ is the required bijection and its inverse is z �→ wLzwR. �

Corollary 6.2. T is not graded if and only if there is some w ∈ BordK such that
the connected component of w in CT is infinite.

Proof. Trivial from the previous lemma when we note that if K is not a factor of
x, then its connected component has one element only (x itself). �

Let B be an infinite set of new letters:

B = {b1, b2, . . . , bi, . . . } (B ∩A = ∅).

We will enumerate all words w ∈ A∗ without K as a factor:

R1, R2, . . . , Ri, . . .
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Adyan and Oganesyan define a bijection ϕK : BordK → B∗, (which is not a monoid
homomorphism) inductively by ϕK(K) = 1 and if x = x1RiK where x1 ∈ BordK

then ϕK(x) = ϕK(x1)bi. It can be seen that |ϕK(w)| < |w| for all w ∈ BordK .
Now, we define an SRS T1 = 〈B | ϕK(u)→ ϕK(v)〉.

Lemma 6.3 [2]. If w1, w2 ∈ BordK then w1 and w2 are in the same connected
component of CT if and only if ϕK(w1) and ϕK(w2) are in the same connected
component of CT1 .

Corollary 6.4. T is graded if and only if T1 is graded.

Proof. Clear from Corollary 6.2 and the fact that ϕK is a bijection. �

The SRS T1 has a significant flaw, that is, it is not finite. But this can be solved
easily. Let C ⊆ B be the finite set of letters from B that occur in ϕK(u), ϕK(v)
(which are finite words) and define T2 = 〈C | ϕK(u)→ ϕK(v)〉.
Lemma 6.5. T1 is graded if and only if T2 is graded.

Proof. If T1 is graded then it is clear that T2 is graded as well. In the other
direction, assume that T2 is graded and denote by ∗←→1 and ∗←→2 the congruences
that ϕK(u)→ ϕK(v) generate in B∗ and C∗ respectively. Let w ∈ B∗ be a word.
w can be written as

w = x0y0x1y1 . . . xkykxk+1

where

x0, xk+1 ∈ (B\C)∗ xj ∈ (B\C)+ yi ∈ C+ (1 ≤ j ≤ k, 0 ≤ i ≤ k).
Since the rule ϕK(u)→ ϕK(v) contains only letters from C, it is clear that w ∗←→1

w′ if and only if
w′ = x0y

′
0x1y

′
1 . . . xky

′
kxk+1

and
yi

∗←→2 y
′
i (0 ≤ i ≤ k).

Since by assumption the connected component of yi is finite for all 0 ≤ i ≤ k, the
connected component of w is finite as well. �

Corollary 6.6. If T = 〈A | u → v〉 is a bordered SRS, we can construct from T
another one-rule SRS T2 = 〈A′ | u′ → v′〉 with |u′v′| < |uv| such that T is graded
if and only if T2 is graded.

Of course, T2 might be bordered (actually, it will be bordered, unless |OVL∗(u)∩
OVL∗(v)| = 1). If T2 is bordered we can repeat this process using Corollary 6.6
until we get an SRS T̃ = 〈Ã | ũ→ ṽ〉 with OVL∗(ũ) ∩OVL∗(ṽ) = ∅.

So we can conclude this section:

Corollary 6.7. Let T = 〈A | u → v〉 be a one-rule SRS. We can construct from
T an unbordered one-rule SRS T̃ = 〈Ã | ũ→ ṽ〉 such that T is graded if and only
if T̃ is graded.
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6.2. Second reduction

Definition 6.8. A one-rule SRS T = 〈A | u → v〉 is called left (right) noncan-
cellative if the first (last) letters of u and v are different.

The second Adyan reduction constructs from an unbordered SRS a new SRS which
is left or right noncancellative.

Definition 6.9. Let T = 〈A | u → v〉 be a one-rule SRS and let K ∈ A∗ be a
word such that OVL(K) = ∅. We will say that T satisfies condition α(K) if

OVL(u,K) = OVL(K,u) = OVL(v,K) = OVL(K, v) = ∅

and u, v are not proper factors of K.

Lemma 6.10. Let T = 〈A | u → v〉 be an SRS that satisfies α(K) and assume
that K is not a factor of u or v. Then T is graded if and only if the connected
component (in CT ) of any word w that does not contain K as a factor is finite.

Proof. If T is graded then clearly any connected component is finite. In the other
direction, choose some x ∈ A∗. It is clear that x can be written as

x = x1Kx2K . . .Kxk

where K is not a factor of any xi. If x ∗←→ x′ it is clear from the assumptions that
there are x′i such that:

x′ = x′1Kx
′
2K . . .Kx′k

xi
∗←→ x′i and K is not a factor of x′i.

Since the connected component of every xi is finite, the connected component
of x is finite as well. �

Consider again an SRS T = 〈A | u→ v〉 that satisfies α(K), define a new alphabet

D = A ∪ {b} where b /∈ A.

Adyan and Oganesyan define [2] a bijection ψK : A∗ → D∗\D∗KD∗ in the
following way:

If x ∈ A∗\A∗KA∗ then ψK(x) = x. Otherwise we can write x as

x = x1Kx2K . . .Kxk

where xi ∈ A∗\A∗KA∗. In this case, ψK(x) = x1bx2b . . . bxk.
Let T = 〈A | u→ v〉 be a one-rule SRS that satisfies α(K) for some K ∈ A∗.

We will define a new SRS

T3 = 〈D | ψK(u)→ ψK(v)〉.

Note that T3 also satisfies α(K).
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Lemma 6.11 ([2], Lem. 1). Let ∗←→1 and ∗←→2 be the congruences on A∗ and D∗

defined by u→ v and ψK(u)→ ψK(v) respectively. Then,

x
∗←→1 y ⇔ ψK(x) ∗←→2 ψK(y) ∀x, y ∈ A∗.

Corollary 6.12. T is graded if and only if T3 is graded.

Proof. Assume that T is not graded, that is, there is x ∈ A∗ with infinite connected
component in CT . Since ψK : A∗ → D∗\D∗KD∗ is a bijection, Proposition 6.11
implies that the connected component of ψK(x) in GT3 is infinite as well. Hence
T3 is not graded. In the other direction, assume that T3 is not graded. Since T3

satisfies α(K) and ψK(u), ψK(v) does not contain K as a factor, Lemma 6.10
implies that there is a w ∈ D∗\D∗KD∗ with an infinite connected component.
Again, since ψK is a bijection, this implies that there is a x ∈ A∗ with an infinite
connected component. Hence, T is not graded. �

Theorem 6.13 ([2], Thm. 4).
Let T = 〈A | u→ v〉 be an unbordered one-rule SRS. Then, we can construct a

word K ∈ A∗ such that OVL(K) = ∅, T satisfies α(K) and the words ψK(u), ψK(v)
have different first letter or different last letter.

Remark 6.14. For the sake of completeness, we will describe how K is chosen.
Let R and S denote the shortest elements of OVL∗(u), OVL∗(v) respectively (recall
that OVL∗(x) cannot be empty since x ∈ OVL∗(x), moreover R 
= S since T is
unbordered). If OVL∗(R,S) 
= ∅ or OVL∗(S,R) 
= ∅ then choose K to be the
shortest element of OVL∗(R,S) or OVL∗(S,R). If OVL∗(R,S) = OVL∗(S,R) = ∅
and without loss of generality |S| ≤ |R| then choose K = S.

As a corollary we have our main theorem for this section.

Theorem 6.15. Let T = 〈A | u→ v〉 be a one-rule SRS. Then, we can construct
from T another one-rule SRS, T̂ = 〈Â | û→ v̂〉, such that T is graded if and only
if T̂ is graded and T̂ is border-acyclic.

Proof. By Corollary 6.7 we can construct an unbordered SRS T̃ such that T is
graded if and only if T̃ is graded. By Theorem 6.13 we can construct from T̃
another SRS T̂ = 〈Â | û → v̂〉. Again T̂ is graded if and only if T̃ is graded, and
the fact that u, v have different first letter or different last letter implies that T̂ is
border-acyclic. �

Example 6.16. Consider the SRS T = 〈a, b | abab → abbaabb〉. It has both left
and right cycles. Choose K = ab and note that OVL(K) = ∅ and T satisfies α(K).
So we can construct T̂ which in this case it is: T̂ = 〈a, b, c | cc→ cbacb〉. T̂ has no
right cycles and by Example 5.26 it is graded so T is graded as well.
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7. Conclusion

We showed that under certain conditions on an SRS, its gradedness problem
can be converted into a termination problem of a related SRS. We also showed,
using Adyan reductions, that the gradedness problem of any one-rule SRS can
be reduced into a termination problem. A natural question is whether we can
reduce the gradedness problem of any SRS to a termination problem, without
restrictive conditions. Another question is whether one can do the converse, that
is, reduce the termination problem into the gradedness problem. We proved that
gradedness is an undecidable property for finite SRSs. It is natural to ask whether
gradedness is decidable for one-rule SRSs. Note that gradedness and termination
are equivalent for confluent length-increasing one-rule SRSs, and the decidability
status of the termination problem of such SRSs is still open.
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