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Abstract. We show that the inclusion problem is decidable for ratio-
nal languages of words indexed by scattered countable linear orderings.
The method leans on a reduction to the decidability of the monadic sec-
ond order theory of the infinite binary tree [9].
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1. Introduction

In his seminal paper [8], Kleene establishes the equivalence between automata
and rational expressions. Since then, many kinds of automata accepting infinite
words, bi-infinite words, ordinal words and trees have been introduced.

In [1,3], linear structures are considered in a general framework, that is, words
indexed by any linear ordering. Automata accepting such words as well as rational
expressions are introduced. A Kleene-like theorem is proved for words indexed by
linear orderings which are scattered. This class of orderings contains the ordinals
and is closed under many natural operations like reversal, sum, ω-sum and taking
suborderings.

In [4], the emptiness problem for these automata is shown to be decidable in
polynomial time when again scattered orderings are considered.

In this paper, we solve the equivalence problem for these automata. More
generally, we show that the inclusion problem is decidable.
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In [10], it has been proved that the class of rational sets of words over count-
able and scattered ordering is closed under complementation. It follows from [10]
that the inclusion problem can be reduced to the emptiness problem. Our paper
provides an alternative proof of the decidability of inclusion. Since our proof tech-
niques are different we hope that this approach can be extended to the class of non
scattered orderings which is not closed under complementation. Our result has al-
ready been presented in [2] in 2003. At that time, the complementation results
of [10] were not available and there was no alternative proof of the decidability of
inclusion.

Our approach to solve the inclusion problem uses the Rabin tree theorem [9].
The idea is the following. Accepting paths in an automaton are described by
a monadic second-order formula using two successor functions. In this way, the
inclusion problem for automata on scattered linear orderings is reduced to the
inclusion problem for tree automata. This establishes an interesting link between
tree automata and automata on linear orderings.

A similar approach is already proposed in [12] to solve a decision problem on
words on linear orderings raised by Courcelle [5] and Heilbrunner [7]. That paper
is concerned with the decidability of the equivalence of two rational expressions,
when each rational expression describes exactly one word over arbitrary countable
orderings. So, in terms of automata, the two differences with our result are that
the automata only accept one word, however the orderings are not restricted to
scattered ones.

The paper is organized as follows. In Section 2, we recall the basic notions on
linear orderings and the definition of automata accepting words indexed by a linear
ordering. In Section 3, we show how a binary tree can represent a linear ordering
and its set of cuts. Section 4 is devoted to the inclusion problem for automata
on scattered linear orderings. In Section 4.2 we give a detailed translation to the
inclusion problem for tree automata and in Section 4.3 we sketch a translation to
the monadic second order theory of the class of countable orderings. We mention
perspectives and open problems in the conclusion.

2. Words and automata on linear orderings

In this section, we recall the definition of words indexed by linear orderings and
the definition of automata accepting such words [1,3]. We refer the reader to [11]
for a complete introduction to linear orderings.

2.1. Orderings

A linear ordering J is a set equipped with an ordering < which is total. The
ordering of the integers, of the relative integers and of the rational numbers are
linear orderings, respectively denoted by ω, ζ and η. We recall that an ordinal is
a linear ordering which is also a well-ordering, that is, any non-empty subset has
a least element. In the sequel, we freely say that two orderings are equal if they
are actually isomorphic.
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Figure 1. Ordering J ∪ Ĵ for J = ω + (−ω).

Given a linear ordering J , two elements i and k of J are said to be consecutive
if i < k and there exists no j in J such that i < j < k. The element i is then
called the predecessor of k and k is called the successor of i.

Let J and K be two linear orderings. We denote by −J the backwards linear
ordering obtained by reversing the ordering relation. The linear ordering J + K
is the ordering on the disjoint union J ∪ K extended with j < k for any j ∈ J
and any k ∈ K. More generally, let Kj be a linear ordering for any j ∈ J . The
linear ordering

∑
j∈J Kj is the set of pairs (k, j) such that k ∈ Kj. The relation

(k1, j1) < (k2, j2) holds if and only if j1 < j2 or (j1 = j2 and k1 < k2 in Kj1).

Example 2.1. The ordering ω + (−ω) is the sum of the ordering of the integers
and its backwards ordering. It is different from the ordering −ω+ω which is equal
to ζ.

A cut of a linear ordering J is a pair (K,L) of intervals such that J is the
disjoint union K ∪ L and for any k ∈ K and l ∈ L, k < l. The set of all cuts of
the ordering J is denoted by Ĵ . The set Ĵ can be linearly ordered as follows. For
any cuts c1 = (K1, L1) and c2 = (K2, L2), we define the relation c1 < c2 if and
only if K1 � K2. The cuts (∅, J) and (J, ∅) are then the first and the last element
of Ĵ . It is sometimes convenient to ignore these two cuts. We denote by Ĵ∗ the
set Ĵ \ {(∅, J), (J, ∅)}.
Example 2.2. Let J be the ordinal ω. The set Ĵ contains the cut ({0, . . . , n −
1}, {n, n+ 1, . . .}) for any integer n and the last cut (ω, ∅). The ordering Ĵ is thus
the ordinal ω+1. If J is the ordering ω+(−ω), then Ĵ is the ordering ω+1+(−ω).
It contains the particular cut (ω,−ω) which has no predecessor and no successor.
The ordering Ĵ for J = η is not countable since it contains the usual ordering on
the set of real numbers.

The orderings of J and Ĵ can be extended to an ordering on the disjoint union
J ∪ Ĵ as follows. For j ∈ J and a cut c = (K,L), define the relations j < c
and c < j by respectively j ∈ K and j ∈ L. Note that exactly one of these two
relations holds since (K,L) is a partition of J . These relations together with the
orderings of J and Ĵ endows J ∪ Ĵ with a linear ordering.

Example 2.3. For the ordering J = ω + (−ω), the ordering J ∪ Ĵ is pictured
in Figure 1 where each element of J is represented by a bullet and each cut by a
vertical bar.

For any element j ∈ J , there are two cuts c−j and c+j obtained by cutting J

on the left and on the right of j (see Fig. 1). These two cuts are defined by
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c−j = (K, {j} ∪ L) and c+j = (K ∪ {j}, L) where K and L are the sets K = {k |
k < j} and L = {k | j < k}. The cuts c−j and c+j are consecutive in the ordering Ĵ .
Conversely, for any consecutive cuts c and c′ in Ĵ , there is a unique element j in J
such that c = c−j and c′ = c+j . In the ordering J ∪ Ĵ , one has c−j < j < c+j . Note
that if j and j′ are consecutive elements in J , then the equality c+j = c−j′ holds.

2.2. Scattered linear orderings

A linear ordering J is said to be dense if for any i < k in J , there is j ∈ J such
that i < j < k. A linear ordering is scattered if it contains no dense subordering of
cardinality ≥2. The following characterization of countable and scattered linear
orderings is due to Hausdorff. Notation 0 and 1 is used for the empty ordering
and the one-element ordering. Notation N and O is used for the class of finite
orderings and the class of countable ordinals.

Theorem 2.4 (Hausdorff [6], also Thm. 5.24 p. 86 of [11]). A countable linear
ordering J is scattered if and only if J belongs to

⋃
α∈O Vα where the classes Vα

are inductively defined by
(1) V0 = {0,1};
(2) Vα = {∑j∈J Kj | J ∈ N ∪ {ω,−ω, ζ} and Kj ∈ ⋃

β<α Vβ}.
Remark 2.5. (1) It follows from the previous theorem that if J is a countable and
scattered linear ordering, then Ĵ is also a countable and scattered linear ordering.
(2) Conversely, suppose that Ĵ is countable.
(2.1) Since x �→ ({y ∈ J | y ≤ x}, {y ∈ J | y > x}) is a strictly increasing map
from (J,≤) into (Ĵ ,≤), J is countable too.
(2.2) If J has some dense subset J0 with at least two elements, then it also contains
a countable dense subset J1. The ordered set J1 is isomorphic with Q (by the
classical “back and forth” argument of Cantor), so that Ĵ1 ≈ R. But (K1, L1) �→
({x ∈ J | ∃k ∈ K1, x ≤ k}, {x ∈ J | ∀k ∈ K1, x > k}) is an injective map from Ĵ1

into Ĵ , showing that Ĵ has a cardinality greater or equal to Card(R), contradicting
the hypothesis of point (2). Thus the hypothesis of point (2.2) is impossible, which
shows that J is scattered.

2.3. Words on linear orderings

Let A be a finite alphabet. For a linear ordering J , a word (aj)j∈J of length J
over A is a function from J to A which labels any element j of J by a letter aj

of A. The word whose length is the ordering 0 is called the empty word and it is
denoted by ε. The set of all words over the alphabet A is denoted by A�.

Let x = (aj)j∈J and y = (bk)k∈K be two words of length J and K. The product
xy (or the concatenation) of x and y is the word z = (ci)i∈J+K of length J +K
such that ci = ai if i ∈ J and ci = bi if i ∈ K. More generally, let J be a linear
ordering and for each j ∈ J , let xj be a word of length Kj. The product

∏
j∈J xj

is the word z of length K =
∑

j∈J Kj defined as follows. Suppose that each word
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0 → {1, 2}
{2} → 1

Figure 2. Automaton of Example 2.8.

xj is equal to (ak,j)k∈Kj and recall that K is the set of all pairs (k, j) such that
k ∈ Kj . The product z is then equal to (ak,j)(k,j)∈K .

Example 2.6. The word aωb−ω of length ω+(−ω) is the product of the word aω

of length ω and b−ω of length −ω. Another example is the word
∏

i∈−ω a
iabω =

. . . a3bωa2bωabω of length
∑

i∈−ω ω. It is obtained as the product
∏

i∈−ω xi of
words xi = aiabω of length ω.

Two words x = (aj)j∈J and y = (bk)k∈K of length J and K are isomorphic if
there is an ordering isomorphism f from J into K such that aj = bf(j) for any j
in J . This obviously defines an equivalence relation on words. In this paper, we
identify isomorphic words and what we call a word is actually a class of isomorphic
words.

2.4. Automata

We now recall the notion of automaton on words on linear orderings as intro-
duced in [1,3]. They are usual (Kleene) automata with additional limit transitions
of the form P → p and p→ P where p is a state and P a subset of states.

Definition 2.7. Let A be a finite alphabet. An automaton A over A is a 5-tuple
(Q,A,E, I, F ) where Q is a finite set of states, E ⊆ (Q×A×Q) ∪ (P(Q) ×Q) ∪
(Q × P(Q)) is the set of transitions, I ⊆ Q is the set of initial states and F ⊆ Q
is the set of final states.

Since the alphabet and the set of states are finite, the set of transitions is also
finite. Transitions are either successor transitions of the form p a−→ q, or left limit
transitions of the form P → q, or right limit transitions of the form q → P , where
P is a subset of Q.

Example 2.8. The automaton pictured in Figure 2 has three successor transitions
which are pictured like a labeled graph. It has also a left limit transition {2} → 1
and a right limit transition 0 → {1, 2}. State 0 is initial and state 1 is final.

We now come to the definition of a path in an automaton on linear orderings.
Let x be a word of length J . Roughly speaking, a path associated with x is a
labeling (qc)c∈Ĵ of each cut of J by a state of the automaton such that local
properties are satisfied. If two cuts are consecutive there must be a successor
transition labeled by the letter of x in between the two cuts. If a cut has no
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Figure 3. A path labeled by x =
∏

i∈−ω a
iabω.

predecessor, a left limit transition must be used and if it has no successor, a right
limit transition must be used.

To be more precise, the following notion of limit is needed. Let γ = (qc)c∈Ĵ be
a path and let c be a fixed element of Ĵ . The left and right limit set of γ at c are
the two subsets limc− γ and limc+ γ of Q defined as follows:

lim
c−

γ = {q ∈ Q | ∀c′ < c ∃d c′ < d < c and q = qd},
lim
c+

γ = {q ∈ Q | ∀c < c′ ∃d c < d < c′ and q = qd}.

Note that if the cut c is not the first cut of Ĵ and if it has no predecessor, the limit
set limc− γ is non-empty since the set Q is finite. A similar remark holds for right
limit sets.

Definition 2.9. Let A be an automaton and let x = (aj)j∈J be a word of length J .
A path γ labeled by x is a sequence of states γ = (qc)c∈Ĵ of length Ĵ such that

• For any consecutive cuts c−j and c+j , qc−j
aj−→ qc+

j
is a successor transition.

• For any cut c which is not the first cut and which has no predecessor,
limc− γ → qc is a left limit transition.

• For any cut c which is not the last cut and which has no successor, qc →
limc+ γ is a right limit transition.

Since the ordering Ĵ has a first and a last element, a path always has a first and
a last state which are indexed by the first and the last cut. A path is accepting if
and only if its first state is initial and its last state is final. A word is accepted by
the automaton if and only if it is the label of an accepting path. A set of words is
recognizable if it is the set L(A) of words accepted by some automaton A.

Example 2.10. Consider the automaton A of Figure 2 and let x be the word∏
i∈−ω a

iabω. An accepting path γ labeled by x is pictured in Figure 3. It can be
verified that this automaton A accepts the set (a∗abω)−ω.

Remark 2.11. The automata that we have defined work for any linear ordering. It
should be noted that in Section 4, the set L(A) of words accepted by an automaton
is restricted to words whose length is a countable and scattered ordering.
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3. Trees and orderings

In this section, we show that a countable linear ordering J can be seen as the
set of leaves of a binary tree ordered with the infix ordering. Moreover, if J is
scattered, we show that the set Ĵ∗ of non-trivial cuts of J can be seen as the set
of internal nodes, again ordered with the infix ordering.

3.1. Trees

A tree t is a prefix closed subset of {0, 1}∗. An element of a tree is called a
node. If v0 and v1 are nodes, they are called the left and the right successor of
the node v. A leaf is a node with no successor and an internal node is a node
with at least one successor. A node v is non-branching if it has only one successor.
It is complete if it has either zero or two successors. A tree is complete if all its
nodes are complete. The subtree rooted in a node v is made of the nodes of the
form vw for w in {0, 1}∗. If v is an internal complete node, the subtree rooted in
the left successor of v is called the left subtree of v and the subtree rooted in the
right successor of v is called the right subtree of v. A tree is locally finite if any of
its subtrees contains a leaf.

We recall the prefix ordering  on the nodes of a tree t. We write u  v to
denote that v = uw for some word w. We also recall the infix ordering <. Two
nodes satisfy u < v if either v0  u, or u1  v, or w0  u and w1  v for some
node w of t. Note that this is a linear ordering on the nodes which is countable.
For a tree t, we call frontier of t the set of leaves of t ordered with the infix
ordering.

Proposition 3.1. Let J be a countable ordering. There exists a complete and
locally finite tree t such that J is the frontier of t.

Proof. Let us consider the tree t = (00 + 11)∗(ε + 0 + 1 + 10) introduced in [12].
The set of leaves of t is (00+11)∗10 and its frontier is a dense countable ordering.
It follows that the frontier of t is the ordering η of the rational numbers [11]. Since
any countable ordering can be embedded in η, any ordering is thus the frontier of
a tree. However this tree is not necessarily locally finite and complete.

We show how a locally finite and complete tree with the same frontier can be
constructed from a given tree. This tree is constructed in two steps. The first step
gives a locally finite tree with the same frontier. The second step gives a locally
finite and complete tree from a locally finite tree.

The first step is quite easy. The nodes which have no leaf in their subtree are
removed. This gives of course a locally finite tree. Furthermore, the frontier of
the new tree is the same as the frontier of the starting tree since no leaf has been
removed.

The second step starts from a locally finite tree. If a tree is not complete, it has
some non-branching nodes. The idea is to remove all its non-branching nodes. Let
v1, . . . , vn . . . be a sequence of nodes such that each vi+1 is the only successor of vi.
This sequence is finite since the tree is locally finite. Let vn be the last node. Then
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vn is either a leaf or a node with two successors. We remove the nodes v1, . . . , vn−1

from the tree. If the node v1 was the root of the tree, the node vn becomes the new
root. If the node v1 was the left (respectively right) successor of a node v0 with
two successors, the node vn becomes the left (respectively right) successor of the
node v0. If this procedure is performed on all sequences of non-branching nodes,
one gets a tree which is locally finite and complete. Furthermore, the frontier is
left unchanged. �

3.2. Trees and cuts

In this section, we consider the cuts of the frontier of trees. We show that if a
tree is locally finite and complete, the cuts of its frontier can be viewed in the tree.
More precisely, we show that these cuts are in a one-to-one correspondence with
the internal nodes and some particular branches of the tree. Then we consider
trees with a scattered frontier. In this case, the cuts correspond to the internal
nodes.

A branch of a tree t is an infinite sequence v0v1v2 . . . of nodes such that v0 is
the root of t and each node vi+1 is a successor of the node vi. A branch v0v1v2 . . .
can be identified with the infinite word b = b0b1b2 . . . where bi = 0 if vi+1 is the
left successor of vi and bi = 1 if vi+1 is the right successor of vi. A branch is called
straight if b belongs to (0 + 1)∗(0ω + 1ω) and it is called zigzagging otherwise.

We first show that the set made of all the nodes and all the branches of t can
be endowed with a linear ordering which extends the infix ordering on nodes. This
ordering is also denoted by the symbol <. Let b = v0v1v2 . . . and b′ = v′0v

′
1v

′
2 . . . be

two branches of t. Let k be the least integer such that vk = v′k and vk+1 �= v′k+1.
By definition, b < b′ holds if vk+1 and v′k+1 are respectively the left and right
successor of vk = v′k. Let b = v0v1v2 . . . and v be a node of t. Let k be the integer
such that v is in the subtree rooted in vk but not in the subtree rooted in vk+1. In
particular, if v is a node of b, then vk = v. By definition, the relation v < b holds
if vk+1 is the right successor of vk and b < v holds otherwise. In the former case,
v < vi holds for any i greater than k and in the latter case, vi < v holds for any i
greater than k. It is pure routine to check that this defines a linear ordering.

Let t be a locally finite and complete tree and let J be the frontier of t. Let J ′

be the set of all the internal nodes and the zigzagging branches of t. The set J ′ is
of course ordered with the ordering that we have just defined. We claim that J ′

is isomorphic to the ordering Ĵ∗ of non-trivial cuts of J .

Proposition 3.2. Let t be a locally finite and complete tree. The set of internal
nodes and zigzagging branches of t is isomorphic to the ordering Ĵ∗ of non-trivial
cuts of the frontier J of t.

Proof. In order to prove the proposition, we define an isomorphism f from J ′

to Ĵ∗. Let v be an element of J ′, that is, either an internal node or a zigzagging
branch of t. We define f(v) as the cut (K,L) where the sets K and L of leaves
are given by K = {l leaf | l < v} and L = {l leaf | v < l}. Since the ordering <
is linear, either l < v or v < l holds and (K,L) is a cut of the frontier of t. Let
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us show that (K,L) is a non-trivial cut. If v is an internal node, its left and right
subtrees contain a leaf because the tree t is locally finite. Therefore K and L are
non-empty. If v is a zigzagging branch v0v1v2 . . ., there is an integer k such that
vk+1 is the right successor of vk. The left subtree of vk contains a leaf and K is
non-empty. By symmetry, L is also non-empty.

We now prove that the function f is one to one. We first prove that f is injective.
Let v and v′ be two internal nodes of the tree t. By symmetry, we assume that
v < v′. Let us show that there is a leaf l of t such that v < l < v′. Therefore the
cuts f(v) and f(v′) are different. We first suppose that v′0  v. The right subtree
of v contains a leaf l since t is locally finite. This leaf l satisfies v < l < v′. The
two other cases v1  v′ and w0  v, w1  v′ for some node w of t are similar. Let
b be a branch v0v1v2 . . . of t and let v be a node. Let k be the integer such that v
is in the subtree rooted in vk but not in the subtree rooted in vk+1. By symmetry,
we may assume that vk+1 is the right successor of vk. Then, v is either equal to vk

or it is in the left subtree of vk. In both cases, the left subtree of vk+1 contains a
leaf l. This leaf satisfies v < l and l < b, showing that the cuts f(v) and f(b) are
different. Finally, let b = v0v1v2 . . . and b′ = v′0v′1v′2 . . . be two different zigzagging
branches of t. Let k be the integer such that vk = v′k but vk+1 �= v′k+1. By
symmetry, we may assume that vk+1 and v′k+1 are respectively the left and right
successors of vk. The right subtree of vk+1 contains a leaf l. Thus b < l < b′ and
f(b) �= f(b′).

We now prove that f is onto, that is, any non-trivial cut c = (K,L) of J is equal
to either f(v) for some internal node v or to f(b) for some zigzagging branch b. We
proceed as follows. We define by induction a sequence v0v1v2 . . . of internal nodes.
Either, the definition stops after a finite number of steps and the cut c is equal
to f(vn) or the definition gives an infinite sequence v0v1v2 . . . of internal nodes.
This infinite sequence turns to be a zigzagging branch b such that c = f(b). Let
v0 be the root of the tree. Since c is a non-trivial cut, K and L are non-empty and
the frontier of t contains at least two leaves. Therefore, v0 cannot be a leaf and v0
is an internal node. We suppose that we have already defined the nodes v0, . . . , vn

of internal nodes such that each vi+1 is a successor of vi. We also suppose by
induction that the subtree rooted in vn intersects both K and L. If f(vn) is equal
to c, we have done. Otherwise, the left subtree or the right subtree of vn intersects
both K and L. Note that exactly one of the two subtrees satisfies this property.
We define vn+1 as the successor of vn whose subtree intersects both K and L.
Note that vn+1 is an internal node since the subtree rooted in vn+1 intersects both
K and L.

It remains to prove that when the sequence v0v1 . . . vn . . . is infinite, one gets
a zigzagging branch b of t such that c = f(b). Suppose by contradiction that b is
straight. By symmetry, we may assume that b is a branch of the form (0 + 1)∗1ω.
Let k be the least integer such that vi+1 is the right successor of vi for every i ≥ k.
We claim that any leaf in the subtree rooted in vk belongs to K. Let l be such a
leaf. Let m ≥ k be the integer such that l is in the subtree rooted in vm but not
in the subtree rooted in vm+1. Since vm+1 is the right successor of vm, l is in the
left subtree of vm. By the choice of vm+1, this subtree cannot intersect both K
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and L. Therefore, it only intersects K and l belongs to K. Now if k = 0, vk is the
root of t and L is empty. This contradicts the fact that c is a non-trivial cut. If
k ≥ 1, the subtree rooted in vk does not intersect K and L. This contradicts the
choice of vk. This proves that b is zigzagging.

We finally prove that c = f(b). Let l be a leaf of t and let k be the integer
such that l is in the subtree rooted in vk but not in the subtree rooted in vk+1.
If l belongs to K, vk+1 must be the right successor of vk. Therefore, l < b.
Symmetrically, if l belongs to L, then b < l.

Therefore the function f is injective and onto. By definition, it is order pre-
serving. This completes the proof of the proposition. �

In Proposition 3.2, only zigzagging branches are considered. Indeed, if b is
a straight branch, it defines the same cut as the one of some internal node. For
instance, if b is the branch u01ω, then it defines the cut f(u) of the internal node u.

As already mentioned in Remark 2.5, a countable ordering J is scattered if and
only if its set Ĵ of cuts is countable. By the previous proposition, the frontier of a
locally finite and complete tree is scattered if the set of zigzagging branches of the
tree is countable. Note that the set of straight branches is countable. Therefore,
the set of zigzagging branches is countable if and only if the set of all branches is
countable. The next proposition follows.

Proposition 3.3. The frontier of a locally finite and complete tree is scattered if
and only if the set of its branches is countable.

A tree is said to be straight if all its branches are straight. The set of branches
of a straight tree is countable and its frontier is thus scattered. Conversely we
have the next proposition.

Proposition 3.4. Any countable and scattered linear ordering is the frontier of a
straight, locally finite and complete tree.

Proof. The proof is based on Hausdorff’s characterization of countable and scat-
tered linear orderings (see Thm. 2.4). We prove by induction on the ordinal α
that each ordering in the class Vα is the frontier of a straight, locally finite and
complete tree. The empty ordering 0 and the one-element ordering 1 are respec-
tively the frontier of the empty tree and the frontier of the tree with just one leaf.
Suppose that the ordering K is equal to the sum

∑
j∈J Kj where J is either a

finite ordering, ω, −ω or ζ. By the induction hypothesis, each ordering Kj is the
frontier of a straight, locally finite and complete tree tj where each tree tj is a
prefix-closed subset of {0, 1}∗.

Suppose first that J is the finite ordering {0, . . . , n}. We define the tree t by

t = {ε, 1, 12, . . . , 1n−1} ∪
n−1⋃

j=0

1j0tj ∪ 1ntn.

It is straightforward to verify that t is prefix-closed and that it is a straight, locally
finite and complete tree. Furthermore, its frontier is the ordering K. The other
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cases are treated similarly as follows. If J is the ordering ω, we define the tree t
by t = 1∗ ∪ ⋃

j∈ω 1j0tj. The case J = −ω is symmetrical. If J is the ordering ζ,
we define the tree t by t = {ε}∪ 0t0 ∪ 1t1 where t0 and t1 are two straight, locally
finite and complete trees such that fr(t0) =

∑
j∈−ω Kj and fr(t1) =

∑
j∈ω Kj. �

The next result is a consequence of Proposition 3.2 since a straight tree has no
zigzagging branch.

Corollary 3.5. Let t be a straight, locally finite and complete tree. The set of
the internal nodes of t is isomorphic to the ordering Ĵ∗ of non-trivial cuts of the
frontier J of t.

3.3. Labeled trees

Let A be an alphabet. An A-labeled tree or labeled tree is a map t : dom(t) → A
where dom(t) is a tree (in the sense of Sect. 3.1) called the domain. The word
frontier fr(t) of a labeled tree t is the word whose length is the frontier of t and
whose labeling is given by the labeling of t. More precisely, if J is the frontier of
the tree t, the word frontier of t is the word x = (xj)j∈J where each letter xj is
equal to t(j).

4. Logic and decidability

This section is devoted to the proof of the main result of this paper stated in
the next theorem.

Theorem 4.1. Given two automata A and B on countable and scattered linear
orderings, it is decidable whether L(A) ⊆ L(B).

It should be noted that in this statement, the sets L(A) and L(B) of words
accepted by the automata A and B respectively, are restricted to words whose
length is a countable and scattered linear ordering.

The following corollary is a trivial consequence of this theorem.

Corollary 4.2. Given two automata A and B on countable and scattered linear
orderings, it is decidable whether L(A) = L(B).

The proof of Theorem 4.1 makes use of Rabin’s tree theorem. Given an automa-
ton A, we are going to construct a logical formula ϕA such that every A-labeled
tree t satisfies ϕA if and only if the word frontier of t is accepted by A. To
decide whether L(A) is included in L(B) will be reduced to decide whether for-
mula ϕA → ϕB is valid. This proof only works for trees t that are straight, locally
finite and complete. It follows that L(A) is restricted to words on countable and
scattered linear orderings.

In Section 4.1, we recall the logical language that we use. In Section 4.2 we
show how to construct formula ϕA from the automaton A and end with the proof
of Theorem 4.1. In Section 4.3 we sketch another proof of Theorem 4.1 leaning on
a different (though analogous) reduction.
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4.1. Logical language

In [9], Rabin suggests to describe a set of A-labeled trees by a logical formula.
The trees that are considered are full trees with domain {0, 1}∗. In order to handle
any locally finite and complete tree t labeled by A = {a1, . . . , an}, we introduce a
new letter a0 and we label by a0 any node outside the domain of t. The resulting
full tree is denoted by t̄.

Let A be a fixed alphabet. We recall from [9] the monadic second-order logical
language LA which allows to describe full A-labeled trees. This language has first-
order variables x, y, . . . ranging over nodes of the trees and second-order variables
X,Y, . . . ranging over subsets of nodes. It has also the symbol = for equality, sym-
bols S0 and S1 for the two successors functions on {0, 1}∗, and unary symbols Ra,
a ∈ A, for nodes labeled by a. As usual, atomic formulas are of the form x = y,
S0(x) = y, S1(x) = y, Ra(x) and X(x). Arbitrary formulas are constructed by
induction from atomic formulas in combination with the logical constructors ¬,
∨, ∧, →, ↔ and the quantifiers ∃ and ∀ acting on first-order and second-order
variables. A sentence is a formula without free variables. Given a sentence ϕ and
a full A-labeled tree t, the relation t |= ϕ saying that t satisfies ϕ is defined in the
standard way. The set of trees satisfying a formula ϕ is denoted by T (ϕ).

A sentence ϕ is called valid if T (¬ϕ) = ∅, that is, if every tree t satisfies ϕ.

Theorem 4.3 (Rabin [9]). Let ϕ be a sentence of the monadic second-order lan-
guage LA. It is decidable whether ϕ is valid.

4.2. Reduction to logics over trees

We are now equipped to construct a logical formula ϕA describing the set of
words accepted by an automaton A when these words are seen as word frontier of
trees.

Proposition 4.4. Let A = {a1, . . . , an} be an alphabet and a0 be a new letter.
For any automaton A over A and on countable and scattered linear orderings, one
can construct a sentence ϕA over the language LA∪{a0} such that

T (ϕ) = {t̄ | fr(t) ∈ L(A) \ {ε}}.

Before proceeding to the proof of the proposition, we illustrate the main idea
by an example.

Example 4.5. We consider again the word x =
∏

i∈−ω a
iabω accepted by the

automaton A of Figure 2. The accepting path of Figure 3 can be represented as
the labeled tree pictured in Figure 4. Indeed as the length J of x is a countable
and scattered ordering, it can be seen as the frontier of a straight, locally finite
tree thanks to Proposition 3.4. By Corollary 3.5, the non-trivial cuts of J can be
identified with the internal nodes of this tree.

Proof. Before giving the definition of ϕA, it is convenient to introduce special
predicates, in particular for expressing that a full A ∪ {a0}-labeled tree has the
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Figure 4. Tree.

form t̄ where t is a straight, locally finite and complete A-labeled tree. The trivial
definitions of some of these predicates have been omitted.

(1) Ordering predicates
• The prefix ordering x  y on nodes x and y is defined as follows

∀X [X(x) ∧ ∀z(X(z) → X(S0(z)) ∧X(S1(z)))] → X(y).

• For the infix ordering x < y, we have the following formula

S0(y)  x ∨ S1(x)  y ∨ ∃z (S0(z)  x ∧ S1(z)  y).

• Given two nodes x and y not labeled by a0, it is then easy to define a
predicate Succ(x, y) stating that y is the successor of x with respect
to the infix ordering.

(2) Node predicates
• Root(x) means that the node x is the root of the tree.
• Father(x, y) means that the node x is the father of the node y.
• Brother(x, y) means that nodes x and y are brothers.
• Leaf(x) means that x is a leaf in the tree obtained by removing a0-

labeled nodes. Thus Leaf(x) stands for

¬Ra0(x) ∧Ra0(S0(x)) ∧Ra0(S1(x)).

• Intern(x) means that x is an internal node in the tree obtained by
removing a0-labeled nodes. Thus Intern(x) stands for

¬Ra0(x) ∧ ¬Leaf(x).
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(3) Branch predicates
• The predicate Branch(X) states thatX is the set of nodes of a branch.

It states that the root of the tree is in X , that any two elements of X
are -comparable and that for any node x in X , one of its successors
is also in X . It is defined as follows

∃x Root(x) ∧X(x)

∧ ∀x, y (X(x) ∧X(y) → (x  y ∨ y  x))

∧ ∀x X(x) → (X(S0(x)) ∨X(S1(x))).

• The predicate StraightBranch(X) states that a branch is straight.
The first part of the formula describes a branch of the form u0ω and
the second part a branch of the form u1ω. It is defined as follows

∃x X(x) ∧ ∀y (X(y) ∧ x  y → X(S0(y)))

∨ ∃x X(x) ∧ ∀y (X(y) ∧ x  y → X(S1(y))).

(4) Tree predicate
Using all the previous predicates, it can be expressed by a predicate that a
full tree t′ : {0, 1}∗ → A∪{a0} is equal to t̄ where t is a non-empty, straight,
locally finite, complete and A-labeled tree. This predicate expresses the
following facts.
(a) At least one node of t′ is not labeled by a0 (t is non-empty) and for

any node u, there is v ∈ {0, 1}∗ such that t′(uv) = a0 (t is locally
finite).

(b) The two successors and the brother of a node labeled by a0 are also
labeled by a0 (t is complete).

(c) Any branch with no node labeled by a0 is straight (t is straight).

The predicate GoodTree is defined as follows.

∃x ¬Ra0(x)

∧ ∀x ∃y x  y ∧Ra0(y)

∧ ∀x Ra0(x) → (Ra0(S0(x)) ∧Ra0(S1(x)))

∧ ∀x ∀y (Ra0(x) ∧ Brother(x, y)) → Ra0(y)

∧ ∀X (Branch(X) ∧ ∀x (X(x) → ¬Ra0(x))) → StraightBranch(X).

Let A = (Q,A,E, I, F ) be an automaton on linear orderings. Without loss of
generality, we may assume that Q = {1, . . . ,m}. We have to find a sentence ϕA
which expresses that a non-empty word α = (aj)j∈J of length J is accepted by A,
where J is a countable and scattered linear ordering. This means that there is
an accepting path γ = (qc)c∈Ĵ labeled by α. By Proposition 3.4, let t be a non-
empty, straight, locally finite, complete and A-labeled tree t such that fr(t) = α.
By Corollary 3.5, we know that the set Ĵ∗ of non-trivial cuts of J can be identified
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with the set of internal nodes of t. Thus, the sentence ϕA will state the existence of
a partition Z1, . . . , Zm of the internal nodes of t such that nodes of Zi are labeled
with state i, 1 ≤ i ≤ m, with respect to path γ. In other words, sentence ϕA
will state that the labeling of the cuts by states represents a path respecting the
transitions of A, starting in an initial state and ending in a final state. The main
difficulties are the description of the left and right limits of γ at some cut and
the treatment of the first and last cuts of γ which have no corresponding internal
nodes in t.

Let P be a subset of Q and let x be an internal node (i.e., a cut c ∈ Ĵ∗). Let
us define a predicate LeftLimitP (x) which states that the left limit at node x is
equal to P . It is given by the following formula

∧

i∈P

(i ∈ lim
x−

γ) ∧
∧

i∈Q\P

¬(i ∈ lim
x−

γ)

where formula i ∈ limx− γ stands for

∀y (Intern(y) ∧ y < x) → (∃z Intern(z) ∧ (y < z) ∧ (z < x) ∧ Zi(z)).

A predicate RightLimitP (x) is defined similarly.
We now treat the particular case where c is the last cut (J, ∅) of Ĵ . Even if no

node x corresponds to c, it can be expressed that the left limit at c is equal to P
thanks to predicate LastLeftLimitP . Its definition is very close to the definition
of LeftLimitP (x) but there is no mention to x.

∧

i∈P

(i ∈ lim
c−

γ) ∧
∧

Q\P

¬(i ∈ lim
c−

γ)

where formula i ∈ limc− γ stands for

∀y Intern(y) → (∃z Intern(z) ∧ (y < z) ∧ Zi(z)).

A predicate FirstRightLimitP is defined similarly for the particular case of the
right limit at the first cut (∅, J) of Ĵ .

The expected formula ϕA is constructed as follows. It is equal to the formula

GoodTree ∧ ∃Z1, . . . , Zm ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕ8

where formulas ϕ1, . . . , ϕ8 are given and explained below. Let t′ be a full A∪{a0}-
labeled tree satisfying ϕA. Formula GoodTree verifies that the tree t′ is equal to t̄
where the tree t is non-empty, straight, locally finite, complete and A-labeled.
Formula ϕ1 verifies that the sets Z1, . . . , Zm form a partition of the internal nodes
of t. It is defined as follows

∀x [
Intern(x) ↔

m∨

i=1

Zi(x) ∧
∧

1≤i<j≤m

¬(Zi(x) ∧ Zj(x))
]
.
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The partition Z1, . . . , Zm of the internal nodes is then viewed as a labeling of each
internal node by a state. Each node in Zi is labeled by the state i of Q. Since
internal nodes are in one to one correspondence with the cuts, this gives a labeling
of each non-trivial cut by a state. Formulas ϕ2, . . . , ϕ8 verify that this labeling
defines an accepting path in A. Formula ϕ2 verifies that it is compatible with the
successor transitions of the automaton A. It is defined as follows

∀x, y, z (
Intern(x) ∧ Succ(x, y) ∧ Leaf(y) ∧ Succ(y, z) ∧ Intern(z)

) →
( ∨

(i,a,j)∈E

Zi(x) ∧Ra(y) ∧ Zj(z)
)
.

Formulas ϕ3 and ϕ4 verify respectively that the labeling is compatible with the
left and right limit transitions of A. Formula ϕ3 is defined as follows

∀x (
Intern(x) ∧ ¬(∃y Succ(y, x))

) → ( ∨

(P,j)∈E

Zj(x) ∧ LeftLimitP (x)
)

and formula ϕ4 is defined analogously as follows

∀x (
Intern(x) ∧ ¬(∃y Succ(x, y))

) → ( ∨

(i,P )∈E

Zi(x) ∧ RightLimitP (x)
)
.

Formulas ϕ5 and ϕ6 deal with the last transition of the path. This transition is
either a successor transition or a limit transition and it must lead to a final state.
Formula ϕ5 handles the former case and it is defined as follows

∀x, y (
Intern(x) ∧ Succ(x, y) ∧ Leaf(y) ∧ ∀z (y < z → Ra0(z))

) →
( ∨

(i,a,j)∈E,j∈F

Zi(x) ∧Ra(y)
)
.

Formula ϕ6 handles the latter case and it is defined as follows

∀y Leaf(y) → (∃z y < z ∧ ¬Ra0(z)
) → ( ∨

(P,j)∈E,j∈F

LastLeftLimitP

)
.

Formulas ϕ7 and ϕ8 deal with the first transition of the path. Formula ϕ7 is
defined as follows

∀ y, z (
Leaf(y) ∧ Succ(y, z) ∧ Intern(z) ∧ ∀z (z < y → Ra0(z))

) →
( ∨

(i,a,j)∈E,i∈I

Ra(y) ∧ Zj(z)
)
.

Formula ϕ8 is finally defined as follows

∀y Leaf(y) → (∃z z < y ∧ ¬Ra0(z)
) → ( ∨

(i,P )∈E,i∈I

FirstRightLimitP

)
.
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Note that in ϕA, the predicate GoodTree imposes that t is not the empty tree.
Therefore t′ satisfies ϕA if and only if t′ = t̄ with fr(t) being a non-empty word
accepted by A. This completes the proof of the proposition. �

We are now ready to prove Theorem 4.1.

Proof. Let A and B be two automata on linear orderings. Consider formulas ϕA
and ϕB constructed in Proposition 4.4. They describe all the non-empty words
accepted respectively by A and B. The case of the empty word must be treated
separately.

Let us first show that the inclusion L(A)\{ε} ⊆ L(B)\{ε} is decidable. This
is equivalent to show the decidability of the satisfiability t |= ϕA → ϕB for all
full A ∪ {a0}-labeled trees. This is of course a consequence of Theorem 4.3. It is
decidable whether the sentence ϕA → ϕB is valid.

Secondly let us show that the inclusion L(A) ∩ {ε} ⊆ L(B) ∩ {ε} is decidable.
This is immediate since an automaton accepts the empty word if and only if it has
a state which is both initial and final. �

4.3. Reduction to logics over orderings

Let us sketch here a variant of the proof detailed in subsection 4.2: it consists in
expressing the property L(A) ⊆ L(B) by a logical formula over countable orderings
(instead of trees). Since the monadic second-order theory of the class of countable
orderings is decidable this also gives a decidability proof for the inclusion problem.

Let us call monadic second-order logical language Lo the set of well-formed
monadic second order formulas over a binary predicate � (expressing an ordering
relation). We use now the following

Theorem 4.6 (Thm. 2.1, p. 11 of [9]). Let ϕ be a sentence of the monadic
second-order language Lo. It is decidable whether ϕ is valid in every countable
linearly ordered set.

Let us associate with every countable scattered ordering J the ordered set O(J)
defined by O(J) := J ∪ Ĵ and

∀x, y ∈ J, x ≤O(J) y ⇔ x ≤J y; ∀x, y ∈ Ĵ , x ≤O(J) y ⇔ x ≤Ĵ y;

∀x ∈ J, (K,L) ∈ Ĵ , x ∈ K ⇒ x ≤O(J) (K,L), x ∈ L⇒ (K,L) ≤O(J) x.

By Remark 2.5, J is countable and scattered if and only if O(J) is countable.
From the automata A and B, one can write a MSO formula ϕ which holds in
O(J) if and only if, for every labelling of J over A, if there exists a labelling of Ĵ
over QA which is an accepting path of A, then there exists a labelling of Ĵ over
QB which is an accepting path of B. One can also write a MSO formula ψ such
that ψ holds in a countable ordering J ′ if and only if there exists some countable
scattered ordering J such that J ′ ≈ O(J). Finally, the formula ψ → ϕ is valid for
all countable orderings if and only if L(A) ⊆ L(B). Thus Theorem 4.1 is reduced
to Theorem 4.6.
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5. Conclusion

Let us sketch a few problems that are raised by our work.
Does Theorem 4.1 still hold for arbitrary countable orderings, that is, is the

inclusion problem decidable for general rational languages of words indexed by
arbitrary countable linear orderings?

Let us call normal everyA-labeled tree fulfilling conditions a-b-c of the predicate
GoodTree. Let us say that a set T of normal trees is saturated if and only if for any
normal trees t and t′, t ∈ T and the equality fr(t) = fr(t′) imply t′ ∈ T . We have
proved that for any rational set L of words indexed by scattered linear orderings,
there exists a saturated rational set T of normal trees such that

L = {fr(t) | t ∈ T }.
Conversely it is natural to ask whether, given a saturated rational set T of normal
trees, the language {fr(t) | t ∈ T } is rational.

The following related question seems also interesting: is it decidable whether a
rational set of normal trees is saturated or not.

Acknowledgements. We thank one of the anonymous referees for suggesting the contents
of Section 4.3.
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