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Abstract. The QSAT problem is the quantified version of the SAT
problem. We show the existence of a threshold effect for the phase tran-
sition associated with the satisfiability of random quantified boolean
CNF formulas of the form ∀X∃Y ϕ(X, Y ), where X has m variables, Y
has n variables and each clause in ϕ has one literal from X and two
from Y . For such formulas, we show that the threshold phenomenon is
controlled by the ratio between the number of clauses and the number n
of existential variables. Then we give the exact location of the associ-
ated critical ratio c∗: it is a decreasing function of α, where α is the
limiting value of m/ log(n) when n tends to infinity. Thus we give a pre-
cise location of the phase transition associated with a coNP-complete
problem.
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1. Introduction

A significant tool for SAT research has been the study of random instances.
In the last decades, numerous experimental studies have provided strong evidence
that the difficulty to solve large instances of k-SAT is tightly linked to a phase
transition in the probability that a random instance is satisfiable (see e.g. [15]).
As the clauses-to-variables ratio increases, the vast majority of formulas abruptly
stop being satisfiable at a critical threshold point. The instances that are hard
to solve seem to be located around this critical point. Determining the nature of
the phase transition, locating it, determining a precise scaling window and gaining
a better understanding of the structure of the space of solutions turn out to be
challenging tasks, which have aroused a lot of interest and fructuous collaborations
among different disciplines, namely combinatorics, probability, computer science
and statistical physics.

Recently there has been a growth of interest in a powerful generalization of the
Boolean satisfiability, namely the satisfiability of Quantified Boolean formulas,
QBFs. Compared to the well-known propositional formulas, QBFs permit both
universal and existential quantifiers over Boolean variables. Thus QBFs allow the
modeling of problems having higher complexity than SAT, ranging in the polyno-
mial hierarchy up to PSPACE. These problems include problems from the areas of
verification, knowledge representation and logic (see, e.g. [10]). Models for gener-
ating random instances of QBF have been proposed [3,12]. Problems for which one
can combine practical experiments with theoretical studies are natural candidates
for first investigations [5]. In this paper, we focus on a certain subclass of closed
quantified Boolean formulas. We are interested in closed formulas in conjunctive
normal form, (1,2)-QCNF, having two quantifier blocks. More precisely, we con-
sider formulas of the type ∀X∃Y ϕ(X, Y ), where X and Y denote distinct sets
of variables, and ϕ(X, Y ) is a conjunction of 3-clauses, each of which containing
exactly one universal literal and two existential ones. These formulas are closely
linked to 2-CNF-formulas, whose random instances have been extensively studied
in the literature (see, e.g. [2,4,8,13,17,18]). However, the introduction of quantifiers
increases the complexity (from linear time solvable [1] up to coNP-complete [11])
and requires additional parameters for the generation of random instances. The
first one is the pair (m, n) that specifies the number of variables in each quantifier
block, i.e. in X and Y . The second one is L = �cn�, the number of clauses. We
shall study the probability that a formula drawn at random uniformly out of this
set of formulas evaluates to true as n tends to infinity. We will denote by Pm,c(n)
this probability. Thus, we are interested in

lim
n→+∞ Pm,c(n).

Let us recall that the transition from satisfiability toun satisfiability for random
2-CNF formulas is sharp. Indeed, there is a critical value (or a threshold) of
the ratio of the number of clauses to the number of variables, above which the
likelihood of a random 2-CNF-formula being satisfiable vanishes as n tends to
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infinity, and below which it goes to 1. Moreover, this critical value is known to
be 1 (see [4, 13]).

For random (1,2)-QCNF-formulas, the transition from satisfiability to unsatisfi-
ability depends on the number of universal variables. Indeed, on the one hand ob-
serve that, when there is only one universal variable i.e. when m = 1, a (1,2)-QCNF-
formula with L clauses can be seen as the conjunction of two nearly independent
2-CNF-formulas (each of which corresponds to an assignment to the universal vari-
able and has on average L/2 clauses). On the other hand, when m is large enough,
a random (1,2)-QCNF-formula with L = �cn� clauses has essentially distinct uni-
versal variables, and then behaves as an existential 2-CNF-formula.

Thus, in a first step, we prove that the transition between satisfiability and
unsatisfiability for random (1,2)-QCNF-formulas occurs when c is between 1 and 2.
Second, we identify a window for m in which the introduction of universal variables
makes the critical ratio vary from 2 to 1. Our main contribution consists in proving
that the logarithmic scale, m = �α log n�, is the right one in order to observe the
evolution of the critical ratio associated to the (1,2)-QSAT phase transition. Indeed,
we obtain the precise location of the critical ratio as a function of α:

Theorem 1.1. For any real α > 0, there exists c∗(α) ∈ [1, 2] such that:

• if c < c∗(α), then P�α log n�,c(n) −−−−−→
n→+∞ 1,

• if c > c∗(α), then P�α log n�,c(n) −−−−−→
n→+∞ 0.

Let K be the binary entropy function: K(x) = −x log x− (1−x) log(1−x) then,
the critical ratio c∗(α) is given by

c∗(α) =

{
2 if α ≤ 1

the unique root c ∈]1, 2[ of α(1 − K(c/2)) = c/2 if α > 1

Figure 1 makes the link between c∗(α) and the binary entropy function. Figure 2
shows the continuous evolution of the critical ratio c∗(α) as a function of α with
limα→1+ = c∗(1) = 2 and limα→+∞ c∗(α) = 1.

In addition we show (see Prop. 3.5) that at a sub-logarithmic scale for m, i.e.
for m 	 log n, the critical ratio is equal to 2, whereas for m 
 log n, the critical
ratio is equal to 1.

The paper is organized as follows. In Section 2 we present our combinatorial
and probabilistic models. In Section 3 we give first estimates for the critical ratio
of the phase transition. Section 4 is dedicated to the proof of our main result.
In Section 4.1 we introduce specific substructures, namely pure bicycles and pure
snakes, whose appearance is respectively necessary and sufficient to ensure falsity
of a (1,2)-QCNF formula. In Sections 4.2 and 4.3 we prove lower and upper bounds
for the critical ratio based respectively on the first and second moment method
on the number of pure bicycles and pure snakes. The details of the proofs are
postponed in the subsequent sections, Sections 5 and 6.
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Figure 1. Location of the unique root of α(1 − K(c/2)) = c/2.
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Figure 2. Evolution of the critical ratio value.

2. Combinatorics and probabilistic model

2.1. (1,2)-QCNF formulas

A literal l is a propositional variable p or its negation p. Literals are said to be
strictly distinct when their corresponding variables are pairwise different. A clause
is a finite disjunction of strictly distinct literals. A formula is in conjunctive normal
form (CNF)) if it is a conjunction of clauses. A formula is in k-CNF, if any clause
consists of exactly k literals. Here we are interested in quantified propositional
formulas of the form

F = ∀X∃Y ϕ(X, Y )

where X = {x1, . . . , xm}, and Y = {y1, . . . , yn}, and ϕ(X, Y ) is a 3-CNF formula,
with exactly one universal and two existential literals in each clause. We denote
by Ωn,m the set of all such formulas that we call (1,2)-QCNFs. These formulas can
be considered as quantified extended 2-CNF formulas. Indeed, deleting the only
universal literal in each clause and removing the ∀-quantifiers, which then concern
variables that do not occur any more in the formula, result in a closed existentially
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quantified conjunction of binary clauses. The number of clauses in F (which is also
the number of clauses in ϕ) is denoted by |F | (resp., |ϕ|). Given a (1,2)-QCNF-
formula F = ∀X∃Y ϕ(X, Y ), we call subformula of F any (1,2)-QCNF-formula
F ′ = ∀X∃Y ϕ′(X, Y ), where ϕ′ seen as a set of clauses verifies ϕ′ ⊆ ϕ.

A truth assignment for the universal (resp. existential) variables, X (resp. Y )
is a Boolean function I : X → {0, 1} (resp. Y → {0, 1}), which can be extended
to literals by I(x) = 1 − I(x).

A (1,2)-QCNF formula is true (or satisfiable) if for every assignment to the
variables X , there exists an assignment to the variables Y such that ϕ is true
under this assignment. We denote by (1,2)-QSAT the property for a (1,2)-QCNF
formula to be true. Note that the worst-case complexity of deciding whether a
(1,2)-QCNF formula is true is known, it is coNP-complete (see [11]).

To any (1,2)-QCNF formula F , we can associate two existential formulas, which
will be useful in the forthcoming analysis.

Definition 2.1. For any (1,2)-QCNF-formula F , let us denote by:

• FY , the existential 2-CNF formula obtained from F in removing the universal
literal in each clause of F and then deleting the universal quantifiers.

• Ft, the 2-CNF formula obtained from F in setting all the universal variables
to true, simplifying the resulting clauses with respect to truth constants and
omitting all quantifiers.

Clearly we have

Lemma 2.2.

• FY ∈ 2-SAT =⇒ F ∈ (1,2)-QSAT.
• F ∈ (1,2)-QSAT =⇒ Ft ∈ 2-SAT.

2.2. Probabilistic, model

We consider formulas built on m universal variables, {x1, . . . , xm}, and n exis-
tential variables {y1, . . . , yn}. Thus the number of different (1, 2)-clauses we can
construct is a function of n and m:

N = Nm(n) = m

(
n

2

)
23 = 8m

(
n

2

)
= 4mn(n − 1).

We consider random formulas obtained by taking each one of the N possible clauses
independently from the others with probability p ∈]0, 1[, we call Fn,m,p this set of
formulas. Thus, given a (1,2)-QCNF formula F ∈ {0, 1}Nm we have

μp,n,m(F ) = p|F |(1 − p)Nm−|F |.

We denote by μp,n,m((1,2)-QSAT) the probability that a random formula in this
model evaluates to true. This model relates to the well-know model for random
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2-CNFs as follows. Let φ be a 2-CNF formula over n variables {y1, . . . , yn}, φ ∈
{0, 1}4(n

2), we set
μp,n,1/2(φ) = p|φ|(1 − p)4(

n
2)−|φ|.

We denote by μp,n,1/2(2-SAT) the probability that a random 2-CNF formula in this
model is satisfiable.

The mean of the number of clauses that occur in a random (1,2)-QCNF formula
is N · p. Therefore, for all c > 0, Ep,n,m(|F |) = cn if and only if p = L

4mn(n−1) .
It is well known, see for instance [14], Sections 1.4 and 1.5, that this model and
the model alluded to in the introduction – in which L = �cn� distinct clauses are
picked uniformly at random among all the N possible choices – are asymptotically
equivalent, provided p = L

4mn(n−1) .
As a consequence we set

Pm,c(n) = μ c
4m(n−1) ,n,m((1,2)-QSAT),

and
P1/2,c(n) = μ c

2(n−1) ,n, 12
(2-SAT).

We are interested in studying lim
n→+∞ Pm,c(n) as a function of the parameters m

and c, where m is a positive, integer-valued function of n. As (1,2)-QSAT is a
decreasing property, Pm,c(n) is a decreasing function of c. Any value of c such
that Pm,c(n) → 1 (resp. such that Pm,c(n) → 0) makes precise the location of the
transition between SATisfiability and UNSATisfiability.

3. First estimates of the (1,2)-QSAT phase transition

The phase transition for 2-SAT is well-known:

Theorem 3.1. ([4])

• ∀c > 1, P1/2,c(n) = o(1).
• ∀c < 1, P1/2,c(n) = 1 − o(1).

Thus there is a threshold effect for 2-SAT with an associated critical ratio c = 1.
Our goal is to show that such an effect exists for (1,2)-QSAT with an associated
ratio that depends on m, the number of universal variables. For such m, any value
of c such that Pm,c(n) → 1 (resp. such that Pm,c(n) → 0) will provide a lower
(resp. upper) bound for the critical ratio associated to the satisfiability of random
(1,2)-QCNF formulas. We first prove that for any m this critical ratio is between 1
and 2.

Proposition 3.2.

• For all m, for all c > 2, Pm,c(n) = o(1).
• For all m, for all c < 1, Pm,c(n) = 1 − o(1).
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Proof. Let F be a random (1,2)-QCNF formula, FY and Ft being the two associated
2-CNF formulas as defined in Definition 2.1.

For any 2-CNF formula φ we have

μp,n,m(FY = φ) = (1 − (1 − p)2m)|φ|(1 − p)Nm−2m|φ| = μ1−(1−p)2m,n,1/2(φ).

According to Lemma 2.2 we get

μp,n,m(F ∈ (1,2)-QSAT) ≥ μp,n,m(FY ∈ SAT) ≥ μ1−(1−p)2m,n,1/2(2-SAT).

If Nm · p = cn, i.e. 4mn(n − 1)p = cn, then 4
(
n
2

)
(1 − (1 − p)2m) ∼ cn since

1 − (1 − p)2m ∼ 2mp. Thus, if c < 1, then according to Proposition 3.1,

μ1−(1−p)2m,n,1/2(2-SAT) = 1 − o(1),

and hence μp,n,m(F ∈ (1,2)-QSAT) = 1 − o(1). This proves that for all c < 1,
Pm,c(n) = 1 − o(1).

Now observe that

μp,n,m(Ft = φ) = (1 − (1 − p)m)|φ|(1 − p)Nm/2−m|φ| = μ1−(1−p)m,n,1/2(φ).

According to Lemma 2.2 we get

μp,n,m(F ∈ (1,2)-QSAT) ≤ μp,n,m(Ft ∈ SAT) ≤ μ1−(1−p)m,n,1/2(2-SAT).

If Nm · p = cn, i.e. 4mn(n − 1)p = cn, then 4
(
n
2

)
(1 − (1 − p)m) ∼ c

2n.
Thus, if c > 2, then according to Proposition 3.1, μ1−(1−p)m,n,1/2(2-SAT) =
o(1), and hence μp,n,m(F ∈ (1,2)-QSAT) = o(1). This proves that for all
c > 2, Pm,c(n) = o(1). �

Thus, we can define:

• c+
m = inf{c > 0 such that Pm(n),c(n) = o(1)}.

• c−m = sup{c > 0 such that Pm(n),c(n) = 1 − o(1)}.
With this notation we get as a corollary of Proposition 3.2

Corollary 3.3. 1 ≤ c−m ≤ c+
m ≤ 2.

Our main task is to measure the influence of introducing universal variables on
the location of the transition. The first step is to show that the more we introduce
universal variables, the less the associated critical ratio is.

Proposition 3.4. If m1 	 m2 then c+
m1

≥ c+
m2

, and c−m1
≥ c−m2

.

Proof. Let q = m2 div m1 and r = m2 mod m1, i.e. m2 = qm1 + r. Note that
if m1 	 m2, then r 	 m2. From a formula F ∈ Ωn,m2 , we construct a formula
F̃ ∈ Ωn,m1 as follows: we replace in F all xi’s by x((i−1) mod m1)+1 for i ≤ qm1,
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and we delete all clauses that contain some xi for i > qm1. Observe that F ∈
(1,2)-QSAT =⇒ F̃ ∈ (1,2)-QSAT, therefore

μn,m2,p(F ∈ (1,2)-QSAT) ≤ μn,m2,p(F s.t. F̃ = F0, F0 ∈ Ωn,m1 , F0 ∈ (1,2)-QSAT).

Observe that

μn,m2,p(F s.t. F̃ = F0) = (1− (1−p)q)|F0|(1−p)qNm1−q|F0| = μn,m1,1−(1−p)q(F0).

Therefore
μn,m2,p((1,2)-QSAT) ≤ μn,m1,1−(1−p)q((1,2)-QSAT). (3.1)

Observe that Nm1(1 − (1 − p)q) ∼ Nm1qp. But, qNm1
Nm2

= qm1
m2

= 1 − r
m2

∼ 1
since r 	 m2. Thus, Nm1(1 − (1 − p)q) ∼ Nm2p. Hence if Nm2p = cn, then
Nm1(1 − (1 − p)q) ∼ cn. From this and (3.1) we can deduce, as in the proof of
Proposition 3.2 that c+

m1
≥ c+

m2
, and c−m1

≥ c−m2
. �

Observe that Theorem 1.1, together with the fact that limα→0+ c∗(α) = 2 and
limα→+∞ c∗(α) = 1, and Proposition 3.4 give the following proposition.

Proposition 3.5. Let m = m(n) be a sequence of positive integers.

• If m 	 log n, then c+
m = c−m = 2.

• If m 
 log n, then c−m = c+
m = 1.

Notice that Proposition 3.5 together with Theorem 1.1 provide a complete de-
scription of the evolution of the critical ratio associated to the phase transition of
(1,2)-QSAT.

4. Proof of Theorem 1.1

4.1. Pure quantified formulas

In our analysis pure quantified formulas, which are defined below, will play a
central role.

Definition 4.1. A (multi-)set of literals is pure if it does not contain both a
variable x and its negation x. By extension, we call a (1,2)-QCNF-formula, F =
∀X∃Y ϕ(X, Y ), pure if the set of universal literals occurring in ϕ is pure.

Proposition 4.2. Let F be a pure (1,2)-QCNF-formula, then

F ∈ (1,2)-QSAT ⇐⇒ FY ∈ 2-SAT.

Moreover, we have the following.

Proposition 4.3. A (1,2)-QCNF-formula is false if and only if it contains a false
pure subformula.
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Proof. Suppose that the (1,2)-QCNF-formula F = ∀X∃Y ϕ(X, Y ) is false. Then,
there is an assignment I to the universal variables X such that for all assignment
to the existential variables Y , ϕ evaluates to false. Consider the subformula of
F obtained in keeping only the clauses for which the universal literal is assigned
0 by I, and deleting the other ones. This subformula is pure (it cannot contain
both a clause with a universal variable x and another with x since either x or
x is assigned 1 by I), and is false by the choice of I. The converse direction is
obvious. �

In order to investigate the phase transition of random 2-SAT formulas, Chvátal
and Reed [4] identified appropriate witnesses for unsatisfiability. They showed
that every unsatisfiable formula contains a bicycle and that every snake is an
unsatisfiable formula. In the context of quantified formulas, let us define pure
versions of these specific structures.

Definition 4.4. A pure snake of length s + 1 ≥ 4, with s + 1 = 2t, is a set of
s + 1 clauses C0, . . . , Cs which have the following structure: there is a sequence
of s strictly distinct existential literals w1, . . . , ws, and a pure sequence of s + 1
universal literals v0, . . . , vs such that, for every 0 ≤ r ≤ s, Cr = (vr ∨ wr ∨ wr+1)
with w0 = ws+1 = wt.

Definition 4.5. A pure bicycle of length s + 1 ≥ 3, is a set of s + 1 clauses
C0, . . . , Cs which have the following structure: there is a sequence of s strictly
distinct existential literals w1, . . . , ws, and a pure sequence of s+1 universal literals
v0, . . . , vs such that, for 0 < r < s, Cr = (vr ∨wr ∨wr+1), C0 = (v0 ∨ u∨w1) and
Cs = (vs ∨ ws ∨ v) with literals u and v chosen from w1, . . . , ws, w1, . . . , ws with
(u, v) �= (ws, w1).

From [4] and Proposition 4.2 we get the following proposition.

Proposition 4.6.

• Every (1,2)-QCNF-formula that contains a pure snake is false.
• Every (1,2)-QCNF-formula that is false, contains a pure bicycle.

4.2. A lower bound for the critical ratio

From now on we will concentrate on the case where m = �α log n� with α > 0.
We obtain a lower bound for the satisfiability threshold by applying the first

moment method to pure bicycles.
Let Bs be the set of all pure bicycles of length s + 1. We define the random

variables Bs and B over the set of formulas Fn,m,p as Bs(F ) =
∑

b∈Bs
1[b⊆F ]

and B =
∑

s+1≥3 Bs.
The following inequality is an immediate consequence of Proposition 4.6.

1 − Pm,c(n) ≤ Pr(B ≥ 1) ≤ Em,c(B). (4.1)
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We will soon understand that it is always sufficient to evaluate moments up to
a polylogarithmic factor in n. Thus, when an and bn are two quantities depending
on n we shall use the following notation:

an � bn,

when there is a positive constant τ such that for every n large enough,

an ≤ (ln n)τbn.

and we shall write an ≡ bn if an � bn and bn � an. Furthermore, when the
quantities an and bn depend on some extra parameters β and γ restricted to some
space D (as in Prop. 5.6) the constant τ above will be implicitly understood as
uniform over all choices of the parameters in D.

For all α > 1, let c∗(α) denotes the unique root in ]1, 2[ of α(1−K(c/2)) = c/2,

which is also the unique root in ]1, 2[ of H(c) =
1
α

, where

H(c) = ln c +
(

2
c
− 1
)

ln(2 − c).

Proposition 4.7. Let m = �α log n� with α > 0. For all c ∈]1, 2[,

•
∑

s≥ 2m
log(2/c)

Em,c(Bs) = o(1),

• if α ≤ 1, then Em,c(B) = o(1),

• if α > 1, then Em,c(B) = nαH(c)−1 + o(1).

The proof of this proposition is given in Section 5. As a corollary we get:

Corollary 4.8. Let m = �α log n�, then

• If α ≤ 1, then c−(m) = c+(m) = 2.
• If α > 1, then c−(m) ≥ c∗(α).

Proof. The first item follows from the second item of the above proposition
together with (4.1). For the second one, observe that αH(c) − 1 < 0 when
c < c∗(α). �

4.3. An upper bound for the critical ratio

The upper bound is obtained by the second moment method applied to pure
snakes.

Let Xs be the set of all pure snakes of length s + 1 and Xs,k be the set of all
pure snakes of length s+1 with k strictly distinct universal literals. We define the
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associated random variables Xs and Xs,k over the set of formulas Fn,m,p as in the
previous section. Thus, Xs =

∑
k Xs,k .

By the second moment bound and Proposition 4.6 we get for every s:

1 − Pm,c(n) ≥ 1 − Pr(Xs = 0) ≥ E(Xs)2

E(X2
s )

· (4.2)

We first obtain the following concentration result.

Proposition 4.9. For all c ∈]1, 2[ and all α > 1 such that αH(c) − 1 > 0, if
ŝ = �−2α ln(2−c)

c ln n�, then

E(Xŝ)2

E(X2
ŝ )

= 1 − o(1).

The proof of this proposition is given in Section 6.
From (4.2), we get the following.

Corollary 4.10. If m = �α log n� with α > 1, then c+(m) ≤ c∗(α).

Corollaries 4.8 and 4.10 prove our main result, Theorem 1.1.

5. Proof of Proposition 4.7

The proof will be decomposed into three propositions, each of them correspond-
ing to one of the items of the proposition.

We shall drop the subscript m, c in the expectations to lighten the notation.
Since E(Bs) = ps+1|Bs|, and thus E(B) =

∑
s+1≥3 ps+1|Bs| it is clear that the

proof requires estimations of |Bs|. We introduce Bs,k the set of pure bicycles of
length s + 1 with k distinct universal variables, and denote by Bs,k the associated
random variable. Thus, Bs =

∑
k Bs,k.

Let us first state a useful combinatorial lemma.

Lemma 5.1.
|Bs| = ((2s − 1)2 − 1)(n)s2sd(m, s + 1),

with

d(m, s + 1) =
min(m,s+1)∑

k=1

(
m

k

)
· 2k · S(s + 1, k) · k!,

where S(s + 1, k) are Stirling numbers of the second kind. Moreover,

d(m, s + 1) ≤ 2min{m,s+1}ms+1.

Proof. The enumeration of bicycles of size s + 1 is similar to the one made in [4],
here in addition we have to enumerate the pure sequence of s+1 universal literals.
Therefore we make a case distinction according to k the number of distinct uni-
versal variables that occur, hence considering Bs,k. Let us recall that S(m, k) · k!
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is the number of applications from a set of m elements onto a set of k elements.
A pure sequence of literals of length s + 1 is obtained by exactly one sequence of
choices of the following choosing process.

(1) Choose the number k of different variables occurring in the sequence.
(2) Choose the k variables.
(3) For each such variable, choose whether it occurs positively or negatively.
(4) Choose their places in the sequence.

This gives

|Bs,k| = [(2(s − 1))2 − 1](n)s2s

(
m

k

)
· 2k · S(s + 1, k),

and the expression for |Bs| follows in summing over all possible k.
Observe that d(m, s+1) is bounded from above by 2min{m,s+1} times the number

of applications from {1, . . . , s + 1} to {1, . . . , m}. Therefore,

d(m, s + 1) ≤ 2min{m,s+1}ms+1. �

The following proposition deals with the first item of Proposition 4.7.

Proposition 5.2. For all c ∈]1, 2[ and all m,
∑

s≥ 2m
log(2/c)

Em,c(Bs) = o(1).

Proof. According to Lemma 5.1,
E(Bs) = ((2s − 1)2 − 1)(n)s2sd(m, s + 1)ps+1 , where p =

c

4mn
.

Since 0 < log(2/c)) < 1 for 1 < c < 2, if s ≥ 2m

log(2/c)
we have m ≤ s

2
log(2/c) ≤

s/2, and thus d(m, s + 1) ≤ 2mms+1. Hence

E(Bs) ≤ c

n

( c

2

)s

s22m.∑
s≥ 2m

log(2/c)

E(Bs) ≤ c

n
2m

∑
s≥ 2m

log(2/c)

s2
( c

2

)s

≤ c2m

n

(
2m

log(2/c)

)2 (c/2)
2m

log(2/c)

(1 − c/2)3

� m22m

n
(c/2)

2m
log(2/c)

� m22m

n
exp(−2m ln 2)

� m22−m

n
= o(1). �

Proposition 5.3. If α ≤ 1, then for all c ∈]1, 2[, Em,c(B) = o(1).
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Proof. If m ≤ s + 1, then d(m, s + 1) ≤ 2mms+1 and

E(Bs) ≤ ((2s − 1)2 − 1)(n)s2s2mms+1 cs+1

4s+1ms+1ns+1

≤ 2mcs2

n

( c

2

)s

·

Thus, ∑
m≤s+1

E(Bs) ≤ 2mc

n

∑
s≥m−1

s2
( c

2

)s

.

Standard computations when 0 < x < 1 and r ≥ 2, show that

∞∑
s=r

s2xs ≤ r2 xr

(1 − x)3
.

Hence we get

∑
s≥m−1

Em,c(Bs) ≤ c2m

n
(m − 1)2

(
c
2

)m−1

(1 − c/2)3
, for 0 < c < 2, and m ≥ 3

≤ 2cm

n
(m − 1)2

1
(1 − c/2)3

· (5.1)

If m > s + 1, then d(m, s + 1) ≤ 2s+1ms+1 and

E(Bs) ≤ 4s2(n)s2s2s+1ms+1 cs+1

4s+1ms+1ns+1
≤ 2s2

n
cs+1·

Hence we get ∑
s≤m−2

Em,c(Bs) ≤ 2c

n

∑
s≤m−2

s2cs

≤ m22c

n

∑
s≤m−2

cs

≤ 2cm3 max(cm, 1)
n

· (5.2)

Now, for m ≤ log(n), observe that since
cm

n
= exp(m ln c − ln n), we have

m ln c ≤ ln c

ln 2
ln n. Thus,

cm

n
≤ exp

(
ln n

[
ln c

ln 2
− 1
])

≤ nρ(c),
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where ρ(c) =
ln c

ln 2
− 1. But, ρ(c) < 0 for c < 2, therefore according to (5.2) on the

one hand we get ∑
s≤m−2

E(Bs) � nρ(c). (5.3)

On the other hand, according to (5.1) we get∑
s≥m−1

E(Bs) � nρ(c) if c ≥ 1 and
∑

s≥m−1

E(Bs) � n−1 if c ≤ 1. (5.4)

Therefore, from (5.4) and (5.3) we get∑
s

E(Bs) = o(1) for 0 < c < 2. �

The function g defined in the following will play an important role in our
analysis.

Definition 5.4. Let c ∈]1, 2[. For any α > 0 let Dα be the following domain

Dα = {(β, γ) | 0 < β ≤ α and β ≤ γ},
and gα,c defined over D by

gα,c(β, γ) = ln
[
1
e

(
cγ

2ex0α

)γ

· αα

ββ(α − β)α−β
· 2β · (ex0 − 1)β

]
, (5.5)

with 1 − e−x0 =
β

γ
x0 and gα,c(β, β) = ln

[
1
e

( c

eα

)β

· αα

(α − β)α−β

]
.

Notice that gα,c is continuously differentiable on the interior of Dα, and thus,
when (β, γ) belongs to the interior of Dα,

ngα,c(β+O(1/ log n),γ+O(1/ log n)) ≡ ngα,c(β,γ) . (5.6)

It turns out that the function gα,c has a unique global maximum on Dα, whose
value is αH(c) − 1.

Lemma 5.5. The function gα,c defined by (5.5) has a global maximum on Dα,
given by its unique stationarity point in the interior of Dα. More precisely

max
Dα

gα,c(β, γ) = gα,c(β̂(α, c), γ̂(α, c)) = αH(c) − 1 (5.7)

with β̂ =
2α(c − 1)

c
, γ̂ =

−2α ln(2 − c)
c

, H(c) = ln c +
(

2
c
− 1
)

ln(2 − c).

Moreover, for any domain Vα ⊂ Dα such that (β̂, γ̂) /∈ Vα, there exists δ > 0
such that

max
Vα

gα,c(β, γ) ≤ αH(c) − 1 − δ. (5.8)
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Proof. See the appendix. �

We have E(B) =
∑

s+1≥3

min(m,s+1)∑
k=1

E(Bs,k) =
∑

s+1≥3

E(Bs) and from the first item

of Proposition 4.7 we get E(B) =
∑

3≤s+1≤ 2m
log(2/c)

E(Bs) + o(1). Thus the last item

of Proposition 4.7 is a direct consequence of the following

Proposition 5.6. Let c ∈]1, 2[, α > 0 and (β, γ) ∈ Dα. If s = γ ln n + O(1) and
k = β ln n + O(1), then

• E(Bs,k) ≡ ngα,c(β,γ),
• E(Bs) � nαH(c)−1.

Moreover, if ŝ = γ̂ ln n + O(1) and k̂ = β̂ ln n + O(1), with β̂ =
2α(c − 1)

c
and

γ̂ =
−2α ln(2 − c)

c
, then,

• E(Bŝ,k̂) ≡ ngα,c(β̂,γ̂) ≡ nαH(c)−1,
• there exists δ > 0 such that for s < ŝ/2, E(Bs) ≤ nαH(c)−1−δ.

Proof. We need to obtain sharp estimates on expression |Bs,k| = [(2(s − 1))2 −
1](n)s2s

(
m
k

)·2k ·S(s+1, k). First, if 1 ≤ b ≤ a, we shall use the following well-known
inequalities for binomial coefficients:√

1
a

(a

b

)b

·
(

a

a − b

)a−b

≤
(

a

b

)
≤
(a

b

)b

·
(

a

a − b

)a−b

. (5.9)

Then, from the uniform asymptotics obtained in [16], one gets the following uni-
form bounds for Stirling numbers of the second kind. There exist universal con-
stants K > 0 and K ′ > 0 such that, for every 1 ≤ b ≤ a, the following inequalities
hold:

K

√
b

a

(
ex0 − 1

x0

)b (a

e

)a

xb−a
0 ≤ b!S(a, b) ≤ K ′√b

(
ex0 − 1

x0

)b (a

e

)a

xb−a
0 (5.10)

where x0 > 0 is a function of b/a defined implicitly for b < a by 1 − e−x0 = b
ax0,

and for a = b by x0 = 0. The conventions are that 00 = 1 and e0−1
0 = 1.

By using these precise results, already used in [9] and [5], it appears that the
behaviour of E(Bs,k) is governed by a continuous function of several real variables.
Combining E(Bs,k) = ps+1[(2(s − 1))2 − 1](n)s2s

(
m
k

) · 2k · S(s + 1, k) with (5.9)
and (5.10) we obtain that there exist A > 0 and B > 0 such that for every c > 0,
for every positive integers n, m, s and k such that k ≤ min(m, s + 1):

A (n)s

√
k

ns
√

m(s + 1)
n

g m
ln n

,c(
k

ln n , s+1
ln n ) ≤ E(Bs,k) ≤ B

√
m n

g m
ln n

,c(
k

ln n , s+1
ln n )

. (5.11)
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Thus we get E(Bs,k) ≡ ngα,c(β,γ) from (5.6). All the following assertions in Propo-
sition 5.6 then directly follow from (5.7) and (5.8) in Lemma 5.5, the inequality
k ≤ s + 1 being used for the assertions on E(Bs). �

6. Proof of Proposition 4.9

For every 1 ≤ i ≤ s, let Nm,s(i) denote the number of pure snakes B of length
s + 1 such that A0 and B share exactly i clauses, A0 being a given pure snake of
length s + 1. Then, we have:

E(Xs)2

E(X2
s )

≥ 1

1 + 1+
∑ s

i=1 Nm,s(i)ps+1−i

Em,c(Xs)

· (6.1)

We have to prove that

• ∑ŝ
i=1 Nm,s(i)pŝ+1−i = o(Em,c(Xŝ)),

• Em,c(Xŝ) −→ +∞
Observe that |Bs| = |Xs|[((2(s − 1))2 − 1], therefore

E(Xŝ) ≡ nαH(c)−1. (6.2)

Notably, when αH(c) − 1 > 0, E(Xŝ) goes to infinity.
The crucial point is to improve the enumeration on snakes made in [4]. In the

next lemma we consider snakes, ignoring the universal variables. The required
upper bounds for the number of pure snakes is then easy to deduce.

Lemma 6.1. Let A0 be a given snake of length s+1 = 2t and for every 1 ≤ i ≤ s,
let Ns(i) be the number of snakes B of length s+1 such that A0 and B share exactly
i clauses. Then, if 2t is less than 1/2n1/3:

Ns(i) ≤
⎧⎨⎩4 (s+1)3

n (n)s−i2s−i for 1 ≤ i ≤ t − 1

4(s + 1)3(n)s−i2s−i for t ≤ i ≤ 2t − 1.

(6.3)

With this lemma (which is proved below) we are in a position to prove Propo-
sition 4.9. Observe that for every s

Nm,s(i) ≤ Ns(i)d(m, s + 1 − i). (6.4)

Therefore in using Lemma 6.1 we obtain with s + 1 = 2t:

t̂−1∑
i=1

Nm,ŝ(i)pŝ+1−i � 1
n

t̂−1∑
i=1

(n)ŝ−i2ŝ−id(m, ŝ + 1 − i)pŝ+1−i

� 1
n

t̂−1∑
i=1

E(Xŝ+1−i)

� nαH(c)−2 (from (6.2)).
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Now,

2t̂−1∑
i=t̂

Nm,ŝ(i)pŝ+1−i �
∑
i≥t̂

E(Xŝ+1−i)

� max
i≥t̂

E(Xŝ+1−i)

� max
s≤ŝ/2

E(Xs).

Since E(Xs) ≡ E(Bs), we deduce from Proposition 5.6, that for s ≤ ŝ/2,
E(Xs) ≤ maxs≤ŝ/2 E(Bs) � nαH(c)−1−δ for some δ > 0, thus:

ŝ∑
i=1

Nm,s(i)pŝ+1−i � nαH(c)−2 + nαH(c)−1−δ = o(Em,c(Xŝ)).

Plugging this asymptotic and (6.2) into the second moment bound (6.1) leads to
Proposition 4.9.

Proof of Lemma 6.1. Given a literal w, let |w| denote its underlying variable.
Observe that a snake of length s + 1 = 2t contains s distinct existential variables.
Moreover, every existential variable |wi| appearing in a snake occurs exactly twice
(once positively and once negatively), except for |w0| which occurs four times
(twice positively and twice negatively). This special variable will be called the
double point of the snake. A snake can be described by a (circular) sequence of
existential literals w0, w1, . . . ws(w0) (with w0 = wt).

The enumeration made in [4] is not good enough for us: indeed, Chvátal and
Reed lose a factor n when i ≥ t, and while this is unimportant for them, this factor
will be crucial for us. Therefore we need to reproduce below, more carefully, their
analysis.

Let A0 be a given snake of length s + 1 = 2t. Ns(2t) = 1, so we shall focus on
i ≤ 2t − 1. Then, Ns(i) can be decomposed as

Ns(i) =
∑

j≥i+1

Ns(i, j)

where Ns(i, j) is the number of snakes B of length s+1 such that A0 and B share
exactly i clauses and j variables. Now we are looking for upper bounds on the
Ns(i, j).

Let us note that the intersection of A0 and B can be read on the (circular) se-
quence of literals w0, w1, . . . wt, . . . ws(w0), where wt = w0. In order to get i clauses
and j variables in common, one has to choose k = (j − i) blocks of consecutive
literals in this sequence. We make a case distinction according to whether the two
snakes A0 and B have the same double point or not.

• Na
s (i, j) denotes the number of snakes B of length s + 1 such that A0 and B

share exactly i clauses and j variables, and have the same double point |w0|,
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• N b
s (i, j) denotes the number of snakes B of length s + 1 such that A0 and B

share exactly i clauses and j variables, and do not have the same double point.

Thus Ns(i, j) = Na
s (i, j) + N b

s (i, j).
Let us first consider Na

s (i, j). Observe that in the special case when j = i + 1
(only one block), and A0 and B have the same double point, then i is necessarily
equal to or larger than t. This is crucial to get a good bound, and is the idea
behind the definition of a snake. Therefore,

for 1 ≤ i ≤ t − 1, Na
s (i, i + 1) = 0. (6.5)

In the general case, to count Na
s (i, j) we perform the following sequence of choices:

(1) the intersection A0∩B such that it has i clauses and j variables, i.e., k = (j−i)
blocks of consecutive literals in the sequence of literals describing A0,

(2) the sequence of strictly distinct existential literals that are in B \ (A0 ∩ B),
(3) the places of the k blocks of A0 ∩ B among the literals chosen in (2).

Step (1). To build the intersection A0 ∩ B, we choose 2k literals in the sequence
representing A0. They represent the first and last literals of the k blocks of A0∩B.
The first literal is chosen after or at ω0. To define completely the intersection, we
need to know whether this first literal is the beginning or the end of a block, so
we get at most 2

(
s+1
2k

) ≤ (s + 1)2k possible choices.

Step (2). Notice that |w0| is the double point of B. So, it remains only to
choose a sequence of s − (j − 1) strictly distinct literals. Thus, we have at most
(n)s+1−j2s+1−j possible choices.

Step (3). We need to choose how the k blocks will be plugged among the “re-
maining literals” chosen in Step (2). This leads to at most (s+1)k possible choices.

Thus, since k = j − i we obtain that for 1 ≤ i ≤ 2t − 1, j ≥ i + 1

Na(i, j) ≤ (s + 1)3k(n)s+1−j2s+1−j ,

≤ (s + 1)3
(

(s + 1)3

n − s

)j−i−1

(n)s−i2s−i .

Recalling (6.5), we obtain for i ≤ t − 1,

2t∑
j=i+1

Na
s (i, j) ≤ (s + 1)3

[
2t−i−1∑

h=1

(
(s + 1)3

n − s

)h
]
(n)s−i2s−i. (6.6)

When i ≥ t, we only have:

2t∑
j=i+1

Na
s (i, j) ≤ (s + 1)3

[
2t−i−1∑

h=0

(
(s + 1)3

n − s

)h
]
(n)s−i2s−i. (6.7)

The enumeration of N b(i, j) differs from the one of Na(i, j) only at Step (2).
Indeed, when B does not have |w0| as a double point, at Step (2) we have first to
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choose a sequence of s − j strictly distinct literals (thus having determined the s
variables occurring in B), and then choose one of these s variables as the double
point. Hence, we have at most s(n)s−j2s−j choices. Thus, we get for 1 ≤ i ≤ 2t−1
and j ≥ i + 1

N b(i, j) ≤ s

(
(s + 1)3

n − s

)j−i

(n)s−i2s−i,

whence
2t∑

j=i+1

N b(i, j) ≤ s

[
2t−i∑
h=1

(
(s + 1)3

n − s

)h
]
(n)s−i2s−i. (6.8)

From (6.4), (6.6) and (6.8), we get, for 1 ≤ i ≤ t − 1

Ns(i) ≤ 2(s + 1)3
[

2t∑
h=1

(
(s + 1)3

n − s

)h
]
(n)s−i2s−i

and from (6.4), (6.7) and (6.8), we get, for t ≤ i ≤ 2t − 1

Ns(i) ≤ 2(s + 1)3
[

2t∑
h=0

(
(s + 1)3

n − s

)h
]
(n)s−i2s−i.

Now, when 2t ≤ (1/2)n1/3, we have, for h ≤ 2t:(
n

n − s

)h

≤ e
4t2

n−2t ≤ e,

and

2t∑
h=1

(
(s + 1)3

n − s

)h

≤ e
(s + 1)3

n

+∞∑
h=0

(
(s + 1)3

n

)h

≤ e
(s + 1)3

n(1 − 1/8)
·

Similarly,
2t∑

h=0

(
(s + 1)3

n − s

)h

≤ 4e.

This concludes the proof. ��

7. Conclusion

We have studied a natural and expressive quantified problem, (1,2)-QSAT. We
have proved the existence of a sharp phase transition from satisfiability to un-
satisfiability for (1,2)-QCNF-formulas and we have given the exact location of the
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threshold. The obtained results have several interesting features. The parameter
m, which is the number of universal variables, controls the worst-case computa-
tional complexity of the problem (which is ranging from linear time solvable to
coNP-complete), as well as the typical behavior of random instances. When m
is small enough, namely when m 	 log n, there is a sharp threshold at c = 2.
On the other side, when m is large enough, namely when m 
 log n, there is a
sharp threshold at c = 1. More importantly, an original regime is observed when
m = �α log n�. Using counting arguments on pure bicycles, which are the seed of
unsatisfiability, and on pure snakes, which are special minimally false formulas,
we got respectively a lower and an upper bound for the threshold. It appears that
these two bounds, which are based on an analytical analysis of involved combina-
torial expressions, coincide thus giving the exact location of the critical ratio as
a function of α. Let us emphasize that this was a priori unexpected. It suggests
that (1,2)-QSAT is a satisfiability problem that is worth studying by combinatorial
means. Such problems are not so common and not so easy to identify. Therefore an
important feature of our work is to reveal an expressive satisfiability problem (it is
coNP-compete) which could be a testbed for developing innovative combinatorial
(enumerative) methods for the study of phase transitions.

A. Proof of Lemma 5.5

Let us recall that for any 1 < c < 2 and α > 0, we consider the domain
Dα = {(β, γ) | 0 < β ≤ α and β ≤ γ} for the function gα,c given from (5.5) by

gα,c(β, γ) = −1+α ln α−(α−β) ln(α−β)+γ ln
[

cγ

2ex0α

]
+β ln

[
2(ex0 − 1)

β

]
(A.1)

and
gα,c(β, β) = −1 + α ln α − (α − β) ln(α − β) + β ln

[ c

eα

]
with x0 defined implicitly when 0 < β < γ by

1 − e−x0 =
β

γ
x0. (A.2)

In the sequel, we shall write g for gα,c and D for Dα. We want to prove that g
has a strict and global maximum on D which is equal to αH(c) − 1 with H(c) =

ln c +
(

2
c
− 1
)

ln(2 − c). This follows from the following claim:

Claim A.1. For any 1 < c < 2 and α > 0,

(1) for every fixed β with 0 < β ≤ α, the function γ �→ g(β, γ) is strictly concave

on [β, +∞[ with a strict maximum at γβ =
2α

c
ln
(

2α

2α − βc

)
,
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(2) the function β �→ g(β, γβ) is strictly concave on ]0, α] with a maximum at

β̂ =
2α(c − 1)

c
, then with γ̂ := γβ̂ =

−2α ln(2 − c)
c

, g(β̂, γ̂) = αH(c) − 1.

Proof. For the first point of this claim we compute, from (A.1) and (A.2), the
partial derivatives of g with respect to γ. We get

∂g

∂γ
(β, γ) = ln

(
cγ

2x0α

)
and

∂2g

∂γ2
(β, γ) =

γ − βx0

γ(γ − β(x0 + 1))
· (A.3)

With (A.2) we first observe that

γ − βx0 = γe−x0 > 0. (A.4)

Then

γ − β(x0 + 1) = γ − βx0 − β

= γe−x0 − β

= γe−x0 − γ(1 − e−x0)
x0

=
γ

x0
(x0e

−x0 − 1 + e−x0).

Let ϕ(x) = xe−x − 1 + e−x. The function ϕ is decreasing with ϕ(0) = 0. Hence,
ϕ(x0) < 0 and

γ − β(x0 + 1) < 0. (A.5)

From the second identity in (A.3), (A.4) and (A.5) we conclude that ∂2g
∂γ2 (β, γ) < 0.

The strict concavity of �→ g(β, γ) follows. Then the first identity in (A.3) and (A.2)
give the expected formula for the unique extremum, indeed we obtain

γβ =
2x0α

c
=

2α

c
ln
(

2α

2α − βc

)
and ex0 − 1 =

βc

2α − βc
· (A.6)

For the second point of the claim, observe that with (A.1) we have:

g(β, γ) = −1 + γ ln
[

cγ

2x0α

]
− γ + α ln α − (α − β) ln(α − β) + β ln

2(ex0 − 1)
β

,

thus from (A.6) we obtain

g(β, γβ) = −1 + α Kc

(
β

α

)
(A.7)

where for any x ∈]0, 1[, Kc(x) = x ln c+
(

2
c
− x

)
ln
(
1 − cx

2

)
−(1−x) ln(1−x). The

function Kc is strictly concave on ]0, 1[ and reaches its maximum at x =
2(c − 1)

c
·
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From (A.7) with
β̂

α
=

2(c − 1)
c

we get max
β>0

g(β, γβ) = −1 + α Kc

(
β̂

α

)
= −1 +

αH(c). Then, with (A.6) we obtain γβ̂ =
2α

c
ln
(

2α

2α − β̂c

)
=

−2α ln(2 − c)
c

:= γ̂.

At last, observe that
∂g

∂β
(β, γ) = ln

(
2(ex0 − 1)(α − β)

β

)
, so β̂ and γ̂ give the

coordinates of the unique stationarity point of g, that is the unique solution of
∂g

∂β
(β, γ) =

∂g

∂γ
(β, γ) = 0.

The last statement of the lemma follows then from the fact that gα,c is contin-
uous on the interior of Dα. �
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