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2
,

Ján Oravec
1
, Björn Steffen

1
, Kathleen Steinhöfel
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Abstract. Analyzing genomic data for finding those gene variations
which are responsible for hereditary diseases is one of the great chal-
lenges in modern bioinformatics. In many living beings (including the
human), every gene is present in two copies, inherited from the two
parents, the so-called haplotypes. In this paper, we propose a simple
combinatorial model for classifying the set of haplotypes in a popu-
lation according to their responsibility for a certain genetic disease.
This model is based on the minimum-ones 2SAT problem with uniform
clauses. The minimum-ones 2SAT problem asks for a satisfying assign-
ment to a satisfiable formula in 2CNF which sets a minimum number
of variables to true. This problem is well-known to be NP-hard, even
in the case where all clauses are uniform, i.e., do not contain a positive
and a negative literal. We analyze the approximability and present the
first non-trivial exact algorithm for the uniform minimum-ones 2SAT
problem with a running time of O(1.21061n) on a 2SAT formula with n
variables. We also show that the problem is fixed-parameter tractable
by showing that our algorithm can be adapted to verify in O∗(2k) time
whether an assignment with at most k true variables exists.
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1. Introduction

With the enhancement of sequencing methods, more and more genetic data
becomes available for research. One of the grand challenges in molecular biology
is to interpret this genomic data and to make use of it, for example to detect genetic
diseases. In this paper, we investigate a challenging combinatorial problem which
arises in this context.

Humans and many other living organisms (including all vertebrates) have a
diploid genome, i.e., they have two copies for each chromosome. For an individ-
ual organism, these two copies usually differ from each other as a result of their
inheritance from two separate parent entities. The most common differences are
the so-called single nucleotide polymorphisms (SNPs), where a single nucleotide is
replaced by another one. For a given chromosome, the complete sequence infor-
mation of one copy is called a haplotype.

For the interpretation of such haplotype data, we consider the following classifi-
cation problem: assume that the haplotype data of a population is given, together
with some phenotypical data describing whether the individuals have symptoms
of a specific genetically influenced disease or not. Our goal is to find a plausible
subset of bad haplotypes occurring in the population which are responsible for
this disease. We employ a very simple model by assuming that every ill individual
carries at least one bad haplotype and that every healthy individual carries at
least one good haplotype.

This problem can be formally described as the following variant of a satisfiability
problem: we are given a satisfiable formula in 2CNF and the goal is to compute
a satisfying assignment which minimizes the number of variables set to true. This
problem is known as the minimum-ones 2SAT problem. It was first considered by
Gusfield and Pitt [6] who presented a 2-approximation algorithm for it. Although
it is possible to decide the satisfiability of a 2CNF formula in linear time [1],
the minimum-ones 2SAT problem is NP-hard and even APX -hard since it is a
generalization of the vertex cover problem.

In this paper, we concentrate on the uniform variant of the minimum-ones
2SAT problem, where the input formula does not contain any clause consisting of
a negated and an unnegated variable. This problem variant exactly models our
haplotype classification problem. This variant is hard as well, so we analyze its
approximability and design an exact algorithm with an exponential running time
of O(1.21061n).

Additionally, we show that this uniform minimum-ones 2SAT problem is fixed-
parameter tractable by showing that our algorithm can be adapted to verify in
O∗(2k) time whether an assignment with at most k true variables exists.

The paper is organized as follows. In Section 2, we fix our notation and give a
formal definition of the minimum-ones 2SAT problem. In Section 3, we describe
how to apply our result to the haplotype classification problem. Section 4 is
devoted to the approximability of the minimum-ones 2SAT problem. In Section 5,
we present our main result, namely, a fast exact algorithm for the uniform case of
the minimum-ones 2SAT problem. We conclude the paper in Section 6.
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2. Preliminaries

In this section, we define the basic notions we will be using throughout the
paper. We consider Boolean formulas over a set of variables X = {x1, . . . , xn}. A
literal is either some variable x ∈ X or its negation x. A clause is a disjunction
of literals, i.e., a formula of the form (y1 ∨ y2 ∨ · · · ∨ yk) where the yi are literals
over X . A Boolean formula is said to be in conjunctive normal form (CNF) if
it is a conjunction of disjunctions of literals, i.e., a formula C1 ∧ . . . ∧ Cm for
some clauses C1, . . . , Cm. We say that a CNF formula is in 2CNF if every clause
contains exactly 2 literals. A 2CNF clause is called positive if both literals in it
are unnegated variables; it is called negative if both literals are negated variables;
mixed, if it contains one negated and one unnegated variable.

An assignment for a formula ϕ over X is a function β : X → {0, 1} assigning
a truth value to every variable. An assignment β satisfies a formula ϕ, if the
standard Boolean evaluation of ϕ using the assignment β yields the value 1. A
formula is satisfiable, if there exists a satisfying assignment for it.

Definition 2.1. Min-Ones-2SAT is the following optimization problem:

Input: A satisfiable 2CNF formula ϕ = C1 ∧ C2 ∧ · · · ∧ Cm over the set of
variables X = {x1, . . . , xn}.

Feasible solutions: all satisfying assignments for ϕ.
Costs: The cost of a satisfying assignment β is the number of variables set

to 1 by β.
Goal: minimization.

Uniform Min-Ones-2SAT is the restriction of Min-Ones-2SAT to input in-
stances without mixed clauses, and Positive Min-Ones-2SAT is the restriction
of Uniform Min-Ones-2SAT to inputs containing only positive clauses.

For our algorithms, we are going to use a graph representation for the Uniform

Min-Ones-2SAT where the vertices of the graph correspond to the variables and
the edges correspond to the clauses.

Definition 2.2. For a formula ϕ in 2CNF without mixed clauses, we define the
satisfiability graph Gϕ = (X,E+ ∪E−), where E+ = {{x, y} | (x∨ y) is a positive
clause in ϕ} and E− = {{x, y} | (x ∨ y) is a negative clause in ϕ}. We call the
edges from E+ positive edges and those from E− negative edges. By G+

ϕ and G−
ϕ ,

we denote the graph induced by the edges E+ and E−, respectively.

Note that the satisfiability graph is actually a multigraph, since two vertices
may be connected by both a positive and a negative edge. Recall that a vertex
cover of a graph G = (V,E) is a set C ⊆ V of vertices such that every edge is
incident to at least one vertex from C. An independent set of a graph G = (V,E)
is a set I ⊆ V of vertices that are pairwise non-adjacent. The minimum vertex
cover problem (Min-VC) is the problem of finding a vertex cover of minimum
cardinality in a given graph, whereas the maximum independent set problem is the
problem of finding an independent set of maximum cardinality in a given graph.
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For the ease of presentation, we use the short notation xy for an edge {x, y} in
any graph.

Observation 2.3. Positive Min-Ones-2SAT is equivalent to Min-VC.

Note that in every positive clause at least one variable has to be set to true and
in every negative clause at most one variable may be set to true in order to satisfy
the formula. Considering our graph representation, this leads to the following
observation.

Observation 2.4. Uniform Min-Ones-2SAT is equivalent to the problem of
finding a minimum vertex cover in G+

ϕ that is an independent set in G−
ϕ .

3. Application to a haplotype classification problem

In this chapter, we will present the application of Uniform Min-Ones-2SAT

for classifying haplotypes in more detail. The goal is to find genes which are
responsible for the predisposition for some diseases.

Recall that the genome of every human is present in two copies in every cell.
These two copies, called haplotypes, slightly differ from each other; one is inher-
ited from the mother, the other from the father. In the following, we will not
look at the whole genome of the individuals, but on smaller units, for example
at the haplotypes of a single gene. This means that in a population of related
individuals, some of the haplotypes will occur frequently, e.g., because they have
been conserved over some generations.

Some of these haplotypes might show genetic variations that are responsible for
a predisposition for some kind of disease. It is of great importance to find these
variations for a better understanding of such diseases and for the development of
more successful treatments. Roughly speaking, our goal is to find these defective
haplotypes in our data. The first problem is that the genomic data generated by
many sequencing experiments does not produce the haplotypes of an individual,
but rather a mixture of both haplotypes, the so-called genotype. It is a challeng-
ing problem by itself to compute the haplotypes from the genotype, but some
successful algorithms have been presented in the literature; for an overview see,
for example, [2,3,12].

We do not want to consider this problem here, rather we assume that we have
access to some reliable haplotype data. Together with this haplotype data for
some population of individuals, we are given some phenotypical data describing
for each individual whether it shows some symptoms of the disease or not.

It is assumed that the predisposition for the disease is connected to some genetic
defect on one or both haplotypes of the individual. The goal is to learn how to
distinguish haplotypes with this defect from normal ones.

We now want to classify the individuals from the population into six different
types according to the relationship between their haplotypes and the observed
symptoms of the disease as shown in Table 1. Note that the information from the
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Table 1. Types of individuals according to haplotype and phe-
notype data.

Type Phenotype Haplotypes
1 Healthy Both normal
2 Healthy 1 normal, 1 defective
3 Symptoms of disease 1 normal, 1 defective
4 Symptoms of disease Both defective
5 Healthy Both defective
6 Symptoms of disease Both normal

second column of the table is known to us whereas the information from the third
column is what we would like to deduce.

For a first attempt of classifying the haplotypes and finding the defective ones,
we want to simplify the model by restricting ourselves to the first four rows of Ta-
ble 1. This means, we assume that the population does neither include individuals
which show symptoms of the disease but have two normal haplotypes nor healthy
individuals with two defective haplotypes. Intuitively, this means, we assume that
an individual with two defective haplotypes will almost surely show symptoms of
the disease, whereas it is rare for an individual to show symptoms of the disease
without genetic predisposition.

This problem can now be modelled by Uniform Min-Ones-2SAT : Consider
the haplotypes as the variables of the formula, where an assignment of 1 to a vari-
able means to classify the respective haplotype as defective. Then every individual
of the population describes one clause of the formula. For a healthy individual, at
least one of its two haplotypes has to be normal; this corresponds to a negative
clause. On the other hand, if an individual shows symptoms of the disease, this
means that at least one of its haplotypes has to be defective, corresponding to
a positive clause. Therefore, finding an assignment with as few as possible ones,
represents an explanation for the disease with the smallest possible number of
defective haplotypes. This mirrors our expectation that the population should
contain more normal haplotypes than defective ones.

4. Approximability of Uniform Min-Ones-2SAT

In this section, we present some results on the approximability of Uniform

Min-Ones-2SAT. We start with an upper bound.

Observation 4.1. There exists a polynomial-time approximation algorithm for
Uniform Min-Ones-2SAT with ratio 2.

Proof. Gusfield and Pitt have shown that Min-Ones-2SAT is 2-approximable [6].
Since Uniform Min-Ones-2SAT is a special case of Min-Ones-2SAT, the claim
immediately follows. �
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Since Uniform Min-Ones-2SAT is a generalization of Min-VC according to
Observation 2.4, any approximation ratio better than 2− 1

ΔG
(where ΔG denotes

the maximum degree of the satisfiability graph) or better than 2− 1
Θ(

√
log n)

would
improve on the best known Min-VC approximation [8,10].

Regarding the lower bounds on the approximation ratio, Uniform Min-Ones-

2SAT inherits the results from Min-VC. This leads to the following observation.

Observation 4.2. Uniform Min-Ones-2SAT is APX -hard and not approx-
imable within a ratio of 1.3606, unless P = NP and not approximable within a
factor better than 2 unless the unique games conjecture holds.

Proof. This follows immediately from the respective result for Min-VC [5,9]. �

We now prove that Uniform Min-Ones-2SAT is as hard to approximate as
Min-Ones-2SAT.

Theorem 4.3. For every polynomial-time α-approximation algorithm AU for
Uniform Min-Ones-2SAT, there exists a polynomial-time algorithm AN for
Min-Ones-2SAT with asymptotic approximation ratio α.

Proof. Let AU be a polynomial-time α-approximation algorithm for Uniform

Min-Ones-2SAT. We show in the following how AU can be used to find an as-
ymptotic α-approximate solution to any Min-Ones-2SAT instance.

Consider an input instance ϕ for Min-Ones-2SAT over the set of variables
X = {x1, . . . , xn}. Let m denote the number of clauses of ϕ and let mN denote
the number of non-uniform (i.e., mixed) clauses in ϕ. Without loss of generality,
we assume that the clauses are numbered such that C1, . . . , CmN are the mixed
clauses. Moreover, we assume that ϕ is not satisfied by the all-zero assignment.

Define k := �(α− 1) · (mN + n) · f(n)	, where f denotes some unbounded, but
arbitrarily slowly increasing function, e.g., the inverse of the Ackermann function.

From ϕ, we construct a Uniform Min-Ones-2SAT formula ψ in two steps. In
the first step, we add new variables y1, . . . , yn and z1,1, z1,2, . . ., z1,k, . . ., zn,1, . . .,
zn,k together with new clauses (xi ∨ yi), (xi ∨ yi), (yi ∨ zi,j), and (yi ∨ zi,j), for all
i ∈ {1, . . . , n} and all j ∈ {1, . . . , k}.

In the second step, we add new variables u1, . . ., umN and v1, . . ., vmN and
replace the mixed clause Ci = (xi1 ∨ xi2 ) by the four uniform clauses (xi1 ∨ vi),
(xi2 ∨ vi), (vi ∨ ui), and (vi ∨ ui), for all i ∈ {1, . . . ,mN}.

The satisfiability graph of the resulting formula ψ is shown for a sample formula
in Figure 1.

Clearly, the formula ψ can be constructed from ϕ in polynomial time. We
prove in the following that restricting an α-approximate assignment for ψ to the
variables from X yields the desired asymptotic α-approximate solution for ϕ. For
this, we prove the following claim:

Let β be a satisfying assignment for ϕ setting c variables from X
to one. Then every assignment γ for ψ which coincides with β on
X satisfies ψ and has exactly n+ c · k +mN variables set to one.

(1)
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Figure 1. The satisfiability graph of the uniform 2CNF formula
ψ as constructed in the proof of Theorem 4.3 for the 2CNF formula
ϕ = (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2). Solid lines denote positive
edges, dashed lines denote negative edges.

To prove this claim, we first consider the y- and z-variables. The respective clauses
in ψ are constructed such that they formulate an exclusive-or constraint for xi

and yi as well as an exclusive-or constraint for yi and any of the zi,j . Thus, if
β(xi) = γ(xi) = 1, then γ(yi) = 0 and thus γ(zi1) = . . . = γ(zi,k) = 1. If, on the
other hand, β(xi) = γ(xi) = 0, then γ(yi) = 1 and γ(zi1) = . . . = γ(zi,k) = 0.
Overall, c · k of the z-variables and n− c of the y-variables are set to one by γ.

We now consider the u- and v-variables. Let Ci = (xi1 ∨ xi2 ) be any mixed
clause in ϕ. The two clauses (vi ∨ ui) and (vi ∨ ui) formulate an exclusive-or
constraint for vi and ui. Thus, every satisfying assignment γ for ψ has to satisfy
exactly mN of these variables. It remains to show that it is possible to extend any
satisfying assignment β for ϕ such that it also satisfies the clauses added in the
second step of the construction. For this, we distinguish three cases according to
how a mixed clause Ci is satisfied by β. At least one of the two literals has to be
set to one by β. If β(xi1 ) = 0, then γ(vi) = 1 is forced; if β(xi2 ) = 1, then this
forces γ(vi) = 0. If β(xi1 ) = 1 and β(xi2 ) = 0, then vi can be set arbitrarily.

Overall, γ sets c + c · k + (n − c) +mN = n+ c · k +mN variables to 1 which
proves the Claim (1).

We are now ready to analyze the approximation ratio achieved by this trans-
formation. Let copt denote the minimum number of ones which have to be set to 1
in order to satisfy ϕ. Due to Claim (1), this implies that the minimum number of
variables which have to be set to one for satisfying ψ is n + copt · k + mN . This
means, an α-approximation algorithm for Uniform Min-Ones-2SAT computes
an assignment γapprox for ψ which sets at most α · (n+ copt · k+mN ) variables to
one. Let x denote the number of variables from X which are set to one by γapprox.
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Following the argumentation above, the number x can also be counted as

x ≤ α · (n+ copt · k +mN) −mN − x · k − (n− x).

This leads to

x ≤ 1
k
· (α · (n+ copt · k +mN) −mN − n).

Thus, the approximation ratio of this approach can be estimated as

x

copt
≤ 1
copt

· 1
k
· (α · (n+ copt · k +mN ) −mN − n)

≤ α+
1
k

1
copt

· (α− 1)(n+mN ) ≤ α+
1

copt · f(n)

which tends to α for n approaching infinity. �

5. An Exact algorithm for Uniform Min-Ones-2SAT

In this section, we design a fast exact algorithm for Uniform Min-Ones-2SAT.
In the whole section, we use the graph representation of this problem. Given the
satisfiability graph Gϕ = (X,E+ ∪ E−) of a uniform 2CNF formula ϕ, we are
looking for a subset S ⊆ X of vertices, such that S ∩ V (G+

ϕ ) is a minimum vertex
cover on G+

ϕ and S ∩ V (G−
ϕ ) is an independent set on G−

ϕ . Our algorithm uses a
standard branch-and-bound approach (see [7,11]).

5.1. Deduction Rules

Below, we present a list of deduction rules that will be applied during the
branch-and-bound algorithms whenever their premises apply.

Dnegative: If v is incident only to negative edges, we can deduce that v �∈ S.
Dspread: If we already decided that v ∈ S, and we have uv ∈ E−, we can

deduce that u �∈ S. Similarly, from v �∈ S and uv ∈ E+ we have u ∈ S.
Dtriangle: If we have positive edges xy and xz and a negative edge yz, we

can deduce that x ∈ S. If we have negative edges xy and xz and a positive
edge yz, we can deduce that x �∈ S.

Dgreedy: If v1, . . . , vk (for some k ≥ 1) and u are vertices such that:
• for each i there is a positive edge viu;
• no vi has any other positive edges;
• there are no negative edges between u and vertices other than vi

then we can just consider the case where u ∈ S and ∀i : vi �∈ S.

Lemma 5.1. All presented deduction rules are correct. That is, applying any of
the rules will never cause our search to skip all optimal valid assignments.
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Proof. We will consider the deduction rules one at a time.

Dnegative: If a variable v only appears in negative clauses, we take any
valid assignment where v is true and change it to false, thereby obtaining
a better valid assignment. Hence we can just consider the case where v is
false.

Dspread: Let v ∈ S and uv ∈ E−. Then the only remaining way to satisfy
the clause (u∨ v) is to set u to false. If v /∈ S and uv ∈ E+, then the only
way to satisfy the clause (u ∨ v) is to set u to true.

Dtriangle: At least one of y and z must be false in any valid assignment.
As there is a positive edge connecting that variable to x, it follows that x
must be true in any valid assignment.

The other case is proved similarly. At least one of y and z must be
true in any valid assignment. As there is a negative edge connecting that
variable to x, it follows that x must be false in any valid assignment.

Dgreedy: Consider any valid assignment. Assume that, for some i, we have
vi ∈ S, that is, the variable vi is true. This assignment can be changed
as follows. Set all vi to false. If u is false, set it to true. This change did
not increase the number of true variables and it preserved the validity of
the assignment. To see why the latter holds, note that all clauses that
only contain u and one of the vi are satisfied by our new assignment, all
other clauses containing u are positive and therefore satisfied, and all other
clauses containing the vi are negative and therefore satisfied.

Hence, when looking for an assignment that minimizes the number of
true variables, it is sufficient to consider the one chosen by this rule. �

5.2. The Algorithm

Our algorithm consists of several phases, as described below.

Phase 1: We use Dnegative to ensure that each vertex is incident to a
positive edge.

Phase 2: While there is some vertex incident to at least 5 negative edges,
we pick any such vertex v and branch on it (with applying Dspread
afterwards).

Phase 3: For any vertex v incident to some negative edges, we analyze all
possible cases how its neighborhood looks like. In each case, we either
show that we can deduce the state of some vertex, or we find a vertex such
that branching on it produces two sufficiently smaller instances.

Phase 4: Once only positive edges are left, we apply a general algorithm to
find a minimum vertex cover.

In some situations, our algorithm will branch on a given vertex v, meaning that we
sequentially try first the case v ∈ S and then the case v �∈ S. In each case, we will
be applying the deduction rules (usually the rule Dspread) to deduce as much
information as possible. We call a branching an (a, b)-branching if in one case we
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can deduce the state of a vertices and in the other case the state of b vertices
(including the one we branch on).

Now we give a detailed description of Phases 2 and 3 of our branch-and-bound
algorithm. To achieve the desired running time, any branching must be at least a
(6, 2)-, a (5, 3)-, or a (4, 4)-branching. We will call all such branchings acceptable.

We introduce some additional notation for the sake of the proof. The phrase
positive neighbor is shorthand for “neighbor in the graph (X,E+)”, similarly for
negative neighbor. The degree of v in G+

ϕ is denoted Δ+(v), Δ−(v) is defined
similarly. We also define Δ±(v) = (Δ+(v),Δ−(v)) and Δ(v) = Δ+(v) + Δ−(v).

In each of the cases presented below, v will be some vertex incident to negative
edges, ni will be its negative neighbors and pj will be its positive neighbors. If
some of the ni coincide with some of the pj , we will label them so that the last
few ni are equal to the first few pj.

In all figures, the vertices shown as squares are already final, i.e., there are no
other edges leaving these vertices. Positive edges are shown as full lines, negative
edges are shown as dashed lines, unknown edges are dotted.

5.2.1. Phase 2: Handling vertices of large negative degree

As the outcome of Phase 1, we know that Δ+(v) > 0, for all v.
Take any vertex v and let Δ±(v) = (a, b). Regardless of the rest of the graph,

if we branch on v, this will be at least an (a + 1, b+ 1)-branching. If b > 4, this
branching is guaranteed to be acceptable and we can do it immediately.

5.2.2. Phase 3: Other vertices of large degree

Let v be an arbitrary vertex with Δ(v) > 5 and Δ−(v) > 0. Then the branch-
ing at v is clearly acceptable and we can do it immediately. After this process
terminates, we get a graph in which each vertex is incident to at least one positive
edge and at most four negative edges. Additionally, a vertex adjacent to some neg-
ative edges has degree at most 5. We will now show how to process the remaining
vertices incident to negative edges.

5.2.3. Phase 3: Vertices with four negative edges

Suppose that Δ−(v) = 4. Then we must have Δ±(v) = (1, 4). There has to be
a positive edge incident to n1. If it leads into a new vertex, by Dspread we get
at least a (6, 2)-branching at v, otherwise we can apply the rule Dtriangle.

5.2.4. Phase 3: Vertices with three negative edges

The case Δ±(v) = (2, 3) is handled in the same way as Δ±(v) = (1, 4), except
this time the branching is at least (5, 3) instead of at least (6, 2).

Now let Δ±(v) = (1, 3). There is at least one positive edge incident to each of
n1 and n2. If there is a positive edge xy with x ∈ {n1, n2} and y ∈ {n1, n2, n3, p1},
we can apply Dtriangle. If two positive edges lead from n1 and n2 into two
distinct new vertices, we get at least a (6, 2)-branching at v.
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Figure 2. Two cases while handling a vertex v with three nega-
tive edges.

Figure 3. Three cases for v with two positive and two negative edges.

Finally, we are left with one of the cases shown in Figure 2. If there is a negative
edge from a into a new vertex, we get a (6, 2)-branching at v. If there is a negative
edge ap1, we get a (5, 3)-branching at v. In all other cases we can apply Dgreedy
at a.

From this moment we may assume that each vertex in our graph is incident to
at most two negative edges.

5.2.5. Phase 3: Vertices with Two Negative Edges

Three positive edges: We have Δ±(v) = (3, 2).
If there is no positive edge vn1, there must be a positive edge leaving n1. If

its second endpoint is a neighbor of v, we apply Dtriangle, otherwise we have at
least a (4, 4)-branching at v.

In the remaining case, we have n1 = p1 and n2 = p2. If Δ(n1) = Δ(n2) = 2,
we apply Dgreedy at v. If there is any (positive or negative) edge xy with
x ∈ {n1, n2} and y ∈ {n1, n2, p3}, we can always apply Dtriangle. Finally, if
there is an edge from one of n1 and n2 to a new vertex, we get an acceptable
branching at v. (Either (5, 3) or (4, 4), depending on the type of the new edge.)
Two positive edges: We have Δ±(v) = (2, 2).

If there is a positive edge n1n2, a negative edge p1p2, or any edge xy with
x ∈ {n1, n2} and y ∈ {p1, p2}, we apply Dtriangle.

We will now consider three sub-cases depending on the number of ni and pj

that coincide. These cases are shown in Figure 3.
In the left case, we must have positive edges leaving n1 and n2 into new vertices.

If these are two distinct vertices, we get a (5, 3)-branching at v. Otherwise label
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Figure 4. The last remaining case for two positive and two neg-
ative edges.

their common vertex a. If there is a negative edge from a to a new vertex or to
one of the pi, we get an acceptable branching at v. In the other case, we can apply
Dgreedy at a.

In the middle case, we must have a positive edge n1a where a is a new vertex.
We apply the same reasoning at a as in the previous case.

We are left with the case on the right. If one of n1 and n2 has degree 2, we can
remove this vertex and v from the graph, find the optimal solution for the smaller
graph, and then reattach the two vertices and determine their values. Otherwise,
we have at least one more edge leaving each of the vertices. If there is an edge
n1n2, we apply Dtriangle. If there are edges into two new vertices, we get an
acceptable branching at v.

The last remaining case is shown in Figure 4. If the edges n1a and n2a are of
different types, we have an acceptable branching at v. If they are both negative,
we apply Dgreedy at v. If they are both positive, we can remove the vertices v
and n1, add a negative edge n2a, solve the smaller problem and use the solution to
reconstruct the optimal solution. To see the correctness of this construction, note
that there are two possible assignments for v, n1, n2, namely v /∈ S, n1, n2 ∈ S
or v ∈ S, n1, n2 /∈ S. The latter, more desirable, assignment is only feasible if
a ∈ S. Thus, n2 has a different value than a in any optimal solution which can be
guaranteed by the additional negative edge.
One positive edge: We have Δ±(v) = (1, 2).

If there is a positive edge n1n2 or any edge nip1, we apply Dtriangle.
Again, we now have two separate cases: either n2 = p1 or not.
Case n2 �= p1. If there is no negative edge at p1, we apply Dgreedy at p1.

If there are positive edges from n1 and n2 into two distinct new vertices, we get
at least a (5, 3)-branching at v. Otherwise, there are exactly two positive edges
n1a and n2a. If there are no negative edges incident to a or the only negative
edges incident to a are n1a or n2a, we apply Dgreedy at a, otherwise we get an
acceptable branching at a.

Case n2 = p1. Note that there is no edge between n1 and n2. If there is no other
negative edge at n2, we apply Dgreedy at n2. Otherwise we have a negative edge
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Figure 5. Difficult cases with a single negative edge.

n2a. Both n1 and a must be incident to positive edges. If there is a positive edge
n1a, we get at least a (4, 4)-branching at v. If there are positive edges from n1 and
a to new vertices (not necessarily distinct ones), we get at least a (4, 4)-branching
at v. The last remaining possibility are positive edges n1b and n2a, which gives
us a (5, 3)-branching at v.

5.2.6. Phase 3: Vertices with a single negative edge

We are left with a graph in which each vertex is only incident to at most one
negative edge, and each vertex incident to a negative edge has degree at most 5.

We skip the analysis for cases Δ±(v) = (4, 1) and Δ±(v) = (3, 1). The analysis
for these cases is just a simpler case of the analysis for Δ±(v) = (2, 1).
Two positive edges: we have Δ±(v) = (2, 1).

If there is any edge n1pi, or a negative edge p1p2, we apply Dtriangle.
We will first consider the case n1 �= p1. There are either one or two positive

edges incident to n1. Both cases are shown in Figure 5.
In the case on the left side of Figure 5 consider the vertex a. If there is no

negative edge leaving a, we can apply Dgreedy. If there is one into some pi,
we get an acceptable branching at v. Finally, let there be a negative edge ab.
The new vertex b must have a positive edge. If it leads into a, we get at least a
(6, 2)-branching at a, otherwise we get at least a (5, 3)-branching at v.

The case in Figure 5 on the right can be solved as follows. If v and n1 are
both false, then p1, p2, a1, a2 must all be true and we find an optimal solution for
the rest of the graph. Otherwise exactly one of v and n1 is true. We remove
vertices v and n1, add all four positive edges piaj , find the optimal solution for
the new graph and then deduce the values for v and n1. Note that this is a special
(6, 2)-branching.

Now for the case n1 = p1. If Δ(n1) = 2, we apply Dgreedy at v. Otherwise
we get a positive edge n1a. Now note that exactly one of v and n1 is true. Also,
as a consequence, p2 and a may not be false at the same time. We now can add a
positive edge p2a, remove the vertices v and n1, find the optimal solution for the
smaller graph and afterwards deduce the truth values for v and n1.
A single positive edge: Each vertex is either incident to positive edges only, or it
is incident to a positive and a negative edge. Let v be such that Δ±(v) = (1, 1).
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If p1 = n1, we apply Dgreedy at n1. If the positive edge from n1 goes to
p1, we apply Dtriangle, otherwise let its endpoint be a. If there are no negative
edges from a or p1, we can apply Dgreedy at that vertex. If there is a negative
edge ap1, we have a (4, 4)-branching at v. Finally, we might have negative edges
ab and p1c. Together with a positive edge that must be incident to c we again
have a (4, 4)-branching at v.

This concludes Phase 3 of our algorithm.

5.3. Proof of correctness and time complexity

Lemma 5.2. Whenever our algorithm branches, the branching vertex will be cho-
sen to achieve at least a (6, 2)-, a (5, 3)-, or a (4, 4)-branching.

Proof. This follows from the detailed presentation of the third phase of our algo-
rithm. �

Theorem 5.3. Our algorithm correctly solves the Uniform Min-Ones-2SAT

and its time complexity is O(1.21061n).

Proof. The correctness immediately follows from Lemma 5.1 and the detailed anal-
ysis of the algorithm above.

Using Robson’s algorithm [13], we can find the minimum vertex cover in any
graph with n vertices in O(1.18882n).

By Lemma 5.2, each branching of our algorithm is at least a (6, 2)-, a (5, 3)-, or
a (4, 4)-branching. Consider the recurrences that describe the time complexity of
a branch and bound algorithm in each of these cases separately:
The recurrence T (n) = 2T (n− 4) + O(1) solves to T (n) = O(1.18921n),
the recurrence T (n) = T (n− 3) + T (n− 5) +O(1) solves to T (n) = O(1.19386n),
and the recurrence T (n) = T (n− 2) + T (n− 6) + O(1) solves to O(1.21061n).

Hence, even if the worst case occurs and our algorithm is forced to perform (6,2)-
branchings until it runs out of vertices, its time complexity will be O(1.21061n). �

Additionally, our algorithm can be easily modified to obtain a parameterized
complexity algorithm.

Theorem 5.4. Given a positive integer k and a Uniform Min-Ones-2SAT

instance, we can check whether there is a satisfying assignment with at most k
true variables in O∗(2k).

Proof. Phase 1 runs in polynomial time. In Phase 2 and Phase 3 we can easily
verify that each branching is done on a vertex incident to a positive and a negative
edge. Hence, in each branch we set at least one new variable to true. This implies
that we can limit the search tree depth to k. If a solution with at most k true
variables exists, we will still find it.

For Phase 4, we can use the algorithm by Chen et al. [4], which is an O(kn +
1.2852k) algorithm for the parameterized version of the minimum vertex cover
problem. �
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6. Conclusion

In this paper, we introduced the Uniform Min-Ones-2SAT problem as a
means for modelling a problem of haplotype classification. We analyzed its ap-
proximability and presented a moderately exponential-time exact algorithm for
it. While we have seen that Uniform Min-Ones-2SAT and general Min-Ones-

2SAT are equally hard with respect to approximability, it remains as an interesting
open problem to extend the exact algorithm to the general case.

Moreover, from the viewpoint of the biological application, it would be very
interesting to generalize the classification model to include all types of individuals
as listed in Table 1 or to allow for some errors in the data.
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