
RAIRO-Theor. Inf. Appl. 49 (2015) 139–152 Available online at:

DOI: 10.1051/ita/2015003 www.rairo-ita.org

TOWARDS USING THE HISTORY IN ONLINE
COMPUTATION WITH ADVICE ∗

Sacha Krug
1

Abstract. Recently, advice complexity has been introduced as a new
framework to analyze online algorithms. There, an online algorithm
has access to an infinite binary advice tape during the computation.
The contents of this tape were prepared beforehand by an omniscient
oracle. One is interested in analyzing the number of accessed advice bits
necessary and/or sufficient to achieve a certain solution quality. Among
others, the bit guessing problem was analyzed in this framework. Here,
an algorithm needs to guess a binary string bit by bit, either with or
without getting immediate feedback after each bit. The bit guessing
problem can be used to obtain lower bounds on the advice complexity
of a variety of other online problems. In this paper, we analyze the
difference between the two bit guessing variants. More precisely, we
show that getting feedback after each request helps save advice bits
when we allow errors to be made. This is by no means obvious – for
optimality, both problem versions need the same amount of advice, and
without advice, knowing the history does not help at all.

Mathematics Subject Classification. 68Q01, 68W27.

1. Introduction

Ever since the inception of computer science, online computation has played
an important role. Many real-life problems do not follow the classic input – com-
putation – output pattern; instead, the input arrives piecewise, and an algorithm
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sacha.krug@inf.ethz.ch

Article published by EDP Sciences c© EDP Sciences 2015

http://dx.doi.org/10.1051/ita/2015003
http://www.rairo-ita.org
http://www.edpsciences.org


140 S. KRUG

is required to provide a part of its final output in every time step, without the
possibility to change it later on. Usually, the performance of such an online algo-
rithm is measured by comparing its output with that of an optimal offline algo-
rithm for the same problem. This is the so-called competitive analysis as introduced
by Sleator and Tarjan [19]. For a general overview of the topic, we recommend the
textbook by Borodin and El-Yaniv [8].

Unfortunately, simply comparing online and offline algorithms turns out to be
too much of a black-and-white approach. An online algorithm knows nothing about
future parts of the input, whereas an offline algorithm knows everything. What
about an algorithm that has partial knowledge of the future? To model such an
algorithm, the framework of online computation with advice has been introduced
a few years ago [6, 10, 11]. Here, an online algorithm has access to an infinite bi-
nary advice tape, from which it can read information during the computation. The
advice tape is prepared before the computation by an all-knowing oracle and may
contain any information that is helpful to the algorithm during the computation.
In particular, the contents of the advice tape may encode the entire input instance
at hand. Often, however, the algorithm can achieve a certain output quality with
much less information. Therefore, one is interested in obtaining upper and lower
bounds on the advice complexity of online problems, i.e., on the number of ac-
cessed advice bits necessary and sufficient to produce an optimal or near-optimal
output. This framework has been successfully applied to various online problems,
e.g., k-server [5, 13, 17], knapsack [7], graph coloring [3, 12, 18], or disjoint path
allocation [2].

Böckenhauer et al. [4] established the bit guessing problem as a generic tool to
prove lower bounds on the advice complexity of online problems. The main goal
in this problem is, unsurprisingly, to guess a binary string bit by bit. There are
two variants of it: either an algorithm gets immediate feedback on whether its last
output bit was correct (called bit guessing with known history, short BGKH ), or
it gets no feedback until the very end, when the entire string is revealed at once
(called bit guessing with unknown history, short BGUH ). The authors showed that
the relatively straightforward lower bound for BGUH resulting from the sphere-
covering bound also holds for BGKH, thereby establishing a common lower bound
for both problems. They did not, however, show that getting immediate feedback
actually helps in saving advice or, in other words, that the advice complexity of
BGKH is lower than the one of BGUH.

The goal of this paper is to do just that, i.e., to show that knowing the history
indeed helps. This is by no means obvious. For instance, when there is no advice,
knowing the history does not help at all. And even if there is advice, an optimal
algorithm still needs to read the same amount of advice for both problems. But
if we allow the algorithm to make errors, it can work together with the oracle to
reduce the necessary number of advice bits (compared to BGUH).

This paper only considers algorithms that are allowed to make at most one
error. We are, however, convinced that our approach can be generalized to a larger
number of allowed errors.
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2. Preliminaries and unknown history

The framework of online computation with advice is captured in the following
definition.

Definition 2.1. Consider an input sequence I = (x1, x2, . . . , xn). An online al-
gorithm A with advice computes the output sequence Aφ(I) = (y1, y2, . . . , yn)
such that yi is computed from φ, x1, x2, . . . , xi, where φ is the content of the
advice tape, i.e., an infinite bit string. The algorithm A is c-competitive with ad-
vice complexity s(n) if there is a non-negative constant α such that, for every
n ∈ � and every input sequence I of length at most n, there is some φ such that
cost(Aφ(I)) ≤ c · cost(Opt(I)) + α and at most the first s(n) bits of φ have been
accessed during the computation of A on I.

The two problems we are dealing with are the following ones.

Definition 2.2 (Böckenhauer et al. [4]). The bit guessing problem with unknown
history (BGUH) is the following online minimization problem. The input I =
(n, ?, ?, . . . , ?, d) consists of the input length n in the first request, n − 1 sub-
sequent requests “?” carrying no extra information, and the correct bit string
d = d1d2 . . . dn ∈ {0, 1}n. In each of the first n time steps, an online algorithm A
has to output one bit, forming the output sequence A(I) = y1y2 . . . yn ∈ {0, 1}n.
The algorithm does not have to produce an output in the last time step, when
the string d is revealed. The cost of a solution A(I) is the Hamming distance
Ham(d, A(I)) between d and A(I), i.e., the number of positions at which d and
A(I) differ.

Definition 2.3 (Böckenhauer et al. [4]). The bit guessing problem with known
history (BGKH) is the following online minimization problem. The input I =
(n, d1, d2, . . . , dn) consists of the input length n and the bits d1, d2, . . . , dn ∈ {0, 1}
that are revealed one by one. In each of the first n time steps, an online algorithm
A has to output one bit, forming the output sequence A(I) = y1y2 . . . yn ∈ {0, 1}n.
The algorithm does not have to produce an output in the last time step. The cost
of a solution A(I) is again the Hamming distance between d1d2 . . . dn and A(I).

Moreover, we will sometimes refer to the following two concepts.

Definition 2.4. A Hamming ball of radius r around a bit string s of length n is
the set of all bit strings of length n with Hamming distance at most r from s. More
formally, the Hamming ball of any s ∈ {0, 1}n is {u ∈ {0, 1}n|Ham(u, s) ≤ r}.

Definition 2.5. A covering code of radius r and dimension n is a subset of bit
strings of length n such that the union of the Hamming balls of radius r around
these strings contain all bit strings of length n. More formally, it is any set S such
that

⋃
s∈S{u ∈ {0, 1}n|Ham(u, s) ≤ r} = {0, 1}n.
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Let us first briefly consider BGUH. Clearly, for optimality, n advice bits are
necessary and sufficient. We consider the case where one error, i.e., one wrongly
guessed bit, is allowed. e know that an online algorithm reading 2b advice bits
is equivalent to a set of 2b deterministic online algorithms [15]. With BGUH, a
deterministic online algorithm receives only n as input. Thus, for fixed n, it outputs
one fixed bit string while the computation is in progress, independent of the actual
bit string d1d2 . . . dn. Every such fixed output bit string, which we call center string
from now on, corresponds to an advice string. We want to minimize the number
of center strings such that the algorithm never outputs more than one wrong bit.
From Definition 2.4, we can see that a Hamming ball of radius 1 around some
center string s has size

∑1
i=0

(
n
i

)
. To construct a covering code of radius 1 and

dimension n, we therefore need at least
⌈
2n/(

∑1
i=0

(
n
i

)
)
⌉

center strings in total.
This lower bound is called the sphere-covering bound. It is not known to be tight
in general. Various upper bounds have been established over the years for specific
values of n; MacWilliams and Sloane [16] provide a good overview.

3. Known history

Now we consider BGKH. As already mentioned, Böckenhauer et al. [4] showed
that the sphere-covering bound is also a lower bound on the advice complexity
in this case. The goal of this section is to establish an upper bound that is at
most one bit higher than the sphere-covering bound if the algorithm is allowed to
make at most one error. First, however, we improve the lower bound by one bit
for infinitely many n. For these n, the upper bound is thus tight.

3.1. Lower bound

We establish a lower bound of zn := 2
⌈
2n−1/(n + 1)

⌉
for infinitely many n ≥ 3.

Note that zn is the smallest even number greater than or equal to �2n/(n + 1)�,
the sphere-covering bound for r = 1. This holds because zn is even and we have
�2n/(n + 1)� ≤ zn ≤ �2n/(n + 1)� + 1, which follows from the simple fact that
�2x� ≤ 2 �x� ≤ �2x� + 1.

The goal of this section is to prove that every algorithm for BGKH that outputs
at most one wrong bit needs at least zn advice strings on inputs of length n, for
infinitely many n ≥ 3 with odd �2n/(n + 1)� (if �2n/(n + 1)� is an even number, it
equals zn and the result trivially holds). That is, our goal is to show the following.

Theorem 3.1. Every algorithm for BGKH that guesses at most one bit wrong
needs at least zn advice strings on inputs of length n, for infinitely many n ≥ 3
with odd �2n/(n + 1)�.

We assume �2n/(n + 1)� to be odd for the rest of this section.
Assume that there is an algorithm that outputs at most one wrong bit using

�2n/(n + 1)� advice strings. We know from Lemma 2 in [4] that every advice string
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corresponds to a set of n + 1 strings (actually, the lemma talks about sets of at
most n + 1 strings, but we can always fill smaller sets with dummy strings). We
observe the following simple fact about these sets.

Lemma 3.2. There are only two types of sets: The family X of sets that contain
one string starting with 0 and n strings starting with 1, and the family Y of sets
satisfying the vice versa condition.

Proof. We prove that (i) each set corresponding to an advice string contains at
most one string starting with 0 or at most one string starting with 1 and (ii) each
set corresponding to an advice string contains at least one string starting with 0
and at least one string starting with 1.

For (i), assume for contradiction that some set contains two strings that start
with 0 and two that start with 1. Then, the adversary can enforce an error at the
first position. After this, at least two possible instances I and I ′ are left, but no
algorithm can distinguish them, as both the advice and the history are identical
until I and I ′ differ. Thus, any algorithm makes at least two errors, and we have
a contradiction.

For (ii), assume for contradiction that some set S contains n+1 strings that all
start with the same bit. Consider the situation that there is some non-empty bit
string α such that two strings in S start with α0 and two other strings with α1.
Then, the adversary can enforce an error directly after α. As in the previous proof,
at least two possible instances I and I ′ are left, but no algorithm can distinguish
them, as both the advice and the history are identical until I and I ′ differ. Thus,
any algorithm makes at least two errors, and we have a contradiction.

Hence, we only need to show that, if some set contains n + 1 strings that all
start with the same bit b, then there is such an α. Assume for contradiction that
there is no such α. Then, at most one or at least n strings must have 1 at the
second position, as otherwise two strings start with b0 and two strings start with
b1, i.e., α = b. Without loss of generality, at most one string has a 1 at the second
position, i.e., at least n strings start with b0. Among these n strings, at most one
has a 1 at the third position, i.e., at least n− 1 strings start with b00. If we apply
this argument inductively, we can show that at least three strings start with a
common prefix of length n − 1, i.e., two of them are identical. This is, however,
not possible, since all n + 1 strings in S are different. �

Since n ≥ 3, every set contains at least four strings, so X and Y are disjoint.
Let x := |X | and y := |Y|. Hence, x + y = �2n/(n + 1)�. Since this term is
odd, x > y without loss of generality. More precisely, we assume x = y + 1, i.e.,
x = (�2n/(n + 1)� + 1)/2 (the argument generalizes to greater x, because with
smaller y, the number of covered strings that start with 0 decreases). Exactly
x + ny covered strings start with 0. Clearly, all strings starting with 0 have to be
covered, i.e.,

x + ny ≥ 2n−1 (3.1)
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must hold. Our goal now is to show that

x + ny < 2n−1, i.e.,⌈
2n

n+1

⌉
+ 1

2
+ n

⌈
2n

n+1

⌉
− 1

2
=

n + 1
2

⌈
2n

n + 1

⌉
− n − 1

2
< 2n−1 (3.2)

holds for infinitely many n with odd �2n/(n + 1)�, since this immediately implies
that not all strings can be covered and thus zn advice strings are necessary.

Since �2n/(n + 1)� is odd, we know that 2n/(n+1) �∈ � and thus �2n/(n + 1)� =
�2n/(n + 1)	 + 1. We obtain

n + 1
2

⌈
2n

n + 1

⌉
− n − 1

2
=

n + 1
2

(⌊
2n

n + 1

⌋
+ 1

)
− n − 1

2

=
n + 1

2

⌊
2n

n + 1

⌋
+ 1

< 2n−1 + 1.

If �2n/(n + 1)	 is divisible by 4, then the term (n + 1)/2 · �2n/(n + 1)	 + 1 is
odd and (3.2) indeed holds, because every odd integer smaller than 2n−1 + 1 is
also smaller than 2n−1. From now on, we thus assume that �2n/(n + 1)	 = 4k +2,
for some k ∈ �.

We already know that

n + 1
2

⌊
2n

n + 1

⌋
+ 1 < 2n−1 + 1.

Because �2n/(n + 1)	 is even, the left side is an integer, and to prove (3.2), we
only need to show that

n + 1
2

⌊
2n

n + 1

⌋
+ 1 �= 2n−1.

Assume that the two terms are equal, i.e.,

(n + 1)

⌊
2n

n+1

⌋
2

= (n + 1)(2k + 1) = 2n−1 − 1.

Note that the right-hand side is the (n − 1)th Mersenne number Mn−1. If, for
some n ∈ �, n + 1 is no divisor of Mn−1, we have obtained a contradiction and
thus shown that our claimed lower bound zn holds for this n. One easily sees that
this is true for all n = 3 × 22m − 1, where m ∈ �, since n + 1 = 3 · 22m does not
divide 2n−1 − 1, simply because the former is even and the latter odd.

It remains to show that �2n/(n + 1)� is an odd number for all these n. To see
this, however, we simply observe that⌈

2n

n + 1

⌉
=

⌈
23×22m−1

3 × 22m

⌉
=

⌈
23×22m−2m−1

3

⌉

is of the form
⌈
22l+1/3

⌉
, and all these terms are odd ([1], pp. 315–316).
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Thus, we have improved the lower bound on the number of necessary advice
bits to guarantee an output with at most one error to zn, for infinitely many n
with odd �2n/(n + 1)�. This concludes the proof of Theorem 3.1. 
�

3.2. Upper bound

Now we show that the lower bound established in the previous section is tight.

Theorem 3.3. There is an algorithm A that solves BGKH on bit strings of
length n using at most zn advice strings and guessing at most one bit wrong.

We first explain the overall idea of the proof. In a nutshell, we now show how to
systematically construct a covering code for the binary hypercube of dimension n.
As we have already seen, this approach also works for BGUH. The crucial obser-
vation, however, is that with BGKH, we have much more freedom in constructing
the set, since the algorithm can, at any time step, incorporate the feedback re-
ceived so far. More precisely, we do not have the requirement that all elements of
a Hamming ball around some string s have Hamming distance at most 1 from s,
but rather that, once A has output a wrong bit, the remaining bit string is uniquely
determined (and, therefore, A outputs no more wrong bits). We can use this in-
creased freedom to our advantage by constructing a covering code that has, on
average, less “intersections” than one for BGUH, meaning that the average num-
ber of Hamming balls per bit string is lower. In a sense, less of the Hamming balls
is “wasted”.

Let T be the complete binary tree with 2n leaves. We fix an order on the leaves
such that they represent, from left to right, the bit strings of length n in lexico-
graphical order. Due to this one-to-one correspondence between the leaves of T
and the bit strings of length n, we use the terms leaf and string interchangeably.
We can even generalize this one-to-one correspondence to all vertices of T as fol-
lows. Any inner vertex v of T corresponds to the common prefix of all leaves in the
subtree rooted at v. Therefore, any vertex at depth d corresponds to a bit string
of length d, for 0 ≤ d ≤ n.

Note that any possible output of any algorithm A for bit guessing (with known
or unknown history) on any input of length n is some leaf of T , i.e., the set of all
outputs of A is a subset of the leaves of T .

With BGUH, once a center string s is fixed, all other n strings in the Hamming
ball are also fixed; they are all the strings with Hamming distance 1 to s. That is,
as soon as we pick some leaf s in T as a center string, the other n covered leaves
are fixed.

With BGKH, however, we have more freedom. For some fixed center string s,
we can construct a set S as follows. Consider the path P from s to the root R
of T . For every vertex v �= s in P , select some string from the subtree Ts,v of v
not containing s (the possibility to choose such a string in Ts,v is crucial. With
BGUH, it is the unique string in Ts,v that has Hamming distance 1 to s).
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On any fixed input instance (n, d1, . . . , dn), A now proceeds as follows. First, it
reads advice to determine a center string s = s1s2 . . . sn (we will later compute
how much advice is necessary for this). Then, A outputs the bits of s one by one.
In T , this corresponds to traversing the path from R to s, where each visited
vertex corresponds to the string that A has output so far. Let t be the time step
in which A makes the first mistake. In other words, s1s2 . . . st−1 = d1d2 . . . dt−1,
but st �= dt. Considering again T , this implies that d1d2 . . . dn lies in Ts,v, for the
vertex v corresponding to s1s2 . . . st−1. By construction, however, we know that S
contains exactly one string s′ in Ts,v. Thus, A simply outputs the corresponding
bits of s′ from time step t on. This results in at most one error in total, since
s1s2 . . . st−1 = d1d2 . . . dt−1, st �= dt, and s′t+1s

′
t+2 . . . s′n = dt+1dt+2 . . . dn.

All that is left to explain is how to select the center strings (and how many)
and how to construct the corresponding sets.

3.2.1. Selection of the center strings

We want to analyze the number of center strings necessary to cover all leaves
of T . To this end, we define a function V : � ×� → � such that V (n, h) tells us
how many strings can be covered with h center strings in a tree of depth n with
2n leaves.

If there is no center string, then no leaf can be covered. Hence,

V (n, 0) = 0, for n ∈ �.

If there is one leaf and at least one center string, then the leaf can be covered.
Hence,

V (0, h) = 1, for h ≥ 1.

Let now Tl and Tr denote the left and the right subtree of R, respectively. For
any number h of center strings, we can choose them arbitrarily among all the
leaves of T , i.e., h− i center strings in Tl and i center strings in Tr, for some i with
0 ≤ i ≤ h. Then V (n−1, h− i) leaves in Tl and V (n−1, i) leaves in Tr are covered.
Additionally, each center string in Tl allows us to cover an additional leaf in Tr

and vice versa. This follows from the construction above: For any center string s
in Tl, we can add an arbitrary vertex from Ts,v to S, for every vertex v on the
path from s to R. In particular, we can add an arbitrary vertex from Ts,R = Tr

to S.
This is clearly only possible if there are still uncovered leaves in Tr. Otherwise,

all 2n−1 leaves in Tr are already covered. Thus, min{V (n − 1, h − i) + i, 2n−1}
vertices in Tl and min{V (n−1, i)+h− i, 2n−1} vertices in Tr are covered in total.
Hence,

V (n, h) = max
0≤i≤h

{
min

{
V (n − 1, h − i) + i, 2n−1

}
+ min

{
V (n − 1, i) + h − i, 2n−1

}}
. (3.3)

Lemma 3.4. For every n ∈ �, we have V (n, zn) = 2n.
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Table 1. Values of V (n, h) for 0 ≤ n ≤ 7, 0 ≤ h ≤ 15.

�����n
h

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4
3 0 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8
4 0 5 10 14 16 16 16 16 16 16 16 16 16 16 16 16
5 0 6 12 18 24 29 32 32 32 32 32 32 32 32 32 32
6 0 7 14 21 28 35 42 49 56 61 64 64 64 64 64 64
7 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Proof. Trivially, V (n, zn) ≤ 2n. For the other direction, we first show that, for
every n ∈ �, we have

V
(
n,

zn+1

2

)
≥ 2n − zn+1

2
· (3.4)

Together with the observation that

V (n, h) ≥ min
{

V

(
n − 1,

⌈
h

2

⌉)
+

⌊
h

2

⌋
, 2n−1

}

+ min
{

V

(
n − 1,

⌊
h

2

⌋)
+

⌈
h

2

⌉
, 2n−1

}
, (3.5)

this immediately yields the lemma for h := zn.
Table 1 shows that (3.4) holds for n ≤ 6. For n ≥ 7, we show by induction that

V (n, h) ≥ (n + 1)h, (3.6)

for every h ≤ zn+1/2. This immediately implies

V
(
n,

zn+1

2

)
≥ (n + 1)

zn+1

2
= (n + 2)

zn+1

2
− zn+1

2

= (n + 2)
⌈

2n

n + 2

⌉
− zn+1

2
≥ 2n − zn+1

2
·

The induction base n = 7 follows from (1). To prove (3.6) for n ≥ 8, we use (3.5).
Observe that

⌊
h

2

⌋
≤

⌈
h

2

⌉
≤

⌈zn+1

4

⌉
=

⎡
⎢⎢⎢

⌈
2n

n+2

⌉
2

⎤
⎥⎥⎥ =

⌈
2n−1

n + 2

⌉
≤

⌈
2n−1

n + 1

⌉
=

zn

2
,

where the second equality holds because ��x� /2� = �x/2�, for every x ∈ �
+.

Remember moreover that the induction hypothesis tells us that V (n−1, h′) ≥ nh′,
for every h′ ≤ zn/2. Therefore, we can replace the respective terms in (3.5) and
obtain

V (n, h) ≥ min
{

n

⌈
h

2

⌉
+

⌊
h

2

⌋
, 2n−1

}
+ min

{
n

⌊
h

2

⌋
+

⌈
h

2

⌉
, 2n−1

}
. (3.7)
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Figure 1. The selected center strings for n = 5.

Note that

n

⌊
h

2

⌋
+

⌈
h

2

⌉
≤ n

⌈
h

2

⌉
+

⌊
h

2

⌋
≤ n

⌈zn+1

4

⌉
+

⌊zn+1

4

⌋

≤ n

⎡
⎢⎢⎢

⌈
2n

n+2

⌉
2

⎤
⎥⎥⎥ +

⌈
2n

n+2

⌉
2

≤ (n + 1)
⌈

2n−1

n + 2

⌉

≤ n + 1
n + 2

· 2n−1 + n + 1 = 2n−1 − 2n−1

n + 2
+ n + 1

≤ 2n−1,

where the last inequality holds because 2n−1/(n + 2) ≥ n + 1 for n ≥ 8. Thus, we
can replace the respective first terms in (3.7) and obtain

V (n, h) ≥ n

⌈
h

2

⌉
+

⌊
h

2

⌋
+ n

⌊
h

2

⌋
+

⌈
h

2

⌉
= (n + 1)h. �

We gained two important insights from this lemma and its proof. First, zn center
strings are sufficient to cover all strings in {0, 1}n. Second, an optimal way to select
them among the leaves of Tl and Tr is to do so “as balanced as possible”.

We now show how to do this. Let Binn(i) denote the binary representation
of a natural number i using n bits, and Binn(i)R its reverse. We choose as
center strings the set {Binn(i)R|0 ≤ i < zn}. One can easily see that exactly
every second leaf is in the left subtree (and this holds recursively inside Tl

and Tr). For instance, for n = 5, we choose the set {Bin5(i)R|0 ≤ i < 6} =
{00000, 10000, 01000, 11000, 00100, 10100} (see Fig. 1).

Lemma 3.5. The set of center strings above is selected such that, for every inner
vertex v in T , the number of center strings in the left and in the right subtree of v
differ at most by 1.
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Figure 2. A failing (dashed) and a successful allocation strat-
egy. The rounded rectangles indicate the clusters, and the crosses
show which leaf was selected from this cluster (the crosses without
rectangles indicate the center strings).

Proof. We can identify every subtree of T at depth d, for 0 ≤ d ≤ n, with the
prefix of length d common to all strings in this subtree. Thus, we only need to show
that every prefix occurs at most once more than any other of the same length in
the selected center strings. Equivalently, we need to show that every suffix occurs
at most once more than any other of the same length in {Binn(i)|0 ≤ i < zn}.
This follows, however, immediately from the fact that all suffixes of some fixed
length occur periodically when enumerating integers. �

3.2.2. Construction of the hamming sets

Given a center string s, we now want to investigate the best way to construct
a set S from it. Remember that we do this by going up the path from s to R and
select, for every vertex v �= s, some string in Ts,v. The question is: Which vertex
should we choose from Ts,v?

Clearly, if there is only one center string, this does not matter. However, as soon
as there are several center strings, we should avoid covering a leaf with two sets, as
we then potentially waste one position. For instance, for n = 3, if the two center
strings are 000 and 100, an algorithm that always selects the leftmost vertex in
every subtree Ts,v fails, because it ends up with the two sets {000, 001, 010, 100}
and {000, 100, 101, 110}, which do not cover all strings, as opposed to the sets
{000, 001, 010, 111} and {011, 100, 101, 110} (see Fig. 2).

Nevertheless, a simple greedy strategy works. For some fixed center string s, let
Cs,i denote the set of all bit strings in the unique tree Ts,v of size 2i, for 0 ≤ i < n.
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We call the sets Cs,i clusters. For every 0 ≤ i < n, the set corresponding to s thus
contains one vertex from cluster Cs,i.

The algorithm constructs all sets in parallel as follows. In time step i, it pro-
cesses all clusters of size 2i and selects in each cluster the leftmost leaf, i.e., the
lexicographically first bit string, that has not yet been covered.

Lemma 3.6. The greedy algorithm described above implements a surjective map-
ping from the clusters to the leaves.

Proof. If the number of clusters and center strings together is greater than the
number of leaves in the tree, then any surjective mapping covers at least one string
several times. In what follows, however, we assume, without loss of generality, that
every string is covered exactly once.

We show how to transform any surjective mapping into the greedy mapping
that the algorithm described above ends up with using only surjectivity-preserving
transformations. For the mapping to be greedy, observe that one of the following
two statements has to hold for every cluster C of size c:

• Cluster C is not assigned a string at all. Then, all its strings are assigned to
clusters of size at most c.

• Cluster C is assigned a string s. Then, all vertices in C left of s are assigned
to clusters of size at most c.

If, for some cluster C, neither of these two statements holds, the mapping is not
greedy. We show how to deal with such clusters.

(1) A cluster C is assigned no string, but some string s in C is assigned to a larger
cluster C′. Then, we can just re-assign s from C′ to C, i.e., C′ is no longer
assigned a string. We can do this iteratively for increasing cluster sizes such
that, in the end, no cluster is “blocked” by some larger cluster.

(2) A cluster C is assigned some string s, but another string s′ in C that is
lexicographically before s is assigned to a larger cluster C′. Then we just
“flip” the two strings, i.e., assign s′ to C and s to C′ (if s can be flipped with
several strings, pick the leftmost one, i.e., the lexicographically first one). As
above, we can do this iteratively for increasing cluster sizes such that, in the
end, every cluster is assigned a string as far to the left as necessary. �

4. Conclusion

We have established an upper bound of zn = 2
⌈
2n−1/(n + 1)

⌉
on the advice

complexity of BGKH on instances of length n when one error is allowed. For
all n with even �2n/(n + 1)�, this upper bound is tight. We showed that it is
also tight for infinitely many n with odd �2n/(n + 1)�. For all other n, the gap
between the upper and the lower bound is at most one bit. From Table 2, one can
see that, already for small values, zn is almost always smaller than the lower bound
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Table 2. Lower bounds on the advice complexity of BGUH and
upper bounds zn on the advice complexity of BGKH with one
allowed error, for 1 ≤ n ≤ 20. The numbers for BGUH are taken
from Cohen et al. [9] and Kéri [14].

n 1 2 3 4 5 6 7 8 9 10
LB BGUH 1 2 2 4 7 12 16 32 62 107
UB BGKH 2 2 2 4 6 10 16 30 52 94

n 11 12 13 14 15 16 17 18 19 20
LB BGUH 180 342 598 1172 2048 4096 7419 14 564 26 309 52 618
UB BGKH 172 316 586 1094 2048 3856 7282 13 798 26 216 49 934

for unknown history. Indeed, for infinitely many n, the tight bound for BGKH is
lower than the lower bound for BGUH ([9], Sect. 6.6 and 6.8).
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