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THE FINITENESS PROBLEM FOR MONOIDS
OF MORPHISMS

Juha Honkala1

Abstract. We study finitely generated monoids consisting of endo-
morphisms of a free monoid. We give a necessary and sufficient condi-
tion for such a monoid to be infinite and show that this condition is
decidable. As a special case we discuss the morphism torsion problem.
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1. Introduction and results

Let X be a finite alphabet and let Hom(X∗) be the monoid consisting of all
endomorphisms of the free monoid X∗. The problem whether a morphism h ∈
Hom(X∗) generates a finite submonoid of Hom(X∗) is called the morphism torsion
problem in [2], where it is shown that this problem is decidable in polynomial time.
The idea of the proof by Cassaigne and Nicolas is to replace the morphism h by its
incidence matrix M and check whether M generates a finite matrix monoid. This
idea of Cassaigne and Nicolas can also be used to decide whether a finite subset of
Hom(X∗) generates a finite monoid by applying the decidability of the finiteness
problem for finitely generated matrix monoids due to [3, 5]. The decidability of
the finiteness problem for finitely generated morphism monoids is perhaps not
stated explicitly in the literature but it follows, for example, as a special case of
the decidability of the finiteness problem for ET0L languages (see [4]). However,
decision methods based on [3, 5] or the properties of ET0L languages lead to
algorithms with very high complexity.

In this note we give a different approach to these problems. Our approach is
largely inspired by a classical result of Salomaa characterizing exponential D0L
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systems (see [7]). By definition, a D0L system is a triple G = (X, h, w), where
X is a finite alphabet, h is a morphism in Hom(X∗) and w is a word in X∗. G
is called exponential if there exists a real number α > 1 such that the length of
hn(w) exceeds αn for all large values of n. Salomaa proved that G = (X, h, w) is
exponential if and only if there is a letter x ∈ X occurring in some hn(w) and an
integer k such that the word hk(x) contains at least two occurrences of x.

Our characterization of the finite subsets of Hom(X∗) generating an infinite
submonoid of Hom(X∗) uses the notion of a cyclic letter. If x ∈ X and w ∈ X∗,
then |w|x is the number of occurrences of x in w. More generally, if Y ⊆ X , then
|w|Y is the number of occurrences of the letters of Y in w. Now, if h ∈ Hom(X∗),
the set CYCLIC(h) consisting of cyclic letters with respect to h is defined by

CYCLIC(h) = {x ∈ X | |h(x)|x ≥ 1}.
Using this notion we can state our main result.

Theorem 1.1. Let X be a finite alphabet and let h1, . . . , hm ∈ Hom(X∗). Then
h1, . . . , hm generate an infinite submonoid of Hom(X∗) if and only if there exists a
morphism h in the submonoid generated by h1, . . . , hm and a letter x ∈ CYCLIC(h)
such that

|h(x)|CYCLIC(h) ≥ 2. (1.1)

Theorem 1.1 will be proved in Section 3. In Section 4 we will show that the
condition of Theorem 1.1 is decidable. In Section 2 we will discuss the morphism
torsion problem.

2. The morphism torsion problem

Theorem 1.1 takes a very simple form if we consider monoids generated by a
single morphism. We will use the well-known fact that if X is a d-letter alphabet,
w ∈ X∗ and h ∈ Hom(X∗), then hn(w) �= ε for all n ≥ 0 if and only if hd(w) �= ε.
To prove this fact it suffices to show that if hn(x) = ε for some n ≥ 0 and x ∈ X ,
then hd(x) = ε. We prove this inductively. If d = 1, the claim holds. Assume d > 1
and assume that the claim holds for alphabets which have less than d letters. Now,
x is not a factor of hm(x) for any m ≥ 1. Hence h(x) is a word over the (d − 1)-
letter alphabet X −{x} and h defines an endomorphism of (X −{x})∗. The claim
follows inductively.

Theorem 2.1. Let X be an alphabet having d letters and let h ∈ Hom(X∗). Then
h generates an infinite submonoid of Hom(X∗) if and only if there is a positive
integer k ≤ d, a letter x ∈ X and words u, v ∈ X∗ such that

hk(x) = uxv (2.1)

and
hd(uv) �= ε. (2.2)
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Proof. Suppose first that there is a positive integer k, a letter x ∈ X and words
u, v ∈ X∗ such that (2.1) and (2.2) hold. Then for n ≥ 1,

hnk(x) = h(n−1)k(u)h(n−2)k(u) . . . hk(u)uxvhk(v) . . . h(n−2)k(v)h(n−1)k(v).

Because hi(uv) �= ε for all i, it follows that h generates an infinite submonoid of
Hom(X∗).

Conversely, assume that h generates an infinite submonoid of Hom(X∗). Choose
recursively letters x0, x1, . . . , xd ∈ X such that {hn(xi) | n ≥ 0} is infinite for
i = 0, 1, . . . , d and xi+1 is a factor of h(xi) for i = 0, 1, . . . , d− 1. Then there exist
integers s and t such that s < t and xs = xt. Hence xs is a factor of ht−s(xs). Let
u, v ∈ X∗ be words such that

ht−s(xs) = uxsv.

Then hd(uv) �= ε. Indeed, if hd(uv) = ε, the set {hn(t−s)(xs) | n ≥ 0} would be
finite which is not possible because {hn(xs) | n ≥ 0} is infinite. �

Observe that the criterion of Theorem 2.1 leads to a polynomial time algorithm.

3. Proof of Theorem 1.1

We first recall some facts concerning incidence matrices of morphisms. Let the
letters of X be x1, . . . , xd. Then the incidence matrix Mh of h ∈ Hom(X∗) is
defined by

Mh =

⎛
⎜⎜⎝

|h(x1)|x1 |h(x2)|x1 . . . |h(xd)|x1

|h(x1)|x2 |h(x2)|x2 . . . |h(xd)|x2

...
...

. . . · · ·
|h(x1)|xd

|h(x2)|xd
. . . |h(xd)|xd

⎞
⎟⎟⎠ .

If g, h ∈ Hom(X∗) we have MgMh = Mgh. If M is a d×d matrix with nonnegative
integer entries, there exist at most finitely many h ∈ Hom(X∗) such that M = Mh.

Let now X be a finite alphabet having d letters and let h1, . . . , hm ∈ Hom(X∗).
Let H be the submonoid of Hom(X∗) generated by h1, . . . , hm. If h ∈ Hom(X∗)
is an arbitrary morphism, let h∗ be the submonoid of Hom(X∗) generated by h.
In other words,

H = {hi1hi2 . . . hip | p ≥ 0, i1, . . . , ip ∈ {1, . . . , m}}
and

h∗ = {hi | i ∈ N}.
In the proof of the following lemma we use the result of McNaughton and

Zalcstein (see [1,6]) stating that if every matrix of a finitely generated monoid M
of matrices over Q generates a finite monoid, then the monoid M is finite.

Lemma 3.1. Using the notation explained above, H is a finite monoid if and only
if h∗ is a finite monoid for all h ∈ H.
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Proof. If H is finite, so is h∗ for all h ∈ H . Conversely, suppose h∗ is a finite
monoid for all h ∈ H . Then Mh generates a finite monoid for all h ∈ H . Hence, the
matrix monoid M generated by Mh1 ,. . . ,Mhm has the property that every matrix
of M generates a finite submonoid of M. Hence by the result of McNaughton and
Zalcstein quoted above, M is a finite monoid. Therefore also H is finite. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose first that there is a morphism h ∈ H and a letter
x ∈ CYCLIC(h) such that (1.1) holds. Then

|hn(x)|CYCLIC(h) ≥ n + 1 (3.1)

for all n ≥ 1. Indeed, (3.1) holds by assumption if n = 1. If (3.1) holds for n ≥ 1,
then hn(x) contains x and at least n other occurrences of letters which are cyclic
with respect to h. Hence hn+1(x) contains at least n + 2 cyclic letters, because h
produces at least one cyclic letter when applied to any cyclic letter and h produces
at least two cyclic letters when applied to x.

Now (3.1) implies that h∗ and H are infinite.
Suppose then that H is infinite. By Lemma 3.1 there exists h ∈ H such that

h∗ is infinite. By Theorem 2.1 there is a positive integer k, a letter x ∈ X and
words u, v ∈ X∗ such that (2.1) and (2.2) hold. Let g = hk. Then g(x) = uxv and
gn(uv) �= ε for all n ≥ 0. If there is a positive integer n such that gn(x) contains
at least two occurrences of x the condition of Theorem 1.1 holds. Suppose that

|gn(x)|x = 1

for all n ∈ N. Choose recursively letters y1, . . . , yd ∈ X −{x} such that gn(yi) �= ε
for all n ∈ N and i = 1, . . . , d and yi+1 is a factor of g(yi) for i = 1, . . . , d − 1
and y1 is a factor of g(x). Then there exist integers p and q such that p < q and
yp = yq. Hence yp, . . . , yq−1 ∈ CYCLIC(gq−p). Now, choose an integer j such that
p ≤ j < q and q − p divides j. Let f = gj. Then f ∈ H and

|f(x)|CYCLIC(f) ≥ 2.

Indeed, f(x) contains the letters x and yj which are cyclic with respect to f and
x �= yj . This shows that the condition of Theorem 1.1 holds. �

4. Decidability

Let X = {x1, . . . , xd} be an alphabet having d letters and let h1, . . . , hm ∈
Hom(X∗). Let H be the submonoid of Hom(X∗) generated by h1, . . . , hm. In this
section we show that the condition of Theorem 1.1 is decidable. In other words,
we show that it is decidable whether there exist h ∈ H and x ∈ CYCLIC(h) such
that (1.1) holds.
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First, if h ∈ Hom(X∗), define the mapping A(h) : X → Nd by

A(h)(x) = (v1, . . . , vd)

where

vi =

⎧⎨
⎩

2 if |h(x)|xi ≥ 2
1 if |h(x)|xi = 1
0 if |h(x)|xi = 0

for i = 1, . . . , d. Now, if f, g, h ∈ Hom(X∗), then A(f) = A(g) implies that A(hf) =
A(hg). From this it follows that we can compute the finite set

A = {A(h) | h ∈ H}.

The decidability of the condition of Theorem 1.1 follows. Indeed, there exist h ∈ H
and x ∈ CYCLIC(h) such that (1.1) holds if and only if there exists an integer
i ∈ {1, . . . , d} and α ∈ A such that the ith coordinate of α(xi) is two or there exist
i, j ∈ {1, . . . , d}, i �= j such that the ith coordinate of α(xi) equals 1 and the jth
coordinates of α(xi) and α(xj) are 1 or 2.

Hence Theorem 1.1 gives a simple algorithm for the finiteness problem for
monoids of morphisms.
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