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Abstract. Modular exponentiation is an important operation in
public-key cryptography. The Common-Multiplicand-Multiplication
(CMM) modular exponentiation is an efficient exponentiation algo-
rithm. This paper presents a novel method for speeding up the CMM
modular exponentiation algorithm based on a Modified Montgomery
Modular Multiplication (M4) algorithm. The M4 algorithm uses a new
multi bit scan-multi bit shift technique by employing a modified encod-
ing algorithm. In the M4 algorithm, three operations (the zero chain
multiplication, the required additions and the nonzero digit multiplica-
tion) are relaxed to a multi bit shift and one binary addition in only
one clock cycle. Our computational complexity analysis shows that the
average number of required multiplication steps (clock cycles) is consid-
erably reduced in comparison with other CMM modular exponentiation
algorithms.
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1. Introduction

The modular exponentiation plays a major role in many Public-Key Cryptosys-
tems (PKCs) [9, 15, 20, 23, 24, 32]. Since the modular exponentiation consists of a
series of modular multiplications; the performance of this operation is determined
by the efficiency of the modular multiplication and the number of required modular
multiplications [13, 17, 22].

There are many methods developed to speed up the performance of the modular
multiplication such as Montgomery modular multiplication [12], systolic modular
multiplication [7,28,33], high-radix modular multiplication [2,22,25,27,29], parallel
calculation of the quotient and the partial result [10], scalable modular multipli-
cation [25–27], bipartite technique [34] and Booth recoding technique [3,6,16,26].

To reduce the number of required modular multiplications in the mod-
ular exponentiation, there are other methods such as using sliding window
method [13,14], signed-digit recoding technique [1, 5, 30, 31] and Common-
Multiplicand-Multiplication (CMM) method [8, 11, 30–32].

Among them, Ha and Moon [8] proposed that the common part of the mod-
ular multiplications in the modular exponentiation can be computed once rather
than twice and named it CMM method. Wu et al. [30] utilized the signed-digit
recoded exponent in the CMM method to reduce the probability of nonzero dig-
its. Moreover, Wu [31] divided the Minimal Signed-Digit (MSD) exponent into
three equal lengths in the CMM method. He named it CMM-MSD modular ex-
ponentiation algorithm. This algorithm effectively enhances the efficiency of the
modular exponentiation algorithm. It should be noted that, these algorithms uti-
lized the Montgomery modular multiplication algorithm to perform the modular
multiplication.

In this paper, a novel technique is applied to the CMM-MSD modular exponen-
tiation algorithm [31]. This novel technique is based on a Modified Montgomery
Modular Multiplication (M4) algorithm. The proposed CMM-MSD modular ex-
ponentiation algorithm has the following distinctive characteristics: (1) utilized
a modified encoding algorithm for multiplier. The encoded multiplier has the
sparse property and minimal Hamming weight. (2) Process each zero chain and
its nonzero digit of the encoded multiplier in only one multiplication step (clock
cycle). This property, which implies the multi bit scan-multi bit shift technique,
reduces the number of required multiplication steps considerably. (3) Process the
partial multiplication in each multiplication step in the binary method instead of
the high-radix method. (4) Complexity analysis shows that the proposed CMM-
MSD modular exponentiation algorithm has advantages in comparison with other
CMM modular exponentiation algorithms.

The rest of this paper is organized as follows: Section 2 describes the Canonical
Recoding (CR) technique, the Montgomery modular multiplication algorithm, and
the CMM method for the Montgomery modular exponentiation algorithm. The
proposed CMM-MSD modular exponentiation is presented in Section 3. Section 4
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presents the computational complexity analysis of the proposed modular exponen-
tiation algorithm. Finally, conclusion is given in Section 5.

2. Preliminaries

2.1. The canonical recoding technique

A signed-digit representation [3] of an integer X = (xm, xm−1, . . . , x1, x0)SD is a
sequence of digits such that X =

∑m
i=0 xi2i, where xi ∈ {−1, 0, 1}. Reitwinsner [21]

presented a canonical recoding technique to convert an integer from the bi-
nary representation to the signed-digit representation. This recoding technique,
which is also called Non-Adjacent Form (NAF), guarantees the minimal Hamming
weight [1, 18, 19]. Algorithm 1 is used for converting an m-bit integer X from the
binary representation to its canonical representation.

Algorithm 1. The canonical recoding (CR) algorithm.
Input: X = (xm−1xm−2 . . . x1x0)2
Output: D = (dmdm−1 . . . d1d0)SD

1. c0 = 0;
2. For i = 0 To m − 1
3. ci+1 = �(ki + ki+1 + ci)/2�;
4. di = ki + ci − 2ci+1;
5. End For
6. Return D;

This algorithm scans input integer X from the Least Significant Bit (LSB) to the
Most Significant Bit (MSB). The average Hamming weight of an m-bit canonical
recoded integer is about m

3 [5, 19].

2.2. The Montgomery modular multiplication algorithm

Montgomery modular multiplication algorithm [12] is an efficient algorithm for
the modular multiplication. This algorithm speeds up the modular multiplication
and modular exponentiation algorithm by replacing the trial division by the mod-
ulus with a simple right shift [17,22]. Algorithm 2 shows the radix-2 Montgomery
modular multiplication algorithm.

The inputs of this algorithm are n-bit integers X , Y and M . The output is
S(n) = X.Y.R mod M where S(i) denotes S in the ith iteration, xi denotes the
ith bit of X , and R = 2−n. In this algorithm, the output S(n) is computed in n
clock cycles. So, it is a time-consuming operation [17, 22].
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Algorithm 2. The radix-2 Montgomery modular multiplication algo-
rithm.
Input: X, Y, M ;
Output: S(n) = X.Y.R mod M ;
1. S(0) = 0;
2. For i = 0 To n − 1
3. qi = (S(i) + xi.Y ) mod 2;
4. S(i + 1) = (S(i) + xiY + qi.M)/2;
5. End For
6. If S(n) � M Then S(n) = S(n) − M ;
7. Return S(n);

2.3. The CMM method for the Montgomery modular exponentiation

algorithm

The modular exponentiation algorithm is usually performed using the binary
methods (square-and-multiply) and Montgomery modular multiplication algo-
rithm [9, 17, 20, 22, 29]. There are two basic algorithms in the binary methods for
computing the modular exponentiation algorithm: the Left-to-Right (L2R) modu-
lar exponentiation algorithm and the Right-to-Left (R2L) modular exponentiation
algorithm [17, 22, 29]. The L2R modular exponentiation algorithm processes the
exponent bits from the MSB to the LSB, while the R2L exponentiation algo-
rithm scans the exponent bits from the LSB to the MSB. The R2L exponentiation
algorithm using the Montgomery modular multiplication algorithm is shown in
Algorithm 3 [8].

Algorithm 3. The R2L Montgomery modular exponentiation algorithm.
Input: A, E, R, N ;
Output: C = AE mod N ;
1. S = AR mod N , C = R mod N ; /* R = 2−n */
2. For i = 0 To k − 1
3. If (ei = 1) Then {C = Mont(S, C), S = Mont(S, S)};
4. Else S = Mont(S, S);
5. End For
6. C = Mont(C, 1);
7. Return C;

In Algorithm 3, A and N are two n-bit integers in radix-2, and E is k-bit integer
in radix-2. In this algorithm, when the exponent bit is not zero (i.e. ei = 1), both
Mont(S, C) and Mont(S, S) are executed. Ha and Moon [8] proposed that the
common part in Mont(S, C) and Mont(S, S) can be computed once rather than
twice. There are several attempts [8, 30, 31] to speed up the performance of the
modular exponentiation algorithm based on this idea. One of the recent attempts
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is the CMM-MSD Montgomery modular exponentiation algorithm which is shown
in Algorithm 4 based on the original format in [31].

Algorithm 4. The CMM-MSD Montgomery modular exponentiation algorithm.
Input: A,EMSD, R, N ;
Output: C1 = AECommon[1] , C2 = AE1,c[1] , C3 = AE2,c[1] , C4 = AE3,c[2]

D1 = A
ECommon[1] , D2 = A

E1,c[1] , D3 = A
E2,c[1] , D4 = A

E3,c[2] ;
1. C1 = C2 = C3 = C4 = D1 = D2 = D3 = D4 = 2n;
2. S = AR mod N , C = R mod N ; / ∗ R = 2−n */
3. For i = 0 To k − 1
4. If(eci =1) Then C1 =Mont(S, C1); /∗evaluateAECommonfor positive signed-digit ∗/;
5. If(eci =1) Then D1 =Mont(S, D1); /∗evaluateAECommonfor negative signed-digit∗/;
6. If(e1i = 1) Then C2 = Mont(S, C2); /∗evaluateAE1,cfor positive signed-digit∗/;
7. If(e1i = 1) Then D2 = Mont(S, D2); /∗ evaluateAE1,c for negative signed-digit∗/;
8. If(e2i = 1) Then C3 = Mont(S, C3); /∗evaluateAE2,c for positive signed-digit∗/;
9. If(e2i = 1) Then D3 = Mont(S, D3); /∗evaluateAE2,c for negative signed-digit∗/;
10. If(e3i = 1) Then C4 = Mont(S, C4); /∗evaluateAE3,c for positive signed-digit∗/;
11. If(e3i = 2) Then D4 = Mont(S, D4); /∗evaluateAE3,c for negative signed-digit ∗ /;
12. S = Mont(S, S);
13. End for

In Algorithm 4, the exponent EMSD, which is obtained using canonical recoding
algorithm [21], is divided into three equal lengths as E1, E2 and E3. Moreover, the
following variables are used in this algorithm:

Ecommon = E1 AND E2 AND E3 (2.1)

Ei,c = Ei XOR Ecommon (2.2)

where operators AND and XOR are depicted in Table 2.1 in [31] and 1 � i � 3.
In this algorithm, the Ci and Di registers, 1 � i � 4, are utilized to save the

intermediate results of the positive and negative eji, respectively. Moreover, the
multiplicative inverse operation is replaced by multiplication operation based on
Lemma 2 in [31]. The common part of several multiplications is also computed just
once by using the CMM method. Using the post computation, the exponentiation
operation AE is depicted as (2.3).

AE = AEMSD = AE1.2n

.AE2.2
2n
3 .AE3 (2.3)

where

E1 = E1[1] + E1[1],

E1[1] = E1,c[1] + Ecommon[1] and
E1[1] = E1,c[1] + Ecommon[1] (2.4)

Although this algorithm is efficient, but it can be improved as described in the
next sections.



260 A. REZAI AND P. KESHAVARZI

3. The proposed modular algorithms

The proposed CMM-MSD modular exponentiation algorithm is based on the
new serial-parallel modular computation.In the serial-parallel multiplication, the
partial result is shifted only one bit per iteration. Although the multiplication by
zero bit results in zero, but this multiplication is performed and is implemented
per iteration. In this paper, we propose that k time multiplication by zero bits in
sequence in k multiplication steps, followed by the required additions are relaxed
to one k + 1 bits shift in only one multiplication step followed by only a binary
addition operation as we will describe later. So, we require determining the number
of zero bits in sequence to specify the number of shifts in each multiplication step.

This section utilized an encoding algorithm based on a Modified Canonical Re-
coding (MCR) technique, which shows the number of zero bits in sequence in each
digit. In addition, the MCR representation is applied to the Montgomery modu-
lar multiplication algorithm, which results in a modified modular multiplication
algorithm named here as the M4 algorithm. Then, map the results to derive the
CMM-MSD modular exponentiation algorithm.

3.1. The proposed encoding algorithm

The MCR representation of an integer X is defined here as
Z = (zr−1zr−2, zr−3zr−4, . . . , zjzj−1, . . . , z3z2, z1z0). This representation in-
cludes a sequence of pairs, which are separated by comma. Each pair, zjzj−1,
shows the nonzero digit and the number of zero bits in sequence consecutively.
Figure 1 shows the block diagram for converting an integer from the binary
representation to the MCR representation.

As it is shown in Figure 1, the MCR encoding algorithm first uses the canonical
recoding technique, and then replaces k zero bits in sequence by the integer k. Each
pair in the MCR representation contains two digits: k which shows the number of
zero bits in sequence and another digit which is 1 or −1.

So, each pair of the MCR representation includes two numbers: the number of
zero bits in sequence in canonical representation, which is shown here by underline
numbers 0, 1, 2, 3, . . ., and a nonzero digit in the canonical recoding representation,
1 and −1.

For example, for X = (474)10 = (111011110)2 the CR representation is
D = (10001̄0001̄0)CR and the MCR representation is Z = (131311)MCR, where
1 = −1.

In this example, the MCR representation requires only 6 digits; however, the
CR representation and the binary representation require 10 digits and 9 bits,
respectively.

We propose Algorithm 5 for converting an n-bit integer X from the binary
representation to the MCR representation.
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Figure 1. The block diagram of the MCR encoding algorithm.

Algorithm 5. The proposed encoding algorithm MCR(X).
Input: X = (xn−1xn−2 . . . x1x0)2 /∗Xis a positive integer where xi ∈ {0, 1} ∗ /;
Output: Z =(zj−1zj−2 . . . z1z0)MCR /∗ Z is MCR reprezentation where zi ∈{−1, 1, k} ∗ /;

1. c0 = 0, k = 1, j = x0, d−1 = 1, Z = 0;
2. For i = 0 To n
{Canonical recoding phase}
3. ci+1 = �(xi + xi+1 + ci)/2� ;
4. di = xi + ci − 2ci+1;
{Zero counts and partitioning phase}
5. If(di = 0) Then
6. If(di−1 = 1) Then k = k + 1; /∗ Zero chain continue /∗
7. Else k = 1;
8. End if
9. Else
10. If(di−1 = 0) Then
11. zj = k; j = j+1; /∗ End of zero chains, assign zero count k to zj−1 and increment j

∗
12. End if
13. zj = di; /∗ Assign the nonzero digit to count k to zj ∗/
14. j = j + 1;
15. End if
16. End For
17. Return Z;
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The output of Algorithm 5 is Z, which is the MCR representation of X . In
the first stage of this encoding algorithm, Steps 3 and 4, the canonical recoding
algorithm is applied to the input X . It results in a sparse form of digits with the
minimal Hamming weight in the redundant signed-digit representation using only
three digits {1, 0, 1}. The nonzero digits divide the canonical representation into
different size parts. Each part includes one nonzero digit and a chain of zero bits,
except in the least significant part in which there may be no zero bit.

In the second stage of Algorithm 5, Steps 5 to 15, zero bits between nonzero
digits in the canonical recoding representation are counted and put in k to pro-
duce zj−1 in the MCR representation of X . In Steps 5 and 6, zero chain contin-
uation is checked. The end of zero chain is determined in Steps 9 to 15. Then,
the zero count k is assigned to zj−1 and the nonzero digit in the CR is assigned
to zj.

3.2. The proposed Montgomery modular multiplication algorithm

In this section, we present a modified Montgomery modular multiplication al-
gorithm by applying the MCR encoding algorithm to the multiplier and using the
multi bit scan-multi bit shift technique. The M4 executes the high-radix multipli-
cation, 2k-radix, by k-bit left shift, while only the binary multiplication is required
for the hardware implementation. k is the number of zero bits in sequence and is
a variable number. The M4 Algorithm is shown in Algorithm 6.

Algorithm 6. Modified Montgomery modular multiplication (M4) algorithm.

Input: Z =MCR(X), Y, M; /∗ X, Y and M are n−bit binary integers, Z is an MCR representation of X∗/

Output: S(J) = X.Y.R mod M;

1. S(0) = 0;

2. For j = 1 To J − 1 Step 2

3. k = zj−1;

4. p(j) = Sk...0(j − 1) + 2k.zj.Yk...0;

5. q(j) = p(j)(2k+1.M−1
k...0) mod 2k+1;

6. s(j + 1) = (S(j − 1) + 2k.zj .Y + q(j) .M)/2k+1;

7. EndFor

8. If S(J) � M Then Return S(J) = S(J) − M;

9. Else Return S(J);

The inputs of the M4 algorithm are Z = MCR(X), Y and M . The output
is S(J) = X.Y.R mod M , which is the result of the Montgomery modular mul-
tiplication, p(j) denotes the value of p in jth iteration, Sk...0 = S mod 2k+1,
Yk...0 = Y mod 2k+1 and q(j) denotes the jth digit of q. Since the multiplier Z is
shown in the MCR representation, the M4 algorithm requires on average n

3 clock
cycles instead of n clock cycles in the binary Montgomery modular multiplication.
In each iteration of the M4 algorithm, two digits of Z are scanned: zj−1 and zj
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(two digits of each pair) which are the number of zero bits in sequence and the
nonzero digit either 1 or −1 in the MCR representation, respectively.

In Step 3, k is assigned by content of zj−1 which is the number of zero bits in
sequence. This assignment implies the multi bit scan. k is also used for multi bit
shift later in Step 6. To implement the main idea of the Montgomery modular
multiplication algorithm (the k + 1 least significant bits of the partial result S are
all zero bits) a multiple of the modulus M , i.e. q(j).M , is added to the partial
result. This step is needed to make sure that there are no significant digits lost in
the right shift operation in Step 6.

In Step 6, the partial result S(j + 1) is computed first by adding 2k.zj .Y and
q(j).M to the previous partial result S(j−1), then this result is shifted by k+1 bits
to the right (dividing by 2k+1). Note that, k determines the number of shifts and
is a variable number which is changed based on zj−1 in the MCR representation.
As a result, the hardware implementation of the M4 algorithm needs a multi-bit
shifter. In this case, we utilized a modified, limited number of shifts; Barrel shifter
for implementing the multi-bit shift.

Since zj is only 1 or −1, the multiplication of 2k.zj .Y is implemented by using a
binary multiplication and k-bit shift modified Barrel shifter. As a result, S(j−1) +
2k.zj.Y is relaxed to a binary addition by 2k.Y or −2k.Y . So, the implementation
of 2k.zj .Y and S(j − 1) + 2k.zj .Y in the M4 algorithm are simple.

It should be noted that, in the hardware implementation of the M4 algorithm,
the maximum number of shifts in the Barrel shifter should have a limit. As a result,
in the MCR representation, the number of zero bits in each pair should be limited.
Our statistical analysis on the number of zero bits in sequence for large integers
in the CR representation shows that the average number of zero bits in sequence
greater than 6 is very small. Hence, we can use this limit on zero bits in sequence
in each pair of the MCR representation without significant loss in the efficiency,
but this increases the number of pairs in the MCR representation in case there are
6 zero bits in sequence followed zero instead of nonzero digit.

3.3. The proposed CMM-MSD modular exponentiation algorithm

The modular exponentiation is a series of modular multiplications. So, we pro-
posed applying the M4 algorithm to the modular exponentiation to speed up the
CMM-MSD Montgomery exponentiation algorithm [31] as shown in Algorithm 7.

Similar to Algorithm 4, the exponent EMSD in Algorithm 7 is divided into three
equal lengths as E1, E2 and E3. The following variables are also utilized in this
algorithm:

Ecommon = E1 AND E2 AND E3 (3.1)
Ei,c = Ei XOR Ecommon (3.2)

where 1 � i � 3.
In addition, the Ci and Di registers, 1� i � 4, are used to save the intermediate

results of the positive and negative eji, respectively.
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Algorithm 7. The proposed CMM-MSD Montgomery modular exponentiation
algorithm.
Input: A,EMSD, R, N ;
Output: C1 = AECommon[1] , C2 = AE1,c[1] , C3 = AE2,c[1] , C4 = AE3,c[2]

D1 = A
ECommon[1] , D2 = A

E1,c[1] , D3 = A
E2,c[1] , D4 = A

E3,c[2] ;
1. C1 = C2 = C3 = C4 = D1 = D2 = D3 = D4 = 2n;
{Parallel begin}
2. S = AR mod N , C = R mod N ; /* R = 2−n */
3. T = MCR(S), after performing a0.R;
{Parallel end}
4. For i = 0 To m
{Parallel begin}
5. If (eci = 1) Then C1 =M4(T, C1); /∗evaluate AECommonfor positive signed-digit∗/;
6. If (eci =1) Then D1 =M4(T, D1); /∗evaluate AECommonfor negative signed-digit∗/;
7. If (e1i =1) Then C2 = M4(T, C2); / ∗ evaluate AE1,c for positive signed-digit ∗ /;
8. If (e1i = 1) Then D2 = M4(T, D2); /∗evaluate AE1,cfornegativesigned−digit∗/;
9. If (e2i = 1) Then C3 = M4(T, C3); / ∗ evaluate AE2,c for positive signed-digit ∗ /;
10. If (e2i = 1) Then D3 = M4(T, D3); / ∗ evaluate AE2,c for negative signed-digit ∗ /;
11. If (e3i = 1) Then C4 = M4(T, C4); / ∗ evaluateAE3,c for positive signed-digit ∗ /;
12. If (e3i = 2) Then D4 = M4(T, D4); / ∗ evaluate AE3,c for negative signed-digit ∗ /;
13. S = M4(T, S);
14. T = MCR(S), after performing t0.S;
{Parallel end}
15. End for

In Step 2 of Algorithm 7, S is computed using Algorithm 6. In Step 3, the
MCR representation of S shown by T is computed by applying Algorithm 5 to
S after executing a0.R. This result is utilized in next steps to increase the speed
of the modular multiplication in each iteration of Algorithm 7. In Steps 5−12 of
Algorithm 7, AEcommon , AE1,c , AE2,cAE3,c are computed based on the value of the
eji. These values are computed by executing Algorithm 6. In Steps 13 and 14 of
Algorithm 7, the partial result S and its MCR representation T are computed
by executing Algorithms 6 and 5, respectively. In this algorithm, T is computed
after executing t0.S in Step 13. The exponentiation operation AE can be computed
as (2.3).

4. Computational complexity analysis of the proposed

modular exponentiation

In the proposed CMM-MSD modular exponentiation algorithm, radix-3 signed-
digit representation is utilized for the exponent. So, the probability of the digits
is as follows:

P (0) =
2
3
, P (1) = P (−1) = P (2) = P (−2) =

1
12

·
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Table 1. The average number of required multiplication steps in
different modular exponentiation algorithms.

Reference Required multiplication steps (clock cycles)

[4] 1.5k(2n2 + n)
[8] 0.5k(5n2 + 4n)
[31] 1.833k(n2 − n − 2)

This paper 0.611k(n2 − 5n − 3).

Based on the computational complexity analysis in [8, 31], for n-bit modulus
and k-bit exponent, the average number of the required multiplication steps (clock
cycles) for the following four operations M4 (T, C1), M4 (T, C2), M4 (T, C3) and
M4 (T, C4) is as follows:

6 × 1
12

(1.5k
(n

3
− 2

)
(n + 1) =

3k

4

(n

3
− 2

)
(n + 1).

Similarly, the average number of the required multiplication steps (clock cycles)
for the following four operations M4(T, D1), M4 (T, D2), M4(T, D3) and M4(T, D4)
is as follows:

6 × 1
12

(1.5k
(n

3
− 2

)
(n + 1) =

3k

4

(n

3
− 2

)
(n + 1).

In addition, the average number of the required multiplication steps (clock cy-
cles) for the operation M4 (T, S) is as follows:

2
3

(
0.5k

(n

3
− 2

)
(n + 1)

)
=

k

3

(n

3
− 2

)
(n + 1).

Furthermore, converting the integer from the binary representation to the MCR
representation is executed in parallel with the previous multiplication. As a result,
the average number of the required multiplication steps in the proposed modular
exponentiation algorithm is increased only one multiplication step per iteration.

Therefore, the average number of the required multiplication steps (clock cycles)
for the proposed modular exponentiation algorithm is as follows:

3k

4

(n

3
− 2

)
(n+1)+

3k

4

(n

3
− 2

)
(n+1)+

k

3

(n

3
− 2

)
(n+1) = 0.611k(n2−5n−3).

However, the conventional Montgomery modular exponentiation algorithms
such as [4], the Ha-Moon’s modular exponentiation algorithm [8] and the
Wu’s CMM-MSD modular exponentiation algorithm [31] require 1.5k(2n2 +
n), 0.5k(5n2 + 4n), and 1.833k(n2 − n − 2) multiplication steps (clock cycles) re-
spectively as shown in Table 1.

This new CMM-MSD modular exponentiation algorithm reduces the aver-
age number of the required multiplication steps (clock cycles) in comparison
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Table 2. The multiplication steps improvement.

Reference Improvement (%)

[4] 79.6
[8] 75.6
[31] 66.7

with [4, 8, 31] by about

1 − 0.611k(n2 − 5n− 6)
1.5k(2n2 + n)

≈ 1 − 0.611
3

≈ 79.6%

1 − 0.611k(n2 − 5n− 6)
0.5k(5n2 + 4n)

≈ 1 − 0.611
2.5

≈ 75.6%

1 − 0.611k(n2 − 5n − 6)
1.833k(n2 − n − 2)

≈ 1 − 0.611
1.833

≈ 66.7%.

Table 2 summarizes these multiplication steps (clock cycles) improvements for
the proposed CMM-MSD modular exponentiation algorithm in comparison with
the exponentiation algorithms in [4, 8, 31].

Based on our analysis which is shown in Table 2, the proposed CMM-MSD
modular exponentiation algorithm reduces the multiplication steps considerably
regarding to the original CMM-MSD proposal to 66.7%.

5. Conclusion

This paper presents and evaluates a modified Montgomery modular multipli-
cation algorithm based on a multi bit scan-multi bit shift technique and a new
integer encoding algorithm. The main idea is that k time multiplication by zero
bits in sequence in k multiplication steps, followed by the required additions and
the nonzero multiplication can be relaxed to one k + 1 bits shift and one binary
multiplication in only one clock cycle. Thus, we require specifying the number
of zero bits in sequence in the multiplier to determine the number of shifts in
each multiplication step. We utilized the MCR encoding algorithm to provide the
number of zero bits in sequence in the multiplier. This new encoding algorithm
also makes multi bit scan possible. The proposed M4 algorithm is suitable for
the hardware and software implementations. We also proposed using a modified,
limited number 25 of shifts, Barrel shifter to make multi bit shift possible in each
multiplication step in the hardware implementation. Moreover, this new modular
multiplication is applied to the CMM-MSD modular exponentiation algorithm [31].

Our complexity analysis shows that the average number of the required multi-
plication steps (clock cycles) in the proposed CMM-MSD modular exponentiation
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algorithm is reduced by about 79.6%, 75.6% and 66.7% in comparison with the
Montgomery modular exponentiation algorithms such as [4], the Ha-Moon’s CMM
modular exponentiation algorithm [8] and the Wu’s CMM-MSD modular exponen-
tiation algorithm [31] respectively.
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