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COMPUTING THE 2-BLOCKS OF DIRECTED
GRAPHS

Raed Jaberi
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Abstract. Let G be a directed graph. A 2-directed block in G is a
maximal vertex set C2d ⊆ V with |C2d| ≥ 2 such that for each pair
of distinct vertices x, y ∈ C2d, there exist two vertex-disjoint paths
from x to y and two vertex-disjoint paths from y to x in G. In this
paper we present two algorithms for computing the 2-directed blocks
of G in O(min{m, (tsap + tsb)n}n) time, where tsap is the number of
the strong articulation points of G and tsb is the number of the strong
bridges of G. Furthermore, we study two related concepts: the 2-strong
blocks and the 2-edge blocks of G. We give two algorithms for comput-
ing the 2-strong blocks of G in O(min{m, tsapn}n) time and we show
that the 2-edge blocks of G can be computed in O(min{m, tsbn}n) time.
In this paper we also study some optimization problems related to the
strong articulation points and the 2-blocks of a directed graph. Given
a strongly connected graph G = (V, E), we want to find a minimum
strongly connected spanning subgraph G∗ = (V, E∗) of G such that the
strong articulation points of G coincide with the strong articulation
points of G∗. We show that there is a linear time 17/3 approxima-
tion algorithm for this NP-hard problem. We also consider the problem
of finding a minimum strongly connected spanning subgraph with the
same 2-blocks in a strongly connected graph G. We present approxi-
mation algorithms for three versions of this problem, depending on the
type of 2-blocks.
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1. Introduction

Let G = (V, E) be a directed graph with |V | = n vertices and |E| = m edges.
A strong articulation point (SAP) of G is a vertex whose removal increases the
number of strongly connected components (SCCs) of G. A strong bridge of G is
an edge whose removal increases the number of SCCs of G. We use tsap to denote
the number of the strong articulation points (SAPs) of G and tsb to denote the
number of the strong bridges of G. A directed graph G = (V, E) is said to be k-
vertex-connected if it has at least k+1 vertices and the induced subgraph on V \X
is strongly connected for every X � V with |X | < k. Thus, a strongly connected
digraph G = (V, E) is 2-vertex-connected if and only if it has at least 3 vertices and
it contains no SAPs. The 2-vertex-connected components of a strongly connected
graph G are its maximal 2-vertex-connected subgraphs. The concept was defined
in [6]. For more information see [20]. A strongly connected graph G is called 2-edge
connected if it contains no strong bridges.

In 2010, Georgiadis [12] gave a linear time algorithm to test whether a strongly
connected graph G is 2-vertex-connected or not. Later, Italiano et al. [20] gave a
linear time algorithm for the same problem which is faster in practice than the
algorithm of Georgiadis [12]. Furthermore, Italiano et al. [20] presented a linear
time algorithm for finding all the SAPs of a directed graph G. They also gave two
linear time algorithms for calculating all the strong bridges of a directed graph G.
In 2014, Jaberi [21] presented algorithms for computing the 2-vertex-connected
components of directed graphs in O(nm) time. The concept of 2-vertex-connected
components is not ideal because there are directed graphs in which many vertices
are well connected with each other but they lie in distinct 2-vertex-connected
components or in no 2-vertex-connected component. This is illustrated in Figure 1.

In this paper we study alternative concepts similar to the k-blocks of undi-
rected graphs which were defined in [4] as follows. A k-block in an undirected
graph G = (V, E) is a maximal vertex set U ⊆ V with |U | ≥ k such that no set
X ⊆ V with |X | < k separates any two vertices of U \X in the undirected graph G.
In 2013, Carmesin et al. [4] showed that there exists an O(min{k,

√
n}n4)-time al-

gorithm that calculates all the k-blocks in an undirected graph. The 2-blocks in an
undirected graph G are similar to the 2-vertex connected components of the undi-
rected graph G, which can be found in linear time using Tarjan’s algorithm [28].
In this paper we introduce and study three new concepts: the 2-directed blocks,
the 2-strong blocks, and the 2-edge blocks of directed graphs. A 2-directed block
in G is a maximal vertex set C2d ⊆ V with |C2d| ≥ 2 such that for each pair
of distinct vertices x, y ∈ C2d, there exist two vertex-disjoint paths from x to y
and two vertex-disjoint paths from y to x in G. Since 2-vertex-connected compo-
nents are 2-vertex-connected, they must have at least a linear number of edges.
In contrast to, the subgraphs induced by the 2-directed blocks may have few or
no edges at all, for example the 2-directed block {1, 4} in Figure 1. Of course,
they may also have many edges, like the subgraph induced by the 2-directed block
{8, 7, 9, 11, 10, 12} in Figure 1. A 2-strong block in G is a maximal vertex set
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Figure 1. A strongly connected graph G. The 2-vertex-connected
components of G are {7, 8, 9}, {10, 11, 12}. The vertices 8, 11 lie
in distinct 2-vertex-connected components of G but there are two
vertex-disjoint paths from 8 to 11 and two vertex-disjoint paths
from 11 to 8 in G. Notice that the vertices 1, 4 do not lie in any
2-vertex-connected component of G but there exist two vertex-
disjoint paths from 1 to 4 and two vertex-disjoint paths from 4
to 1 in G.

C2s ⊆ V with |C2s| ≥ 2 such that for each pair of distinct vertices x, y ∈ C2s and
for each vertex z ∈ V \{x, y}, the vertices x and y lie in the same SCC of the graph
G \ {z}. A 2-edge block in G is a maximal vertex set C2e ⊆ V with |C2e| ≥ 2 such
that for each pair of distinct vertices x, y ∈ C2e, there are two edge-disjoint paths
from x to y and two edge-disjoint paths from y to x in G. These concepts capture
the idea that it is difficult to separate vertices in a block in slightly different ways,
and very different from the concept of 2-vertex-connected components. Our new
concepts are illustrated in Figure 2.

In this paper we also study some optimization problems related to the SAPs and
the 2-blocks of a directed graph. First, we consider the following problem, denoted
by MS-SAPs: Given a strongly connected graph G = (V, E), the MS-SAPs prob-
lem consists in finding a minimum strongly connected spanning subgraph (MSCSS)
G∗ = (V, E∗) of G such that the SAPs of G coincide with the SAPs of G∗. More-
over, we consider the problem of finding a MSCSS with the same 2-blocks, defined
as follows. Given a strongly connected graph G = (V, E), the goal is to find a subset
E∗ ⊆ E of minimum size such that G∗ = (V, E∗) is strongly connected and the 2-
blocks of G coincide with the 2-blocks of G∗ = (V, E∗). There are three versions of
this problem, depending on the type of 2-blocks: MSCSS with the same 2-directed
blocks (denoted by MS-2DBs), MSCSS with the same 2-strong blocks (denoted
by MS-2SBs), and MSCSS with the same 2-edge blocks (denoted by MS-2EBs).
The analogous problems of MS-2DBs and MS-2SBs for undirected graphs can be
reduced to the problem of finding a minimum-size 2-vertex-connected spanning
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Figure 2. A strongly connected graph G, which con-
tains one 2-vertex-connected component {1, 2, 3}, two 2-
directed blocks {6, 1, 2, 3}, {8, 10, 6, 4}, four 2-strong blocks
{6, 1, 2, 3}, {9, 8}, {8, 10, 6, 4}, {7, 6}, and one 2-edge block
{1, 2, 3, 4, 6, 8, 10}. Notice that the 2-vertex-connected component
{1, 2, 3} is a subset of the 2-directed block {6, 1, 2, 3}. We shall
also see that each 2-directed block is a subset of a 2-strong block.

subgraph of an undirected graph, which has been studied in [30]. Let G = (V, E)
be a directed graph. Menger’s Theorem for vertex connectivity in directed graphs
can be formulated as follows [2]. Let x, y be a pair of distinct vertices in G such
that (x, y) /∈ E. Then the maximum number of vertex-disjoint paths from x to y
in G is equal to the minimum number of vertices different from x and y whose
removal from G destroys all the paths from x to y. This theorem implies that V is
a 2-directed block if and only if G is 2-vertex connected. Moreover, by definition,
V is a 2-strong block if and only if G is 2-vertex connected. Thus, the problem of
finding a minimum-size 2-vertex connected spanning subgraph of a directed graph
G is a special case of the problems MS-SAPs, MS-2SBs and MS-2DBs when G
is 2-vertex-connected. Menger’s Theorem for edge connectivity in directed graphs
can be formulated as follows [2]. Let v, w be two vertices in G. Then the maximum
number of edge-disjoint paths from v to w in G equals the minimum number of
edges whose removal destroys all the paths from v to w. The problem of finding
a minimum-cardinality 2-edge connected spanning subgraph of a directed graph
G = (V, E) is a special case of the MS-2EBs problem when G is 2-edge-connected
since, by Menger’s Theorem for edge connectivity, V is a 2-edge block if and only
if G is 2-edge connected. Therefore, by results from [10], the problems MS-SAPs,
MS-2SBs, MS-2EBs, and MS-2DBs are NP-hard.

Let G be a directed graph. In this paper, we present two algorithms for comput-
ing the 2-directed blocks of G in O(min{m, (tsap + tsb)n}n) time. We also present
two algorithms for computing the 2-strong blocks of G in O(min{m, tsapn}n) time
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and we show that the 2-edge blocks of G can be computed in O(min{m, tsbn}n)
time. Furthermore, we elaborate a linear time 17/3 approximation algorithm for
the MS-SAPs problem. We also present a (2tsap + 17/3) approximation algorithm
for the MS-2SBs problem and a (2tsb + 4) approximation algorithm for the MS-
2EBs problem. Moreover, we prove that there exists a (2(tsap + tsb) + 29/3) ap-
proximation algorithm for the MS-2DBs problem.

Related and subsequent Work

In independent work, Georgiadis et al. [16] studied 2-edge blocks and gave linear
time algorithms for finding them. This is better than our results in Section 5.
In 2015, their algorithms [16] were published in SODA [18]. Recently, the same
authors [17] gave linear time algorithms for finding 2-directed blocks and 2-strong
blocks, improving on our results in Sections 3, 4 and 6.

2. Graph terminology and notation

In this section we recall some basic definitions [20, 23, 25]. A flowgraph G(v) =
(V, E, v) is a directed graph with |V | = n vertices, |E| = m edges, and a distin-
guished start vertex v ∈ V such that every vertex w ∈ V is reachable from v. For
a flowgraph G(v) = (V, E, v), the dominance relation of G(v) is defined as follows:
a vertex u ∈ V is a dominator of vertex w ∈ V if every path from v to w includes
u. By dom(w) we denote the set of dominators of vertex w. Obviously, the set of
dominators of the start vertex in G(v) is dom(v) = {v}. For every vertex w ∈ V
with w �= v, {v, w} is a subset of dom(w); we call w, v the trivial dominators of w.
A vertex u is a non-trivial dominator in G(v) if there is some w /∈ {v, u} such that
u ∈ dom(w) \ {v}. The set of all non-trivial dominators is denoted by D(v). The
dominance relation is transitive. A vertex u ∈ V is an immediate dominator of
vertex w ∈ V \ {v} in G(v) if u ∈ dom(w) \ {w} and all elements of dom(w) \ {w}
are dominators of u. Every vertex w of G(v) except the start vertex v has a unique
immediate dominator. The edges (u, w) where u is the immediate dominator of
w form a tree with root v, called the dominator tree of G(v), denoted by DT (v).
Figure 3 illustrates an example of a flowgraph and its dominator tree. Two span-
ning trees T and T ′ of G(v) are called independent if for every vertex w ∈ V \ {v},
the paths from v to w in T and T ′ contain only dom(w) in common [15]. An edge
(x, y) is an edge dominator of vertex w if every path from v to w in G(v) contains
edge (x, y). Let G = (V, E) be a directed graph. Let F ⊆ V ×V be a set of pairs of
vertices. We use G \ F to denote the directed graph obtained from G by deleting
all edges in E ∩ F from G. Let U be a subset of V . We use G \ U to denote the
directed graph obtained from G by removing all the vertices in U and their inci-
dent edges. The reversal graph of G is the directed graph GR = (V, ER), where
ER = {(w, u) | (u, w) ∈ E}. Let v be a vertex in G. By DR(v) we denote the set
of all non-trivial dominators in the flowgraph GR(v) = (V, ER, v). Let G = (V, E)
be an undirected graph. A block of G is a maximal connected subgraph of G that
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Figure 3. (a) A flowgraph G(1). (b) The dominator tree of G(1).

contains no articulation points. An undirected graph G is called chordal if every
cycle of length at least 4 has a chord [11, 27].

3. Computing 2-directed blocks

In this section we present our first algorithm for computing the 2-directed blocks
of directed graphs. Our second algorithm will be described in Section 6. We con-
sider only strongly connected graphs since the 2-directed blocks of a directed graph
are the union of the 2-directed blocks of its SCCs. Let G = (V, E) be a strongly
connected graph. For distinct vertices x, y ∈ V , we write x

2� y if there exist two
vertex-disjoint paths from x to y in G, and we write x

2� y if x
2� y and y

2� x.
A 2-directed block in G is a maximal vertex set C2d ⊆ V with |C2d| ≥ 2 such that
for each pair of distinct vertices x, y ∈ C2d, we have x

2� y.

Lemma 3.1. Let G = (V, E) be a strongly connected graph and let x, y be distinct
vertices in G. Then x

2� y if and only if for each vertex w ∈ V \ {x, y} the ver-
tices x, y lie in the same SCC of G\{w} and in the same SCC of G\{(x, y), (y, x)}.
Proof. “⇐”: Without loss of generality, it is sufficient to show that there are two
vertex-disjoint paths from x to y in G. We consider two cases.

(1) (x, y) /∈ E. Let w ∈ V \ {x, y}. Since the vertices x, y lie in the same SCC
of G \ {w}, there exists a path from x to y in G \ {w}. Thus, one can not
interrupt all paths from x to y by removing w from G. Since x and y are not
adjacent, by Menger’s Theorem for vertex connectivity [2] we have x

2� y.
(2) (x, y) ∈ E. Since x, y lie in the same SCC of G\ {(x, y), (y, x)}, there is a path

p1 from x to y in G\{(x, y)}. Thus, there are two vertex-disjoint paths p1 and
p2 = (x, y) from x to y in G.



COMPUTING THE 2-BLOCKS OF DIRECTED GRAPHS 99

“⇒”: We know there are two vertex-disjoint paths p1 and p2 from x to y in G. We
must show that in G \ {w} and in G \ {(x, y)} there is a path from x to y. Since
at most one of p1 and p2 contains w and at most one of p1 and p2 is edge (x, y),
the claim follows. �

Lemma 3.2. Let G = (V, E) be a strongly connected graph and let x, y be distinct
vertices in G such that x

2� y. Then the vertices x, y lie in the same SCC of
G \ {e} for any edge e ∈ E.

Proof. There exist two vertex-disjoint paths p1, p2 from x to y and two vertex-
disjoint paths p3, p4 from y to x in G since x

2� y. The paths p1, p2 are edge-
disjoint and the paths p3, p4 are also edge-disjoint. Hence, there exist a path from x
to y and a path from y to x in G \ {e} for any edge e ∈ E. �

Lemma 3.3 shows that 2-directed blocks intersect in at most one vertex.
(2-vertex-connected components have the same property, see [6, 21]).

Lemma 3.3. Let C2d
1 , C2d

2 be distinct 2-directed blocks in a strongly connected
graph G = (V, E). Then C2d

1 and C2d
2 have at most one vertex in common.

Proof. Suppose for a contradiction that |C2d
1 ∩ C2d

2 | > 1. By renaming we can
assume that there are at least two vertices v ∈ C2d

1 , w ∈ C2d
2 with v, w /∈ C2d

1 ∩C2d
2

such that there are no two vertex-disjoint paths from v to w in G. We consider
two cases.

(1) (v, w) /∈ E. By Menger’s Theorem [2] there is some vertex s ∈ V \ {v, w} such
that s lies on all paths from v to w. Let z be a vertex in (C2d

1 ∩ C2d
2 ) \ {s}.

Since C2d
1 and C2d

2 are 2-directed blocks, there is a path from v to z in G\ {s}
and a path from z to w in G\{s}, hence there is a path from v to w in G\{s},
which is a contradiction.

(2) (v, w) ∈ E. In this case there is no path from v to w in G \ {(v, w)}. Let u be
a vertex in C2d

1 ∩C2d
2 . But, again by the definition of 2-directed blocks, there

are paths from v to u and from u to w in G \ {(v, w)}, a contradiction. �

Next we note that 2-directed blocks can not form cycles in the following sense.

Lemma 3.4. Let G = (V, E) be a strongly connected graph and let v0, v1, . . . , vl

be distinct vertices of G such that v0
2� vl and vi−1

2� vi for i ∈ {1, 2 . . . , l}.
Then all the vertices v0, v1, . . . , vl lie in the same 2-directed block of G.

Proof. Suppose for a contradiction that there exist two vertices vr, vq with r, q ∈
{0, 1, . . . , l} such that vr, vq lie in distinct 2-directed blocks of G and r < q. By
renaming, we may assume that there do not exist two vertex-disjoint paths from vr

to vq in G. We consider two cases.

(1) (vr, vq) /∈ E. In this case, all the paths from vr to vq contain a vertex s ∈
V \ {vr, vq}. Therefore, there is no path from vr to vq in G\ {s}. There are two
cases to consider.
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(a) s /∈ {vr+1, vr+2, . . . , vq−1}. In this case, for each i ∈ {r + 1, r + 2, . . . , q},
there is a path from vi−1 to vi in G \ {s} by Lemma 3.1, a contradiction.

(b) s ∈ {vr+1, vr+2, . . . , vq−1}. Then by Lemma 3.1, there are paths from vr to
vr−1, . . . from v1 to v0, from v0 to vl, from vl to vl−1, . . . from vq+1 to vq in
G \ {s}, again a contradiction.

(2) (vr, vq) ∈ E. By Lemma 3.2, for each i ∈ {r + 1, r + 2, . . . , q}, the vertices
vi−1, vi lie in the same SCC of G \ {(vr, vq)}. Therefore, there exists a path
p1 from vr to vq in G \ {(vr, vq)}. Consequently, there are two vertex-disjoint
paths p1 and p2 = (vr, vq) from vr to vq in G, but this is a contradiction. �

We construct the 2-directed block graph G2d = (V 2d, E2d) of a strongly connected
graph G = (V, E) as follows. It has a vertex vi for every 2-directed block C2d

i and
all vertices w that lie in the intersection of (at least) two 2-directed blocks. For
each pair of distinct 2-directed blocks C2d

i , C2d
j with C2d

i ∩C2d
j = {w}, we add two

undirected edges (vi, w), (w, vj) to E2d.

Lemma 3.5. Let G = (V, E) be a strongly connected graph. Then the 2-directed
block graph G2d = (V 2d, E2d) of G is a forest.

Proof. This follows from Lemma 3.4. �

Now we turn to algorithm for finding the 2-directed blocks. Algorithm 3.1 de-
scribes our first algorithm for computing all the 2-directed blocks of a strongly
connected graph G.

Algorithm 3.1.
Input: A strongly connected graph G = (V, E).
Output: The 2-directed blocks of G.
1 if G is 2-vertex-connected then
2 Output V .
3 else
4 Let A be an n× n matrix.
5 Initialize A with 0s.
6 for each ordered pair (v, w) ∈ V × V do
7 if there are two vertex-disjoint paths from v to w in G then
8 A[v, w] ← 1.
9 Construct undirected graph G∗ = (V, E∗) as follows.
10 for each pair (v, w) ∈ V × V do
11 if A[v, w] = 1 and A[w, v] = 1 then
12 Add the undirected edge (v, w) to E∗.
13 Compute the blocks of size > 1 of G∗ = (V, E∗) and output them.

Lemma 3.6. Algorithm 3.1 calculates 2-directed blocks.

Proof. If G is 2-vertex connected, then V is a 2-directed block. Let G = (V, E) be a
strongly connected graph which is not 2-vertex connected. For any vertices v, w ∈
V , v

2� w if and only if A[v, w] = 1 and A[w, v] = 1 in line 11. Hence, v
2� w if
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and only if (v, w) ∈ E∗. Let x, y be two vertices that do not lie in the same block
of G∗. Then (x, y) can not be in E∗. Hence, the vertices x, y do not lie in the same
2-directed block of G. Let B be a block of G∗ containing v, w with (v, w) ∈ E∗.
There are two cases to consider.

(1) B = {v, w}. Then v
2� w and {v, w} is a 2-directed block. (If there were some

z such that v, w, z are in the same 2-directed block, we would have the triangle
(v, z), (z, w), (w, v) in G∗, hence z would be in the same block as v, w.)

(2) B contains other vertices. We show that all these vertices are in the same 2-
directed block. If z ∈ V \ {v, w} is in B, then z, v lie on one simple cycle in G∗.
By Lemma 3.4, the vertices z, v lie in the same 2-directed block. �

It remains to describe Procedure 3.1 that implements steps 6–8 of Algorithm 3.1.

Procedure 3.1.

Purpose: Check if there are two vertex disjoint paths.
Input: A strongly connected graph G = (V, E).
Output: Matrix A.
1 for each vertex v ∈ V do
2 E′ ← E.
3 V ′ ← V .
4 for each edge e = (v, w) ∈ E do
5 E′ ← E′ \ {(v, w)}.
6 V ′ ← V ′ ∪ {ue}.
7 E′ ← E′ ∪ {(v, ue), (ue, w)}.
8 Compute the dominator tree DT ′(v) of the flowgraph G′(v) = (V ′, E′, v).
9 for each direct successor w of v in DT ′(v) do
10 if w ∈ V then
11 A[v, w]← 1.

For each vertex v ∈ V , we construct a directed graph G′ = (V ′, E′) from G as
follows. For each edge (v, w) ∈ E, we remove this edge (v, w) and we add a new
vertex ue and two new edges (v, ue), (ue, w) to G′. Then we compute the dominator
tree DT ′(v) of the flowgraph G′(v) = (V ′, E′, v). For each direct successor w of v in
DT ′(v) such that w ∈ V , line 11 sets A[v, w] to 1. The correctness of Procedure 3.1
follows from the following lemma.

Lemma 3.7. Let G = (V, E) be a strongly connected graph and let v, w be two
distinct vertices in G. Then v

2� w in G(v) if and only if v is the immediate
dominator of w in the flowgraph G′(v) = (V ′, E′, v).

Proof. “⇒” Assume that v
2� w in G(v). Then there are two vertex-disjoint paths

p1 = (v = v1, v2, . . . , vt = w) and p2 = (v = u1, u2, . . . , ul = w) from v to
w in G(v). In lines 4–7 of Procedure 3.1, the edge x = (v1, v2) is replaced by
two edges (v1, vx), (vx, v2) and the edge y = (u1, u2) is replaced by two edges
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(u1, uy), (uy, u2). Since vx �= uy, there exist two vertex-disjoint paths from v to w
in G′(v). Therefore, v is the immediate dominator of w in the flowgraph G′(v).

“⇐” We prove the contrapositive. Assume that v
2� w in G(v) is not true.

Then there is some vertex x ∈ V \ {v, w} such that all paths from v to w in
G(v) contain x. Then x is a non-trivial dominator of w in G(v). Thus, v is not
the immediate dominator of w in G(v). Let p = (v = v1, v2, . . . , vt = w) be a
simple path from v to w in G(v). In lines 4–7 of Procedure 3.1, e = (v1, v2) is
replaced by (v1, ue), (ue, v2). Hence, the path p corresponds to the simple path
(v = v1, ue, v2, . . . , vt = w) in G′(v). Since ue �= x, the vertex x is a non-
trivial dominator of w in G′(v). Therefore, v is not the immediate dominator of w
in G′(v). �

Remark 3.8. Procedure 3.1 checks in polynomial time whether there are two
vertex-disjoint paths from v to w in G. It may be worth noticing that problems
of a similar flavor are NP-complete: Fortune et al. [8] proved it is NP-complete
to check if there are vertex-disjoint (arc-disjoint) paths from s1 to t1 and from s2

to t2 for four given vertices. Li et al. [24] showed it is NP-hard to find two vertex-
disjoint (arc-disjoint) paths from s to t while minimizing the length of the longer
one.

Theorem 3.9. Algorithm 3.1 runs in O(nm) time.

Proof. The dominators of a flowgraph can be found in linear time [1,3]. In lines 2–7
of Procedure 3.1, the construction of G′(v) = (V ′, E′, v) takes linear time because
the graph G′ has |V ′| = n + dout(v) < 2n vertices and |E′| = m + dout(v) < m + n
edges. Moreover, lines 9–11 of Procedure 3.1 take O(n) time since the number of
direct successors of v in the dominator tree DT ′(v) is at most 2(n − 1). Since
the number of iterations of the for loop in lines 1–11 of Procedure 3.1 is n, the
running time of Procedure 3.1 is O(nm). One can test whether a directed graph
is 2-vertex-connected in linear time using the algorithm of Italiano et al. [20]. The
initialization of matrix A requires O(n2) time. The undirected graph G∗ = (V, E∗)
can also be constructed in O(n2) time. Furthermore, the blocks of an undirected
graph can be computed in linear time using Tarjan’s algorithm [28]. The total cost
is therefore O(nm + n2) = O(nm). �

Let G = (V, E) be a strongly connected graph. By definition, the 2-directed
blocks of G are the maximal cliques of the auxiliary graph G∗ which is constructed
in lines 4–12 of Algorithm 3.1. By Lemma 3.4, the auxiliary graph G∗ is chordal.
In line 13 of Algorithm 3.1, one can compute the maximal cliques of the auxiliary
graph G∗ instead of blocks since the maximal cliques of a chordal graph can be
calculated in linear time [11, 27].

4. Computing 2-strong blocks

In this section we present two algorithms for computing the 2-strong blocks
of directed graphs. The 2-strong blocks of a directed graph are the union of the
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2-strong blocks of its SCCs. Let G = (V, E) be a strongly connected graph. We
define a relation 2s� as follows. For any distinct vertices x, y ∈ V , we write x

2s� y
if for any vertex z ∈ V \ {x, y}, the vertices x, y lie in the same SCC of G\ {z}. By
definition, the 2-strong blocks are maximal subsets of V of size at least 2 closed
under 2s�. Let v, w be distinct vertices in V such that (v, w) ∈ E and w

2� v.
While v, w are in one 2-strong block, these vertices do not necessarily lie in the
same 2-directed block of G.

Lemma 4.1. Each 2-directed block in a strongly connected graph G is a subset of
a 2-strong block in G.

Proof. Immediate from Lemma 3.1. �

Lemma 4.2. Let G = (V, E) be a strongly connected graph. Let C2s
1 , C2s

2 be dis-
tinct 2-strong blocks in G. Then C2s

1 and C2s
2 have at most one vertex in common.

Proof. Assume for a contradiction that |C2s
1 ∩ C2s

2 | > 1. Then there exist at least
two vertices x ∈ C2s

1 , y ∈ C2s
2 with x, y /∈ C2s

1 ∩ C2s
2 and a vertex z ∈ V \ {x, y}

such that the vertices x, y lie in different SCCs of G \ {z}. Let w be a vertex
in (C2s

1 ∩ C2s
2 ) \ {z}. Since x, w ∈ C2s

1 , these vertices lie in the same SCC of
G \ {z}, similarly for w, y ∈ C2s

2 . Hence x, y lie in the same SCC of G \ {z}, a
contradiction. �

As with 2-directed blocks, there can not be cycles of 2-strong blocks.

Lemma 4.3. Let G = (V, E) be a strongly connected graph and let v0, v1, . . . , vl

be distinct vertices of G such that v0
2s� vl and vi−1

2s� vi for i ∈ {1, 2 . . . , l}.
Then all the vertices v0, v1, . . . , vl lie in the same 2-strong block of G.

Proof. Let vr, vq be two vertices such that r, q ∈ {0, 1, . . . , l} and r < q. Let w be
a vertex in V \ {vr, vq}. We consider two cases.

(1) w /∈ {vr+1, vr+2, . . . , vq−1}. Then, for each i ∈ {r + 1, r + 2, . . . , q}, the vertices
vi−1, vi lie in the same SCC of G \ {w}. Thus the vertices vr, vq lie in the same
SCC of G \ {w}.

(2) w ∈ {vr+1, vr+2, . . . , vq−1}. Then the vertices vi−1, vi lie in the same SCC of
G\{w} for each i ∈ {1, 2, . . . , r}∪{q+1, q+2, . . . , l}. Furthermore, the vertices
v0, vl lie in the same SCC of G \ {w} since v0

2s� vl. Thus the vertices vr, vq

lie in the same SCC of G \ {w}.

Since the vertices vr, vq lie in the same SCC of G \ {w} for any vertex w ∈
V \ {vr, vq}, the vertices vr, vq lie in the same 2-strong block of G. �

Algorithm 4.1 shows our first algorithm for computing the 2-strong blocks of a
strongly connected graph G = (V, E).
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Algorithm 4.1.
Input: A strongly connected graph G = (V, E).
Output: The 2-strong blocks of G.
1 if G is 2-vertex-connected then
2 Output V .
3 else
4 Let A be an n× n matrix.
5 Initialize A with 0s.
6 for each vertex v ∈ V do
7 Compute DT (v).
8 for each direct successor w of v in DT (v) do
9 A[v, w] ← 1.
10 Construct undirected graph G∗ = (V, E∗) as follows.
11 for each pair (v, w) ∈ V × V do
12 if A[v, w] = 1 and A[w, v] = 1 then
13 Add the undirected edge (v, w) to E∗.
14 Compute the blocks of size > 1 of G∗ = (V, E∗) and output them.

Using arguments similar to those in the proof of Lemma 3.6, one can show that
Algorithm 4.1 is correct.

Theorem 4.4. Algorithm 4.1 runs in O(nm) time.

Proof. The dominators of a flowgraph can be found in linear time [1,3]. Therefore,
lines 6–9 take O(nm) time. �

Lemma 4.5. Let G = (V, E) be a strongly connected graph and let x, y be distinct
vertices in G. Let S be the set of all the SAPs in G. Then for any vertex z ∈
V \ (S ∪ {x, y}), the vertices x and y lie in the same SCC of G \ {z}.
Proof. Immediate from the definition. �

This simple lemma gives rise to an alternative algorithm (Algorithm 4.2) that
might be helpful if the number of the SAPs is small.

Algorithm 4.2.
Input: A strongly connected graph G = (V, E).
Output: The 2-strong blocks of G.
1 if G is 2-vertex-connected then
2 Output V .
3 else
4 Let A be an n× n matrix.
5 Initialize A with 1s.
6 Compute the SAPs of G.
7 for each s ∈ SAPs of G do
8 Compute the SCCs of G \ {s}.
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9 for each pair (v, w) ∈ (V \ {s})× (V \ {s}) do
10 if v, w in different SCCs of G \ {s} then
11 A[v, w]← 0.
12 E∗ ← ∅.
13 for each pair (v, w) ∈ V × V do
14 if A[v, w] = 1 and A[w, v] = 1 then
15 Add the undirected edge (v, w) to E∗.
16 Compute the blocks of size > 1 of G∗ = (V, E∗) and output them.

Lemma 4.6. Let v, w be distinct vertices in a strongly connected graph G. Then
v

2s� w if and only if A[v, w] = 1 and A[w, v] = 1 (when line 14 is reached).

Proof. “⇐” If A[v, w] = 1 and A[w, v] = 1, then the vertices v, w lie in the same
SCC of G \ {s} for any SAP s ∈ V \ {v, w} (see lines 7–11). By Lemma 4.5, the
vertices v, w lie in the same SCC of G \ {z} for any vertex z ∈ V \ {v, w}.

“⇒” This follows from Lemma 4.5. �

Theorem 4.7. The running time of Algorithm 4.2 is O(tsapn
2).

Proof. The SAPs of a directed graph can be computed in linear time using the
algorithm of Italiano et al. [20]. Lines 7–11 take O(tsapn2) time. �

Corollary 4.8. The 2-strong blocks of a directed graph G = (V, E) can be com-
puted in O(min{m, tsapn}n) time.

5. Computing the 2-edge blocks

In this section we present two algorithms for computing the 2-edge blocks of
directed graphs. The 2-edge blocks of a directed graph are the union of the 2-edge
blocks of its SCCs. We define a relation 2e� as follows. For any distinct vertices
x, y ∈ V , we write x

2e� y if there exist two edge-disjoint paths from x to y and
two edge-disjoint paths from y to x in G. The 2-edge blocks are maximal subsets
closed under x

2e� y.

Lemma 5.1. Let G = (V, E) be a strongly connected graph and let x and y be
distinct vertices in G. Then x

2e� y if and only if for each edge (v, w) ∈ E, the
vertices x, y lie in the same SCC of G \ {(v, w)}.

Proof. This is an immediate consequence of Menger’s Theorem for edge connec-
tivity [2]. �

Lemma 5.2. Let G = (V, E) be a strongly connected graph. The 2-edge blocks of
G are disjoint.
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Proof. Let C2e
1 , C2e

2 be two distinct 2-edge blocks of G. Assume for a contradiction
that C2e

1 ∩ C2e
2 �= ∅. Then by Lemma 5.1, there are two vertices x ∈ C2e

1 , y ∈ C2e
2

with x, y /∈ C2e
1 ∩ C2e

2 and an edge (v, w) ∈ E such that the vertices x, y lie in
distinct SCCs of G \ {(v, w)}. Let z be a vertex in C2e

1 ∩C2e
2 . By Lemma 5.1, the

vertices x, z lie in the same SCC of G \ {(v, w)} since C2e
1 is a 2-edge block and

the vertices z, y lie in the same SCC of G \ {(v, w)} since C2e
2 is a 2-edge block.

Hence x, y lie in the same SCC of G \ {(v, w)}, a contradiction. �

Algorithm 5.1 shows our first algorithm for computing the 2-edge blocks of a
strongly connected graph G.

Algorithm 5.1.
Input: A strongly connected graph G = (V, E).
Output: The 2-edge blocks of G.
1 if G is 2-edge-connected then
2 Output V .
3 else
4 Let A be an n× n matrix.
5 Initialize A with 0s.
6 for each vertex v ∈ V do
7 Compute the edge dominators of G(v) = (V, E, v).
8 for each vertex w ∈ V \ {v} do
9 If there is no edge dominator of w then
10 A[v, w] ← 1.
11 E∗ ← ∅.
12 for each pair (v, w) ∈ V × V do
13 if A[v, w] = 1 and A[w, v] = 1 then
14 Add the undirected edge (v, w) to E∗.
15 Compute the connected components of size > 1 of the graph
16 G∗ = (V, E∗) and output them.

Algorithm 5.1 works as follows. First, line 1 tests whether G is 2-edge-connected,
and if it is, line 2 outputs V , since every 2-edge connected directed graph is a 2-
edge block. Otherwise, for each vertex v in G, the algorithm computes the edge
dominators of the flowgraph G(v) = (V, E, v), and for each vertex w ∈ V \ {v},
line 10 sets A[v, w] to 1 if there is no edge dominator of w. Let v, w be distinct
vertices in G. Then v

2e� w if and only if A[v, w] = 1 and A[w, v] = 1 in line
13. Lines 11–14 constructs an undirected graph G∗ = (V, E∗) as follows. For each
pair (v, w) ∈ V × V , we add an undirected edge (v, w) to E∗ if A[v, w] = 1 and
A[w, v] = 1. Finally, the algorithm finds the connected components of size at least
2 of G∗. This is correct by Lemma 5.2.

In [20], Italiano et al. presented two algorithms for calculating the strong
bridges of a strongly connected graph G = (V, E). We use them to implement
lines 8–10 of Algorithm 5.1 as follows. Consider a flowgraph G(v) = (V, E, v).
For each edge e = (x, y) ∈ E, we delete this edge from G(v) and we add
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two new edges (x, ϕ(e)), (ϕ(e), y) to G(v). We obtain a new flowgraph, denoted
G′(v) = (V ′, E′, v). Then, we compute the dominator tree DT ′(v) of G′(v). Obvi-
ously, an edge e is an edge dominator of vertex w ∈ V \ {v} in G(v) if and only if
the corresponding vertex ϕ(e) is a dominator of w in G′(v). We mark the vertices
of G that have edge dominators in G(v) by depth first search in DT ′(v). There-
fore, lines 8–10 can be implemented in linear time. In [20], Italiano et al. observed
that the strong bridges of G are the SAPs of the directed graph G′ = (V ′, E′) that
correspond to edges in G. We will use these strong bridges in our second algorithm
for computing the 2-edge blocks of G.

Theorem 5.3. Algorithm 5.1 runs in O(nm) time.

Proof. One can test whether a directed graph is 2-edge-connected in linear time
using the algorithm of Italiano et al. [20]. Furthermore, the edge dominators of a
flowgraph G(v) = (V, E, v) can be computed in linear time [7,20]. Lines 6–10 take
O(nm) time. The connected components of G∗ can be found in O(n2) time. �

Lemma 5.4. Let G = (V, E) be a strongly connected graph and let x, y be distinct
vertices in G. Let Ssb be the set of all the strong bridges of G. Then for any edge
e ∈ E \ Ssb, the vertices x and y lie in the same SCC of G \ {e}.
Proof. Immediate from the definition. �

This simple lemma leads to another algorithm (Algorithm 5.2) which might be
useful when tsb is small.

Algorithm 5.2.
Input: A strongly connected graph G = (V, E).
Output: The 2-edge blocks of G.
1 If G is 2-edge-connected then.
2 Output V .
3 else
4 Let A be an n× n matrix.
5 Initialize A with 1s.
6 for each strong bridge e of G do
7 for each pair (v, w) ∈ V × V do
8 if v, w in distinct SCCs of G \ {e} then
9 A[v, w]← 0.
10 E∗ ← ∅.
11 for each pair (v, w) ∈ V × V do
12 if A[v, w] = 1 and A[w, v] = 1 then
13 Add the undirected edge (v, w) to E∗.
14 Compute the connected components of size > 1 of G∗ and output them.

The correctness of this algorithm follows from the following lemma.

Lemma 5.5. Let v, w be distinct vertices in a strongly connected graph G. Then
v

2e� w if and only if A[v, w] = 1 and A[w, v] = 1 (when line 10 is reached).
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Proof. Similar to the proof of Lemma 4.6 using Lemma 5.4. �

Theorem 5.6. Algorithm 5.2 runs in O(tsbn
2) time.

Proof. The strong bridges of a directed graph can be found in linear time using
the algorithm of Italiano et al. [20]. Lines 7–11 take O(tsbn

2) time. �

Let G a directed graph. Italiano et al. [20] showed that tsb ≤ (2n− 2).

Corollary 5.7. The 2-edge blocks of a directed graph G = (V, E) can be computed
in O(min{m, tsbn}n) time.

Now we show that the 2-edge block that contains a certain vertex can be com-
puted in linear time. Let G = (V, E) be a strongly connected graph and let v ∈ V .
By U(v) we denote the set of vertices that do not have edge dominators in G(v)
and by UR(v) we denote the set of vertices that do not have edge dominators in
GR(v).

Lemma 5.8. Let G = (V, E) be a strongly connected graph and let v ∈ V . Let
C2e be the 2-edge block of G that includes v. Then w ∈ C2e if and only if w ∈
U(v) ∩ UR(v)

Proof. “⇐” Let w ∈ (U(v) ∩ UR(v)) \ {v}. w does not have any edge dominator
in G(v). Therefore, by Menger’s Theorem for edge connectivity, there exist two
edge-disjoint paths from v to w in G(v). Furthermore, there are two edge-disjoint
paths from v to w in GR(v) since w does not have any edge dominator in GR(v).
Thus, there are also two edge-disjoint paths from w to v in G.
“⇒” Immediate from definition. �

We have seen that U(v) can be computed in linear time. Therefore, U(v)∩UR(v)
can be computed in linear time.

6. The relation between 2-directed blocks, 2-strong

blocks and 2-edge blocks

In this section we consider the relation between 2-directed blocks, 2-strong
blocks and 2-edge blocks.

Lemma 6.1. Let G = (V, E) be a strongly connected graph and let x, y be distinct
vertices in G. Then x

2� y if and only if x
2s� y and x

2e� y.

Proof. “⇐”: By Lemma 5.1, for each edge e ∈ E the vertices x, y lie in the same
SCC of G \ {e} since x

2e� y. Because the vertices x, y lie in the same SCC of
G\{(x, y)}, there exist a path from x to y in G\{(x, y)}. There is also a path from
y to x in G\{(y, x)} since x, y lie in the same SCC of G\{(y, x)}. As a consequence,
the vertices x, y lie in the same SCC of G\{(x, y), (y, x)}. By definition, the vertices
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x, y lie in the same SCC of G \ {w} for any vertex w ∈ V \ {x, y} since x
2s� y.

Therefore, by Lemma 3.1, we have x
2� y.

“⇒”: this direction follows from Lemmas 3.2 and 4.1. �

Now we describe our second algorithm for computing all the 2-directed blocks
of a strongly connected graph G. First, we execute lines 1–11 of Algorithm 4.2.
Next, we execute lines 6–9 of Algorithm 5.2. Finally, we execute lines 12–16 of
Algorithm 4.2. The correctness of our algorithm follows from Lemma 6.1.

Theorem 6.2. The 2-directed blocks of a directed graph G can be computed in
O((tsap + tsb)n2) time.

Proof. This follows from Theorems 4.7 and 5.6. �

Corollary 6.3. The 2-directed blocks of a directed graph G can be computed in
O(min{m, (tsap + tsb)n}n) time.

Theorem 6.4. All algorithms in Sections 3, 4, 5 and 6 require Θ(n2) space.

Proof. Clearly, all these algorithms get by with O(n2) space and they need Ω(n2)
space to store the matrix A and the auxiliary graph G∗. �

7. The 2-directed blocks that contain a certain vertex

Let G = (V, E) be a strongly connected graph and let v be a vertex in G. In
this section we present an algorithm for computing the 2-directed blocks of G that
contain v in O(t∗m) time, where t∗ is the number of these blocks. This algorithm
is based on Lemmas 3.3 and 3.4. It offers two advantages, first, it does not need to
construct the auxiliary graph G∗. Second, it runs in linear time when v is contained
in a constant number of 2-directed blocks. By B(v) we denote the set of all vertices
w ∈ V \ {v} such that v

2� w. One can compute B(v) by using Procedure 7.1 in
linear time.

Procedure 7.1.
Input: A strongly connected graph G = (V, E) and vertex v ∈ V .
Output: B(v).
1 B1(v)← ∅, B2(v)← ∅, B(v)← ∅.
2 E′ ← E.
3 V ′ ← V .
4 for each edge e = (v, w) ∈ E do
5 E′ ← E′ \ {(v, w)}.
6 V ′ ← V ′ ∪ {ue}.
7 E′ ← E′ ∪ {(v, ue), (ue, w)}.
8 Compute the dominator tree DT ′(v) of the flowgraph G′(v) = (V ′, E′, v).
9 for each direct successor w of v in DT ′(v) do
10 if w ∈ V then
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11 B1(v)← B1(v) ∪ {w}.
12 E1 ← ER.
13 V1 ← V .
14 for each edge e = (v, w) ∈ ER do
15 E1 ← E1 \ {(v, w)}.
16 V1 ← V1 ∪ {ue}.
17 E1 ← E1 ∪ {(v, ue), (ue, w)}.
18 Compute the dominator tree DT1(v) of G1(v) = (V1, E1, v).
19 for each direct successor w of v in DT1(v) do
20 if w ∈ V then
21 B2(v)← B2(v) ∪ {w}.
22 B(v)← B1(v) ∩B2(v).

The correctness of Procedure 7.1 follows from Lemma 3.7 and the fact that
w

2� v in G if and only if v
2� w in GR.

Algorithm 7.1.
Input: A strongly connected graph G = (V, E) and vertex v ∈ V .
Output: The 2-directed blocks of G that contain v.
1 if G is 2-vertex-connected then
2 Output V .
3 else
4 R← B(v).
5 while R is not empty do
6 Choose arbitrarily a vertex w ∈ R.
7 output (R ∩B(w)) ∪ {v, w}.
8 R← R \ ((R ∩B(w)) ∪ {w}).

Lemma 7.1. Algorithm 7.1 calculates the 2-directed blocks that include v.

Proof. Let C2d
1 , C2d

2 , . . . , C2d
t be the 2-directed blocks which contain v. By

Lemma 3.3, these blocks include only the vertex v in common. Thus, C2d
1 \{v}, C2d

2 \
{v}, . . . , C2d

t \ {v} are disjoint. Obviously,
⋃

1≤i≤t(C
2d
i ) \ {v} ⊆ B(v). Let w be

a vertex in B(v) and let C2d be the 2-directed block of G such that v, w ∈ C2d.
It is sufficient to show that C2d = (B(w) ∩ B(v)) ∪ {v, w}. Let x be a vertex in
B(w)∩B(v). Since v

2� w, w
2� x and x

2� v, by Lemma 3.4, the vertices x, v, w
lie in the same 2-directed block of G. Conversely, let x be a vertex in C2d \ {v, w}.
Since v

2� x and w
2� x, we have x ∈ B(v) and x ∈ B(w). �

Theorem 7.2. Algorithm 7.1 runs in O(t∗m), where t∗ is the number of the 2-
directed blocks that contain v.

Proof. We have seen that B(v) can be computed in linear time. Furthermore, the
number of iterations of the while-loop in lines 5–8 is t∗. Thus, the total time is
O(t∗m). �
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8. Approximation algorithm for the MS-SAPs Problem

In this section we show that there is a 17/3 approximation algorithm for the
MS-SAPs problem. In [13], Georgiadis presented a linear time 3-approximation
algorithm for the problem of finding a minimum-cardinality 2-vertex connected
spanning subgraph (2VCSS) of 2-vertex-connected directed graphs. This algorithm
is based on the works [12, 14, 20]. We slightly modify this algorithm and combine
it with the algorithm of Zhao et al. [31] in order to obtain a 17/3 approximation
algorithm for the MS-SAPs problem. We first briefly describe Georgiadis algo-
rithm [13]. Let G = (V, E) be a 2-vertex-connected directed graph and let v be a
vertex in G. Menger’s Theorem for vertex connectivity [2] implies that the flow-
graph G(v) has no non-trivial dominators. In [14], Georgiadis and Tarjan proved
that there exist two independent spanning trees of G(v). Algorithm 8.1 shows the
algorithm of Georgiadis [13].

Algorithm 8.1. (from [13])

Input: A 2-vertex-connected directed graph G = (V, E).
Output: A 2-vertex-connected spanning subgraph G∗ of G.
1 Choose arbitrarily a vertex v ∈ V .
2 Compute two independent spanning trees T1, T2 of G(v).
3 Compute two independent spanning trees T3, T4 of GR(v).
4 Construct a strongly connected spanning subgraph (SCSS)
6 G

′
= (V \ {v}, E′

) of G \ {v} with |E′ | ≤ 2(n− 2).
7 E∗ ← T1 ∪ T2 ∪ T R

3 ∪ T R
4 ∪E

′
.

8 Output G∗ = (V, E∗).

By ([13], Lem. 2), the flowgraphs (V, T1 ∪ T2, v) and (V, T3 ∪ T4, v) have only
trivial dominators. Let w be a vertex in G \ {v}. As is well known, it is easy to
calculate a SCSS G

′
= (V \ {v}, E′

) of G \ {v} with |E′ | ≤ 2(n − 2). Just take
the union of outgoing branching rooted at w and incoming branching rooted at
w [9, 22]. Since G∗ \ {v} is strongly connected, the vertex v is not a SAP in G∗.
Therefore, by ([20], Thm. 5.2) the directed graph G∗ has no SAPs. By definition,
G∗ is 2-vertex-connected. Algorithm 8.1 has an approximation ratio of 3 and runs
in linear time [13].

In [31], Zhao et al. gave a linear time 5/3 approximation algorithm for the
problem of finding a MSCSS of a strongly connected graph. We briefly describe
this algorithm. The algorithm of Zhao et al. [31] is based on repeatedly contract-
ing special cycles. The idea of contracting cycles was first introduced by Khuller
et al. [22]. Let G = (V, E) be a strongly connected graph and let U ⊆ V . By
δ+(U) we denote the set of edges leaving U , i.e., δ+(U) = {(u, v) ∈ E|u ∈ U and
v /∈ U}. By G/U we denote the directed graph obtained from G by contracting
the vertex set U . Let l be a cycle of G. By Vl and El we denote the set of vertices
and the set of edges of the cycle l, respectively. The cycle l conceals U if δ+(U)
is not empty and the edges in δ+(U) are deleted in G/Vl. The algorithm of Zhao
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et al. [31] repeatedly contracts concealing cycles. Algorithm 8.2 shows a high-level
description of this algorithm.

Algorithm 8.2. (from [31])
Input: A strongly connected graph G = (V, E).
Output: A SCSS G∗ = (V, E∗) of G.
1 E∗ ← ∅.
2 G1 ← G.
3 while G1 has a cycle of length at least 3 do
4 Find a concealing cycle l in G1 with El ≥ 3.
5 E∗ ← E∗ ∪ El.
6 G1 ← G1/Vl.
7 E1 ← the set of edges of G1.
8 E∗ ← E∗ ∪ E1.
9 Output G∗ = (V, E∗).

Zhao et al. [31] proved that Algorithm 8.2 returns a feasible solution for the MSCSS
problem and has an approximation factor of 5/3. In [31], they also showed that
Algorithm 8.2 can be implemented in linear time.

Now we modify Georgiadis’s algorithm [13] and combine it with the algorithm
of Zhao et al. [31] in order to obtain an approximation algorithm for the MS-SAPs
problem. See Algorithm 8.3.

Algorithm 8.3.
Input: A strongly connected graph G = (V, E).
Output: A SCSS G∗ = (V, E∗) of G with the same SAPs.
1 if G is 2-vertex-connected then
2 Run Algorithm 8.1 on G.
3 else
4 Compute the SAPs of G.
5 If all vertices in V are SAPs then
6 Compute a SCSS G∗ = (V, E∗) of G using the Algorithm of
7 Zhao et al. [31] and output G∗.
8 else
9 Choose a vertex v ∈ V such that v is not a SAP of G.
10 Compute a SCSS G′ = (V \ {v}, E′) of G \ {v} using the Algorithm
11 of Zhao et al. [31].
12 Compute two independent spanning trees T1, T2 of G(v).
13 Compute two independent spanning trees T3, T4 of GR(v).
14 E∗ ← E′ ∪ T1 ∪ T2 ∪ T R

3 ∪ T R
4 .

15 Output G∗ = (V, E∗).

The following lemma shows that the output G∗ of Algorithm 8.3 is a feasible
solution for the MS-SAPs problem.

Lemma 8.1. The output G∗ is strongly connected, and the directed graphs G∗ and
G have the same SAPs.
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Proof. We need only to show that this lemma is correct when G is not 2-vertex-
connected. Let G be a strongly connected graph which is not 2-vertex-connected. If
all the vertices in V are SAPs in G, then, for any SCSS G′ of G, the graphs G′ and
G have the same SAPs. Otherwise, G has at least one vertex v which is not a SAP
of G (see lines 9–14). In this case, by ([20], Thm. 5.2), D(v) ∪DR(v) is the set of
all SAPs of G. Georgiadis and Tarjan [14] showed that there exist two independent
trees of G(v) and the flowgraphs G(v) and (V, T1∪T2, v) have the same non-trivial
dominators. Thus, the flowgraphs GR(v) and (V, T3 ∪ T4, v) have the same non-
trivial dominators. Clearly, (V, T1 ∪ T R

3 ) is strongly connected. Therefore, G∗ is
strongly connected. Let D1(v) be the set of all non-trivial dominators of G∗(v)
and let DR

1 (v) be the set of all non-trivial dominators of G∗R(v), where G∗R is
the reversal graph of G∗. Since T1 ∪ T2 ⊆ E∗, we have D1(v) ⊆ D(v). Moreover,
DR

1 (v) ⊆ DR(v) because T R
3 ∪ T R

4 ⊆ E∗. As a consequence, D1(v) ∪ DR
1 (v) ⊆

D(v) ∪ DR(v). Assume for a contradiction that D1(v) ∪DR
1 (v) �= D(v) ∪DR(v).

Then there is at least vertex x ∈ D(v) ∪ DR(v) such that x /∈ D1(v) ∪ DR
1 (v).

By ([20], Thm. 5.2), the vertex x is not a SAP in G∗ but x is a SAP in G. Thus,
G∗ \{x} is strongly connected. Because G∗ \{x} is a spanning subgraph of G\{x},
the directed graph G\{x} is strongly connected, which contradicts that x is a SAP
in G. Since v is not a SAP of G∗ and D(v) ∪DR(v) = D1(v) ∪DR

1 (v), by ([20],
Thm. 5.2) the set of all SAPs of G∗ is D(v) ∪DR(v). �

Theorem 8.2. Algorithm 8.3 achieves an approximation ratio of 17/3.

Proof. The algorithm of Zhao et al. [31] has an approximation factor of 5/3. Thus,
it is enough to consider the case when G is not 2-vertex-connected and includes
at least one vertex which is not a SAP. Let Eopt be an optimal solution for the
MS-SAPs problem. Let E′

opt be any optimal solution for the problem of finding
a MSCSS of G \ {v}. Since the vertex v is not a SAP in G[Eopt], the graph
G[Eopt] \ {v} is strongly connected. Thus, we have |Eopt| ≥ |E′

opt|. Consequently,
by ([31], Thm. 3), we have |E′|/|Eopt| ≤ |E′|/|E′

opt| ≤ 5/3. Since |T1 ∪ T2 ∪
T R

3 ∪ T R
4 | ≤ 4(n − 1) and |Eopt| ≥ n, Algorithm 8.3 has approximation ratio

|E∗|/|Eopt| ≤ 4− 4/n + 5/3 = 17/3− 4/n. �

Theorem 8.3. Algorithm 8.3 runs in linear time.

Proof. The SAPs of G can be calculated in linear time using the algorithm of
Italiano et al. [20]. Two independent spanning trees of G(v) can also be con-
structed in linear time [15]. Furthermore, the algorithm of Zhao et al. [31] can be
implemented in linear time. �

9. Approximation algorithm for the MS-2SBs problem

In this section we present an approximation algorithm for the MS-2SBs prob-
lem. Let G = (V, E) be a strongly connected graph such that G is not 2-vertex-
connected. Our algorithm consists of two main steps. The first step finds a SCSS
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G∗ of G such that G∗ and G have the same SAPs. The following lemma explains
the purpose of this step.

Lemma 9.1. Let G = (V, E) be a strongly connected graph and let S be the set of
all SAPs of G. Let G∗ = (V, E∗) be a feasible solution for the MS-SAPs problem
and let x, y be distinct vertices in V . Then for any vertex z ∈ V \ (S ∪ {x, y}), the
vertices x, y lie in the same SCC of G∗ \ {z}.
Proof. Immediate from the definition of SAPs, since G and G∗ have the same
SAPs. �

Let x, y be two vertices in G such that x
2s� y and let z be a vertex in V \{x, y}

such that z is not SAP in G. The first step ensures that there exist at least one
path from x to y and from y to x in G∗ \ {z}. The second step computes, for each
SAP v of G, strongly connected spanning subgraphs of the subgraphs induced by
the SCCs of G \ {v}.
Algorithm 9.1.
Input: A strongly connected graph G = (V, E).
Output: A SCSS of G with the same 2-strong blocks.
1 if G is 2-vertex-connected then
2 Run algorithm of Cheriyan and Thurimella [5] for minimum
3 cardinality 2-VCSS problem, improved in [13].
4 else
5 lines 4–14 of Algorithm 8.3, giving G∗ = (V, E∗).
6 for each SAP v of G do
7 Compute the SCCs of G \ {v}.
8 for each SCC C of G \ {v} do
9 if G∗[C] is not strongly connected then
10 Find a SCSS (C, E′) of G[C] with |E′| ≤ 2(|C| − 1).
11 E∗ ← E∗ ∪E′.
12 Output G∗ = (V, E∗).

In the following lemma we show that Algorithm 9.1 returns a feasible solution
for the MS-2SBs problem.

Lemma 9.2. Let G∗ be the output of Algorithm 9.1. Then G∗, G have the same
2-strong blocks and G∗ is strongly connected.

Proof. Since each 2-vertex-connected graph is a 2-strong block, the algorithm
of Cheriyan and Thurimella [5] returns a feasible solution when G is 2-vertex-
connected. Let G = (V, E) be a strongly connected graph such that G is not
2-vertex-connected. By Lemma 8.1, the directed graph G∗ which is calculated in
line 5 and the directed graph G have the same SAPs, and G∗ is strongly connected.
Therefore, the output G∗ of Algorithm 9.1 and G have the same SAPs. Obviously,
it is sufficient to show the following. Let x, y ∈ V be distinct vertices such that
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x
2s� y in G. We must show that x

2s� y in the output G∗ of Algorithm 9.1. Let
v ∈ V \ {x, y} be some vertex. By Lemma 9.1, we may assume that v is a SAP.
Then x, y lie in the same SCC of G \ {v}. The execution of the loop in lines 6–11
for v enforces that x, y are also in the same SCC of G∗ \ {v}. �

Theorem 9.3. Algorithm 9.1 has an approximation factor of (2tsap + 17/3).

Proof. If G is 2-vertex-connected, the algorithm of Cheriyan and Thurimella [5]
for the minimum cardinality 2-VCSS problem achieves an approximation ratio of
3/2. We consider now the case when G is not 2-vertex-connected. Let Eopt be
an optimal solution for the MS-2SBs problem. The output G∗ of Algorithm 9.1
consists of two edge sets E1, E2, where the edge set E1 is computed in line 5 and
the edge set E2 is computed in lines 6–11. By Theorem 8.2, |E1|/|Eopt| ≤ 17/3.
The number of iterations of the for-loop in lines 6–11 is tsap. Because the SCCs
of a directed graph are disjoint, we have |E2| < 2tsapn. Since |Eopt| ≥ n, we have
|E2|/|Eopt| < 2tsap. �

Theorem 9.4. Algorithm 9.1 runs in O(m(
√

n + tsap) + n2) time.

Proof. The algorithm of Cheriyan and Thurimella [5] for the minimum cardinality
2-VCSS problem has running time O(m2). In 2011, Georgiadis [13] improved it
to O(m

√
n + n2). By Theorem 8.3, line 5 takes O(n + m) time. The SCCs of a

directed graph can be found in linear time using Tarjan’s algorithm [28]. Thus,
lines 6–11 take O(tsapm) time. �

Notice that in lines 9–11 of Algorithm 9.1, every SCC C which does not contain
any vertex of the 2-strong blocks of G can be safely disregarded.

10. Approximation algorithm for the MS-2EBs problem

In this section we present an approximation algorithm for the MS-2EBs problem.
The idea of this algorithm (Algorithm 10.1) is similar to the idea of Algorithm 9.1.

Algorithm 10.1.
Input: A strongly connected graph G = (V, E).
Output: A SCSS of G with the same 2-edge blocks.
1 Choose a vertex v of G.
2 Compute two spanning trees T1, T2 of G(v) (rooted at v) such
3 that T1, T2 have only the edge dominators of G(v) in common.
4 Compute two spanning trees T3, T4 of GR(v) (rooted at v) such
5 that T3, T4 have only the edge dominators of GR(v) in common.
6 E∗ ← T1 ∪ T2 ∪ T R

3 ∪ T R
4 .

7 Find all the strong bridges in G.
8 for each strong bridge e of G do
9 Compute the SCCs of G \ {e}.
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10 for each SCC C of G \ {e} do
11 if G∗[C] is not strongly connected then
12 Find a SCSS (C, E′) of G[C] with |E′| ≤ 2(|C| − 1).
13 E∗ ← E∗ ∪E′.
14 Output G∗ = (V, E∗).

Lemma 10.1. Let G∗ be the output of Algorithm 10.1. Then G∗ is strongly con-
nected and the directed graphs G∗, G have the same strong bridges.

Proof. Since T1 ∪ T R
3 ⊆ E∗, the graph G∗ is strongly connected. Tarjan [29]

proved that there exist two spanning trees (rooted at v) of G(v) that have only
the edge dominators of G(v) in common and he gave algorithms for computing
them. Italiano et al. [20] showed that edge e ∈ E is strong bridge if and only
if e is an edge dominator in G(v) or in GR(v). Therefore, the directed graphs
G, (V, T1∪T2∪T R

3 ∪T R
4 ) have the same strong bridges. Since (V, T1∪T2∪T R

3 ∪T R
4 )

is a subgraph of G∗ and G∗ is a subgraph of G, the directed graphs G∗, G have
the same strong bridges. �

Next we show that Algorithm 10.1 outputs a feasible solution for the MS-2EBs
problem.

Lemma 10.2. Let G∗ = (V, E∗) be the output of Algorithm 10.1. Then G∗, G
have the same 2-edge blocks.

Proof. Let x, y be distinct vertices such that x
2e� y in G. We must show that

x
2e� y in G∗. By Lemma 5.1, we need to show that x, y lie in the same SCC of

G∗ \ {e} for any edge e ∈ E∗. Let e be an edge in G∗. We consider two cases.

1. e is not a strong bridge in G∗. By Lemma 10.1, G∗ is strongly connected. Hence,
by definition of strong bridges, the vertices x, y lie in the same SCC of G∗ \{e}.

2. e is a strong bridge in G∗. By Lemma 10.1, G, G∗ have the same strong bridges.
Since x, y lie in the same SCC of G \ {e}, the execution of the loop in lines
8–13 enforces that the vertices x, y are also in the same SCC of G∗ \ {e}. �

Theorem 10.3. Let G∗ = (V, E∗) be the output of Algorithm 10.1. Then |E∗| <
(4 + 2tsb)n.

Proof. Let E1 be the edge set which is computed in lines 8–13. Notice that the
SCCs of a directed graph are disjoint and we add at most 2(|C|−1) edges for each
SCC C in lines 12–13. Since the number of iterations of the for-loop in lines 8–13 is
tsb, we have |E1| ≤ 2tsb(n−1). Therefore, we have |E∗| = |T1∪T2∪T R

3 ∪T R
4 |+|E1| ≤

4(n− 1) + 2tsb(n− 1) < (4 + 2tsb)n. �

Let G be a strongly connected graph. Since each SCSS of G has at least n edges,
Algorithm 10.1 achieves an approximation ratio of (4 + 2tsb).

Theorem 10.4. The running time of Algorithm 10.1 is O((tsb + α(n, m))m).
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Proof. Two spanning trees T1, T2 of G(v) (rooted at v) such that T1, T2 have only
the edge dominators of G(v) in common can be computed in O(mα(n, m)) time
by using Tarjan’s algorithm [29], where α(n, m) is a very slowly function related
to a functional inverse of Ackermann’s function. The strong bridges of a strongly
connected graph can be computed in linear time using the algorithm of Italiano
et al. [20]. Moreover, the number of iterations of the for-loop in lines 6–13 is tsb.
The total time for Algorithm 10.1 is therefore O((tsb + α(n, m))m). �

Notice that by Lemma 6.1, we can obtain a (2(tsap + tsb) + 29/3) approxima-
tion algorithm for the MS-2DBs problem by combining Algorithm 9.1 and Algo-
rithm 10.1. This algorithm whose running time is O((tsap +tsb +

√
n+α(n, m))m+

n2) might be useful when tsap + tsb is small.

11. Open problems

The k-strong blocks of directed graphs, which are natural generalization of 2-
strong blocks, are similar to the k-blocks of undirected graphs [4]. Let G = (V, E)
be a directed graph. We define a relation ks� as follows. For any pair of distinct
vertices x, y ∈ V , we write x

ks� y if for each subset X ⊆ V \ {x, y} with |X | < k,
the vertices x and y lie in the same SCC of G \X . A k-strong block in a directed
graph G is a maximal vertex set Cks ⊆ V with |Cks| ≥ k such that for each pair of
distinct vertices x, y ∈ Cks, we have x

ks� y. One can show that any two k-strong
blocks have at most k− 1 vertices in common. A simple algorithm was given in [4]
to find the k-blocks of an undirected graph. We noticed that this algorithm is also
able to compute the k-strong blocks of a directed graph in O(min{k,

√
n}n4)-time.

We just need to modify the pre-processing step and the definition of separation.
Let G = (V, E) be a directed graph. An ordered pair (C, D) such that C, D ⊆ V
and C∪D = V is a separation of G if there is no edge from C \D to D\C or there
is no edge from D \ C to C \ D. In the pre-processing step we construct a new
undirected graph Hk = (V, Ek) as follows. For each pair of distinct vertices x, y

of G, if x
ks� y in G, we add an undirected edge (x, y) to Ek (see Appendix A).

Furthermore, for every pair (x, y) of Hk with (x, y) /∈ Ek, we label it with some
separation (C, D) such that |C ∩D| < k and x ∈ C, y ∈ D.

We leave as an open problem whether there exists any approximation algo-
rithm for the problem of finding MSCSS with same k-strong blocks of a strongly
connected graph for k > 2. Another open question is whether there is an approx-
imation algorithm for the problem of finding MSCSS with the same k-directed
blocks when k > 2.

It is also possible to generalize the MS-2EBs problem. Let G = (V, E) be a
strongly connected graph. We define a relation ke� as follows. For any pair of
distinct vertices x, y ∈ V , we write x

ke� y if for each edge subset Y ⊆ E with
|Y | < k, the vertices x, y lie in the same SCC of G \Y . The k-edge blocks of G are
maximal subsets of V of size ≥ k closed under ke�.
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Lemma 11.1. The k-edge blocks of a strongly connected graph are disjoint.

Proof. The proof is similar to our proof of Lemma 5.2. �

The k-edge blocks of a directed graph can be found in O(n3m) time using maximum
flow algorithms [19, 26] since the relation ke� is symmetric and transitive.

A. Lemmas related to k-strong blocks

Lemma A.1. Let G = (V, E) be a directed graph and let x, y be distinct vertices
of G. Then x

ks� y if and only if x, y satisfy one of the following conditions.

1. {(x, y), (y, x)} ⊆ E.
2. (x, y) ∈ E, (y, x) /∈ E and there are k-vertex-disjoint paths from y to x in G.
3. (y, x) ∈ E, (x, y) /∈ E and there are k-vertex-disjoint paths from x to y in G.
4. {(x, y), (y, x)} ∩ E = ∅ and there exist k-vertex-disjoint paths from x to y and

from y to x in G.

Proof. This follows immediately from Menger’s Theorem for vertex connectiv-
ity. �

Lemma A.2. Let (C, D) be a separation of a directed graph G = (V, E) such that
|C ∩D| < k. Then C \D and D \ C lie in different k-strong blocks of G.

Proof. Let x be any vertex in C \ D and let y be any vertex in D \ C. By the
definition of separation, there is either no path from x to y or no path from y to
x in G \ (C ∩D). Thus, x, y do not lie in the same SCC of G \ (C ∩D). �

Acknowledgements. The author would like to thank Martin Dietzfelbinger for helpful
comments and interesting discussions. He also would like to thank the anonymous re-
viewers for their many helpful comments and suggestions, which helped in improving the
exposition.

References

[1] S. Alstrup, D. Harel, P.W. Lauridsen and M. Thorup, Dominators in linear time. SIAM J.
Comput. 28 (1999) 2117–2132.

[2] R. Balakrishnan and K. Ranganathan, A Textbook of graph theory, 2nd edn. Springer (2012)
66.

[3] A.L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R.E. Tarjan and J.R. Westbrook,
Linear-time algorithms for dominators and other path-evaluation problems. SIAM J. Com-
put. 38 (2008) 1533–1573.

[4] J. Carmesin, R. Diestel, M. Hamann and F. Hundertmark, k-Blocks, a connectivity invariant
for graphs (2013). Preprint ArXiv:1305.4557.

[5] J. Cheriyan and R. Thurimella, Approximating minimum-size k-connected spanning sub-
graphs via matching. SIAM J. Comput. 30 (2000) 528–560.

[6] Y.M. Erusalimskii and G.G. Svetlov, Bijoin points, bibridges, and biblocks of directed
graphs. Cybernet. Systems Anal. 16 (1980) 41–44.



COMPUTING THE 2-BLOCKS OF DIRECTED GRAPHS 119

[7] D. Firmani, G.F. Italiano, L. Laura, A. Orlandi and F. Santaroni, Computing strong articu-
lation points and strong bridges in large scale graphs, SEA. Lect. Notes Comput. Sci. 7276
(2012) 195–207.

[8] S. Fortune, J.E. Hopcroft and J. Wyllie, The Directed Subgraph Homeomorphism Problem.
Theoret. Comput. Sci. 10 (1980) 111–121.
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