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TWO EXTENSIONS OF SYSTEM F

WITH (CO)ITERATION AND PRIMITIVE
(CO)RECURSION PRINCIPLES ∗

Favio Ezequiel Miranda-Perea
1

Abstract. This paper presents two extensions of the second order
polymorphic lambda calculus, system F, with monotone (co)inductive
types supporting (co)iteration, primitive (co)recursion and inversion
principles as primitives. One extension is inspired by the usual cate-
gorical approach to programming by means of initial algebras and final
coalgebras; whereas the other models dialgebras, and can be seen as an
extension of Hagino’s categorical lambda calculus within the framework
of parametric polymorphism. The systems are presented in Curry-style,
and are proven to be terminating and type-preserving. Moreover their
expressiveness is shown by means of several programming examples,
going from usual data types to lazy codata types such as streams or
infinite trees.
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68Q65.

1. Introduction

The second-order polymorphic lambda calculus, system F, is a very expres-
sive type system, invented independently by Girard in 1972 and Reynolds in 1974,
coming from entirely different motivations. Girard (see [9,10]) was pursuing an ex-
tension of the well-known Curry-Howard correspondence with universal quantifiers
ranging over propositions; whereas, Reynolds (see [31]) was seeking an extension
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of common typed programming languages to permit passing types as parameters,
that is, to allow the definition of so-called polymorphic procedures that could
accept arguments of a variety of types. This is known nowadays as parametric
polymorphism and has become a common feature of mainstream programming
languages due to several reasons, for instance, it allows the possibility of writing
generic programs, i.e. programs applicable in a number of different contexts, by
associating all behavior of parameter values with the types of parameters. This
increases the flexibility, re-usability and expressive power of a programming en-
vironment; an important feature for software engineering where a key goal is to
support the production and use of reusable code. To guarantee that the code is
reused in a correct way, strong typing is desirable. Genericity in code can best
be expressed by polymorphic types which, can either be stated explicitly (à la
Church), or inferred (à la Curry). System F is also popular as a highly-expressive
typed intermediate language employed in the design of compilers for functional
languages like Haskell, in particular the GHC compiler appears to be the first
to use system F as a basis. Its use avoids the need for downcasting and allows
a compiler to find more programming errors due to its ability to verify the type
correctness in compile time (i.e. syntactically). These are only some reasons to
use a type system similar to (a fragment of) F in real world programming lan-
guages, for example it is embodied in the type system of ML. From the theoretical
point of view system F has also great benefits: parametricity has proven to be
a powerful principle for establishing abstraction properties, proving equivalence
of programs and inferring useful properties of programs from their types alone
(see [39]); an important achievement in the theory of programming languages is
the ability to capture the generic nature of a program by means of a term hav-
ing a polymorphic type. On the other hand, system F is a strongly terminating
language, which means that every program describes a terminating computation,
an important theoretical property which implies that the language lacks general
recursion and therefore only total functions can be expressed. This could lead
us to think that the language is not suitable for practical computation; however,
almost everything that one might want to compute can be expressed in F. In
particular all usual data types in computer science, like tuples, lists, or trees,
have a description within the system as inductive types [2]. Moreover, lazy data
types like streams or infinite trees can also be defined as coinductive types [40].
However this representations lack efficiency, since it is well-known that the native
recursion operators of (co)inductive types encompass only (co)iteration, that is,
the impredicative encoding of (co)inductive types only models (co)iteration and
not primitive (co)recursion. In particular, the implementation of the predecessor
function on natural numbers traverses a whole numeral in order to remove one
constructor; and therefore does not run on constant time as in the case of a prim-
itive recursive implementation. This has lead to investigate extensions of system
F with (co)iteration principles to avoid the impredicative encodings, but also with
primitive (co)recursion principles. These extensions are not definitional, since it is
believed that primitive recursion cannot be computationally reduced to iteration
in a faithful way. Such conjecture originates from the fact that no definition of
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natural numbers in system F supporting a constant-time implementation of the
predecessor seems possible, as discussed in [33].

In this paper we develop two such extensions by means of the categorical in-
terpretation of functional programming, where inductive (coinductive) types are
defined as initial algebras (final coalgebras) of functors. This categorical view al-
lows to extend a type system with syntactical functors and primitive constructors
for (co)iteration and (co)recursion. This way, the introduction rule of an induc-
tive type works as a data constructor and its elimination rules as recursion prin-
ciples; the introduction rules for a coinductive type work as corecursion schemes,
and its elimination rule as codata destructor. This kind of systems has been
known since the work of Hagino [13] for (co)iteration and Geuvers [7] for primitive
(co)recursion; since then, several related systems have been described, we can find
extensions of the simply typed lambda calculus with positive (co)inductive types
and (co)iteration [12,13], extensions of system F with either, positive or monotone
inductive types including iteration and/or primitive recursion [19,20,25,26], or with
coinductive types, including coiteration and/or primitive corecursion [20]. More
recently, in [1] we can find several systems of (co)inductive constructors of higher
kinds (higher-order nested datatypes) with (co)iteration principles, which all hap-
pen to be definable within the system Fω of higher-order parametric polymorphism.
However, to the best of our knowledge, the taxonomy of (co)inductive type systems
lacks a system including monotone (co)inductive types, polymorphism, primitive
(co)recursion and inversion principles. In this paper we present two such systems
using the typing à la Curry. The first handles conventional (co)inductive types
modeling (co)algebras, whereas the second models dialgebras, in the same way as
in [13], by means of clausular1 (co)inductive types. Both systems are terminating
and preserve types, a non-trivial property in Curry-style systems. Moreover, they
are full monotone, that is, there is no positivity restriction in the construction of
a (co)inductive type.

1.1. Overview of the paper

After mentioning some preliminaries on category theory and the polymorphic
lambda calculus, we develop our first system called MICT, we give some examples
of programming and directly prove the termination (strong normalization) of the
operational semantics by means of an extension of the usual method of saturated
sets for (co)inductive types. In particular the constructions on saturated sets for
coinductive constructions that we present are new. In Section 5 we develop a
second system, MCICT, which enhances the former by allowing definitions with
several constructors/destructors, feature which is illustrated in several examples.
Safety for this system is proven by embedding it into the previous system to ensure
termination and by proving directly its type-preservation. Finally, we point to
some future and related work.

1The name “clausular” is mine.
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2. Preliminaries

In this section we recall some categorical concepts as well as our base type
system, the second order polymorphic lambda calculus F.

2.1. System F

Our basic framework is the well-known system F of Girard [11] and Reynolds [31]
in Curry-style flavor. For ease of presentation we include sum and product types
as primitive constructors.

• Types built from an infinite set of type variables denoted by X .

A, B, C, F, G ::= X | A → B | ∀X.A | A + B | A × B.

• Terms built from an infinite set of term variables denoted by x.

t, r, s ::= x | λx.r | rs | inl r | inr s | case(r, x.s, y.t) | 〈r, s〉 | fst r | snd r.

The dot notation on universal types, lambda abstractions, case analysis and any
other constructor appearing later, denotes binding: in an expression ∀X.A the
occurrences of the type variable X in A are bound. Analogously the occurrences
of the term variable x in r are bound in λx.r, and similarly those of x in s and of
y in t in case(r, x.s, y.t). This binding mechanism using the dot avoids the use of
parentheses, the dot signals an opening parentheses which closes as far to the right
as syntactically possible. We will drop the dot if the expression after it consists
of a single symbol, writing λxx instead of λx.x for instance. We take also the
liberty of omitting parentheses as much as possible, in particular we assume that
applications associate to the left, writing rs1 . . . sn for (. . . (rs1)s2) . . . sn).

• Contexts are sets of the form Γ = {x1 : A1, . . . , xn : An}. The expression
Γ, x : A denotes the context Γ ∪ {x : A} always assuming that x was not
previously declared in Γ. The set FV (Γ) of free type variables of Γ is
defined as usual.

• Typing rules of the form Γ � t : A denoting that t is a well-formed term
of type A in context Γ.

Γ, x : A � x : A
(Var)

Γ, x : A � r : B

Γ � λx.r : A → B
(→I)

Γ � r : A → B Γ � s : A

Γ � rs : B
(→ E)

Γ � t : A X /∈ FV (Γ)
Γ � t : ∀X.A

(∀I)
Γ � t : ∀XA

Γ � t : A[X := F ]
(∀E)

Γ � r : A

Γ � inl r : A + B
(+IL)

Γ � r : B

Γ � inr r : A + B
(+IR)
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Γ � r : A + B Γ, x : A � s : C Γ, y : B � t : C

Γ � case(r, x.s, y.t) : C
(+E)

Γ � r : A Γ � s : B

Γ � 〈r, s〉 : A × B
(×I)

Γ � s : A × B

Γ � fst s : A
(×EL)

Γ � s : A × B

Γ � snd s : B
(×ER).

• Reduction. The operational semantics is given by the one-step β-reduction
relation t → t′ defined as the contextual closure of the following axioms:

(λx.r)s 	→β r[x := s]
case(inl r, x.s, y.t) 	→β s[x := r]
case(inr r, x.s, y.t) 	→β t[y := r]

fst〈r, s〉 	→β r
snd〈r, s〉 	→β s.

2.2. Algebras and coalgebras

We assume some knowledge of category theory, here we only state the basic
concepts needed later, for full details on category theory see for example [18].

We will use the categorical approach to (co)induction (see [15]) to formulate
our systems of (co)inductive types. This can be briefly stated as follows:

• Induction is the use of initiality for algebras.
• Coinduction is the use of finality for coalgebras.

Datatypes like natural numbers, lists or trees are modeled my initial algebras,
whereas final coalgebras model codatatypes like streams, colists or infinite trees.

For our purpose we fix a default category C with finite products ×, initial
object 1, finite coproducts + and final object 0 such that products distribute over
coproducts. An example of such category is Set.

Definition 2.1. Let T : C → C be a functor. A T -algebra is a pair 〈A, f〉 such
that f : TA → A. Analogously a T -coalgebra is a pair 〈B, g〉 with g : B → TB.

Algebras and coalgebras form categories where morphisms are defined as follows.

Definition 2.2. Given two T -algebras 〈A, f〉, 〈B, g〉 a morphism from 〈A, f〉 to
〈B, g〉 is a C-morphism h : A → B such that the following diagram commutes:

TB B

TA A...................................................................................................... ........... ............
f

...................................................................................................... ........... ............
g

..................................................................................................... ..........
..
.........
...

Th

..................................................................................................... ..........
..
.........
...

h
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We say that the algebra 〈A, f〉 is initial if it is the initial object of the category
of T -algebras, i.e., if for every given algebra 〈B, g〉 there is a unique h such that
the above diagram commutes. In this case the h is denoted Itg and called the
iteratively defined morphism with step function g.

If the initial T -algebra exists, it is unique and is denoted as 〈μT, inT 〉, so that
Itg : μT → B and

Itg ◦ inT = g ◦ T (Itg) (2.1)
this equation is called principle of iteration.

Dually a morphism of coalgebras from 〈B, g〉 to 〈A, f〉 is a C-morphism h : B →
A such that the following diagram commutes:

B TB

A TA...................................................................................................... ........... ............
f

...................................................................................................... ........... ............
g ........

........

........

........

........

........

........

........

........

........

........

........

..... ............

............

Th

........

........

........

........

........

........

........

........

........

........

........

........

..... ............

............

h

We say that the coalgebra 〈A, f〉 is final if it is the final object of the category of
T -algebras, i.e., if for every given coalgebra 〈B, g〉 there is a unique h such that
the above diagram commutes. In this case we denote such h with CoItg and call
it the coiteratively defined morphism with step function g.

If the final T -coalgebra exists, it is unique and is denoted with 〈νT, outT 〉, so
that CoItg : B → νT and

outT ◦CoItg = F (CoItg) ◦ g (2.2)

this equation is called principle of coiteration.

The existence of initial algebras and final coalgebras is guaranteed for a wide
class of functors including all so-called polynomial functors built up from the
identity and constant functors using products and coproducts. Let us recall some
typical examples of (co)datatypes defined categorically.

Example 2.1. The natural numbers are defined as the initial algebra Nat = μT
of the functor T X = 1 + X . In this case inT : 1 + Nat → Nat encodes the usual
constructors zero and suc by means of zero = inT ◦ inl and suc = inT ◦ inr where
inl, inr are the coproduct injections. As usual, in category theory, zero is a global
element zero : 1 → Nat and the element 0 is defined by 0 = zero �. Moreover,
given functions c : 1 → C and g : C → C the iteration morphism f = It[c,g], where
[c, g] : 1 + C → C is the usual copair of arrows, generates the following version of
the principle of iteration: f ◦ zero = c, f ◦ suc = g ◦ f , which is the usual iteration
on naturals.

Example 2.2. The data type of finite lists over a given type A is defined as
the initial algebra ListA = μT of the functor T X = 1 + A × X . In this case
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inT : 1 + A × List A → ListA encodes the usual constructors nil and cons by
means of nil = inT (inl �) and cons = inT ◦ inr. Given functions c : 1 → C and
g : A × C → C the iterative morphism f = It[c,g] gives us the following version of
the principle of iteration: f(nil) = c, f(cons〈x, xs〉) = g(〈x, f(xs)〉), which is the
usual iteration on lists and corresponds to the usual operator foldr in Haskell.

Example 2.3. The codatatype of streams or strictly infinite lists over a given type
A is defined as the final coalgebra Stream A = νT of the functor T X = A × X .
The out : Stream A → A×StreamA arrow encodes the usual destructors head and
tail defined by head = fst ◦ out, tail = snd ◦ out. Moreover, given two morphisms
h : B → A, t : B → B the coiterative morphism f = CoIt〈h,t〉, where 〈h, t〉 : B →
A×B is the usual pair of arrows, generates the following version of the coiteration
principle: head ◦ f = h, tail ◦ f = f ◦ t which is essentially the unfold operator
of [8].

Example 2.4. The final coalgebra ColistC = νT , where T X = C × (1 + X),
generates the codatatype of non-empty and maybe infinite lists of elements of C.
In this case we have tail : ColistC → 1 + ColistC, tail = snd ◦ out. Therefore this
destructor can return an error (the inhabitant of 1) indicating that the tail does
not exist, in this case the colist is finite.

The following proposition, due to Lambek, states that the morphisms in, out
are isomorphisms.

Proposition 2.1. inT , outT are isomorphisms, therefore there exist inverse mor-
phisms inT

−1, outT
−1 such that inT

−1 ◦ inT = IdT (μT ) and outT ◦ outT
−1 = IdT (νT ).

These equations are called the principle of inductive and coinductive inversion re-
spectively.

Proof. Straightforward. �

The morphisms inT
−1, outT

−1 are useful to define inductive destructors and
coinductive destructors.

Example 2.5. For the previous examples the inverse morphisms and the inversion
principles behave as follows:

• Natural numbers: inT
−1 : Nat → 1 + Nat such that inT

−1(0) = inl �, and
inT

−1(suc n) = inr n which corresponds to the predecessor function with
error handling.

• Finite lists: inT
−1 : ListA → 1 + A × ListA such that inT

−1(nil) = inl �,
which corresponds to an error, and inT

−1(cons〈x, xs〉) = inr〈x, xs〉. This
behavior allows us to define the pair of destructors 〈head, tail〉 by means
of a case analysis.

• Streams: the morphism outT
−1 : A × Stream A → Stream A such that

out(outT
−1 〈a, s〉) = 〈a, s〉 which allows a direct definition of the cons con-

structor of streams.
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• Colists: the morphism outT
−1 : C × (1 + ColistC) → ColistC directly

defines the cons constructor of colists. For instance outT
−1 〈c, inl �〉 repre-

sents the unitary list with element c.

Next, we recall the concepts of (co)recursive algebras, introduced in [7], whose
universal properties will generate the so-called primitive (co)recursion principles.

Definition 2.3. Define ΠD : C → C as ΠDC = C ×D. We say that the T -algebra
〈A, f〉 is recursive if for every TΠA-algebra 〈B, g〉 there exists a morphism h : A →
B such that:

T (A × B) B

TA A................................................................................................................. ............
f

.............................................................................. ............
g

..............................................................................................................
...
.........
...

T 〈Id, h〉

..............................................................................................................
...
.........
...

h

(2.3)

Set ΣD : C → C with ΣDC = C + D. We say that the T -coalgebra 〈A, f〉 is
corecursive if for every TΣA-coalgebra 〈B, g〉 there exists a morphism h : B → A
such that:

B T (A + B)

A TA................................................................................................................. ............
f

.............................................................................. ............
g ........

........

........

........

........

........

........

........

........

........

........

........

.................

............

T [Id, h]

........

........

........

........

........

........

........

........

........

........

........

........

.................

............

h

(2.4)

Proposition 2.2. 〈μT, inT 〉 is recursive and 〈νT, outT 〉 is corecursive.

Proof. Let 〈B, g〉 be a TΠμT -algebra, i.e. g : T (μT × B) → B. It is easy to see
that inT ◦T (fst) : T (μT × B) → μT , so that we get the following T -algebra:

〈inT ◦T (fst), g〉 : T (μT × B) → μT × B.

Therefore by iteration there is a unique h : μT → μT × B such that

h ◦ inT =
〈
inT ◦T (fst), g

〉
◦ T (h). (2.5)
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The goal is to show that for the given g there is an h′ : μT → B such that

T (μT × B) B

TμT μT........................................................................................................................................................... ............
inT

........................................................................................................................ ............
g

....................................................................................................................................................... ..........
..
.........
...

h′

....................................................................................................................................................... ..........
..
.........
...

T (〈id↪ h′〉)

(2.6)
Set h′ : μT → B defined as h′ = snd ◦h, we will show that the diagram commutes,
i.e.,

h′ ◦ inT = g ◦ T (〈Id, h′〉).
First we show that fst ◦h = Id by initiality, i.e. we have to show that the following
diagram commutes:

TμT μT

TμT μT........................................................................................................................................................... ............
inT

........................................................................................................................................................... ............
inT

....................................................................................................................................................... ..........
..
.........
...

fst ◦h

....................................................................................................................................................... ..........
..
.........
...

T (fst ◦h)

we have by equation (2.5)

(fst ◦h) ◦ inT = fst ◦(h ◦ inT ) = fst ◦
(
〈inT ◦T (fst), g〉 ◦ T (h)

)
=

(
fst ◦〈inT ◦T (fst), g〉

)
◦ T (h)

=
(
inT ◦T (fst)

)
◦ T (h) = inT ◦T (fst ◦h).

Therefore the diagram commutes, and by uniqueness we have fst ◦h = Id.
Next observe that h = 〈fst ◦h, snd ◦h〉 = 〈Id, h′〉. Now we can show that dia-

gram (2.2) commutes:

h′ ◦ inT =
(
snd ◦h

)
◦ inT

= snd ◦
(
h ◦ inT

)
= snd ◦

(
〈inT ◦T (fst), g〉 ◦ T (h)

)
=

(
snd ◦〈inT ◦T (fst), g〉

)
◦ T (h)

= g ◦ T (h)
= g ◦ T (〈Id, h′〉).

Therefore diagram (2.2) commutes.



712 F.E. MIRANDA-PEREA

The case for the final coalgebra is similar. �

For the cases of the initial algebra and the final coalgebra, the h that makes
diagrams (2.3), (2.4) commute is denoted Recg, CoRecg respectively and we refer
to them as the (co)recursively defined morphism with step function g, so that we
have Recg : μT → B, CoRecg : B → νT such that the following principles hold:

• Principle of primitive recursion

Recg ◦ inT = g ◦ T (〈Id, Recg〉). (2.7)

• Principle of primitive corecursion

outT ◦CoRecg = T ([Id, CoRecg]) ◦ g. (2.8)

Let us interpret these principles in some particular cases.

Example 2.6. For natural numbers, finite lists and streams the (co)recursion
principle behaves as follows:

• Natural numbers: given functions c : 1 → C and g : Nat × C → C the
recursive morphism f = Rec[c,g], generates the following version of the
principle of recursion: f(0) = c, f (sucn) = g〈n, f(n)〉, which is the usual
primitive recursion principle on naturals.

• Finite lists: given functions c : 1 → C and g : A × ((List A) × C) → C
the recursive morphism f = Rec[c,g], generates the following version of the
principle of recursion: f(nil) = c, f (cons〈x, xs〉) = g〈x, 〈xs, f xs〉〉.

• Streams: given two morphisms h : B → A, t : B → (Stream A) + B the
corecursive morphism f = CoIt〈h,t〉, generates the following version of the
corecursion principle: head(f x) = h x, tail(f x) = case (t x) of Inl y ⇒
y | Inr z ⇒ f z.

2.3. Dialgebras

The concept of dialgebra, introduced in [14], is a straightforward generalization
of (co)algebras with stronger expressive power (see [30]). With dialgebras we can
represent products, coproducts and even exponential objects (see [6]). We will
serve later from this concept to justify the clausular feature of one type system.

Definition 2.4. Let F, G : C → D be covariant functors between two categories
C,D. A F, G-dialgebra is a pair 〈A, f〉 where A is a C-object and f : FA → GA is
a D-morphism.



TWO EXTENSIONS OF SYSTEM F WITH (CO)ITERATION 713

Definition 2.5. A morphism between two F, G-dialgebras 〈A, f〉, 〈B, g〉 is a C-
morphism h : A → B such that:

FB

FA GA

GB

...................................................................................................... ........... ............
f

...................................................................................................... ........... ............
g

..................................................................................................... ..........
..
.........
...

Fh

..................................................................................................... ..........
..
.........
...

Gh

Observe that if I is the identity functor then a T, I-dialgebra 〈A, f〉 is a T -algebra
and an I, T -dialgebra is a T -coalgebra.

For our later purposes we are only interested in initial and final dialgebras
involving the functors F, I : C → Ck defined by F = 〈F1, . . . , Fk〉, I = 〈I, . . . , I〉
where Fi : C → C are arbitrary functors and I : C → C is again the identity
functor.

For variety, we first discuss finality for this kind of functors. If the final I, F -
dialgebra exists, it will be denoted with 〈ν(F1, . . . , Fk), outk〉. The finality property
is given by the following diagram, where V = ν(F1, . . . , Fk)

where h : B → V is the unique function such that:

outk ◦〈h, . . . , h〉 = 〈F1h, . . . , Fkh〉 ◦ g.

Observe that the morphisms outk and g are necessarily of the form

outk = 〈outk,1, . . . , outk,k〉 g = 〈g1, . . . , gk〉.

Therefore the previous diagram can be splitted into the following k diagrams,
where we denote the unique h above with CoItkg .
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outk,i ◦ CoItkg = Fi(CoItkg) ◦ gi. (2.9)
These equations represent the coiteration principle on dialgebras.

Analogously, corecursion is introduced by the following k-diagrams:

outk,i ◦ CoReck
g = Fi

(
[Id, CoReck

g ]
)
◦ gi. (2.10)

These equations represent the principle of primitive corecursion on dialgebras.

Finally the coinductive inversion principle provides us with a morphism
out−1

k : 〈F1V, . . . , FkV 〉 → 〈V, . . . , V 〉 such that outk ◦ out−1
k = I〈F1V,...,FkV 〉. How-

ever, in practice, we will restrict the final dialgebra morphism to outk : V →
〈F1V, . . . , FkV 〉, therefore getting an inverse out−1

k : 〈F1V, . . . , FkV 〉 → V such
that the following k equations hold:

outk,i ◦ out−1
k = πi (2.11)

where πi : 〈F1V, . . . , FkV 〉 → FiV is the usual projection.

Let us see the definition of streams as a final dialgebra.

Example 2.7. The codatatype of streams over a given type A is defined as the
final dialgebra Stream A = ν(F1, F2) of the functors F1 X = A, F2 X = X . The
usual destructors head : Stream A → A and tail : Stream A → Stream A are di-
rectly defined as head = out2,1, tail = out2,2. Moreover, given two morphisms
g1 : B → A, g2 : B → B the coiterative morphism f = CoIt2g, where g = 〈g1, g2〉,
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generates the following version of the coiteration principle: head◦f = g1, tail◦f =
f ◦ g2. Observe that the need for projections disappeared.

Dually, and denoting with 〈μ(F1, . . . , Fk), ink〉 the initial F, I-dialgebra we arrive
to the following k diagrams, where ink = 〈ink,1, . . . , ink,k〉 and g = 〈g1, . . . , gk〉.

Therefore the iteration principle is given by the following k-equations:

Itkg ◦ ink,i = gi ◦ Fi(Itkg). (2.12)

With respect to primitive recursion we get the following k diagrams and equations:

Reck
g ◦ ink,i = gi ◦ Fi

(
〈Id, Reck

g〉
)
. (2.13)

Finally the inductive inversion principle provides us with a morphism in−1
k :

〈μ, . . . , μ〉 → 〈F1μ, . . . , Fkμ〉 such that

in−1
k ◦ ink = I〈F1μ,...,Fkμ〉 (2.14)

where μ = μ(F1, . . . , Fk).

Let us see the definition of natural numbers as an initial dialgebra.

Example 2.8. The natural numbers are defined as the initial dialgebra Nat =
μ(F1, F2) where F1 X = 1 and F2 X = X . In this case we have in2 = 〈in2,1, in2,2〉
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where in2,1 : 1 → Nat corresponds to a global zero and in2,2 : Nat → Nat plays the
role of the successor function suc. Moreover, given a pair of functions g = 〈g1, g2〉
where g1 : 1 → C and g2 : C → C the iteration morphism f = It2g, generates the
following version of the principle of iteration: f ◦ zero = g1, f ◦ suc = g2 ◦ f , which
is the usual iteration on naturals. Observe that the use of injections disappeared.

Next, we discuss how to model the above categorical schemes of recursion and
inversion in the framework of type systems.

2.4. From categories to types

Our goal is to implement the principles of (co)iteration, primitive (co)recursion
and (co)inductive inversion as defined above, by means of type and term construc-
tors extending system F. To implement these categorical schemes as constructors
of typed lambda calculi, we need to see the type system as a category T where
types are objects, morphisms are transformations between types, and composition
is function composition. Such categories of types and their features are well-known,
see for example [3].

A functor F : T → T is then a transformation between types. In particular we
use functors F (X) depending on a type variable X , which map a type B to a type
F (B). Such functors are defined, more accurately, by expressions of the form λX.F
abstracting the type variable X . Note that the systems developed in this paper are
not higher-order and therefore abstractions like λX.F are only a useful notation. In
particular an application (λX.F )B of a functor to a type B will always be identified
with the capture-avoiding substitution F [X := B]. It is important to mention that
for a type transformer F to qualify as a functor is necessary to define its action on
morphisms. This is necessary to model the categorical combinators. For instance,
the iteration principle Itg ◦ inF = g ◦ F (Itg) involves the application of the functor
F to a morphism Itg. Hence, as in our type theoretical framework F is a type
transformer and Itg is not a type but a functional term, we need to give a definition
to applications like F (Itg). To guarantee the functoriality or monotonicity of λX.F
in functional terms, a syntactical condition on the type variable X is usually
required, namely that X must occur only on positive positions in F , that is, not to
the left of an odd number of the → type constructor (see, for example [7,12,13,40]).
In our treatment we prefer to follow [20] and use full monotonicity instead: the
functoriality of λX.F in functional terms is represented internally by means of a
term map : F mon X in a given context. The type F monX , defined as ∀X∀Y.(X →
Y ) → F → F [X := Y ], represents the fact that the functor λX.F is monotone
(covariant) with respect to its argument X . Such terms are called monotonicity
witnesses. For the merits of using full-monotonicity instead of positivity we point
to [1]. Moreover, it is important to remark that a positive system is not compatible
with Curry-style systems in the sense discussed in Section 3.3. In conclusion, a
functor in our framework is a pair 〈λX.F, map〉 where map is a term of type
F monX in the needed context. Thus, our functors are just like instances of the
class Functor in Haskell. An example is in order.



TWO EXTENSIONS OF SYSTEM F WITH (CO)ITERATION 717

Example 2.9. Consider the type transformer λX.F , with F = 1 + A × X and
A a constant type. For this transformation to be a functor we need to define
a monotonicity witness of type (1 + A × X)monX , that is a term map of type
∀X∀Y.(X → Y ) → (1+A×X) → (1+A×Y ). Given f : X → Y and t : 1+A×X
the natural idea to get an inhabitant of 1 + A×Y is to perform a case analysis on
t: if t = inl � we just return t and if t = inr 〈a, s〉 then inr 〈a, f s〉 is returned. This
leads us to define map = λf.λx.case(x, y. inl y, z. inr〈fst z, f (snd z)〉.

Once we have settled what a functor is in a type-theoretical setting, we proceed
to define the categorical recursion, corecursion and inversion principles discussed
in Sections 2.2 and 2.3.

3. A type system for (co)algebras

Following the above ideas we define next an extension of system F modeling the
categorical principles discussed in Section 2.2. For this purpose, given a functor
λX.F we will allow the construction of a so-called inductive type μX.F modeling
the initial algebra of λX.F or the construction of a so-called coinductive type νX.F
representing the final coalgebra. Moreover we will introduce term constructors for
(co)iteration, primitive (co)recursion and inversion.

3.1. Definition of the system

We extend system F as follows:

• Types:
A, B, C, F, G ::= . . . | μX.F | νX.F.

Observe that the formation of (co)inductive types does not put a restric-
tion on F , the functoriality requirement will be ensured by the typing rules
defined below.

• Terms: we add a term constructor for each categorical operation described
in Section 2.2.

t, r, s, m ::= . . . | It(m, s, t) | Rec(m, s, t) | in t | in−1(m, t) |
CoIt(m, s, t) | CoRec(m, s, t) | out t | out−1(m, t).

• Typing rules: we add a typing rule for every new term constructor as
follows:

– Introduction of inductive types:

Γ � t : F [X := μX.F ]
Γ � in t : μX.F

(μI).
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– Elimination of inductive types:
∗ By inversion:

Γ � t : μX.F
Γ � m : F monX

Γ � in−1(m, t) : F [X := μX.F ]
(μEi).

∗ By iteration:

Γ � t : μX.F
Γ � m : F monX
Γ � s : F [X := B] → B

Γ � It(m, s, t) : B
(μE).

∗ By primitive recursion:

Γ � t : μX.F
Γ � m : F mon X
Γ � s : F [X := (μX.F ) × B] → B

Γ � Rec(m, s, t) : B
(μE+).

– Introduction of coinductive types:
∗ By coiteration:

Γ � s : B → F [X := B]
Γ � m : F mon X
Γ � t : B

Γ � CoIt(m, s, t) : νX.F
(νI).

∗ By primitive corecursion:

Γ � s : B → F [X := (νX.F ) + B]
Γ � m : F monX
Γ � t : B

Γ � CoRec(m, s, t) : νX.F
(νI+).

∗ By inversion:

Γ � t : F [X := νX.F ]
Γ � m : F monX

Γ � out−1(m, t) : νX.F
(νIi).

– Elimination of coinductive types:

Γ � r : νX.F

Γ � out r : F [X := νX.F ]
(νE).
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• Operational semantics: it is given by extending the one-step β-reduction
relation t →β t′ with the following axioms under contextual closure.

It(m, s, in t) 	→β s
(
m

(
λx.It(m, s, x)

)
t
)

Rec(m, s, in t) 	→β s
(
m

(
〈Id, λz.Rec(m, s, z)〉

)
t
)

in−1(m, in t) 	→β m(λz.z)t
out CoIt(m, s, t) 	→β m

(
λz.CoIt(m, s, z)

)
(st)

outCoRec(m, s, t) 	→β m
(
[Id, λx.CoRec(m, s, x)]

)
(st)

out out−1(m, t) 	→β m(λzz)t

where Id = λx.x and for given f : A → B, g : C → B we define the copair operator
on functions [f, g] : A + C → B as [f, g] = λz.case(z, x.fx, y.gy). Analogously for
f : B → A, g : B → C, the pair operator on functions 〈f, g〉 : B → A×C is defined
as 〈f, g〉 = λz.〈fz, gz〉.

As always the transitive closure of →β is denoted by →+
β and the reflexive-

transitive closure by →�
β.

It is worth noting that each of the above reduction rules originates in one of
the categorical principles of (co)iteration, (co)recursion or inversion discussed in
Section 2.2.

This finishes the definition of the type system MICT of monotone inductive and
coinductive types.

3.1.1. On inversion

The reduction rules for inversion may look awkward at first sight and deserve
some explanation. For instance, in the case of coinductive inversion, being out and
out−1 inverses in the categorical setting, it may seem strange not to define the
rule directly as out out−1(m, t) 	→β t. However, this naive rule is ruled out as it
destructs the termination of the system which can easily be seen as follows:

Let 1 be the unit type with inhabitant � (see Ex. 3.1, p. 720). Define T =
νX.X → 1, m = λfλxλy.�, ω = λx.(out x)x, and Ω = ω(out−1(m, ω)). We have
the typings � m : (X → 1)monX, � ω : T → 1,� out−1(m, ω) : T and � Ω : 1.
With the rule out out−1(m, t) 	→β t we get Ω →+

β Ω:

Ω →β (out out−1(m, ω))(out−1(m, ω)) →β ω(out−1(m, ω)) = Ω.

Therefore we rule out such reduction. This phenomenon was originally noticed
in [21] for fixed-point types.

3.2. Programming in MICT

In this section we develop several examples of (co)inductive types and programs
in MICT. In each example we present an inductive type μX.F or a coinductive type
νX.F together with a so-called canonical monotonicity witness map : F mon X ,
mechanically defined depending on the syntactical form of the type F (see Ap-
pendix B). Our inductive examples model usual datatypes whose inhabitants are
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finite structures built by the constructors encoded by the in term constructor.
Dually, the coinductive examples represent codatatypes inhabited by strictly or
potentially infinite structures; the emphasis being in their destructors, encoded
by the out term constructor. We also present inductive destructors which are effi-
ciently defined either by the inversion operator in−1 or by the primitive recursion
operator Rec, and coinductive constructors defined by the primitive corecursion
operator CoRec or by the inversion operator out−1. Each example is finished with
some functions involving the respective (co)datatype and implemented by one of
the principles available in the system.

Before our series of examples let us explain the generalities of function pro-
gramming in MICT. Given an inductive type μX.F we can program functions
g : (μX.F ) → B by the iteration or primitive recursion principles directly imple-
mented in our operational semantics. If we define g = λz.It(m, s, z), for some given
monotonicity witness m and step-function s, the specification by the principle of
iteration

g(inx) = s
(
m(g)(x)

)
holds, in the sense that g(in x) →+

β s
(
m(g)x

)
.

Analogously primitive recursion provides a mean to program functions g :
(μX.F ) → B specified by

g(inx) = s
(
m(〈Id, g〉)(x)

)
.

Since this time we get g(in x) →+
β s

(
m(〈Id, g〉)(x)

)
, by defining g = λz.Rec(m, s, z).

In a dual way, given a coinductive type νX.F we can program functions g :
B → νX.F as follows:

• By coiteration: if g is specified by

out g(x) = m(g)(s(x))

then define g = λx.CoIt(m, s, x).
• By primitive corecursion: if g is specified by

out g(x) = m([Id, g])(s(x))

then define g = λx.CoRec(m, s, x).
In the following examples for any unary term constructor c we will denote the
function λx.c x simply with the same name c. For example, the typing in : F [X :=
μX.F ] → μX.F must be understood as λx. in x : F [X := μX.F ] → μX.F . On the
other hand, we sometimes use the anonymous variable for dummy bindings, as
in λ .r.

We start our series of examples with the very useful unit type 1 encoded directly
in system F.

Example 3.1 (unit type). The type 1, defined by 1 = ∀X.X → X , is characterized
by having a unique element denoted �. This type is mostly useful in the definition
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of (co)inductive types with basic inhabitants, and as a way to handle errors. For
instance, a sum type of the form 1+A has an error constant defined by error = inl �.
This error handling method will be present in some of the examples below. The
reader can observe that 1 + A is essentially the type maybe A of Haskell.

Example 3.2 (Booleans). This very simple but useful type can be defined as
Bool = μX.1 + 1

• Canonical monotonicity witness: mapbool = λfλx.x.
• Constructors: true = in(inl �), false = in(inr �).
• The usual conditional if then else : Bool → A → A → A is defined by

if then else = λzλxλy.It(mapbool, s, z) where s : 1 + 1 → A → A → A
is defined by s = λb.λtλf.case(b, y.t, z.f).

The reader can observe that the binding in μX.1 + 1 is dummy and therefore the
booleans can simply be defined as Bool = 1 + 1.

Example 3.3 (natural numbers). Define Nat = μX.1+X with in : 1+Nat → Nat

• Canonical monotonicity witness: mapnat=λfλx.case(x, u. inlu, v. inr(f v)).
• Constructors:

– Zero: 0 : Nat, 0 = in(inl �).
– Successor function: suc : Nat → Nat, suc = λn. in(inr n).

• Destructor: the destructor of naturals is the predecessor function pred :
Nat → 1 + Nat, such that pred 0 = error, pred(suc n) = inr n. It can be
defined either by primitive recursion or by inductive inversion.

– Recursive predecessor:
pred = λn.Rec(mapnat, λy.case(y, u. inlu, v. inr(fst v)), n).

– Predecessor by inversion: pred = λn. in−1(mapnat, n). This shows
that the presence of inductive inversion greatly simplifies the pro-
gramming task.

• Some functions on Nat:
– sum : Nat → Nat → Nat, sum = λnλz.It(mapnat, [λ .n, suc], z).
– prod : Nat → Nat → Nat, prod=λnλz.It(mapnat, [λ .0, λx.sum xn], z).

Example 3.4 (finite lists over A). Define ListA = μX.1 + A × X with in :
1 + A × ListA → ListA

• Canonical monotonicity witness:
maplist = λfλx.case(x, u. inl u, v. inr〈fst v, f snd v〉).

• Constructors:
– Empty list: nil : List A, nil = in(inl �).
– Cons function: cons : A × ListA → List A, cons = λx. in(inr x).

• Destructors:
– Recursive head function: head : ListA → 1 + A such that head nil =

error, head(cons〈a, 	〉) = inr a
head = λz.Rec(maplist, λy.case(y, u. inlu, v. inr(fst v)), z).

– Recursive tail function: tail : List A → 1 + ListA such that tail nil =
error, tail(cons〈a, 	〉) = inr 	
tail = λz.Rec(maplist, λy.case(y, u. inlu, v. inr(fst(snd v))), z).
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– Head by inversion: head = λ	.case(in−1(maplist, 	), x. inlx, y. inr(fst y)).
– Tail by inversion: tail = λ	.case(in−1(maplist, 	), x. inlx, y. inr(snd y)).

• Some functions on List A:
– Append: app : ListA → ListA → ListA,

app = λz.It(maplist, [λyλw.w, λpλx. cons〈fst p, (snd p)x〉], z).
– Length: length : List A → Nat,

length = λz.It(maplist, [λ .0, λp. suc(snd p)], z).
– Reverse: rev : ListA → List A,

rev = λz.It
(
maplist, [λ .nil, λp.app (snd p)( cons〈fst p, nil〉)], z

)
.

Example 3.5 (unlabelled binary trees). Define BinTree = μX.1 + X × X with
in : 1 + BinTree × BinTree → BinTree

• Canonical monotonicity witness:
mapbtree = λfλx.case(x, u. inlu, v. inr〈f(fst v), f(snd v)〉).

• Constructors:
– node : BinTree node = in(inl �).
– makebt : BinTree × BinTree → BinTree, makebt = λx. in(inr x).

• Destructor: strees : BinTree → 1 + BinTree such that strees node = error,
streesmakebt 〈t1, t2〉 = inr〈t1, t2〉
strees = λx.Rec(mapbtree, λy.case(y, u. inlu, v. inr〈fst(fst v), fst(snd v)〉), x).

• Some functions on BinTree
– isnode : BinTree → Bool decides if a given tree is a node.

isnode = λt.case(in−1(mapbtree, t), x.true, y.false).
– nn : BinTree → Nat returns the number of nodes given by

nn node = 1, nn(makebt〈t1, t2〉) = suc(sum (nn t1) (nn t2)).
nn = λx.It(mapbtree, λy.case(y, u.1, v. suc(sum(fst v)(snd v)), x).

Example 3.6 (unlabelled A-branching well-founded trees with successor). The
type WFTreeS A = μX.1+X+(A → X) with constructor in : 1+WFTreeS A+(A →
WFTreeS A) → WFTreeS A encodes the following constructors:

• node : WFTreeS A, node = in(inl �).
• succ : WFTreeS A → WFTreeS A succ = λx. in(inr(inl x)).
• makewft : (A → WFTreeS A) → WFTreeS A makewft = λf. in(inr(inr f)).

We discuss now the particular instance O = WFTreeS Nat which rises the type of
Brouwer ordinals or Kleene’s O.

• Monotonicity witness:

mapord = λf.λx.case(x, y. inl y, z.case(z, u. inr(inl (fu)), v. inr(inr (λn.f(v n))))).

• Constructors: in this particular case the above constructors are called
0, succ and lim respectively, where lim f refers to the least upper bound of
the ordinals on the range of f .

• Destructor: a predecessor function pred : O → 1+O+(Nat → O) such that
pred 0 = error, pred (succα) = inr(inl α) and pred (lim f) = inr(inr(λn.f n))
can easily be defined by inductive inversion. However, if the predecessor of
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a limit lim f is understood as a function mapping every natural number n to
the predecessor of its image under f , then it is not possible to give a defi-
nition neither by inversion nor by iteration. This task is easily achieved by
primitive recursion on O as follows: pred = λα.Rec(mapord, s, α) where s =
λx.case(x, y. inl y, z.case(z, u. inr(inl (fst u)), v. inr(inr (λn. in(snd(v n)))))).
With this definition the predecessor behaves as before for 0 and sucα
whereas pred(lim f) = λn. inr(inr(in(pred (f n)))).

• Some functions on O:
– Ordinal sum: sum : O → O → O, sum = λα.λx.It(map, s, x) where

s = [λ .α, [succ, lim]]. With this definition we have sum α 0 = α,
sum α (succ β)=succ (sumα β) and sum α (lim γ)= lim(λn.sum α (γ n)).

– Ordinal product: prod : O → O → O, prod = λα.λx.It(map, s, x)
where s = [λ .0, [λβ.sum β α, lim]]. With this definition we have prod
α 0 = 0, prod α (succ β) = sum (prodα β)α and prod α (lim γ) = lim
(λn.prod α (γ n)).

Let us discuss now some examples of coinductive types representing codatatypes
defined by their destructors.

Example 3.7 (streams over A). The type of streams or strictly infinite lists over
a type A is defined as Stream A = νX.A×X with out : Stream A → A× Stream A

• Canonical monotonicity witness: mapstream = λfλx.〈fst x, f(snd x)〉.
• Destructors:

– head : Stream A → A, head = λx. fst(outx)
– tail : Stream A → Stream A, tail = λx. snd(out x).

• Constructor cons : A × Stream A → Stream A, given by
cons = λx. out−1(mapstream, x).

• Some functions:
– cnt : A → Stream A giving a stream of constants

head(cnt a) = a, tail(cnt a) = cnta
cnt = λz.CoIt(mapstream, λy.〈y, y〉, z)

– from : Nat → Stream Nat returning the stream of naturals from the
given one
head(from n) = n, tail(from n) = from(sucn)
from = λz.CoIt(mapstream, λy.〈y, suc y〉, z).

– A map function mapstr : (A → B) × Stream A → Stream B returning
the stream resulting of applying f to the elements in a given stream.
head(mapstr〈f, s〉) = f (head s), tail(mapstr〈f, s〉) = mapstr〈f, tail s〉.
mapstr = λz.CoIt(mapstream, λp.〈(fst p)(head(snd p)),〈fst p,tail(snd p)〉〉,
z). Observe that this function can be polymorphic with type ∀X∀Y.(X
→ Y ) × Stream X → Stream Y .

Of course it would be more elegant to give a curried version of mapstr. From now
on, whenever possible, we will give only curried functions.

The next example shows the limitations of coiteration and the expressivity of
corecursion.
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Example 3.8 (conatural numbers (the ordinal ω + 1)). CoNat = νX.1 + X

• Canonical monotonicity witness:
mapconat = λfλx.case(x, u. inl �, v. inr(f v)).

• Destructor: pred : CoNat → 1 + CoNat, pred = out. Observe that this is
the predecessor function with error such that pred 0 →� error.

• Constructors:
– Zero: 0 : CoNat, 0 = out−1(mapconat, inl �).
– Successor: suc : CoNat → CoNat, suc = λn. out−1(mapconat, inr n).
– Omega: to define the ordinal ω, we first define a global element of

CoNat, ω† : 1 → CoNat by coiteration as: ω†=λx.CoIt(mapconat,inr,x).
Omega is then defined as ω = ω†�. With this definition we have
pred(suc ω) →� inr ω and also pred(ω) →� inr ω.

• Some functions on CoNat:
– Test for zero: the function iszero :: CoNat → Bool is defined as iszero =

[λ .false, λ .true] ◦ pred.
– Coiterative sum of conaturals: the function ⊕ : CoNat → CoNat →

CoNat is defined as n⊕m = sum〈inr n, inr m〉 where sum : (1+CoNat)×
(1 + CoNat) → CoNat is such that

pred(sum〈inr 0, inr 0〉) = error
pred(sum〈inr 0, inrm〉) = inr(sum〈inr 0, predm〉)
pred(sum〈inr n, inr m〉) = inr(sum〈pred n, inr m〉).

This function is defined as sum = λz.CoIt(mapconat, s, z) where

s x = if iszero(fst x) then
if iszero(snd x) then

error
else inr〈fst x, pred(sndx)〉

else
inr〈pred(fst x), snd x〉.

However, the operational semantics of this sum function is not satis-
factory. For instance we only get pred(0 ⊕ (suc m)) →� inr(0 ⊕ m) or
pred(n⊕ω) →� inr(0⊕ω) but neither 0⊕m →� m nor pred(ω⊕m) →�

inr ω. This could be arranged by directly defining functions 0⊕ and
ω⊕ as the identity λxx and the constant function λ .ω, respectively.
However there is no hope for defining a function (suc n)⊕ in a similar
way, for its destruction by pred does not involve itself as required by
the coiteration principle, but rather calls another function, namely
n ⊕ . Fortunately this function can be defined with corecursion.

– Corecursive sum of conaturals: this time the sum is defined as n⊕m =
sum n m where a function sum n : CoNat → CoNat is defined for each
conatural number n as follows. The cases for 0 and ω are defined
directly as sum 0 = Id and sum ω = λ .ω and for a successor we use the
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corecursion principle, defining sum(suc n) = λz.CoRec(mapconat, s, z)
where s : CoNat → 1 + (CoNat+ CoNat) is given by

s x = if iszero x then
inr(inl n)

else
inr(inl(sum n x)).

It is easily verified that now the following specification holds:

pred(0 ⊕ m) = predm pred((suc n) ⊕ m) = inr(n ⊕ m) pred(ω ⊕ m) = inr ω.

The next example is related to example 2.4 but in this case we can have the empty
list.

Example 3.9 (coinductive lists over A). The type CoListA = νX.1 + A × X
entails potentially infinite lists over A.

• Canonical monotonicity witness: mapcolist = maplist, see Example 3.4.
• Destructors:

– head :CoListA→1+CoListA, head=λx.case(out x, y. inl y, z. inr(fst z)).
– tail :CoListA→1+CoListA, tail=λx.case(out x, y. inl y, z. inr(snd z)).

• Constructors: nil : CoListA is defined as nil = out−1(mapcolist, inl �)
whereas cons : A × CoListA → CoListA is given by cons = λx. out−1

(mapcolist, inr x).
• Some functions:

– Test for nil: isnil : CoListA → Bool is defined by
isnil = λx.case(out x, y.true, z.false).

– Coiterative append: coapp : CoListA×CoListA → CoListA, coapp =
λz.CoIt(mapcolist, s, z) where

s x = if isnil(fst x) then
if isnil(sndx) then

error
else inr〈head(snd x), 〈nil, tail(sndx)〉〉

else
inr〈head(fst x), 〈tail(fst x), snd x〉〉.

However with this definition we get a very inefficient behavior corre-
sponding to the definition coapp〈nil, cons〈x, xs〉〉 = cons〈x, coapp〈nil,
xs〉〉, which forces coapp to continue executing until a copy of xs is
constructed. We cannot do better with coiteration, for this princi-
ple oblige us to call coapp with a new seed, namely 〈nil, xs〉, to keep
coiterating. Instead, we would like to return immediately the list xs.
This can be done with primitive corecursion.

– Corecursive append: this time we define, for every given colist xs, a
function coappxs : CoListA → CoListA. If xs is nil then we can use
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corecursion to get coapp nil ys = ys or simply define coapp nil = Id.
For the case coappxs where xs is not empty, we define coappxs =
λz.CoRec(mapcolist, s, z) by taking the step function s : CoListA →
1 + A × (CoListA + CoListA) defined as follows:

s x = if isnilx then
error

else
inr〈head xs, inl(coapp(tail xs)x)〉.

From all the above examples we can observe the heavy use of injections and pro-
jections which complicate both the definitions of map witnesses and of functions in
general, for the constructors or destructors of a type are encoded and not directly
available. After the proof of strong normalization of this system, we will present
an improved system which allows the constructors and destructors to be expressed
directly and therefore modularizes the definition of types and functions.

3.3. A word on positivity

The reader can confirm that the above examples are in fact positive, that is,
the variable X occurs only on positive positions in the type F . An immediate
question arises: what are then the advantages of using full monotonicity?

Above all, positive systems are incompatible with Curry-style in the following
sense: in a positive system a functor is a pair 〈λX.F, mapλX.F 〉 where X occurs
only in positive positions in F and the monotonicity witness is fixed and defined
according to the shape of F , essentially by the rules given in Appendix B. Observe
that this term is annotated by the type expression λX.F . The (co)inductive types
are only allowed if the positivity restriction holds, therefore there is no necessity
to attach the witness in the typing rules. For example the (μE) rule becomes

Γ � t : μX.F
Γ � s : F [X := B] → B

Γ � It(s, t) : B

and the corresponding reduction rule becomes:

It(s, in t) 	→β s
(
map

(
λx.It(s, x)

)
t
)
.

But there is no way to recover the specific term map only from the terms. It is
mandatory either to look for the adequate instance of (μE) or to annotate some
term to recover the map term. In the first case we would get a conditional term
rewrite system very hard to handle from the metatheoretical point of view. In the
second case we would obviously get a Church-style system, and the rule becomes,
for instance

ItμX.F (s, in t) 	→β s
(
mapλX.F

(
λx.It(s, x)

)
t
)
.
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Other answers in favor of monotonicity are:
• Specific monotonicity witnesses are not involved in proofs, we can even

have hypothetical monotonicity, i.e. just an additional assumption x :
F monX in our context. Therefore the generality of our approach simpli-
fies proofs.

• For higher-order systems there is no fixed concept of positivity. With full
monotonicity we can generalize directly the systems presented in this work,
this has been done in [1,22]. Moreover, sometimes different witnesses are
useful for programming, see the example on power list reverse in [1].

Next, we prove a strong version of safety for MICT by proving termination and
type-preservation.

4. Strong normalization for MICT

In this section we show the termination property for MICT, proving that every
typable term in MICT strongly normalizes by means of a variation of the well-
known Tait’s method [34], using the so-called saturated sets which are a variant
of Girard’s candidats de reducibilité [10,11]. This method characterizes the ty-
pable strongly normalizing terms in a syntax-directed way and modularizes in a
convenient way the normalization proof. The proof presented here, specifically
the constructions on saturated sets, is based on proofs given in [19] for related
inductive type systems in Church-style. The coinductive constructions are, to the
best of our knowledge, new.

Definition 4.1. A term t is strongly normalizing with respect to a reduction
relation → if there is no infinite reduction sequence t → t1 → t2 → . . .

Equivalently, the set sn of strongly normalizing terms can be defined inductively
as follows:

For all t′, t → t′ implies t′ ∈ sn

t ∈ sn
·

Thus, the set sn corresponds to the accessible or well-founded part of the relation
→.

The syntactical concept of evaluation context, defined next, is the main tool
to characterize the set of strongly normalizing terms without recurring to the
reduction relation.

Definition 4.2. Let • be a new symbol. An elimination is an expression of one
of the following forms:

•s, case(•, x.t, y.r), fst •, snd •, It(m, s, •), Rec(m, s, •), in−1(m, •), out •

eliminations are denoted always with the letter e.

The evaluation contexts, called multiple eliminations in [23], are generated by
eliminations. An evaluation context is like a term with a hole somewhere inside
it, into which we can plug a term to obtain a new term.
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Definition 4.3. An evaluation context is defined as follows:

E ::= • | e[• := E]

where the substitution e[• := E] is defined as if • were a term variable; in fact,
textual substitution suffices, for • is never below a binder. From now on we will
use E[r] to denote E[• := r].

Next, we define the set of terms SN which characterize strong normalizability
via a syntax-directed inductive definition.

Definition 4.4. The set SN is inductively defined as follows:

x ∈ SN

E[x], s ∈ SN

E[x]s ∈ SN

E[x], s, t ∈ SN

case(E[x], x.s, y.t) ∈ SN

E[x] ∈ SN

fst(E[x]) ∈ SN

E[x] ∈ SN

snd(E[x]) ∈ SN

r ∈ SN

λx.r ∈ SN

E
[
r[x := s]

]
, s ∈ SN

E[(λx.r)s] ∈ SN

t ∈ SN

inl t ∈ SN

t ∈ SN

inr t ∈ SN

E
[
r[x := t]

]
, s, t ∈ SN

E[case(inl t, x.r, y.s)] ∈ SN

E
[
s[y := t]

]
, r, t ∈ SN

E
[
case(inr t, x.r, y.s)

]
∈ SN

r, s ∈ SN

〈r, s〉 ∈ SN

E[r], s ∈ SN

E[fst〈r, s〉] ∈ SN

E[s], r ∈ SN

E[snd〈r, s〉] ∈ SN

m, s, E
[
x
]
∈ SN

It(m, s, E
[
x
]
) ∈ SN

m, s, E
[
x
]
∈ SN

Rec(m, s, E
[
x
]
) ∈ SN

m, E
[
x
]
∈ SN

in−1(m, E
[
x
]
) ∈ SN

E
[
x
]
∈ SN

outE
[
x
]
∈ SN

t ∈ SN

in t ∈ SN

E
[
s
(
m

(
λx.It(m, s, x)

)
t
)]

∈ SN

E
[
It(m, s, in t)

]
∈ SN

E
[
s
(
m

(
〈Id, λx.Rec(m, s, x)〉

)
t
)]

∈ SN

E
[
Rec(m, s, in t)

]
∈ SN

E
[
m(λzz)t

]
∈ SN

E
[
in−1(m, in t)

]
∈ SN

m, s, t ∈ SN

CoIt(m, s, t) ∈ SN

m, s, t ∈ SN

CoRec(m, s, t) ∈ SN

m, t ∈ SN

out−1(m, t) ∈ SN

E
[
m

(
λz.CoIt(m, s, z)

)
(st)

]
∈ SN

E
[
out CoIt(m, s, t)

]
∈ SN

E
[
m

(
[Id, λz.CoRec(m, s, z)]

)
(st)

]
∈ SN

E
[
outCoRec(m, s, t)

]
∈ SN
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E
[
m(λzz)t

]
∈ SN

E
[
out out−1(m, t)

]
∈ SN

·

This definition of SN captures exhaustively the closure of terms under reduction
without referring to the reduction relation itself. Moreover, it is based only on the
typing rules; each expression (term or elimination) on the conclusion of a rule can
only be derived with one of the typing rules.

Proposition 4.1. The defining rules of SN are sound with respect to the reduction
relation. That is, SN ⊆ sn.

Proof. Several routinary inductions show that sn is closed under all the defining
rules of SN. Therefore the claim follows by minimality of SN. �

4.1. Saturated sets

The proof now follows as usual by defining the subsets of terms which will
serve as reducibility candidates. These so-called saturated sets have good closure
properties and are modeled after SN.

Definition 4.5 (saturated set). A set of terms M is saturated if and only if
M ⊆ SN and the following closure conditions hold:

E[x] ∈ SN

E[x] ∈ M

E
[
r[x := s]

]
∈ M s ∈ SN

E[(λx.r)s] ∈ M
E

[
r[x := t]

]
, t ∈ M s ∈ SN

E[case(inl t, x.r, y.s)] ∈ M
E

[
s[y := t]

]
, t ∈ M r ∈ SN

E
[
case(inr t, x.r, y.s)

]
∈ M

E[r] ∈ M s ∈ SN

E[fst〈r, s〉] ∈ M
E[s] ∈ M r ∈ SN

E[snd〈r, s〉] ∈ M

E
[
s
(
m

(
λx.It(m, s, x)

)
t
)]

∈ M
E

[
It(m, s, in t)

]
∈ M

E
[
s
(
m

(
〈Id, λx.Rec(m, s, x)〉

)
t
)]

∈ M
E

[
Rec(m, s, in t)

]
∈ M

E
[
m(λzz)t

]
∈ M

E
[
in−1(m, in t)

]
∈ M

E
[
m

(
λz.CoIt(m, s, z)

)
(st)

]
∈ M

E
[
outCoIt(m, s, t)

]
∈ M

E
[
m

(
[Id, λz.CoRec(m, s, z)]

)
(st)

]
∈ M

E
[
outCoRec(m, s, t)

]
∈ M

E
[
m(λzz)t

]
∈ M

E
[
out out−1(m, t)

]
∈ M

the set of saturated sets will be denoted with SAT.
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The saturated sets are needed to recursively define the so-called predicates of
strong computability starting from a candidate assignment, which is an assignment
of saturated sets for type variables.

Proposition 4.2. SN ∈ SAT and SAT is closed under intersection.

Proof. Straightforward �

Definition 4.6. Given a set of terms M we define the saturated closure of M as
follows:

cl(M) =
⋂

{N ∈ SAT | M ∩ SN ⊆ N}

cl(M) is the least saturated superset of M ∩ SN. Observe that M ⊆ cl(M) if and
only if M ⊆ SN.

4.2. Constructions on saturated sets

The constructions for saturated sets corresponding to the type constructors of
the system are central to the proof of strong normalization. In order for the proof
to work, these constructions must be sound with respect to the typing rules of the
system. In the next sections we define the constructions and prove their soundness.
Let us start with the cases for function, sum and product types.

Definition 4.7. Given M,N ∈ SAT, we define the following sets:

Sx(M,N ) = {t | ∀s ∈ M. t[x := s] ∈ N}

I→(M,N ) = {λx.t | t ∈ Sx(M,N )}

I+(M,N ) = {inl t | t ∈ M} ∪ {inr t | t ∈ N}

I×(M,N ) = {〈s, t〉 | s ∈ M and t ∈ N}

M + N = cl(I+(M,N ))

M×N = cl(I×(M,N ))

M → N = cl(I→(M,N )).

The following lemmas will be needed later.



TWO EXTENSIONS OF SYSTEM F WITH (CO)ITERATION 731

Lemma 4.1. For all P ,Q,N ∈ SAT. If P ⊆ Q then Q → N ⊆ P → N .

Proof. Assuming P ⊆ Q, it suffices to show that I→(Q,N ) ∩ SN = I→(Q,N ) ⊆
P → N , since this implies the needed conclusion. Take λx.t ∈ I→(Q,N ), i.e.,
t ∈ Sx(Q,N ). To show λx.t ∈ P → N it suffices to prove that t ∈ Sx(P ,N ).
Therefore we take p ∈ P and show that t[x := p] ∈ N , but this is clear from the
fact that t ∈ Sx(Q,N ), for by assumption we also have p ∈ Q. �

Lemma 4.2. For all P ,Q,N ∈ SAT. If P ⊆ Q then N → P ⊆ N → Q.

Proof. Assuming P ⊆ Q, it suffices to show that I→(N ,P) ∩ SN = I→(N ,P) ⊆
I→(N ,Q), since this implies the conclusion of the lemma. Take λx.t ∈ I→(N ,P),
i.e., t ∈ Sx(N ,P). Therefore we have ∀s ∈ N .t[x := s] ∈ P which by assumption
implies ∀s ∈ N .t[x := s] ∈ Q. Therefore t ∈ Sx(N ,Q) which yields λx.t ∈
I→(N ,Q). �

Next, we prove that the above constructions are sound with respect to the
typing rules for sums, products and function types.

Proposition 4.3 (soundness of the constructions). Assume M,N ,P ∈ SAT, then
(1) If s ∈ M and t ∈ N then 〈s, t〉 ∈ M×N .
(2) If r ∈ M×N then fst r ∈ M and snd r ∈ N .
(3) If t ∈ M then inl t ∈ M + N .
(4) If t ∈ N then inr t ∈ M + N .
(5) If r ∈ M + N , s ∈ Sx(M,P), t ∈ Sy(N ,P) then case(r, x.s, y.t) ∈ P.
(6) If t ∈ Sx(M,N ) then λx.t ∈ M → N .
(7) If r ∈ M → N and s ∈ M then rs ∈ N .

Proof. For part (1) clearly I×(M,N ) ⊆ SN and therefore I×(M,N ) ⊆ M×N .
The claim is now obvious. For part (2) set E×(M,N ) = {r ∈ SN | fst r ∈
M and snd r ∈ N} ⊆ SN, we will show that M × N ⊆ E×(M,N ) which will
prove the claim. By definition of M ×N it suffices to prove both, E×(M,N ) ∈
SAT, and I×(M,N ) ⊆ E×(M,N ). Let us start with the former inclusion; we
have to show that E×(M,N ) is closed under the rules for saturated sets. As an
example take E

[
r[x := s]

]
∈ E×(M,N ) and s ∈ SN. We have to show that

E[(λx.r)s] ∈ E×(M,N ). E
[
r[x := s]

]
∈ E×(M,N ) implies fst(E

[
r[x := s]

]
) ∈ M

and snd(E
[
r[x := s]

]
) ∈ N . Observe that fst(E

[
r[x := s]

]
) = (fst •)

[
• := E

[
r[x :=

s]
]]

= (fst •)[• := E]
[
r[x := s]

]
and that (fst •)[• := E] is again an evaluation

context, say E′, therefore we have E′[r[x := s]
]
∈ M and, as s ∈ SN and M ∈

SAT, we get E′[(λx.r)s] ∈ SN, i.e., fst(E[(λx.r)s]) ∈ M. Analogously, we show
that snd(E[(λx.r)s]) ∈ N . Therefore E[(λx.r)s] ∈ E×(M,N ). The other rules for
saturated sets are proved similarly.

To prove that I×(M,N ) ⊆ E×(M,N ) take 〈s, t〉 ∈ I×(M,N ), then s ∈ M
and t ∈ N . Observe that s = •[s] ∈ M is an evaluation context and t ∈ SN, for
N ⊆ SN. Therefore, as M ∈ SAT, we have •[fst〈s, t〉] ∈ M, that is, fst〈s, t〉 ∈ M
and analogously snd〈s, t〉 ∈ N .
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Parts (3), (4) and (6) are proved analogously to part (1) using instead I+(M,N )
and I→(M,N ). To show parts (5) and (7) we use a similar argument to part (2) us-
ing E+(M,N ) = {r ∈ SN | ∀P ∀x∀s ∈ Sx(M,P)∀y ∀t ∈ Sy(N ,P). case(r, x.s, y.t)
∈ P} and E→(M,N ) = {r ∈ SN | ∀s ∈ M. rs ∈ N}, respectively. �

We continue our proof by building saturated sets corresponding to terms related
with (co)inductive types.

4.3. The Knaster-Tarski theorem

Our next task is to carry on with the constructions on saturated sets correspond-
ing to (co)inductive types. To this purpose we will make use of the well-known
Knaster-Tarski fixed-point theorem. For the sake of self-containment we recall the
basics about it here.

Definition 4.8. Let 〈L,�〉 be a partially ordered set. If every set M ⊆ L has
an infimum (greatest lower bound) in L, denoted

�
M , we say that 〈L,�,

�
〉 is a

complete lattice.

In case L is a complete lattice, it is also truth that every M ⊆ L has a supremum
(least upper bound), denoted

⊔
M and defined as

⊔
M =

�
{x ∈ L | ∀y ∈

M.y � x}.

Theorem 4.1 (Knaster-Tarski). Let 〈L,�,
�
〉 be a complete lattice and Φ : L → L

monotone (i.e., if X � Y then Φ(X) � Φ(Y )). Then
• Φ has a least fixed point, denoted μ(Φ) given by

lfp(Φ) =
⊔

{X ∈ L | X � Φ(X)};

• Φ has a greatest fixed point, denoted ν(Φ) given by

gfp(Φ) =
�

{X ∈ L | Φ(X) � X}.

Proof. See [5] �

The following corollary provides us with several methods of proof that will be
used later.

Corollary 4.1. Let Φ : L → L be a monotone operator on a complete lattice L.
The following holds for every M ∈ L.

• Induction: if Φ(M) � M then lfp(Φ) � M .
• Extended induction: if Φ

(
lfp(Φ)

�
M

)
� M then lfp(Φ) � M .

• Coinduction: if M � Φ(M) then M � gfp(Φ).
• Extended coinduction: if M � Φ

(
gfp(Φ)

⊔
M

)
then M � gfp(Φ).

Proof. Straightforward. �
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It is important to remark that the partially ordered set 〈SAT,⊆,
⋂
〉 is a complete

lattice due to Proposition 4.2 and therefore every monotone operator Φ : SAT →
SAT has a least and a greatest fixed-point.

4.3.1. Saturated sets for inductive types

The main goal of this section is to define saturated sets corresponding to in-
ductive types. To this purpose we will make use of the Knaster-Tarski theorem
to guarantee the existence of a least fixed point corresponding to an operator
Φ : SAT → SAT. The constructions and methodology presented in this section
are based on the ones given in [19] for related systems in Church-style. Related
constructions for arbitrary fixed points can be found in [23].

From now on, we fix Φ : SAT → SAT.

Definition 4.9. Given M ∈ SAT we define Iμ(M) = {in r | r ∈ Φ(M)} and
ΨI : SAT → SAT as ΨI(M) = cl(Iμ(M)).

Observe that we are not assuming that the operator Φ is monotone, therefore
we cannot prove either that ΨI is monotone. The reason not to restrict ourselves
to a monotone operator Φ will be made clear later. This is an essential difference
with the treatment in Definition 27, page 221 in [23].

Given Φ we define a saturated set denoted μ(Φ), as the least fixed point of a
monotone operator associated to Φ as follows: define mon(Φ) =

⋂
P,Q∈SAT(P →

Q) → (Φ(P) → Φ(Q)), which is a saturated set due to Proposition 4.2, and
Φ⊇ : SAT → P(SN) as:

Φ⊇(M) = {t ∈ SN | ∀m ∈ mon(Φ), ∀N ∈ SAT, ∀s ∈ M → N .mst ∈ Φ(N )}.

We will prove now that Φ⊇ is monotone.

Lemma 4.3. Φ⊇ is monotone, i.e., for all P ,Q,∈ SAT, if P ⊆ Q then Φ⊇(P) ⊆
Φ⊇(Q).

Proof. Assume P ⊆ Q and take t ∈ Φ⊇(P). Take also N ∈ SAT, m ∈ mon(Φ)
and s ∈ Q → N . We need to show that mst ∈ Φ(N ). By Lemma 4.1, s ∈ Q → N
implies s ∈ P → N . The claim follows now from the assumption t ∈ Φ⊇(P). �

Using Φ⊇ we define next another operator in an analogous way to Definition 4.9.

Definition 4.10. Given any M ∈ SAT, we define I⊇
μ (M) = {in r | r ∈ Φ⊇(M)}

and an operator Ψ⊇
I : SAT → SAT as Ψ⊇

I (M) = cl(I⊇
μ (M)).

Clearly Ψ⊇
I is monotone, for so is Φ⊇ due to Lemma 4.3. Therefore, by the

Knaster-Tarski Theorem on the complete lattice SAT, the following definition is
correct.
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Definition 4.11. Given any operator Φ : SAT → SAT we define the saturated set
μ(Φ) as follows:

μ(Φ) = lfp(Ψ⊇
I ).

That is, for every operator Φ, we define μ(Φ) as the least fixed point of its associ-
ated monotone operator Ψ⊇

I .

The following properties of the operators Iμ, I⊇
μ , ΨI and Ψ⊇

I will be needed
later.

Lemma 4.4. Let M ∈ SAT. Then
(1) Iμ(M) ⊆ SN.
(2) Iμ(M) ⊆ ΨI(M).
(3) I⊇

μ (M) ⊆ SN.
(4) I⊇

μ (M) ⊆ Ψ⊇
I (M).

Proof. For part (3) take t ∈ I⊇
μ (M), that is, t = in r for some r ∈ Φ⊇(M). As

Φ⊇(M) ⊆ SN we have r ∈ SN, which by definition of SN implies in r ∈ SN, that
is, t ∈ SN. To prove part (4), observe that by definition of the closure we have
I⊇

μ (M)∩SN ⊆ Ψ⊇
I (M), but part (3) of this lemma yields I⊇

μ (M)∩SN = I⊇
μ (M).

Parts (1) and (2) are proved analogously. �
Next we characterize the pre-fixed points of ΨI .

Lemma 4.5. ΨI(M) ⊆ M ⇔ ∀t ∈ Φ(M). in t ∈ M.

Proof. ⇒) Assume ΨI(M) ⊆ M, i.e., cl(Iμ(M)) ⊆ M. Take t ∈ Φ(M), then by
definition in t ∈ Iμ(M), which, by part (2) of Lemma 4.4, implies in t ∈ ΨI(M) ⊆
M. Therefore in t ∈ M.
⇐) Assume ∀t ∈ Φ(M). in t ∈ M and take r ∈ ΨI(M) = cl(Iμ(M)). The goal
is r ∈ M. As M ∈ SAT it suffices to show Iμ(M) ∩ SN ⊆ M, thus the goal
will follow by the minimality of the closure. By Lemma 4.4, part (1), we have
Iμ(M) ⊆ SN. Hence we only have to show Iμ(M) ⊆ M. Take in t ∈ Iμ(M), so
t ∈ Φ(M) which by assumption implies in t ∈ M. Therefore Iμ(M) ⊆ M. �

The soundness of the typing rule (μI) depends on the following:

Lemma 4.6. μ(Φ) is a pre-fixed point of ΨI . i.e., ΨI

(
μ(Φ)

)
⊆ μ(Φ).

Proof. As μ(Φ) is a fixed-point of Ψ⊇
I , it suffices to prove that ΨI

(
Ψ⊇

I

(
μ(Φ)

))
⊆

Ψ⊇
I

(
μ(Φ)

)
. To show this, we use Lemma 4.5. Take t ∈ Φ

(
Ψ⊇

I

(
μ(Φ)

))
, there-

fore in t ∈ I⊇
μ

(
Ψ⊇

I

(
μ(Φ)

))
⊆ Ψ⊇

I

(
Ψ⊇

I

(
μ(Φ)

))
, the last inclusion concluded by

Lemma 4.4, part (4). Therefore, as μ(Φ) is a fixed-point of Ψ⊇
I , we conclude

in t ∈ Ψ⊇
I

(
μ(Φ)

)
. �

Next, we built saturated sets Eμ(M) necessary to prove the soundness of the
typing rules (μE), (μE+), (μEi).
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Definition 4.12. Given Φ : SAT → SAT and M ∈ SAT we define

Eμ(M) =
{
r ∈ SN

∣∣∣ ∀m ∈ mon(Φ). ∀N ∈ SAT.(
∀s ∈ Φ(N ) → N . It(m, s, r) ∈ N

)
∧(

∀s ∈ Φ(M×N ) → N . Rec(m, s, r) ∈ N
)
∧

in−1(m, r) ∈ Φ(M)
}

and ΨE : SAT → SAT as

ΨE(M) = cl(Eμ(M)).

The next properties will be required later.

Lemma 4.7. Let M ∈ SAT. Then
(1) Eμ(M) ∈ SAT.
(2) Eμ(M) = ΨE(M).

Proof.
(1) It is clear that Eμ(M) ⊆ SN.

Take E[x] ∈ SN. We have to show that E[x] ∈ Eμ(M). Fix m ∈ mon(Φ)
and N ∈ SAT.

• Assume s ∈ Φ(N ) → N .
The goal is It(m, s, E[x]) ∈ N . Observe that this term is again an
evaluation context, say E′[x]. As N ∈ SAT it suffices to show that
E′[x] ∈ SN. We have E[x] ∈ SN and s ∈ Φ(N ) → N ⊆ SN, which
implies s ∈ SN. Similarly m ∈ mon(Φ) ⊆ SN. Hence all m, s, E[x] ∈
SN which by properties of SN implies It(m, s, E[x]) ∈ SN.

• Assume s ∈ Φ(M×N ) → N . The goal is Rec(m, s, E[x]) ∈ N . As in
the previous case we obtain m, s ∈ SN, therefore by properties of SN
we conclude E′[x] = Rec(m, s, E[x]) ∈ SN. Therefore, as N ∈ SAT
we get E′[x] ∈ N .

• The goal is in−1(m, E[x]) ∈ Φ(M). Again we have m ∈ SN and, as
E[x] ∈ SN by properties of SN we get E′[x] = in−1(m, E[x]) ∈ SN,
which yields E′[x] ∈ Φ(M), for Φ(M) ∈ SAT.

The other closure rules for SAT sets are proved in a similar way.
(2) First observe that Eμ(M) = Eμ(M) ∩ SN ⊆ cl(Eμ(M)) = ΨE(M). For

the reverse inclusion, observe that by part (1) of this lemma we have
Eμ(M) ∈ SAT. Therefore, by minimality of the closure, we get ΨE(M) =
cl(Eμ(M)) ⊆ Eμ(M). �

Next, we characterize the post-fixed points of ΨE .

Lemma 4.8.

M ⊆ ΨE(M) ⇔ ∀r ∈ M.∀m ∈ mon(Φ). ∀N ∈ SAT.(
∀s ∈ Φ(N ) → N . It(m, s, r) ∈ N

)
∧(

∀s ∈ Φ(M×N ) → N . Rec(m, s, r) ∈ N
)
∧

in−1(m, r) ∈ Φ(M).
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Proof. Call �(r) to the condition on the right hand side for a given r ∈ M.
⇒) Assume M ⊆ ΨE(M). We have to show �(r) for all r ∈ M. Take r ∈ M, by
part (2) of Lemma 4.7 we have M ⊆ Eμ(M) and observing that Eμ(M) = {r ∈
SN | �(r)} we yield �(r) as desired.
⇐) Assume ∀r ∈ M.�(r) and take r ∈ M. We have to show that r ∈ ΨE(M).
By part (2) of Lemma 4.7 it suffices to show that r ∈ Eμ(M). We have r ∈ SN,
for M ⊆ SN. Moreover �(r) holds by assumption, which implies r ∈ Eμ(M). �

The following lemma will ensure the soundness of the typing rules for elimina-
tion (μE), (μE+), (μEi).

Lemma 4.9. μ(Φ) is a post-fixed point of ΨE. i.e., μ(Φ) ⊆ ΨE(μ(Φ)).

Proof. Our goal is μ(Φ) ⊆ ΨE

(
μ(Φ)

)
. To prove this, we will use the principle of

extended induction on μ(Φ) given in Corollary 4.1 of page 732. Therefore the goal
becomes Ψ⊇

I

(
μ(Φ) ∩ ΨE

(
μ(Φ)

))
⊆ ΨE

(
μ(Φ)

)
.

Set L = μ(Φ), L′ = L ∩ ΨE(L). The goal is Ψ⊇
I (L′) ⊆ ΨE(L). By monotonicity

of the closure it suffices to show I⊇
μ (L′) ⊆ Eμ(L). Take t ∈ I⊇

μ (L′), that is, t = in r

with r ∈ Φ⊇(L′). We need to show in r ∈ Eμ(L).
First observe that in r ∈ SN, for r ∈ Φ⊇(L′) ⊆ SN and by the properties of SN.
Next we have to prove that �(in r) (cf. proof of Lem. 4.8). To this purpose let us
fix m ∈ mon(Φ) and N ∈ SAT.

• Take s ∈ Φ(N ) → N . We want to show that It(m, s, in r) ∈ N . Using
that N ∈ SAT, it suffices to show that s

(
m

(
λx.It(m, s, x)

)
r
)
∈ N . As

s ∈ Φ(N ) → N we only have to show m
(
λx.It(m, s, x)

)
r ∈ Φ(N ) but

observing that r ∈ Φ⊇(L′) it suffices to prove that m ∈ mon(Φ), N ∈ SAT
and λx.It(m, s, x) ∈ L′ → N . The first two claims are given, and to prove
the last one we will show that It(m, s, x) ∈ Sx(L′,N ). Take q ∈ L′, we
prove It(m, s, x)[x := q] ∈ N , which, as w.l.o.g. x /∈ FV (m, s), equals
It(m, s, q) ∈ N . We have L′ ⊆ ΨE(L) = Eμ(L), the equality given by
part (2) of Lemma 4.7. Therefore q ∈ Eμ(L) which immediately yields the
needed It(m, s, q) ∈ N .

• Take s ∈ Φ(L × N ) → N . We need to prove Rec(m, s, in r) ∈ N . By
reasoning as in the previous case we only have to show that
λz.〈(λyy)z, (λx.Rec(m, s, x))z〉 ∈ L′ → L×N . It suffices to prove

〈
(λyy)z,

(λx.Rec(m, s, x))z
〉
∈ Sz(L′,L × N ), so we take q ∈ L′ and show that

〈(λyy)q, (λx.Rec(m, s, x))q〉 ∈ L×N . To this purpose we prove two things:
– (λyy)q ∈ L. Clearly we have λyy ∈ L → L and as q ∈ L′ ⊆ L we get

(λyy)q ∈ L.
– (λx.Rec(m, s, x))q ∈ N . It suffices to show λx.Rec(m, s, x) ∈ L′ →

N , that is, Rec(m, s, x) ∈ Sx(L′,N ). Take p ∈ L′, we will show
Rec(m, s, x)[x := p] ∈ N , where w.l.o.g. x /∈ FV (m, s), which implies
to prove Rec(m, s, p) ∈ N . We have L′ ⊆ ΨE(L) = Eμ(L), the
equality given by part (2) of Lemma 4.7. Therefore p ∈ Eμ(L) which
immediately yields Rec(m, s, p) ∈ N .
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• The goal is to prove in−1(m, in r) ∈ Φ(L). As r ∈ Φ⊇(L′) and m ∈ mon(Φ)
it suffices to show λzz ∈ L′ → L, that is, z ∈ Sz(L′,L). Then we take
s ∈ L′ and want to show s ∈ L, but this is immediate from L′ ⊆ L.

Therefore, �(in r). �

Our final constructions of saturated sets will be for coinductive types.

4.3.2. Saturated sets for coinductive types

In this section we give saturated sets corresponding to coinductive types. These
constructions are obtained by a straightforward, yet not trivial, dualization of the
constructions for inductive types given in the previous section and are, to our
knowledge, new.

Let us start with the construction needed to prove the soundness of the intro-
duction typing rules (νI), (νI+), (νIi).

Definition 4.13. Given Φ : SAT → SAT and M ∈ SAT, we define

Iν(M) = {CoIt(m, s, t) | m ∈ mon(Φ), s ∈ N → Φ(N ), t ∈ N ,N ∈ SAT}
∪ {CoRec(m, s, t) | m ∈ mon(Φ), s ∈ N → Φ(M + N ), t ∈ N ∈ SAT}
∪ {out−1(m, t) | m ∈ mon(Φ), t ∈ Φ(M)}

and ΘI : SAT → SAT such that ΘI(M) = cl(Iν(M)).

The following lemma will be useful later

Lemma 4.10. Let M ∈ SAT. Then
(1) Iν(M) ⊆ SN.
(2) Iν(M) ⊆ ΘI(M).

Proof.
(1) Take r ∈ Iν(M). We have three cases: if r = CoIt(m, s, t) then we have

m, s, t ∈ SN, for they belong to some saturated set. Therefore, by prop-
erties of SN we also have CoIt(m, s, t) ∈ SN. The cases r = CoRec(m, s, t)
and r = out−1(m, t) are similar.

(2) By definition of closure we have Iν(M) ∩ SN ⊆ cl(Iν(M)) which, by part
(1) of this lemma is equivalent to Iν(M) ⊆ cl(Iν(M)) = ΘI(M). �

We characterize now the pre-fixed points of ΘI .

Lemma 4.11.

ΘI(M) ⊆ M ⇔ ∀m ∈ mon(Φ). ∀N ∈ SAT.(
∀t ∈ N ∀s ∈ N → Φ(N ). CoIt(m, s, t) ∈ M

)
∧(

∀t ∈ N ∀s ∈ N → Φ(M + N ). CoRec(m, s, t) ∈ M
)
∧(

∀t ∈ Φ(M). out−1(m, t) ∈ M
)
.
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Proof. ⇒) Assume ΘI(M) ⊆ M. By part (2) of Lemma 4.10 we get Iν(M) ⊆ M.
Take m ∈ mon(Φ) and N ∈ SAT. We prove every part of the conjunction:

If t ∈ N and s ∈ N → Φ(N ) then we get CoIt(m, s, t) ∈ Iν(M), which im-
plies CoIt(m, s, t) ∈ M. Similarly, if t ∈ N and s ∈ N → Φ(M + N ) then
CoRec(m, s, t) ∈ Iν(M) ⊆ M. Finally t ∈ Φ(M) yields out−1(m, t) ∈ Iν(M) ⊆
M.
⇐) Assume the condition on the right hand side. We have ΘI(M) = cl(Iν(M)).
By minimality of the closure it suffices to show Iν(M)∩ SN ⊆ M but by part (1)
of Lemma 4.10 this is equivalent to Iν(M) ⊆ M, which follows immediately from
the assumption and the definition of Iν(M). �

Next, we develop the tools needed to prove the soundness of the typing rule (νE).

Definition 4.14. Given Φ : SAT → SAT and M ∈ SAT we define Eν(M) =
{r ∈ SN | out r ∈ Φ(M)} and the operator ΘE : SAT → SAT with ΘE(M) =
cl(Eν(M)).

Our goal is to associate any operator Φ with a saturated set ν(Φ) obtained as
the greatest fixed point of a monotone operator related to Φ. As we do not want to
restrict ourselves to a monotone Φ, we proceed in a similar way to the construction
of the set μ(Φ) discussed in the previous section.

Let us define Φ⊆ : SAT → SAT as Φ⊆(M) = cl(A(M)) with

A(M) = {mqr | m ∈ mon(Φ), q ∈ N → M, r ∈ Φ(N ) for some N ∈ SAT}.

We prove now that Φ⊆ is monotone.

Lemma 4.12. For all P ,Q ∈ SAT, if P ⊆ Q then Φ⊆(P) ⊆ Φ⊆(Q), that is, Φ⊆

is monotone.

Proof. Assume P ⊆ Q. Take mqr ∈ Φ⊆(P), then m ∈ mon(Φ), q ∈ N → P , r ∈
Φ(N ). q ∈ N → P implies, by Lemma 4.2, q ∈ N → Q. Therefore we have
mqr ∈ Φ⊆(Q). �

The following properties related to A(M) will be required later.

Lemma 4.13. Let M ∈ SAT. Then
(1) A(M) ⊆ Φ(M).
(2) A(M) ⊆ SN.
(3) A(M) ⊆ Φ⊆(M).
(4) Φ⊆(M) ⊆ Φ(M).

Proof.
(1) Take t ∈ A(M), i.e., t = mqr with m ∈ mon(Φ), q ∈ N → M, r ∈ Φ(N )

for some N ∈ SAT. m ∈ mon(Φ) ⇒ m ∈ (N → M) → (Φ(N ) →
Φ(M)) ⇒ mq ∈ Φ(N ) → Φ(M) ⇒ mqr ∈ Φ(M), i.e. t ∈ Φ(M).

(2) A(M) ⊆ Φ(M) ⊆ SN.
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(3) A(M) = A(M) ∩ SN ⊆ cl(A(M)) = Φ⊆(M).
(4) As Φ(M) ∈ SAT, by minimality of the closure it suffices to show A(M) ∩

SN ⊆ Φ(M), but by part (2) of this lemma this is equivalent to A(M) ⊆
Φ(M), which was proved in part (1) of this lemma. �

Using Φ⊆ we define an operator Θ⊆
E in an analogous way to Definition 4.14.

Definition 4.15. Given Φ : SAT → SAT and M ∈ SAT, we define E⊆
ν (M) =

{r ∈ SN | out r ∈ Φ⊆(M)} and the operator Θ⊆
E : SAT → SAT as Θ⊆

E(M) =
cl(E⊆

ν (M)).

The following properties of Eν(M), E⊆
ν (M) will be needed later.

Lemma 4.14. Let M ∈ SAT. Then

(1) Eν(M) ∈ SAT.
(2) E⊆

ν (M) ∈ SAT.
(3) Eν(M) = ΘE(M).
(4) E⊆

ν (M) = Θ⊆
E(M).

Proof.

(1) Clearly we have Eν(M) ⊆ SN. We need to prove all rules for saturated
sets. As an example take E[x] ∈ SN. The goal is E[x] ∈ Eν(M), i.e.,
outE[x] ∈ Φ(M). By properties of SN, E[x] ∈ SN implies outE[x] ∈ SN,
but outE[x] is an evaluation context with • filled by x, say E′[x] ∈ SN.
Therefore Φ(M) ∈ SAT implies E′[x] ∈ Φ(M). The remaining rules are
easily proved.

(2) Analogous to part (1).
(3) ⊆) We have Eν(M)∩SN ⊆ cl(Eν(M)), which, as Eν(M) ⊆ SN, is equivalent

to Eν(M) ⊆ cl(Eν(M)) = ΘE(M).
⊇) By part (1) of this lemma, using the minimality of the closure we have
ΘE(M) = cl(Eν(M)) ⊆ Eν(M).

(4) Analogous to part (3). �

We characterize now the post-fixed points of ΘE(M).

Lemma 4.15. M ⊆ ΘE(M) ⇔ ∀t ∈ M. out t ∈ Φ(M)

Proof. ⇒) Let t ∈ M. By assumption we get t ∈ ΘE(M), and by part (3) of
Lemma 4.14, t ∈ Eν(M), which by definition of Eν(M) yields out t ∈ Φ(M).
⇐) Take t ∈ M, by assumption we get out t ∈ Φ(M). On the other hand, as
M ⊆ SN, we get t ∈ SN. Therefore t ∈ Eν(M), which by part (3) of Lemma 4.14,
is the same as t ∈ ΘE(M). �

We can finally define a saturated set corresponding to coinductive types. The
monotonicity of Φ⊆ given by Lemma 4.12, implies that Θ⊆

E is monotone. Therefore
by the Knaster-Tarski theorem the following definition is correct.
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Definition 4.16. Given any operator Φ : SAT → SAT we define the saturated set
ν(Φ) as follows:

ν(Φ) = gfp(Θ⊆
E).

That is, we define ν(Φ) as the greatest fixed point of its associated monotone
operator Θ⊆

E .

The following properties of ν(Φ) will be relevant for the proof of soundness.

Lemma 4.16. ν(Φ) is a post-fixed point of ΘE. i.e., ν(Φ) ⊆ ΘE(ν(Φ)).

Proof. By Lemma 4.15 it suffices to show ∀t ∈ ν(Φ). out t ∈ Φ
(
ν(Φ)

)
. If t ∈

ν(Φ) = Θ⊆
E

(
ν(Φ)

)
then by part (4) of Lemma 4.14, t ∈ E⊆

ν

(
ν(Φ)

)
, which implies

out t ∈ Φ⊆(
ν(Φ)

)
. Finally part (4) of Lemma 4.13 yields out t ∈ Φ

(
ν(Φ)

)
. �

Lemma 4.17. ν(Φ) is a pre-fixed point of ΘI . i.e., ΘI(ν(Φ)) ⊆ ν(Φ)

Proof. The proof is by means of the principle of extended coinduction given in
Corollary 4.1. Hence, the goal becomes

ΘI

(
ν(Φ)

)
⊆ Θ⊆

E

(
ν(Φ) ∪ ΘI

(
ν(Φ)

))
.

Set G = ν(Φ), G′ = G ∪ ΘI(G). The goal is ΘI(G) ⊆ Θ⊆
E(G′). By monotonicity

of the closure it suffices to show Iν(G) ⊆ E⊆
ν (G′). Take r ∈ Iν(G), to show

r ∈ E⊆
ν (G′) it suffices to show out r ∈ Φ⊆(G′) (we have r ∈ SN, for Lem. 4.10 yields

Iν(G) ⊆ SN). Let us analyze three cases according to the definition of Iν(G):
• r = CoIt(m, s, t) with m ∈ mon(Φ), s ∈ N → Φ(N ) and t ∈ N . By prop-

erties of saturated sets it suffices to show that m
(
λz.CoIt(m, s, z)

)
(st) ∈

Φ⊆(G′) and using part (3) of Lemma 4.13 we prove only that m
(
λz.CoIt(m,

s, z)
)
(st) ∈ A(G′). We have by assumption m ∈ mon(Φ) and clearly

st ∈ Φ(N ). To prove λz.CoIt(m, s, z) ∈ N → G′, we show CoIt(m, s, z) ∈
Sz(N ,G′). Taking q ∈ N we show CoIt(m, s, z)[z := q] = CoIt(m, s, q) ∈ G′

(w.l.o.g. z /∈ FV (m, s)). Finally CoIt(m, s, q) ∈ Iν(G) implies, by part (2)
of Lemma 4.10, that CoIt(m, s, q) ∈ ΘI(G) ⊆ G′.

• r = CoRec(m, s, t) with m ∈ mon(Φ), s ∈ N → Φ(G + N ) and t ∈ N .
By a similar reasoning as in the previous case we only need to show that
m

(
[Id, λz.CoRec(m, s, z)]

)
(st) ∈ A(G′). We have m ∈ mon(Φ) and clearly

st ∈ Φ(G +N ). It remains to show that [Id, λz.CoRec(m, s, z)] ∈ G +N →
G′. Recalling that [Id, λz.CoRec(m, s, z)] = λx.case(x, y.y, z.CoRec(m, s, z))
the goal reduces to show case(x, y.y, z.CoRec(m, s, z)) ∈ Sx(G + N ,G′).
Therefore we take q ∈ G+N and prove that case(x, y.y, z.CoRec(m, s, z)) ∈
G′, which, by properties of saturated sets, reduces to the next two claims:

– y ∈ Sy(G,G′). This holds trivially for G ⊆ G′.
– CoRec(m, s, z) ∈ Sz(N ,G′). Take p ∈ N and show CoRec(m, s, z)[z :=

p] = CoRec(m, s, p) ∈ G′ (w.l.o.g. z /∈ FV (m, s)). Finally ob-
serve that CoRec(m, s, p) ∈ Iν(G) and part (2) of Lemma 4.10 yields
CoRec(m, s, p) ∈ ΘI(G) ⊆ G′.
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• r = out−1(m, t) with m ∈ mon(Φ) and t ∈ Φ(G). Again we only need to
show that m(λzz)t ∈ A(G′). Having m ∈ mon(Φ) and t ∈ Φ(G), it only
remains to show that λzz ∈ G → G′, which is immediate consequence of
G ⊆ G′. �

We are ready to prove the soundness of all typing rules involving (co)inductive
types.

Proposition 4.4 (soundness of the constructions). Given Φ : SAT → SAT the
following holds.

(1) If t ∈ Φ(μ(Φ)), then in t ∈ μ(Φ).
(2) If r ∈ μ(Φ), m ∈ mon(Φ),N ∈ SAT and s ∈ Φ(N ) → N , then It(m, s, r) ∈

N .
(3) If r ∈ μ(Φ), m ∈ mon(Φ),N ∈ SAT and s ∈ Φ(μ(Φ) × N ) → N , then

Rec(m, s, r) ∈ N .
(4) If m ∈ mon(Φ) and r ∈ μ(Φ), then in−1(m, r) ∈ Φ(μ(Φ)).
(5) If t ∈ ν(Φ), then out t ∈ Φ(ν(Φ)).
(6) If N ∈ SAT, r ∈ N , m ∈ mon(Φ) and s ∈ N → Φ(N ), then CoIt(m, s, r) ∈

ν(Φ).
(7) If N ∈ SAT, r ∈ N , m ∈ mon(Φ) and s ∈ N → Φ(ν(Φ) + N ), then

CoRec(m, s, r) ∈ ν(Φ).
(8) If m ∈ mon(Φ) and r ∈ Φ(ν(Φ)), then out−1(m, r) ∈ ν(Φ).

Proof. For part (1), we use Lemmas 4.6 and 4.5. For parts (2)–(4) we use Lem-
mas 4.9 and 4.8. Part (5) follows from Lemmas 4.16 and 4.15. Finally parts (6)–(8)
are consequence of Lemmas 4.17 and 4.11. �

4.4. Predicates of strong computability

The remainder of the proof of strong normalization follows a standard technique,
first we define the so-called strong computability predicates, which are saturated
sets that define a semantics for the types. Then we prove substitution and coin-
cidence lemmas for these predicates and prove that every typable term lies in the
interpretation of its type as a strong computability predicate and hence belongs
to SN. This proves strong normalization.

Definition 4.17. A candidate assignment is a finite set of pairs of the form X : M
where X is a type variable and M ∈ SAT such that no type variable occurs twice.
Candidate assignments are denoted with Δ. For the candidate Δ, X : M, it is
understood that X does not occur in Δ.

Next, we define for every type A a strong computability predicate depending
on a candidate assignment.

Definition 4.18 (strong computability predicates). Given a type A and a candi-
date assignment Δ, we define the saturated set of strongly computable terms with
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respect to A and Δ, denoted SCA[Δ], as follows:

SCX [Δ] =
{

M if X : M ∈ Δ
SN otherwise

SCA→B [Δ] = SCA[Δ] → SCB[Δ]

SCA+B[Δ] = SCA[Δ] + SCB[Δ]

SCA×B[Δ] = SCA[Δ] × SCB[Δ]

SC∀X.A[Δ] =
⋂

M∈SAT SCA[Δ, X : M]

SCμX.A[Δ] = μ(ΦλX.A
Δ )

SCνX.A[Δ] = ν(ΦλX.A
Δ )

where ΦλX.A
Δ : SAT → SAT is defined as:

ΦλX.A
Δ (M) = SCA[Δ, X : M].

Observe that for the case of (co)inductive types we do not know if the operator
ΦλX.A

Δ on saturated sets is monotone. However, due to the developed machinery
on saturated sets, originally introduced in [19] for inductive types, and extended
here for coinductive types, the monotonicity requirement is dropped. This sub-
tlety makes a big difference with the approach presented in [23] where the defini-
tion of saturated sets for fixed-points requires a monotone operator on SAT. The
price paid here is the development of complicated constructions on saturated sets
whereas the price paid there is the need for a separated proof of monotonicity for
the operator ΦλX.A

Δ , which has to be developed simultaneously with the definition
of strong computability predicates.

The following lemmas will allow us to get our desired result.

Lemma 4.18 (coincidence and substitution). The following properties hold:

• If X /∈ FV (A) then SCA[Δ, X : M] = SCA[Δ].
• SCA[X:=B][Δ] = SCA[Δ, X : SCB [Δ]].

Proof. Induction on A. �
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Lemma 4.19 (main lemma). If Γ � r : A with Γ = {x1 : A1, . . . , xk : Ak} and for
all 1 ≤ i ≤ k we have si ∈ SCAi [Δ], then r[�x := �s ] ∈ SCA[Δ].

Proof. Induction on �. �

We show now that every typable term belongs to the set SN.

Proposition 4.5. If Γ � r : A then r ∈ SN.

Proof. Assume Γ = {x1 : A1, . . . , xk : Ak}. As the set of variables is contained
in every saturated set we have xi ∈ SCAi [∅]. Applying the main lemma to the
typing Γ � r : A we get r[�x := �x] ∈ SCA[∅] ⊆ SN. Therefore r ∈ SN. �

Corollary 4.2. Every typable term in MICT is strongly normalizing.

Proof. Let r be a term of MICT such that Γ � r : A for some context Γ and type A.
We need to prove that r ∈ sn. By Proposition 4.1 we have SN ⊆ sn, then it suffices
to show that r ∈ SN, but this is immediate from Proposition 4.5. �

4.4.1. Type preservation for MICT

The type-preservation or subject-reduction property is not trivial to prove due
to the absence of type annotations on terms characteristic of Curry-style systems.
A detailed proof of this property will be given for the second type system presented
in this article, proof which can easily be simplified to get a proof for the current
system.

5. A type system for dialgebras

In this section we develop an extension of F with clausular (co)inductive types
modeling the initial and final dialgebras of functor tuples defined in Section 2.3.
The system MCICT presented here, can be seen as an extension of Hagino’s system
Cλ (see [13]) with parametric polymorphism and using full monotonicity, instead of
positivity. The use of clauses avoids sums and products and allows to have multiple
constructors/destructors, feature which simplifies programming and modularizes
the definition of monotonicity witnesses involved in the typing rules.

5.1. Definition of the system

Extend system F as follows:

• Types are generated as

A, B, C, F, G ::= . . . | μX(F1, . . . , Fk) | νX(F1, . . . , Fk)

Here, every Fi is called a clause, and X is bound in both μX(F1, . . . , Fk)
and νX(F1, . . . , Fk).
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• Terms are generated as follows:

t, r, s, m ::= . . . | ink,i t | Itk(�m,�s, t) | Reck(�m,�s, t) |

CoItk(�m,�s, t) | CoReck(�m,�s, t) | outk,i t | out−1
k (�m,�t )

where in all cases the length of a vector is k.

The reader may have noticed the absence of a term constructor in−1
k cor-

responding to inductive inversion. This omission will be discussed in Sec-
tion 5.2.

• Typing rules: we add a typing rule for every new term constructor as
follows:

– Introduction of inductive types:

Γ � t : Fi[X := μX(F1, . . . , Fk)]
Γ � ink,i t : μX(F1, . . . , Fk)

(μI).

– Elimination of inductive types:
∗ By iteration:

Γ � t : μX(F1, . . . , Fk)
Γ � mi : Fi monX 1 ≤ i ≤ k
Γ � si : Fi[X := B] → B 1 ≤ i ≤ k

Γ � Itk(�m,�s, t) : B
(μE).

∗ By primitive recursion:

Γ � t : μX(F1, . . . , Fk)
Γ � mi : Fi monX 1 ≤ i ≤ k
Γ � si : Fi[X := μX(F1, . . . , Fk) × B] → B 1 ≤ i ≤ k

Γ � Reck(�m,�s, t) : B
(μE+).

– Introduction of coinductive types:
∗ By coiteration:

Γ � si : B → Fi[X := B] 1 ≤ i ≤ k
Γ � mi : Fi mon X 1 ≤ i ≤ k
Γ � t : B

Γ � CoItk(�m,�s, t) : νX(F1, . . . , Fk)
(νI).

∗ By primitive corecursion:

Γ � si : B → Fi[X := νX(F1, . . . , Fk) + B] 1 ≤ i ≤ k
Γ � mi : Fi monX 1 ≤ i ≤ k
Γ � t : B

Γ � CoReck(�m,�s, t) : νX(F1, . . . , Fk)
(νI+).



TWO EXTENSIONS OF SYSTEM F WITH (CO)ITERATION 745

∗ By coinductive inversion:

Γ � ti : Fi[X := νX(F1, . . . , Fk)] 1 ≤ i ≤ k
Γ � mi : Fi monX 1 ≤ i ≤ k

Γ � out−1
k (�m,�t ) : νX(F1, . . . , Fk)

(νIi).

– Elimination of coinductive types:

Γ � r : νX(F1, . . . , Fk)
Γ � outk,i r : Fi[X := νX(F1, . . . , Fk)]

(νE).

• Operational semantics: it is given by extending the one-step β-reduction
relation t →β t′ with the following axioms under contextual closure, where
pairing and copairing of functions is defined exactly as in page 719.

Itk(�m,�s, ink,i t) 	→β si

(
mi

(
λx.Itk(�m,�s, x)

)
t
)

Reck(�m,�s, ink,i t) 	→β si

(
mi

(
〈Id, λz.Reck(�m,�s, z)〉

)
t
)

outk,i CoItk(�m,�s, t) 	→β mi

(
λz.CoItk(�m,�s, z)

)
(sit)

outk,i CoReck(�m,�s, t) 	→β mi

(
[Id, λz.CoReck(�m,�s, z)]

)
(sit)

outk,i out−1k(�m,�t ) 	→β mi(λz.z)ti.

Of course, each of the above rules correspond to one of the categorical
principles on dialgebras discussed in Section 2.3. In particular observe that
the coinductive inversion principle given by equations (2.11) on page 714
is modeled here in a curried way.

This finishes the definition of the system MCICT. A system of monotone and
clausular inductive and coinductive types.

5.2. On the inverse for in

In this section we briefly discuss the absence of a term constructor for inductive
inversion in−1

k in our system MCICT.
Above all, this omission is due to the fact that equation (2.14) on page 715

is not suitable to be represented directly in our framework. Observe that the
inverse of the ink morphism given in page 715 is a morphism in−1

k :
〈
μ, . . . , μ

〉
→〈

F1μ, . . . , Fkμ
〉

such that in−1
k ◦〈ink,1, . . . , ink,k〉 = Id〈F1μ,...,Fnμ〉.

Therefore we would need a typing rule like the following:

Γ � t :
〈
μX(F1, . . . , Fk), . . . , μX(F1, . . . , Fk)

〉
Γ � mi : Fi monX, 1 ≤ i ≤ k

Γ � in−1
k (�m, t) :

〈
F1[X := μX(F1, . . . , Fk)], . . . , Fk[X := μX(F1, . . . , Fk)]

〉 ·
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To admit this kind of rule we would need to handle a tuple of types as a single type
and, although this issue can be fulfilled using variant types, it would complicate
the system only to be able to model this principle.

On the other hand the main application of such rule – to define inductive
destructors – can be done by means of the following reasoning obtained by inver-
sion of an instance of the typing rule (μI): “If we have an inductive object t :
μX(F1, . . . , Fk) then it was generated by a clause in−1

k t : Fi[X := μX(F1, . . . , Fk)]
for some 1 ≤ i ≤ k”. This rule is used for instance, to guarantee that if t is a nat-
ural number then t is either 0 or a successor suc n. Such reasoning corresponds to
an inverse in−1

k : μ → F1μ+. . .+Fkμ such that in−1
k (�m, ink,i t) = injki

(
mi(λz.z)t

)
,

where injki is the canonical ith-injection and can be modeled by the rule:

Γ � t : μX(F1, . . . , Fk) Γ � mi : Fi monX, 1 ≤ i ≤ k

Γ � in−1
k (�m, t) : F1[X := μX(F1, . . . , Fk)] + . . . + Fk[X := μX(F1, . . . , Fk)]

(μEi).

But we observe that the task of defining destructors on inductive types, which
is the main reason to add the rule to the system, can easily be achieved using
primitive recursion, a principle already present in the system. This claim should
be made clear with the examples below. Therefore we will omit the rule as it would
cause more problems than profits; its main disadvantage being the generation of
a term inhabiting a sum type in an unusual way.

5.3. Programming in MCICT

In this section we develop several examples of programming in MCICT. The pre-
sentation is similar to the one in Section 3.2. Let us briefly explain the methodology
of function definition.

In the case of a function g : μX(F1, . . . , Fk) → A, the iteration principle ensures
the existence of a program for g if g is defined by the following recurrence equations:

g(ink,1 x) = s1 (m1 g x)
...

g(ink,k x) = sk (mk g x)

where si : Fi[X := A] → A and mi : Fi mon X, 1 ≤ i ≤ k are the fixed monotonicity
witnesses used to eliminate the type μX(F1, . . . , Fk). If these conditions hold, then
the categorical machinery says that we can define g = λz.Itk(�m,�s, z) and we will
obtain the desired reduction behavior:

g(ink,i x) →+
β si (mi g x).
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Analogously primitive recursion provides a means to program functions g : μX(F1,
. . . , Fk) → A which satisfy the following recurrence equations:

g(ink,1 x) = s1 (m1 〈Id, g〉 x)
...

g(ink,k x) = sk ((mk 〈Id, g〉 x)

with si : Fi[X := μX(F1, . . . , Fk) × A] → A. In this case, g can be defined as
g = λz.Reck(�m,�s, z).

In a dual way we can program a function g : A → νX(F1, . . . , Fk) which satisfies
the following coiteration equations:

outk,1(gx) = (m1 g) (s1 x)
...

outk,k(gx) = (mk g) (sk x)

where si : A → Fi[X := A] and mi : Fi mon X, 1 ≤ i ≤ k are the fixed monotonicity
witnesses used to introduce the type νX(F1, . . . , Fk). In this case, the program is
g = λz.CoItk(�m,�s, z).

Finally, the corecursion principle provides a means to program functions g :
A → νX(F1, . . . , Fk) which satisfies the following equations:

outk,1(g x) = (m1 [Id, g]) (s1 x)
...

outk,k(g x) = (mk [Id, g]) (sk x)

with si : A → Fi[X := νX(F1, . . . , Fk) + A]. In this case, a program is g =
λz.CoReck(�m,�s, z).

Next we show several examples of programming in MCICT. The reader is invited
to program more functions and to verify the soundness of programs with respect
to the operational semantics.

Let us start with the degenerated (co)inductive types having no clauses.

Example 5.1 (degenerated (co)inductive types). The inductive type with no
clauses represents the empty type 0 = μX(). As there are no clauses available,
the iteration rule becomes

Γ � t : 0

Γ � It0(t) : B
(0E)

and therefore 0 cannot be inhabited.
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On the other hand, for the coinductive type with no clauses νX() the rules for
coiteration and corecursion degenerate as follows:

Γ � t : B

Γ � CoIt0(t) : νX()
Γ � t : B

Γ � CoRec0(t) : νX()

for every type B. Observing that type B does not play an important role, we can
say that νX() has essentially two inhabitants, and convey to define 2 = νX() with
inhabitants CoIt0(�), CoRec0(�).

The next three examples correspond to the naturals, finite lists and streams
already implemented in Examples 3.3, 3.4 and 3.7. We repeat them here to allow
a direct comparison on the programming facilities of both systems.

Example 5.2 (the natural numbers). We define Nat = μX(1, X).
• Canonical monotonicity witnesses: mapn1 = λfλx.x, mapn2 = λx.x.
• Constructors:

– Zero: 0 : Nat, 0 = in2,1 �.
– Successor function: suc : Nat → Nat, suc = in2,2.

• Destructors: as we do not have inductive inversion in the system, we define
the destructor by recursion, pred : Nat → 1 + Nat such that pred 0 =
error, pred (suc n) = inr n, given by pred = λn.Rec2(mapn1, mapn2, λ .0,
λz. fst z, n).

• Some functions on Nat:
– sum : Nat → Nat → Nat, sum = λnλm.It2(map1, map2, λ .n, suc, m).
– prod : Nat → Nat → Nat , prod = λnλm.It2(map1, map2, in2,1,

λy.sum y n, m).

Example 5.3 (finite lists over A). This type is defined as List A = μX(1, A×X).
• Canonical monotonicity witnesses:

mapl1 = λfλx.x, mapl2 = λfλx.〈fst x, f(snd x)〉.
• Constructors:

– Empty list: nil : List A, nil = in2,1 �.
– Cons function: cons : A × ListA → List A, cons = in2,2.

• Destructors:
– Head function: head : List A → 1 + A such that head nil = error,

head(cons〈a, 	〉) = inr a, given by head = λz.Rec(mapl1, mapl2, λx. inl x,
λy. inr(fst y), z).

– Tail function: tail : List A → 1 + ListA such that tail nil = error,
tail(cons〈a, 	〉) = inr 	, given by tail = λz.Rec(mapl1, mapl2, λx. inl x,
λy. inr(fst(snd y))), z).

• Some functions on List A:
– Append: app : ListA → ListA → ListA

app = λx.It2(mapl1, mapl2, λyλzz, λuλv. cons〈fst u, (snd u)v〉).
– Length: length : List A → Nat

length = λx.It2(mapl1, mapl2, λx.0, λy. suc(snd y), x).
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– Reverse: rev : ListA → List A
rev = λx.It2(mapl1, mapl2, nil, λz.app (snd z) (cons〈fst z, nil〉), x).

– The polymorphic map function on lists: maplist : ∀X∀Y.(X → Y ) →
List X → ListY such that:

maplistf nil = nil maplistf (cons〈x, xs〉) = cons 〈f x, maplistf xs〉.

The program is:

maplist = λfλx.It2(mapl1, mapl2, λu.nil, λv. cons〈f (fst v), snd v〉, x).

Next, we define some interesting coinductive types.

Example 5.4 (streams (infinite lists) over A). We define Stream A = νX(A, X)
• Canonical monotonicity witnesses: maps1 = λfλx.x, maps2 = λf.f .
• Destructors:

– head : Stream A → A, head = out2,1

– tail : Stream A → Stream A, tail = out2,2.
• Constructor cons : A → Stream A → Stream A. We have two choices

– By corecursion: cons = λxλ	.CoRec2(maps1, maps2, λ .x, λz. inl z, 	).
– By coinductive inversion: cons = λxλ	. out−1

2 (maps1, maps2, x, 	).
• Some functions:

– Streams of constants, cnt : A → Stream A such that head(cnt a) =
a, tail(cnta) = cnt a
cnt = λx.CoIt2(maps1, maps2, λzz, λzz, x).

– The stream of natural numbers from a given one:
from :Nat → Stream Nat, head(from n)=n, tail(from n)= from(suc n)
from = λx.CoIt2(maps1, maps2, λzz, suc, x).

– A zip function for streams, zip : Stream A×Stream B → Stream(A×B)
specified by: head(zip〈	1 	2〉) = 〈head 	1, head 	2〉, tail(zip〈	1 	2〉) =
zip 〈tail 	1 tail 	2〉.A coiterative implementation is zip=λz.CoIt2(maps1,
maps2, s1, s2, z) where s1 =λx.〈head(fst x), head(snd x)〉, s2 = λx.〈tail
(fst x), tail(sndx)〉.

– The polymorphic maphead function maphead : ∀X.(X → X) →
Stream X → Stream X such that head(maphead f 	) = f(head 	),
tail(maphead f 	) = tail 	 can easily be implemented by corecursion as
maphead = λfλ	.CoRec2(maps1, maps2, f ◦ head, inr ◦ tail, 	).

The next example is an implementation of Example 2.4.

Example 5.5. The codatatype of non-empty, and maybe, infinite lists of elements
of C is defined as ColistC = νX(C, 1 + X).

• Canonical monotonicity witnesses:
mapcl1 = λf.λx.x, mapcl2 = λfλx.case(x, y. inl y, z. inr(f z))

• Destructors:
– head : ColistC → C, head = out2,1. Observe that head 	 is always an

element of C, for the empty list is not present.
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– tail : ColistC → 1 + ColistC, tail = out2,2. If a colist is finite, then
the repeated application of tail to it will eventually return an error
indicating that we have reached its end.

• Constructors: we have a general constructor cons and a constructor of
singleton lists single.

– cons : C → ColistC → ColistC, cons = λxλ	. out−1
2 (mapcl1, mapcl2, x,

inr 	)
– single : C → ColistC, single = λx. out−1

2 (mapcl1, mapcl2, x, inl �).
• Some functions:

– A test for single lists issingle : ColistC → Bool is given by issingle =
λ	.case(tail 	, y.true, z.false). This definition yields issingle 	 = true if
and only if 	 = singlex for some x : C.

– Colists of numbers in a given interval of naturals: from : Nat → Nat →
1+ColistNat. We first define a function sfrom : Nat×Nat → ColistNat
such that for n < m, head(sfrom 〈n, m〉) = n and tail(sfrom 〈n, m〉) =
inr(sfrom 〈n+1, m〉), by means of sfrom = λz.CoIt2 (mapcl1, mapcl2, s1,
s2, z), where s1 = λ .n, s2 = λw. inr〈(fst w) + 1, sndw〉. The desired
function from is then defined as: from n n = inr(singlen) and otherwise
from n m = if n < m then inr(sfrom〈n, m〉) else error

– The polymorphic map function on colists: mapcls : ∀X∀Y.(X →
Y ) → ColistX → ColistY is specified by head(mapcls f 	) = f (head 	),
tail(mapcls f 	)= if issingle 	 then error else inr(mapcls f tl), where tail 	
= inr tl.
A coiterative implementation is: mapcls f = λ	.CoIt(maps1, maps2,
λx.f (head x), s2, 	), where s2 	 = if issingle 	 then error else tail 	.

Let us discuss now a couple of examples with more than two clauses in their
definition.

Example 5.6 (strictly infinite complete A-labelled binary trees). We can define
this type as νX(A, X ×X) entailing two destructors, one for the label of the root
and the other for the two children of a tree. However we can do better by using
three clauses to define Infbtree A = νX(A, X, X).

• Canonical monotonicity witnesses:
mapibt1 = λfλx.x, mapibt2 = mapibt3 = λf.f .

• Destructors:
– rlabel : Infbtree A → A, label = out3,1

– lsbt : Infbtree A → Infbtree A, lsbt = out3,2

– rsbt : Infbtree A → Infbtree A, rsbt = out3,3.
• Constructor: mkibt : A → Infbtree A → Infbtree A → Infbtree A defined by

coinductive inversion as mkibt = λxλyλz. out−1
3 (mapibt1, mapibt2, mapibt3,

x, y, z).
• A function swapt : Infbtree A → Infbtree A that swaps the left and right

subtrees of a given tree is specified as follows: rlabel (swapt t) = rlabel t,
lsbt (swapt t) = rsbt t, rsbt (swapt t) = lsbt t. This definition cannot be
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directly implemented by coiteration. Nevertheless, a straightforward im-
plementation is obtained by corecursion:
swapt = λz.CoRec3(mapibt1, mapibt2, mapibt3, rlabel, inl ◦rsbt, inl ◦rsbt, z).

Example 5.7 (finite and infinite A-labelled binary trees). A type for maybe
infinite binary trees is defined as FinInfBTree A = νX(A, 1 + X, 1 + X).

• Canonical monotonicity witnesses: mapfibt1 = λfλx.x,
mapfibt2 = mapfibt3 = λfλx.case(x, y. inr y, z.f(inr z)).

• Destructors:
– rlabel : FinInfBTree A → A, label = out3,1

– lsbt : FinInfBTree A → 1 + FinInfBTree A, lsbt = out3,2

– rsbt : FinInfBTree A → 1 + FinInfBTree A, rsbt = out3,3.
The destructors for subtrees are able to return an error indicating that the
subtree does not exist. This allows to build non complete trees.

• Constructor: mkbt : A → 1 + FinInfBTree A → 1 + FinInfBTree A →
FinInfBTree A defined by coinductive inversion as

mkbt = λxλyλz. out−1
3 (mapibt1, mapibt2, mapibt3, x, y, z).

Observe that if we pass inl � as the second or third argument to mkbt we
will build a tree with no left or right subtree.

• A polymorphic function copy : ∀X.X → FinInfBTree X → FinInfBTree X ,
which for a given label a and tree t builds a new tree with root label a
and t as its subtrees, is specified by rlabel (copy a t) = a, lsbt (copy a t) =
inr t, rsbt (copy a t) = inr t. An implementation by corecursion is
copy = λx.λy.CoRec3(mapfibt1, mapfibt2, mapfibt3, λ .x, inr ◦ inl, inr ◦ inl, y).

Example 5.8 (finite branching, A-labelled trees with potentially infinite depth).
Pidtree A = νX(A, ListX) with destructors

• rlabel : Pidtree A → A, rlabel = out2,1

• lstrees : PidtreeA → List(Pidtree A), lstrees = out2,2.
An inhabitant t : Pidtree A is destructed as the label of its root rlabel t and the list
of its immediate subtrees lstrees t.

• Canonical monotonicity witnesses: mappid1 = λfλx.x, mappid2 = maplist.
This example shows the important connection between the inductive

and the coinductive part of our system. The coinductive subsystem de-
pends on the inductive one to be able to define the monotonicity witness
of a coinductive type. In this case the iteratively defined witness maplist
for the coinductive type Pidtree A.

• The function maptree : (A → C) → Pidtree A → PidtreeC, mapping a
function f : A → C into a tree t : Pidtree A is coiteratively defined by:

rlabel (maptree f t) = f (rlabel t)
lstrees (maptree f t) = maplist (maptree f) (lstrees t).

A program for maptree f is:

maptree f = λx.CoIt2(mappid1, mappid2, λy.f (rlabel y), lstrees, x).
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The next example employs a function type in a clause and provides the fundamen-
tals of the coalgebraic automata theory developed in [32].

Example 5.9 (deterministic automata with input alphabet Σ and output type B).

daut(Σ, B) = νX(Σ → X, B).
• Canonical monotonicity witnesses: mapda1 = λfλgλx.f(gx), mapda2 =

λfλx.x.
• Destructors:

– next : daut(Σ, B) → (Σ → daut(Σ, B)), next = out2,1

– obs : daut(Σ, B) → B, obs = out2,2.
In this setting an automata is a pair M = 〈δ, o〉 where δ : Q → Σ → Q is the
transition function, with state space Q, and o : Q → B is an observation function,
thus M is a Moore automata. There is no need, neither for the existence of an
initial state, nor for assuming that Q or Σ are finite.

The coinductive type daut(Σ, B) is inhabited essentially by behavior functions
beh q : Σ� → B for a given state q ∈ Q.

We can codify such an automata by means of a function caut : Q → daut(Σ, B)
defined coiterativelly:

caut = λz.CoIt2(mapda1, mapda2, δ, o, z)

which is destructed as follows:

next(caut q) = λx.caut((δq)x) obs(caut q) = oq.

Given a behavior function beh q : Σ� → B we can codify it by an inhabitant of
daut(Σ, B) by means of a function cbeh : (Σ� → B) → daut(Σ, B) given by:

cbeh = λz.CoIt2(mapda1, mapda2, λfλaλw.f(a.w), λg.g(ε), z)

where ε, a.w denote the nil and cons operations respectively on Σ�. This function
is destructed as follows:

obs(cbeh (beh q)) = beh q ε next(cbeh (beh q)) = λa.cbeh
(
λw.beh q (a.w)

)
.

We can define in a similar way other types for automata:

• Partial automata: paut(Σ, B) = νX(Σ → 1 + X, B).
In this case the transition functions are of the form δ : Q → Σ → 1 + Q
such that δ q a = error if and only if such transition is undefined.

• Finite deterministic automata: just take Q, Σ to be finite and B = Bool.

fda(Σ) = daut(Σ, Bool) = νX(Σ → X, Bool).

Some functions on this type are:
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– The complement of an FDA: comp : fda(Σ) → fda(Σ) destructed as:

next (compM) = next M obs (comp M) = not (obsM).

– The product automata of two FDA’s: prod : fda(Σ) → fda(Σ) →
fda(Σ) destructed as follows:

next (prod M1 M2) = prod (next M1) (next M2).

According to the language we want to recognize we have different
possibilities for the observation function:

obs (prod M1 M2) = (obs M1) and (obsM2), for L(M1) ∩ L(M2)

obs (prodM1 M2) = (obsM1) or (obsM2), for L(M1) ∪ L(M2)

obs (prod M1 M2) = (obsM1) and not (obsM2), for L(M1) − L(M2).

Our final example is adapted from a similar one given in [15].

Example 5.10 (potentially infinite trees with A-labelled branches). The type
BLTree A = νX(List(A × X)) entails trees t : BLTree A of possible infinite depth,
with finitely many ordered branches, each provided with a label from a constant
type A. The destructor lsb : BLTree A → List(A× BLTree A) given by lsb = out1,1,
returns the list of branches pendant from the root of a tree t, i.e., it returns a
list of pairs of A × BLTree A consisting of a label a for the branch and the list of
subtrees pendant from that branch in order from left to right.

• Canonical monotonicity witness: the canonical witness

mapbltree : ∀X∀Y.(X → Y ) → List(A × X) → List(A × Y )

is defined as follows:

mapbltree f nil = nil mapbltree f (cons〈〈a, x〉, xs〉) = cons〈〈a, fx〉, mapbltree f xs〉.

But this is easily defined as the application of the iteratively defined maplist
function of Example 5.3 to the function Gf , where G : (A × X)monX is
such that for f : X → Y we get Gf 〈a, x〉 = 〈a, f x〉. Again, an inductive
definition is required to define a monotonicity witness for a coinductive
type.

• Breadth first search: we will program a function bfs : BLTree A → A∞,
where A∞ = νX(1+A, 1+X) is the type of finite and infinite lists over A,
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which takes a tree t and returns a list of the labels of branches, in breadth-
first order. To do this, we first define a function bfl : List(A×BLTree A) →
A∞ and set bfs = bfl ◦ lsb. The coinductive specification of bfl is:

head(bfl t) = if (isnil (bfl t)) then error else inr(fst(ht))

tail(bfl t) = if (isnil (bfl t)) then error else inr bfl(tt ∗ lsb(snd(ht)))

where head t = inr ht, tail t = inr tt and ∗ denotes append of lists. If t =
nil, we simply define bfl nil = nil. The function bfl is programmed by
coiteration as

bfl = λx.CoIt2(map1, map2, s1, s2, x)

where
– map1 = λfλx.x, map2 = λfλx.case(x, y. inl y, z. inr fz)
– s1 : List(A × BLTree A) → 1 + A

s1 = λw.if (isnilw) then error else inr(fst(head w))

– s2 : List(A × BLTree A) → 1 + List(A × BLTree A)

s2 = λw.if (isnilw) then error else inr(tailw ∗ lsb(snd(head w))).

• Depth first search: this is easily implemented as a function dfs : BLTree A →
A∞ defined as dfs = dfl ◦ lsb, where dfl is obtained from bfl by changing
the second step function to:

s2 = λw.if (isnilw) then error else inr(lsb(snd(head w)) ∗ (tail w)).

The above examples show the advantage of using clauses. In particular we make
emphasis in the direct definition of constructors or destructors which generally
avoids the use of injections or projections. This feature also modularizes the
definition of monotonicity witnesses and the mechanism of (co)inductive definitions
by (co)iteration, (co)recursion or inversion.

5.4. MCICT is safe

We prove safety of the system in a strong way by proving its termination by
means of an embedding of MCICT into the already terminating system MICT.
Moreover, for the type-preservation (subject- reduction) property we provide here
a direct proof.

5.4.1. Strong normalization of MCICT

The strong normalization of the clausular system MCICT will follow the stan-
dard technique of type-respecting, reduction-preserving translations or embed-
dings, see [20]. This time an embedding (·)′, into the system MICT will be
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given. The main idea is to define μX(A1, . . . , Ak)′ as μX.A′
1 + . . . + A′

k and
νX(A1, . . . , Ak)′ as νX.A′

1 × . . . × A′
k. Some details are given below.

From now on we agree to associate sum and product to the right.

Definition 5.1. The following syntax sugar will be useful, where k ≥ 2:

injkj = λz. inrj−1(inl z), 1 ≤ j < k

injkk = λz. inrk−1 z

πk,j = λz. fst(sndj−1 z), 1 ≤ j < k

πk,k = λz. sndk−1 z.

These are, of course, the canonical injections and projections for a k-sum and
k-product.

Next we define some terms that will be needed for the embedding of (co)iterators,
(co)recursors and in, out functions.

Definition 5.2 (MICT). Given variables x1, . . . , xk, y1, . . . , yk, f, u, v, w, z we de-
fine, for k ≥ 2 and 1 ≤ j ≤ k, the following families of terms tj , rj , qj , pj:

tj [u] = injkj (xjfu) 1 ≤ j ≤ k

r0[v] = tk[v]
rj+1[v] = case(v, x.tk−(j+1)[x], y.rj [y]) 0 ≤ j < k − 1

q0[w] = ykw
qj+1[w] = case(w, x.yk−(j+1)x, y.qj [y]) 0 ≤ j < k − 1

pj [z] = xjf(πk,jz) 1 ≤ j ≤ k.

Observe that the free variables are:

FV (tj [u]) = {xj , f, u}
FV (rj [v]) = {xk−j , . . . , xk, f, v}
FV (qj [w]) = {yk−j , . . . , yk, w}
FV (pj [z]) = {xj , f, z}.

Definition 5.3. Given variables �x, �y with |�x| = |�y| = k, we define the following
terms:

M+[�x ] = λfλz.rk−1[z]
S+[�y ] = λw.qk−1[w]

M×[�x ] = λf.λz.〈p1[z], . . . , pk[z]〉
S×[�y ] = λw.〈y1w, . . . , ykw〉.

Observe that
FV (M+[�x ]) = FV (M×[�x ]) = �x
FV (S+[�y ]) = FV (S×[�y ]) = �y.

Now we are in a position to define the translation.
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Definition 5.4. The embedding (·)′ : MCICT → MICT is defined in two parts,
first we define it for the degenerate cases of (co)inductive types without clauses
μX(), νX(), which are special encoded types. Then we give the general definition
which excludes the previous cases. The omitted cases are just homomorphic2

(μX())′ = ∀XX
It0(t)′ = t′

Rec0(t)′ = t′

(νX())′ = 1 + 1
CoIt0(t)′ = inl �

CoRec0(t)′ = inr �

Next, the general definition where k ≥ 1

(
μX(F1, . . . , Fk)

)′ = μX.F ′
1 + . . . + F ′

k(
νX(F1, . . . , Fk)

)′ = νX.F ′
1 × . . . × F ′

k

x′ = x
in1,1 t′ = in t′

ink,i t′ = in(injki t′) k ≥ 2
It1(m, s, t)′ = It(m′, s′, t′)
Itk(�m,�s, t)′ = It(M+[�m′],S+[�s ′], t′) k ≥ 2

Rec1(m, s, t)′ = Rec(m′, s′, t′)
Reck(�m,�s, t)′ = Rec(M+[�m′],S+[�s ′], t′) k ≥ 2

(out1,1 t)′ = out t′

(outk,i t)′ = πk,i(out t′) k ≥ 2
out−1

k (�m,�t )′ = out−1(M×[�m′], 〈t′1, . . . , t′k〉)
CoIt1(m, s, t)′ = CoIt(m′, s′, t′)
CoItk(�m,�s, t)′ = CoIt(M×[�m′],S×[�s ′], t′) k ≥ 2

CoRec1(m, s, t)′ = CoRec(m′, s′, t′)
CoReck(�m,�s, t)′ = CoRec(M×[�m′],S×[�s ′], t′) k ≥ 2

where the terms M+,M×,S+,S× are taken from Definition 5.3.

The proofs of type-respect and reduction preservation are routinary.

Proposition 5.1 (type respect). If Γ �MCICT r : B then Γ′ �MICT r′ : B′, where
for Γ = {x1 : A1, . . . , xn : An} we put Γ′ = {x1 : A′

1, . . . , xn : A′
n}.

Proof. Induction on �MCICT. �
Proposition 5.2 (preservation of reduction). If r →β s in MCICT then r′ →+

β s′

in MICT.

Proof. Induction on →β in MCICT. �
Proposition 5.3. MCICT is strongly normalizing.

Proof. Immediate from Corollary 4.2 and Proposition 5.2. �
2V.gr. X′ = X, (A → B)′ = A′ → B′, (∀X.A)′ = ∀X.A′, etc.
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5.5. Type preservation for MCICT

In this section we give a detailed proof of type preservation (subject reduction)
for the system MCICT. This important property is not trivial to prove due to the
absence of type annotations in terms given by the Curry-style presentation and to
the presence of untraceable typing rules, which are rules whose application cannot
be traced by simply looking at terms only. This part of our work is completely
new with respect to the related systems of [19,20], due to the fact that on those
works the presentation is in Church-style, a feature which yields subject reduction
trivially. Our proof is based on Krivine’s proof for system F (see [17]).

Definition 5.5. Given a type A and a context Γ we define the set CΓ(A) of
Γ-instances of A as the least class of types such that the following conditions hold

(I1) A ∈ CΓ(A).
(I2) If B ∈ CΓ(A) and X /∈ FV (Γ) then B[X := F ] ∈ CΓ(A), for every type F .

Lemma 5.1. If X /∈ FV (Γ) then CΓ(A[X := F ]) ⊆ CΓ(A).

Proof. By condition (I1) of Definition 5.5, A ∈ CΓ(A) which implies, as X /∈
FV (Γ), that A[X := F ] ∈ CΓ(A). The claim follows now by the minimality of
CΓ(A[X := F ]). �

Definition 5.6. A type A is an open type if it is not a universal quantification.
The interior of a type A, denoted A◦ is defined as follows:

A◦ = A, if A is open.
(∀XA)◦ = A◦.

Definition 5.7. We say that an inference rule is non-traceable if its application
is not reflected in the type system. That is, if the term in the conclusion equals
one of the terms of the premisses. Otherwise the rule is called traceable.

In MCICT the non-traceable rules are the two rules for universal quantification.

The next lemma is central to fulfill our goal.

Lemma 5.2 (main lemma). Let Ã be an open type. If Γ � t : Ã is derived from
Γ � t : A using only non-traceable rules, then Ã ∈ CΓ(A◦).

Proof. Induction on the number of steps in the derivation of Γ � t : Ã from
Γ � t : A. We perform a case analysis on the first rule used in that derivation.

• (∀I). We have Γ � t : Ã from Γ � t : ∀XA where X /∈ FV (Γ), therefore
by IH we get Ã ∈ CΓ((∀XA)◦). But (∀XA)◦ = A◦ therefore Ã ∈ CΓ(A◦).

• (∀E). We have A = ∀X∀Y1 . . . ∀YnB with B open, i.e., A◦ = B = B◦

and after the application of (∀E) we get Γ � t : B[X := F ]. By IH we
have Ã ∈ CΓ

(
(∀Y1 . . .∀Yn.B[X := F ])◦

)
= CΓ(B[X := F ]◦). We have two

subcases:
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– B◦ �= X . In this case B[X := F ] is open and of the same syntac-
tic form as B. The I.H. yields Ã ∈ CΓ(B[X := F ]) and assuming
w.l.o.g. that X /∈ FV (Γ), Lemma 5.1 implies that Ã ∈ CΓ(B). That
is, Ã ∈ CΓ(A◦).

– B◦ = X . In this case B[X := F ] = F and the IH yields Ã ∈
CΓ(B[X := F ]◦) = CΓ(F ◦) = CΓ(B[X := F ◦]), which implies by
Lemma 5.1, assuming w.l.o.g. that X /∈ FV (Γ), that Ã ∈ CΓ(B).
That is, Ã ∈ CΓ(A◦). �

Next, we classify terms according to the kind of rule used to build them.

Definition 5.8. A term t is called an I-term if it was generated by an introduction
rule, i.e., I-terms are terms of the following shapes:

λx.r, 〈r, s〉, inl r, inr s, ink,j r, CoItk(�m,�s, r), CoReck(�m,�s, r), out−1
k (�m,�r).

Analogously E-terms are those generated by an elimination rule, i.e. they are
terms of the following shapes:

rs, fst r, snd r, case(r, x.s, y.t), Itk(�m,�s, r), Reck(�m,�s, r), outk,j r.

Observe that every term is either a variable, an I-term, or an E-term. The next
lemma characterizes derivations of open types according to this classification.

Lemma 5.3 (generation lemma). If Γ � t : A, where A is an open type, then:
• If t is the variable x, then there exists a declaration (x : B) ∈ Γ such that

A ∈ CΓ(B◦).
• If t is an I-term, then Γ � t : A is the conclusion of an instance of the

rule generating t.
• if t is an E-term, then there exists a type B such that Γ � t : B is the

conclusion of the rule generating t and A ∈ CΓ(B◦).

Proof. Let us consider in the derivation of Γ � t : A the last step where a traceable
rule R occurs, thus R is the rule generating t. Assuming that the conclusion of
R is Γ � t : B the main Lemma 5.2 implies that A ∈ CΓ(B◦). We perform a case
analysis on t.

• t = x. Then R is (V ar) and therefore a declaration (x : B) ∈ Γ exists,
and as mentioned before A ∈ CΓ(B◦).

• t is an E-term. This case is immediate as R is the rule generating t.
• t is an I-term. Let us perform a case analysis on the syntactic shape of

t. We focus on the case t = ink,j r. Therefore the rule R is (μI), B =
μY (C1, . . . , C�) and Γ � r : Cj [Y := μY (C1, . . . , C�)]. Clearly B = B◦

implies A ∈ CΓ(B). Let us define a set C as

C =
{

μX(D1, . . . , Dk) | Γ � r : Dj [X := μX(D1, . . . , Dk)],

for some k, and Dj

}
.
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We claim that CΓ(B) ⊆ C. Let us prove that the properties (I1) and (I2)
of Definition 5.5 hold for C.
(I1) Obviously B ∈ C.
(I2) Assume R = μX(D1, . . . , Dk) ∈ C and Z /∈ FV (Γ). We have

R[Z := F ] = μX(D1, . . . , Dk)[Z := F ]

= μX
(
D1[Z := F ], . . . , Dk[Z := K]

)
.

R ∈ C implies Γ � r : Dj [X := μX(D1, . . . , Dk)]. From this, as
Z /∈ FV (Γ) we can build a derivation of

Γ � r : Dj[X := μX(D1, . . . , Dk)][Z := F ].

Finally, using substitution properties, we obtain

Γ � r : Dj [Z := F ]
[
X := μX(D1, . . . , Dk)[Z := F ]

]
.

But

Dj [Z := F ]
[
X := μX(D1, . . . , Dk)[Z := F ]

]
=

Dj [Z := F ]
[
X := μX(D1[Z := F ], . . . , Dk[Z := F ])

]
which yields R[Z := F ] ∈ C.

Therefore by minimality of CΓ(B) we conclude CΓ(B) ⊆ C, which yields
A ∈ C. Finally observe that the definition of C implies that Γ � t : A is
the conclusion of the rule (μI) which is the rule generating t, as desired.
The other cases for an I-term are proved analogously. �

We are now ready to prove the type-preservation of system MCICT.

Proposition 5.4 (one-step subject reduction). If Γ � t : A and t →β t̂ in one
step, then Γ � t̂ : A.

Proof. Induction on �. The case for rule (V ar) is immediate since there is no
redex involved. For an introduction rule the proof is immediate from the IH. For
elimination rules the proof is direct, as an example we show it for the rule (νE).

We have A = Fj [X := νX(F1, . . . , Fk)] and t = outk,j s with Γ � t : A concluded
from Γ � s : νX(F1, . . . , Fk).

The interesting subcases are s = CoItk(�m,�s, r), s = CoReck(�m,�s, r) and s =
out−1(�m,�r). We develop the proof for s = CoItk(�m,�s, r) and t̂ = mj

(
λz.CoItk(�m,�s,

z)
)
(sjr). From the assumption Γ � CoItk(�m,�s, r) : νX(F1, . . . , Fk) the genera-

tion Lemma 5.3 yields Γ � mi : Fi monX, Γ � si : B → Fi[X := B] for all
1 ≤ i ≤ k, and Γ � r : B. It is easy to see that Γ � λz.CoItk(�m,�s, z) : B →
νX(F1, . . . , Fk), which implies Γ � mj

(
λz.CoItk(�m,�s, z)

)
: Fj [X := B] → Fj [X :=

νX(F1, . . . , Fk)].
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On the other hand we have Γ � sjr : Fj [X := B]. Therefore Γ � mj

(
λz.CoItk(�m,

�s, z)
)
(sjr) : Fj [X := νX(F1, . . . , Fk)], that is, Γ � t̂ : A. �

This proposition yields subject reduction in the general case as a corollary.

Corollary 5.1 (subject reduction for MCICT). If Γ � r : A and r →β r̂ then
Γ � r̂ : A.

Proof. Induction on the length of the reduction sequence r →β r̂. �

This finishes the proof of type safety for our system MCICT.

6. Conclusions

In this paper we have presented two Curry-style extensions, called MICT and
MCICT, of system F with monotone (co)inductive types and including not only
(co)iteration but also primitive (co)recursion and coinductive inversion principles.
Both systems are proved to be strongly normalizing; in the case of MICT by a
non-trivial extension of saturated sets for coinductive types, whereas for MCICT,
by a straightforward embedding into MICT. About subject-reduction (type preser-
vation), we observe that this property is not trivial for Curry-style systems, and
prove it in detail by extending Krivine’s method for system F. Therefore, our
systems provide a framework with native forms of recursion suitable to be imple-
mented within the total functional programming paradigm. The expressiveness of
our systems is made explicit by means of several programming examples; a com-
parison of the programming methodologies allows us to conclude that the clausular
feature of system MCICT makes it more adequate to implementation since it allows
the use of several constructors/destructors as in the usual functional programming
languages and it is therefore more friendly to the user as it modularizes definitions
of functions and monotonicity witnesses.

6.1. Related work

The system MICT can be thought of as an extension of a Curry-style version of
the system IMIT of introduction-based monotone inductive types, developed in [19]
with coinductive types, coiteration, primitive corecursion and inversion principles.
On the other hand, the higher-order system Itω of [1] can be seen as an extension
of the (co)iterative fragment of our first system MICT within the framework of
higher-order parametric polymorphism. Some other related extensions in Church-
style are studied in [7,12,20]. The system MCICT can be seen as an extension of
Hagino’s categorical type system λC (see [13,40]), by means of parametric poly-
morphism, primitive (co)recursion and inversion principles. More recently and
following the same line of research we have proposed some extensions of MICT
with course-of-value iteration principles corresponding to a categorical combina-
tor called histomorphism, see [28].
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Our systems have a counterpart also under the Curry-Howard correspondence,
as logics of (co)inductive definitions, developed in [27]. These logics are obtained
by extending the second-order logic AF2 and are also related to the work in [37];
their main application is to provide a framework to extract programs from proofs
à la Krivine-Parigot (see [29]), using as the underlying programming language
the formalisms of this article. Again, this has been done in [27], where we have
also developed Mendler-style systems of (co)inductive types. These kind of sys-
tems have a strong expressive power and naturally arise in higher-order functional
programming (see [1]).

6.2. Future work

Above all, it is desirable to implement our systems. A starting point in this di-
rection is provided by the implementations in Haskell given in [38]. On the other
hand we are interested in the expansion of our formalisms with more (co)recursion
schemes, hopefully within the total functional programming paradigm, correspond-
ing to categorical combinators such as hylomorphisms (see [4,24]) or the more
recent scheme of [16], called dynamorphism.

Acknowledgements. The author thanks an anonymous referee for the careful reading of the
original manuscript, and the valuable suggestions that deeply improved the presentation
of the paper, specially the examples in Sections 3.2 and 5.3, and the proof of strong
normalization given in Section 4. I am also very thankful to Martha Elena Buschbeck-
Alvarado for improving the English manuscript.

Appendix A: Syntax sugar

Future work includes the implementation of our language MCICT. Here we
propose some syntax sugar to avoid the heavy use of λ-terms.

• Data type definition. An inductive type μX(F1, . . . , Fn) can be declared
as:

< type name > = Inductive X with constructors
c1 : F1 → X
...
cn : Fn → X

where ci are particular names for the constructors, ci = ink,i.
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• Codatatype definition. A Coinductive type νX(F1, . . . , Fn) is declared as:

< type name > = Coinductive X with destructors
d1 : X → F1

...
dn : X → Fn

where di are particular names for the destructors, di = outk,i.

• A function fun : I → B, where I = μX(F1, . . . , Fk), defined by iteration
fun = λx.Itk(�m,�s, x) is programmed as:

fun = Iterator of I to B with steps
s1 : F1[X := B] → B
...
sk : Fk[X := B] → B

where map1 = m1, . . . mapk = mk.

Analogously if the definition is by recursion, say fun = λx.Reck(�m,�s, x),
we adjust the types of the constructors and change the word “Iterator”
to “Recursor”.

• A function fun : B → C, where C = νX(F1, . . . , Fk), defined by corecursion
fun = λx.CoReck(�m,�s, x) is represented as:

fun = Corecursor of C from B with steps
s1 : B → F1[X := B]
...
sk : B → Fk[X := B]

where map1 = m1, . . . mapk = mk.

Analogously if the definition is by coiteration, say fun = λx.CoItk(�m,�s, x),
we adjust the types of the destructors and change the word “Corecursor”
to “Coiterator”.

• After the syntax sugar, the operational semantics looks as follows:

– If fun is defined by iteration then fun(cix) → si

(
mapi fun x

)
– If fun is defined by recursion then fun(cix) → si

(
mapi 〈Id, fun〉x

)
– If fun is defined by corecursion then di(fun x) → mapi [Id, fun] (six)
– If fun is defined by coiteration then di(fun x) → mapi fun (six).



TWO EXTENSIONS OF SYSTEM F WITH (CO)ITERATION 763

Appendix B: Canonical monotonicity witnesses

In this appendix we present a canonical selection of monotonicity witnesses
for system MCICT, which essentially corresponds to the usual definitions for the
positive cases. We do not restrict ourselves to strict positivity and define also
antimonotonicity witnesses corresponding to contravariant functors. Moreover,
we define witnesses for interleaving types.

Definition B.1 (antimonotonicity). Given a type F and a type variable X , we
define the type F mon− X as:

F mon− X = ∀X.∀Y.(X → Y ) → F [X := Y ] → F.

If a term m inhabits the type F mon− X in a given context, then the syntactic
functor 〈λX.F, m〉 will be antimonotone (contravariant) in the same context.

Definition B.2 (generic (anti)monotonicity witnesses). We define the following
MCICT-terms:

• Mid = λx.x.
• Mtriv = λfλx.x.
• M→ = λm1λm2λfλxλy.m2f(x(m1fy)).
• M∀ = λmλfλx.mfx.
• M× = λm1λm2λfλx.〈m1f(fst x), m2f(snd x)〉.
• M+ = λm1λm2λfλx.case(x, y. inl m1fy, z. inrm2fz).
• Mk

μ = λ�mλ�nλfλx.Itk(�m,�s, x), where si =λz. ink,i(nifz), for all 1≤ i ≤k.
• Mk

ν = λ�mλ�nλfλx. out−1
k (�m,�s) where si = nif(outk,i x), for all 1 ≤ i ≤ k.

Proposition B.1 (derived typing rules for (anti)monotonicity). The following
rules are derivable:

• Γ � Mid : X mon X.
• If X /∈ FV (F ) then Γ � Mtriv : F mon X and Γ � Mtriv : F mon− X.
• If Γ � m1 : F mon− X and Γ � m2 : Gmon X, then

Γ � M→m1m2 : (F → G)mon X.

• If Γ � m1 : F monX and Γ � m2 : Gmon− X, then

Γ � M→m1m2 : (F → G)mon− X.

• If Γ � t : ∀Z.F monX, then Γ � M∀t : (∀Z.F )mon X.
• If Γ � t : ∀Z.F mon− X, then Γ � M∀t : (∀Z.F )mon− X.
• If Γ � m1 : F monX and Γ � m2 : Gmon X, then

Γ � M×m1m2 : (F × G)mon X.

• If Γ � m1 : F mon− X and Γ � m2 : Gmon− X, then

Γ � M×m1m2 : (F × G)mon− X.
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• If Γ � m1 : F monX and Γ � m2 : Gmon X, then

Γ � M+m1m2 : (F + G)monX.

• If Γ � m1 : F mon− X and Γ � m2 : Gmon− X, then

Γ � M+m1m2 : (F + G)mon− X.

• If Γ � mi : (∀X.Fi mon Z) and Γ � ni : (∀Z.Fi monX), for all 1 ≤ i ≤ k,
then

Γ � Mk
μ �m�n : μZ(F1, . . . , Fk)monX.

• If Γ � mi : (∀X.Fi mon Z) and Γ � ni : (∀Z.Fi mon− X), for all 1 ≤ i ≤ k,
then

Γ � Mk
μ �m�n : μZ(F1, . . . , Fk)mon− X.

• If Γ � mi : (∀X.Fi mon Z) and Γ � ni : (∀Z.Fi monX), for all 1 ≤ i ≤ k,
then

Γ � Mk
ν �m�n : νZ(F1, . . . , Fk)monX.

• If Γ � mi : (∀X.Fi mon Z) and Γ � ni : (∀Z.Fi mon− X), for all 1 ≤ i ≤ k,
then

Γ � Mk
ν �m�n : νZ(F1, . . . , Fk)mon− X.

Proof. Straightforward �

In particular any witness given in the examples developed in Section 5.3 is
called canonical, since its definition and typing is given by the above rules. In
an analogous way, we can define canonical monotonicity witnesses and derivable
rules for system MICT, such that the witnesses for the examples of Section 3.2 are
generated by these rules.
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