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FEEDBACK STABILIZATION OF THE 2-D AND 3-D NAVIER-STOKES
EQUATIONS BASED ON AN EXTENDED SYSTEM

Mehdi Badra
1

Abstract. We study the local exponential stabilization of the 2D and 3D Navier-Stokes equations in
a bounded domain, around a given steady-state flow, by means of a boundary control. We look for a
control so that the solution to the Navier-Stokes equations be a strong solution. In the 3D case, such
solutions may exist if the Dirichlet control satisfies a compatibility condition with the initial condition.
In order to determine a feedback law satisfying such a compatibility condition, we consider an extended
system coupling the Navier-Stokes equations with an equation satisfied by the control on the boundary
of the domain. We determine a linear feedback law by solving a linear quadratic control problem for
the linearized extended system. We show that this feedback law also stabilizes the nonlinear extended
system.
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1. Introduction

Let Ω be a bounded and connected domain in Rd for d = 2 or d = 3, with a boundary Γ = ∂Ω of class C4, and
composed of N connected components Γ(1), . . . ,Γ(N). Let us consider a stationary motion of an incompressible
fluid in Ω which is described by the pair (zs, ps), the velocity and the pressure, solution to the stationary
Navier-Stokes equations:

− νΔzs + (zs · ∇)zs + ∇ps = f, ∇ · zs = 0 in Ω and zs = vb on Γ. (1.1)

In the above setting, ν > 0 is the viscosity, f is a function in L2(Ω), vb belongs to H3/2(Γ) and obeys
∫
Γ(j) vb ·n =

0, for all j = 1 . . .N , where n denotes the unit normal vector to Γ, exterior to Ω. Notice that here and in the
following, we write in bold the spaces of vector fields: L2(Ω) = (L2(Ω))d, H3/2(Γ) = (H3/2(Γ))d, etc. We recall
that a solution to (1.1) is known to exist in H2(Ω) ×H1(Ω)/R [14], Chapter VIII, Theorems 4.1 and 5.2.

If zs is an unstable equilibrium state, and if we assume that at time t = 0 the velocity is equal to z0 �= zs,
then even if z0 is close to zs, the resulting unsteady velocity z̄(t) when t > 0 will not necessary stay close to zs.
Hence, the question we address here is: how to obtain a controller localized on the boundary Γ, which makes
z̄(t) go back to zs as t→ ∞?
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More precisely, we consider a pair (z̄, p̄) solution to the instationary Navier-Stokes equations:

∂tz̄ − νΔz̄ + (z̄ · ∇)z̄ + ∇p̄ = f and ∇ · z̄ = 0 in Q, (1.2)
z̄ = vb + u on Σ, z̄(0) = zs + z0, (1.3)

and we assume that zs is an unstable solution of (1.2)-(1.3) corresponding to z0 = 0 and u = 0. In the above
setting Q = Ω × (0,∞) and Σ = Γ × (0,∞). Thus, if we make the change of variable (z̄, p̄) = (zs + z, ps + p),
we have:

∂tz − νΔz + (z · ∇)zs + (zs · ∇)z + (z · ∇)z + ∇p = 0 in Q, (1.4)
∇ · z = 0 in Q, z = u on Σ, z(0) = z0, (1.5)

and the question of making z̄(t) go back to zs as t→ ∞ is equivalent to the one of making z(t) go back to 0 as
t→ ∞. The following questions may be addressed:

• Can we find a set of initial conditions Wδ = {y ∈ X(Ω) | ‖y‖X(Ω) < δ}, where δ > 0 and X(Ω) ⊂ {y ∈
L2(Ω) | ∇ · y = 0}, and can we find a space of controls U(Γ) such that, for z0 ∈ Wδ, there exists a
boundary control u ∈ L2(0,∞;U(Γ)) for which the solution to (1.4)-(1.5) satisfies the exponential decay
stated below?

‖z(t)‖X(Ω) ≤ Ce−ηt‖z0‖X(Ω) η > 0. (1.6)
• Can we express u in a feedback formulation? More precisely, we are interested in the existence of an

operator F ∈ L(X(Ω), U(Γ)), independent of the time variable t ≥ 0, and such that

u(t) = Fz(t), t ≥ 0. (1.7)

• Is there a practical way to compute F?
First, let us mention some results partially answering those questions. In the two and three dimensional case,

the existence of a pair (z, u), which satisfies (1.4)-(1.5) and (1.6), is stated in [11,12] with X(Ω) = {y ∈ H1(Ω) |
∇ · y = 0, y|Γ0 = 0, tΓy · n = 0} and U(Γ) = {y ∈ H3/2(Γ) | y|Γ0 = 0,

∫
Γ y · n = 0}, Γ = Γ∪ Γ0 and Γ∩ Γ0 = ∅.

The key idea in [11,12] relies in an adequate extension operator which maps an initial condition, defined in Ω,
to an extended and stable initial condition, defined in an open set G which contains Ω. By this way, the author
obtains an operator F0 ∈ L(X(Ω), L2(0,∞;U(Γ))) such that u = F0z0, but he does not obtain a control in the
pointwise (in time) formulation (1.7).

In the two dimensional case, the existence of a pair (z, u) satisfying (1.4)-(1.5) and (1.6)-(1.7), and such
that u is localized in a part of Γ and has a non vanishing normal component, is proved in [21]. In this paper,
X(Ω) = {y ∈ H1/2−ε(Ω) | ∇ · y = 0, y · n = 0 on Γ} and U(Γ) = {my | y ∈ L2(Γ),

∫
Γmy · n = 0}, where

ε ∈ ]0, 1/4[ and m ∈ C2(Γ) is an adequate localization function. The feedback controller is determined by
an algebraic Riccati equation which is obtained by solving an optimal control problem. The key point of this
approach relies in a reformulation of system (1.4)-(1.5), which only involves Pz, where P is the orthogonal
Leray projection operator (see Sect. 2.1). We point out the fact that, since the three dimensional case is
more demanding in terms of velocity regularity, and in particular we will see that it requires the compatibility
condition u(0) = z0|Γ, it cannot be treated in the same way. In [22] the author overcomes this difficulty, by
introducing a time dependent feedback law.

The three dimensional case is treated in [4]. The existence of a pair (z, u), which satisfies (1.4)-(1.5) and
(1.6)-(1.7), is stated. In this paper, X(Ω) = {y ∈ H1/2+ε(Ω) | ∇ · y = 0, y · n = 0 on Γ} and U(Γ) = {y ∈
L2(Γ) | y · n = 0 on Γ}. The authors follow the ideas developed in [3,5], where the case of pointwise feedback
stabilization of the 3D Navier-Stokes equations, by means of a distributed control, is investigated. However, the
boundary feedback law which is proposed in [4] cannot be numerically calculated. This difficulty is closely linked
to the high degree of regularity for the velocity which is necessary to obtain the exponential decrease of the
solution of the Navier-Stokes system in the three dimensional case. To obtain the required smoothness degree for
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the state, the authors solve an optimal control problem involving the velocity norm L2(0,∞;H3/2+ε(Ω)) in the
cost functional, and it does not allow to define a feedback law from a well posed Riccati equation. Indeed, the
Riccati equation is only defined in D(A2

R), where AR is the infinitesimal generator of the associated closed-loop
system, which itself depends on the unknown R of the Riccati equation.

In fact, when d = 3, obtaining a well-posed closed-loop system (1.4)-(1.5)-(1.7) is not an easy task. Let us
give some explanations about the difficulties linked to the three dimensional analysis, which requires a particular
compatibility condition between the state and the control. After we compare the maximal order derivatives in
time and in space appearing in (1.4), we introduce the function space

Hα,β(Q) = L2(0,∞;Hα(Ω)) ∩Hβ(0,∞;L2(Ω)), α ≥ 0, β ≥ 0,

and we postulate that a strong solution to (1.4)-(1.5) should be searched in H1+s,1/2+s/2(Q) for s ≥ 0. This
framework is used in [21] to define solutions to the two dimensional closed-loop Navier-Stokes system and in [23]
to obtain optimal regularity results for the Oseen system with a nonhomogeneous boundary condition. Hence,
z obeys:

∂tz ∈ H−1/2+s/2(0,∞;L2(Ω)) and − νΔz + (z · ∇)zs + (zs · ∇)z ∈ L2(0,∞;Hs−1(Ω)). (1.8)

In order to get rid of the pressure term in (1.4) and to simplify our analysis, it is more convenient to evaluate
the state equation (1.4) in a space of distributions which is orthogonal to the space of gradient pressures. By
projecting equation (1.4) onto V s−1

0 (Ω), the dual space of V 1−s
0 (Ω) = {y ∈ H1−s

0 (Ω) | ∇ · y = 0, y ·n = 0 on Γ}
(see Sect. 2.1), we obtain the following necessary condition from (1.8):

−P (z · ∇)z = P (∂tz − νΔz + (z · ∇)zs + (zs · ∇)z) ∈ Ys(Q),

where P is the Leray orthogonal projection operator (see Sect. 2.1), and where

Ys(Q) = H−1/2+s/2(0,∞;L2(Ω)) + L2(0,∞;V s−1
0 (Ω)). (1.9)

Thus, by remarking that the free divergence condition ∇ · z = 0 yields (z · ∇)z = ∇ · (z⊗ z), we deduce that we
shall look for a velocity z solution to (1.4)-(1.5)-(1.7) which obeys:

z ∈ H1+s,1/2+s/2(Q) and P∇ · (z ⊗ z) ∈ Ys(Q). (1.10)

A brief check of the regularity of ∇ · (z⊗ z) which can be obtained from z ∈ H1+s,1/2+s/2(Q), shows that when
d = 3, the value s should be chosen greater than 1/2. Indeed, from the continuous embedding H1+s,1/2+s/2(Q) ↪→
H1/4(0,∞;Hs+1/2(Ω)) and with{

uv | (u, v) ∈ H1/4(0,∞;Hs+1/2(Ω)) ×H1/4(0,∞;Hs+1/2(Ω))
}

⊂ L2(0,∞;H2s−1/2(Ω)),

it yields z ⊗ z ∈ L2(0,∞;H2s−1/2(Ω)). Then we obtain ∇ · (z ⊗ z) ∈ L2(0,∞;H2s−3/2(Ω)), and for s ≥ 1/2
the second statement in (1.10) follows from L2(0,∞;H2s−3/2(Ω)) ↪→ L2(0,∞;H−1+s(Ω)). As a consequence,
when d = 3 the nonlinearity of the Navier-Stokes system imposes to define a solution z which belongs to
H1+s,1/2+s/2(Q) for s ≥ 1/2. Hence, the trace theorem yields z|Σ ∈ H1/2+s,1/4+s/2(Σ), and the feedback
controller has to obey:

z|Σ = Fz ∈ H1/4+s/2(0,∞;L2(Γ)) s ≥ 1/2. (1.11)
Since 1/4+ s/2 ≥ 1/2, some kind of continuity is required for the control. In the particular case where s > 1/2,
the space H1/4+s/2(0,∞;L2(Γ)) is a subspace of C([0,∞[ ;L2(Γ)) (the space of time continuous functions with
value in L2(Γ)) and we deduce from (1.11) that the velocity z must satisfy the initial compatibility condition
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z0|Γ = Fz0. This explains why the feedback law which is given in [21] cannot be used in the three dimensional
case, and why the author overcomes this difficulty in [22] by introducing a feedback law which is time dependent
in an initial transitory time interval. Notice that spaces of initial conditions, for which a stabilization result can
be obtain with the Riccati approach, are precisely given in [2].

In fact, finding a feedback controller independent of the time variable and which satisfy Fz0 = z0|Γ for a
sufficiently large class of initial conditions z0 is not obvious. That is the reason why in the present paper, we
propose to search another type of pointwise (in time) feedback law. We search u as a solution to the following
evolution system:

∂tu− Δbu− σ n = K(z, u), u(0) = z0|Γ, (1.12)

where the feedback controller K now acts on the pair (z, u). Here Δb is the vector-valued Laplace Beltrami
operator (see Sect. 5). Formulation (1.12) involves the time derivative of u, so we can fix the initial condition:
the initial boundary value u(0) now fits the initial trace z0|Γ. We underline that we had a large degree of
freedom in the choice of the boundary system. We have chosen (1.12) for its simplicity and for numerical
computational conveniences in view of future implementations (u must be numerically calculated). But one may
imagine another boundary system which would have a physical interpretation and which could be concretely
constructed. The present paper is a complete and detailed version of [1]. Its main objectives are:

(i) to show the existence of a pair (z, u) satisfying (1.4)-(1.5)-(1.6) and (1.12) in the two and three dimen-
sional case;

(ii) to find an operator K which is provided by a well-posed Riccati equation;
(iii) to find a way to obtain a control u localized on an arbitrary small part of Γ.

• The Navier-Stokes equations coupled with a boundary system. We define the space of initial conditions:

X(Ω) = V s(Ω) :=
{
y ∈ Hs(Ω) | ∇ · y = 0,

∫
Γ

y · n = 0
}
, s ∈ ]1/2, 1], (1.13)

and we assume that z0 ∈ X(Ω). In order to impose the compatibility condition u(0) = z0|Γ and to obtain a
sufficient time regularity level for z, we choose to search u as the first component of (u, σ) which satisfies:

∂tu− Δbu− σ n = K(z, u) in Σ, u(0) = z0|Γ and
∫

Γ

u(t) · n = 0. (1.14)

Recall that Δb is the vector-valued Laplace Beltrami operator and σ ∈ L2(0, T ) plays the role of the Lagrange
multiplier associated with the constraint

∫
Γ
u · n = 0. The feedback law K is a linear operator, independent of

t ≥ 0, and it couples (1.14) with (1.4)-(1.5). The state (z, u) now satisfies the following coupled system:

∂tz − νΔz + (z · ∇)zs + (zs · ∇)z + (z · ∇)z + ∇p = 0, ∇ · z = 0 in Q, (1.15)

∂tu− Δbu− σ n = K(z, u), z = u on Σ,
∫

Γ

u(t) · n = 0, (1.16)

z(0) = z0 ∈ V s(Ω), u(0) = z0|Γ. (1.17)

We are going to show that we can choose K so that (1.15)-(1.16)-(1.17) is well defined when z0 is small in
V s(Ω), and so that z obeys (1.6). The operator K can be considered as a pointwise feedback controller which is
acting on (z, u) solution to the extended system (1.15)-(1.16)-(1.17). That is the reason why we shall say that
our approach is a compromise between the formulation of a control in the form (1.7), and the treatment of the
3 dimensional case which requires a high regularity level for the control.

• Calculation of the feedback controller K. In a first step, we shall simplify our problem and consider the
question of stabilizing the linear system obtained from (1.15)-(1.16)-(1.17) by linearizing this one around (0, 0).
In other words, we want to find a control g ∈ L2(0,∞;L2(Γ)), which can be expressed in a feedback form, and
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such that the solution (z, u) to the following linear system is stable:

∂tz − νΔz + (z · ∇)zs + (zs · ∇)z + ∇p = 0, ∇ · z = 0 in Q, z(0) = z0, (1.18)

∂tu− Δbu− σ n = g, z|Σ = u on Σ,
∫

Γ

u(t) · n = 0, u(0) = u0. (1.19)

In the above setting, (z0, u0) is an arbitrary initial pair satisfying z0 ·n = u0 ·n on Γ. The question of constructing
a linear feedback controller stabilizing a linear dynamical system can be answered with the so-called “Riccati
approach”. It consists in solving an auxiliary optimal control problem, defined over an infinite time horizon,
and which involves a linear quadratic cost functional. It provides an optimal control in a feedback form, with
a feedback law depending on the solution to an algebraic Riccati equation. Such optimal control theory is
developed in [18], Chapter 2. We shall underline the fact that to use the Riccati theory, we shall work with an
abstract dynamical model representing equations (1.18)-(1.19) [18], Chapter 2, Section 2.1. Hence, we need to
rewrite the system (1.18)-(1.19) as an evolution equation of the type:

Y ′ = AY + ΛG on D(A∗)′, Y (0) = Y0, (1.20)

where A is a linear free dynamic operator, Λ is a linear control operator, and Y and G are the new state and
control variables. This can be achieve with the new variable Y = (y, u)T = (Pz, u)T , where P is the orthogonal
Leray projection operator (see Sect. 2.1), with Λ as the canonical projection (y, u)T �−→ (0, u)T and with an
operator A defined from the free dynamic operators related to each equations (1.18) and (1.19) separately. More
precisely, the dynamical system (1.20) can be obtain from the dynamical system related to y = Pz and u:

y′ = Ay +Bu on D(A∗)′, y(0) = Pz0,

u′ = Abu+ g on D(A∗
b )

′, u(0) = u0,

where A is the free dynamic Oseen operator (see Def. 6.1), Ab is the free dynamic operator defined from Δb

(see Sect. 5), and B is an input operator which allows to represent the trace condition linking y and u. We shall
insist on the fact that the main difficulty relies in the definition of the operator B, which can be done by using
the theory developed in [23]. Hence, we look for the control G and the associated state Y solution to (1.20)
which minimize the cost functional:

J (Y,G) =
∫ ∞

0

‖CY ‖2
Z +

∫ ∞

0

‖G‖2
L2(Ω)×L2(Γ),

where C is an observation operator with value in the space Z. We define the optimal control problem:

inf
{
J (Y,G), (Y,G) satisfies (1.20)

}
(1.21)

and the resolution of (1.21) provides a feedback control G = −ΛΠY where Π is the solution of an algebraic
Riccati equation which can be formally written as follows:

ΠA + A∗Π − ΠΛΠ + C∗C = 0. (1.22)

The precise definition of such a Riccati equation is given in Theorem 7.3. Thus, we apply this feedback control
to the nonlinear system, and it yields the following expression of K in (1.15)-(1.16)-(1.17):

K(z, u) = −Π2Pz − Π3u where Π =
(

Π1 Π∗
2

Π2 Π3

)
is the solution to (1.22).
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Notice that (1.22) gives a practical way to calculate the operator K. Finally, we show that K stabilizes (1.15)-
(1.16)-(1.17) in a neighborhood of the origin: there is δ > 0 such that, if ‖z0‖V s(Ω) < δ, then there exists a
unique pair (z, u) satisfying (1.15)-(1.16)-(1.17), which obeys (1.6). We recall that V s(Ω) is defined in (1.13).
• Localization of the control in a part of the boundary. To treat the case of a boundary control which is
localized in an open part of Γ, we replace the boundary condition z|Σ = u by z|Σ = m(u − σm(u)n), where
σm(u) = (

∫
Γm)−1

∫
Γmu · n and m ∈ C2(Γ) is an adequate cut-off function with values in [0, 1]. By this way,

the action of u is localized on Γm = Supp(m). Thus, we define the corresponding operator (Am,D(Am)) and
Cm, and the resolution of

inf
{ ∫ ∞

0

‖CmY ‖2
Ξ +

∫ ∞

0

‖G‖2
L2(Ω)×L2(Γ) | Y ′ = AmY + ΛG, Y (0) = Y0

}
, (1.23)

provides an operator Πm satisfying

ΠmAm + A∗
mΠm − ΠmΛΠm + C∗

mCm = 0, Πm =
(

Π1,m Π∗
2,m

Π2,m Π3,m

)
.

Hence, we obtain a local stabilization result with the feedback control K(z, u) = −Π2,mPz − Π3,mu. Such a
treatment of localized control only adds technical difficulties in the statement of the finite cost condition which
guarantees the well-posedness of (1.23). For readability convenience, the main parts of this paper deals with
the non localized case, and we postpone the treatment of a localized control to Sections 9 and 10.

The paper is organized as follows. In Section 2 we recall some background material needed throughout the
paper and we define spaces of initial conditions. Section 3 is dedicated to the statement of the local stabilization
result. We write the Oseen system in the form of an evolution equation in Section 4, and we write the differential
boundary system in the form of an evolution equation in Section 5. Next, we define the operator A and we
study the linear system (1.20) in Section 6. Section 7 is dedicated to the study of the optimal control problem
(1.21) which provides a feedback controller K. In Section 8, we apply this feedback law to the nonlinear system
and we give a proof of the local stabilization result. Finally, we deal with the localization of the control on a
part of the boundary in Section 9, and we postpone in a appendix the proof of a finite cost condition ensuring
the well-posedness of (1.21) and (1.23).

2. Functional framework

2.1. Notations

Let X and Y be two Hilbert spaces. If A is a closed linear mapping in X , we denote its domain by D(A).
We denote by L(X,Y ) the space of all bounded operators from X to Y , and we use the shorter expression
L(X) = L(X,X). For 0 < T ≤ ∞, the space L2(0, T ;X) is the usual vector-valued Lebesgue space and
Hα(0, T ;X) for α ≥ 0 is the usual vector-valued Sobolev space. If C∞

0 (]0, T [ ;X) is the space of infinitely
differentiable and compactly supported functions of t ∈ ]0, T [ with values in X , we denote by Hα

0 (0, T ;X) the
closure of C∞

0 (]0, T [ ;X) in Hα(0, T ;X), and by H−α(0, T ;X ′) the dual space of Hα
0 (0, T ;X), where X ′ denotes

the dual space of X . We also define:

W (0, T ;X,Y ) =
{
y ∈ L2(0, T ;X) | dy

dt
∈ L2(0, T ;Y )

}
.

It is well known that if X is continuously and densely embedded in Y , then the space W (0, T ;X,Y ) is continu-
ously embedded in C([0, T ]; [X,Y ]1/2) if T <∞ or in Cb([0,∞[ ; [X,Y ]1/2) if T = ∞, the space of bounded and
time continuous functions with values in the interpolation space [X,Y ]1/2 [19].

Next, let us recall that Ω is a bounded and connected domain in Rd, for d = 2 or d = 3, with a boundary
Γ = ∂Ω of class C4, and composed of N connected components Γ(1), . . . ,Γ(N). We will use the usual function
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spaces L2(Ω), Hs(Ω), Hs
0(Ω) and H−s(Ω) = (Hs

0(Ω))′, and we write in bold the spaces of vector fields L2(Ω) =
(L2(Ω))d, Hs(Ω) = (Hs(Ω))d, Hs

0(Ω) = (Hs
0 (Ω))d and H−s(Ω) = (H−s(Ω))d. The norms are denoted by

‖ · ‖Z(Ω), where the subscript Z(Ω) refers to the space which is considered, and we denote the scalar product in
L2(Ω) by (·|·). We denote by Δ the vector-valued Laplace operator, with domain D(Δ) = H2(Ω)∩H1

0(Ω), which
is known to be selfadjoint. For all s ∈ [0, 2], its fractional power (−Δ)s/2 is well defined and obeys D((−Δ)s/2) =
[H2(Ω)∩H1

0(Ω),L2(Ω)]1−s/2, where [·, ·] denotes the complex interpolation method. Let L2
−1/2(Ω) be the space

of functions y ∈ L2(Ω) such that
∫
Ω ρ(x)

−1|y|2 < +∞, where ρ(x) is the distance from x to Γ. From [15],
Theorem 8.1, it can be deduced that D((−Δ)s/2) = Hs(Ω) if 0 ≤ s < 1/2, that D((−Δ)1/2) = {y ∈ H1/2(Ω) |
y ∈ L2

−1/2(Ω)} and that D((−Δ)s/2) = {y ∈ Hs(Ω) | y|Γ = 0} if 1/2 < s ≤ 2.
Next, if y ∈ L2(Ω) is such that ∇·y ∈ L2(Ω), we can define its normal trace y·n inH−1/2(Γ) [13], Section III.3,

and we introduce the spaces of free divergence functions:

V s(Ω) =
{
y ∈ Hs(Ω) | ∇ · y = 0 in Ω,

∫
Γ

y · n = 0
}
, s ∈ [0, 2],

V s
n (Ω) =

{
y ∈ Hs(Ω) | ∇ · y = 0 in Ω, y · n = 0 on Γ

}
, s ∈ [0, 2].

Moreover, we denote by P the so-called Leray projector which is the orthogonal projector from L2(Ω) onto
V 0

n (Ω) [13], Chapter III, Theorem 1.1, we define the self-adjoint operator A0 = PΔ with domain D(A0) =
H2(Ω)∩H1

0(Ω)∩ V 0
n (Ω), and for s ∈ [0, 2] we introduce the space V s

0 (Ω) = D((−A0)s/2). According to [10], we
have

V s
0 (Ω) = D((−Δ)s/2) ∩ V 0

n (Ω) =
[
H2(Ω) ∩H1

0(Ω) , L2(Ω)
]
1−s/2

∩ V 0
n (Ω) for all s ∈ [0, 2],

which yields the following equalities:

V s
0 (Ω) = V s

n (Ω), s ∈ [0, 1/2[,

V
1/2
0 (Ω) =

{
y ∈ V 1/2

n (Ω) | y ∈ L2
−1/2(Ω)

}
,

V s
0 (Ω) =

{
y ∈ V s

n (Ω) | y = 0 on Γ
}
, s ∈ ]1/2, 2].

Notice that the subscript 0 in V s
0 (Ω) only means that one may have a vanishing Dirichlet boundary condi-

tion. The above characterization can also be obtain from the equality D((−A0)s/2) = [H2(Ω) ∩ H1
0(Ω) ∩

V 0
n (Ω), V 0

n (Ω)]1−s/2 for s ∈ [0, 2] (which can be obtain from [6], Chap. 1, Cor. 6.1), by remarking that
K0 = A−1

0 PΔ defines a bounded projector from L2(Ω) into V 0
n (Ω) which allows to invoke [26], Section 1.17.1,

Theorem 1. Finally, for s > 2 we define V s
0 (Ω) = V 2

0 (Ω) ∩ Hs(Ω) and for s < 0 we define V s
0 (Ω) = (V −s

0 (Ω))′,
the dual space of V −s

0 (Ω) with respect to the pivot space V 0
n (Ω). It is equipped with the duality pairing

〈·|·〉V −s
0 (Ω),V s

0 (Ω). We also recall that P can be extended to a bounded linear operator from H−1(Ω) onto
V −1

0 (Ω) by
Py : w ∈ V 1

0 (Ω) �−→ 〈
y

∣∣w〉
H−1(Ω),H1

0(Ω)
, [4], Appendix A.

Next, we define the spaces of pressures with free mean

L2
0(Ω) =

{
p ∈ L2(Ω) |

∫
Ω

p = 0
}

and H
s(Ω) = Hs(Ω) ∩ L2

0(Ω), s ≥ 0,

and we recall that the following Helmholtz decomposition holds:

L2(Ω) = V 0
n (Ω) ⊕∇H

1(Ω).
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Next, we define the following trace spaces with a free mean normal component

V s(Γ) =
{
y ∈ Hs(Γ) |

∫
Γ

y · n = 0
}
, s ∈ [0, 3],

V −s(Γ) =
{
y ∈ H−s(Γ) | 〈y|n〉H−s(Γ),Hs(Γ) = 0

}
, s ∈ [0, 3].

We make the identification (V s(Γ))′ = H−s(Γ)/(V s(Γ))⊥, where (V s(Γ))′ denotes the dual space of V s(Γ) with
respect to the pivot space V 0(Γ) and (V s(Γ))⊥ = {y ∈ H−s(Γ) | 〈y|w〉H−s(Γ),Hs(Γ) = 0, ∀w ∈ V s(Γ)}. We
verify that (V s(Γ))⊥ = Rn, and that:

V −s(Γ) = H−s(Γ)/Rn = (V s(Γ))′.

Moreover, we introduce the orthogonal projector Pb from L2(Γ) onto V 0(Γ), which is explicitly given by

Pbv = v − 1
|Γ|

( ∫
Γ

v · n
)
n. (2.1)

Next, we recall that the normal trace operator γn ∈ L(L2(Γ)) is defined by γn(u) = (u · n)n ∈ L2(Γ), and we
extend its definition to V −s(Γ) for s > 0 with the formula

γn(u) = 〈u|γn(·)〉V −s(Γ),V s(Γ) for all u ∈ V −s(Γ).

The boundary normal derivative on Γ of a vector field v ∈ H2(Ω) is defined by ∂nv = (∇v)n.
Finally, we shall underline that we will also need the spaces

H0 = V 0
n (Ω) × V −1/2(Γ) and H0

∗ = V 0
n (Ω) × V 1/2(Γ),

and the spaces H2θ and H2θ
∗ , for all θ ∈ [−1, 1], which will be precisely defined later on in Definition 6.4.

2.2. Space of initial conditions

Definition (1.13) is unnecessary restrictive. We have fixed s > 1/2 in the introduction for readability conve-
nience but we can also assume that s ∈ [0, 1/2[ if d = 2. The limit case s = 1/2 may involve some technical
difficulties so we choose to avoid it (see Rem. 3.4). In the whole following, we choose X(Ω) = V s(Ω) for
s ∈ [d−2

2 , 1]\{1/2} as the space of initial condition, and we introduce the operator γs : V s(Ω) → V s−1/2(Γ) as
follows.

Definition 2.1. For all s ∈ [0, 1]\{1/2}, we define the linear operator γs : V s(Ω) → V s−1/2(Γ) by

γs(y) =
{

(y · n)n, if s ∈ [0, 1/2[,
y|Γ if s ∈ ]1/2, 1].

Proposition 2.2. The linear operator γs satisfies the following regularity properties:

γs ∈ L(V s(Ω), V s−1/2(Γ)), s ∈ [0, 1]\{1/2}. (2.2)

Proof. This proposition is a straightforward consequence of the well known trace and normal trace
properties. �
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3. Main result

In this article, we prove the following local stabilization result.

Theorem 3.1. Let s ∈ [d−2
2 , 1]\{1/2}. There exists two linear operators Π2 ∈ L(V 0

n (Ω), V 1/2(Γ)) and Π3 ∈
L(V −1/2(Γ), V 1/2(Γ)) such that, if we consider the following coupled system:

∂tz − νΔz + (z · ∇)zs + (zs · ∇)z + (z · ∇)z + ∇p = 0 and ∇ · z = 0 in Q, (3.1)

∂tu− Δbu+ Π3u− σ n = −Π2Pz in Σ, z = u on Σ,
∫

Γ

u(t) · n = 0, t ≥ 0, (3.2)

z(0) = z0 ∈ V s(Ω), u(0) = γs(z0), (3.3)

then the following results hold. There exist c > 0 and μ0 > 0 such that, if δ ∈ (0, μ0) and

z0 ∈ Ws
δ =

{
z0 ∈ V s(Ω) | ‖z0‖V s(Ω) ≤ cδ

}
, (3.4)

then, (3.1)-(3.2)-(3.3) admits a unique solution in the set

Ds
δ =

{
(z, p, u, σ) ∈W (0,∞;V s+1(Ω), V s−1

0 (Ω)) ×Hs/2−1/2(0,∞; Hs(Ω)) (3.5)

×W (0,∞;V s+1/2(Γ), V s−3/2(Γ)) × L2(0,∞) |
‖z‖W (0,∞;V s+1(Ω),V s−1

0 (Ω)) + ‖u‖W (0,∞;V s+1/2(Γ),V s−3/2(Γ)) + ‖σ‖L2(0,∞) ≤ δ,

‖p‖Hs/2−1/2(0,∞;Hs(Ω)) ≤ δ(1 + δ)
}
.

Moreover, there exist C > 0 and η > 0 such that (z, u) obeys

‖z(t)‖V s(Ω) + ‖u(t)‖V s−1/2(Γ) ≤ C‖z0‖V s(Ω) e−ηt ∀t ≥ 0. (3.6)

Remark 3.2. The linear operators Π2 and Π3 are components of Π which is the solution to the Riccati
equation (7.7) given later on in Section 7, see Remark 7.4.

Remark 3.3. In fact, assuming Ω of class C3 [16], Chapter 1, Definition 1.2.1.2, is sufficient to obtain Theo-
rem 3.1. Indeed, the assumption Ω of class C4 is only needed in the second step of the proof of Theorem 10.2
of the appendix, to treat the case of a control localized on a part of the boundary (see Rem. 10.3). Notice that
with Ω of class C3 the trace space V s(Γ) is well defined for s ∈ [0, 3] [16], Chapter 1, Definition 1.3.3.2. See
also Remark 5.3.

Remark 3.4. We decide to avoid the limit case s = 1/2 only because it involves technical difficulties. In fact,
Theorem 3.1 remains valid for initial condition (z(0), u(0)) = (z0, u0) belonging to{

(z0, u0) ∈ V 1/2(Ω) × V 0(Γ) | z0 −Du0 ∈ V
1/2
0 (Ω), ‖z0‖V 1/2(Ω) + ‖u0‖V 0(Γ) ≤ cδ

}
,

where D is the lifting operator given in Section 4. Hence, we have to replace (3.6) by

‖z(t)‖V 1/2(Ω) + ‖u(t)‖V 0(Γ) ≤ C(‖z0‖V 1/2(Ω) + ‖u0‖V 0(Γ)) e−ηt, t ≥ 0.

Remark 3.5. For s ∈ [d−2
2 , 1] and z0 ∈ V s

0 (Ω), Theorem 3.1 holds with u(0) = 0.
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As explained in the introduction, the case of a boundary control localized in an open part of Γ can be treated
by introducing an adequate cut-off function m ∈ C2(Γ), with values in [0, 1]. We assume that m is supported in
Γm ⊂ Γ, and is equal to 1 in Γ1, where Γ1 is an open subset of Γm. We introduce the space of initial conditions

V s
m(Ω) =

{
y ∈ V s(Ω) | (1 −m)γs(y) = 0

}
, (3.7)

and we prove the following localized version of Theorem 3.1.

Theorem 3.6. Let s ∈ [d−2
2 , 1]\{1/2}. There is two linear operators Πm,2 ∈ L(V 0

n (Ω), V 1/2(Γ)) and Πm,3 ∈
L(V −1/2(Γ), V 1/2(Γ)) such that, if we consider the following coupled system:

∂tz − νΔz + (z · ∇)zs + (zs · ∇)z + (z · ∇)z + ∇p = 0 and ∇ · z = 0 in Q, (3.8)

z = m(u− σm(u)n) on Σ, σm(u) =
( ∫

Γ

m

)−1 ∫
Γ

mu · n, (3.9)

∂tu− Δbu+ Πm,3u− σ n = −Πm,2Pz in Σ, (3.10)
z(0) = z0 ∈ V s

m(Ω), u(0) = γs(z0), (3.11)

then the following result holds. There exist c > 0 and μ0 > 0 such that, if δ ∈ (0, μ0) and z0 ∈ Ws
m,δ =

Ws
δ ∩ V s

m(Ω), then, (3.8)-(3.9)-(3.10)-(3.11) admits a unique solution in the set Ds
δ , which is defined by (3.5).

Moreover, there exist C > 0 and η > 0 such that (z, u) obeys (3.6).

Remark 3.7. The linear operators Πm,2 and Πm,3 are components of Πm which is the solution to the Riccati
equation (9.24) given later on in Section 9, see (9.25).

4. The Oseen system

The main objective of this section is to give a precise definition for the solution of the system:

∂tz − νΔz + (z · ∇)zs + (zs · ∇)z + ∇p = f in QT , (4.1)
∇ · z = 0 in QT , z = u on ΣT , z(0) = z0. (4.2)

In the above setting, T ∈ (0,∞) is a fixed time horizon, QT = Ω × (0, T ), ΣT = Γ × (0, T ) and f ∈
L2(0, T ;H−1(Ω)). By following the ideas introduced in [23], we will rewrite (4.1)-(4.2) as an evolution equation.
First, we introduce the following unbounded operators (D(A), A) and (D(A∗), A∗) in V 0

n (Ω):

D(A) = V 2
0 (Ω) and Ay = νPΔy − P (y · ∇)zs − P (zs · ∇)y,

D(A∗) = V 2
0 (Ω) and A∗y = νPΔy − P (∇zs)T y + P (zs · ∇)y.

Here, (b ·∇)a = (
∑d

i=1 bi∂xiaj)1≤j≤d and (∇a)T b = (
∑d

i=1 bi∂xjai)1≤j≤d, and one can verify that (D(A∗), A∗) is
the adjoint of (D(A), A) with respect to the pivot space V 0

n (Ω). Throughout the following we denote by λ0 > 0
an element in the resolvent set of A satisfying:

〈(λ0 −A)y|y〉V −1
0 (Ω),V 1

0 (Ω) ≥
ν

2
‖y‖2

V 1
0 (Ω) for all y ∈ V 1

0 (Ω). (4.3)

Theorem 4.1. The unbounded operator (D(A), A) (resp. (D(A∗), A∗)) is the infinitesimal generator of an
analytic semigroup on V 0

n (Ω), and the characterization below holds:

D((λ0 −A)θ) = D((λ0 −A∗)θ) = V 2θ
0 (Ω) for all θ ∈ [0, 1]. (4.4)

Proof. See [23], Lemma 4.1. �
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We now introduce the Dirichlet operator D : V 0(Γ) → L2(Ω) defined as follows. For u ∈ V 0(Γ), set Du = w
where (w, q) satisfies the following system:

λ0w − νΔw + (w · ∇)zs + (zs · ∇)w + ∇q = 0, ∇ · w = 0, w = u on Γ. (4.5)

For rough data u ∈ V 0(Γ), defining a solution to (4.5) can be done with the transposition method. It consists
in looking for a velocity w ∈ L2(Ω) obeying:∫

Γ

u · (rn− ν∂nϕ) =
∫

Ω

w · f for all f ∈ L2(Ω), (4.6)

where (ϕ, r) ∈ V 2
0 (Ω) ×H1(Ω) is the unique pair satisfying

λ0ϕ− νΔϕ+ (∇zs)Tϕ− (zs · ∇)ϕ+ ∇r = f and ∇ · ϕ = 0 in Ω, ϕ = 0 on Γ,
∫

Γ

r = 0. (4.7)

The existence and uniqueness of w ∈ L2(Ω) solution to (4.6) is a consequence of the Riesz representation
theorem, and an integration by parts allows to prove that a smooth velocity (say w ∈ H2(Ω) and u ∈ V 3/2(Γ))
solution to (4.5) in a classical sense is also the solution to (4.6). Moreover, since a smooth solution satisfies
w|Γ = u, a density argument ensures that this trace condition remains true when w ∈ Hs(Ω) for s > 1/2:

(Du)|Γ = u if Du ∈ Hs(Ω), s > 1/2. (4.8)

However, if we are only interested in rough solution w ∈ L2(Ω), it is sufficient to consider a boundary value
u ∈ V −1/2(Γ) in (4.6) (where the sign

∫
Γ must be understood as a duality product), and we can verify that

∇ ·Du = 0 and (Du)|Γ · n = u · n. (4.9)

Here is the argument. By choosing f = ∇π in (4.6), successively for π ∈ H1
0 (Ω) and for π ∈ H1(Ω) obeying∫

Γ
π = 0, we can deduce that ϕ = 0 and π = r from (4.7), and integrations by parts allow to recover the free

divergence condition ∇·w = 0 and the normal trace condition w|Γ ·n = u ·n. About such a Dirichlet operator D
one may refer to [23], Appendix 2, from which the following proposition is taken.

Proposition 4.2. (i) The operator D is bounded from V 0(Γ) into V 0(Ω) and it satisfies

D ∈ L(V s−1/2(Γ), V s(Ω)) for all s ∈ [0, 2]. (4.10)

(ii) The operator D∗ ∈ L(V 0(Ω), V 0(Γ)), the adjoint of D, is defined by

D∗f = rn − ν∂nϕ, (ϕ, r) ∈ V 2
0 (Ω) ×H1(Ω) satisfies (4.7). (4.11)

Proof. See [23], Appendix 2. �

Remark 4.3. According to [23], Lemma 7.4, the operator D∗ belongs to L(V s
0 (Ω), V s+1/2(Γ)) for all s ∈ [0, 2].

Hence, it allows to extend D by duality to an element of L(V s−1/2(Γ), V s(Ω)) for s ∈ [−2, 0].

Remark 4.4. As in the proof of [4], Lemma 3.3.1, one can prove that every ϕ ∈ H2(Ω) ∩ H1
0(Ω) satisfies

∂nϕ ·n = ∇·ϕ|Γ. Hence, every ϕ in V 2
0 (Ω) has a boundary normal derivative ∂nϕ ∈ V 1/2(Γ) which is tangential.

As a consequence, in (4.11) rn and −ν∂nϕ are respectively the normal and the tangential component of D∗f .
In fact, the set of tangential boundary values in V 1/2(Γ) is totally described by the normal derivatives of vector
fields in V 2

0 (Ω): for all u ∈ V 1/2(Γ) such that u · n = 0, there exists ϕu ∈ V 2
0 (Ω) which obeys

∇ · ϕu = 0 in Ω, ∂nϕu = u, ϕu = 0 on Γ and ‖ϕu‖H2(Ω) ≤ c‖u‖V 1/2(Γ), (4.12)
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where c > 0 only depends on the geometry. Such a vector field ϕu can be obtained as follows. In a first step, using
a continuous right inverse of the trace and the boundary normal derivative operators [16], Theorem 1.5.1.5, we
construct φu ∈ H2(Ω)∩H1

0(Ω) such that ∂nφu = u. Hence, by recalling that u is tangential we have ∂nφu ·n = 0,
and since φu|Γ = 0 yields the equality ∇ · φu|Γ = ∂nφu · n, we deduce that ∇ · φu ∈ H1

0 (Ω). Thus, it allows to
construct ζu ∈ H2

0(Ω) such that ∇·ζu = −∇·φu [13], Chapter III, Theorem 3.2, and the vector field ϕu = φu+ζu
satisfies (4.12).

Remark 4.5. In fact, the trace equality in (4.8) is still valid for s ∈ [0, 1/2]. Indeed, as in [19], Theorem 6.5,
Chapter 2, it can be proved that the trace operator can be extended to a continuous operator from {y ∈
V 0(Ω) | νΔy − (y · ∇)zs − (zs · ∇)y ∈ V −2

0 (Ω)} into V −1/2(Γ). Here is the argument. For all u ∈ V 1/2(Γ) we
construct a pair (ϕu, ru) ∈ V 2

0 (Ω) × H1(Ω), depending continuously on u, and which obeys ru|Γ = u · n and
−ν∂nϕ = u − γn(u) (the tangential component of u, see Rem. 4.4). Thus, for all y ∈ V 2(Ω) an integration by
parts yields∫

Γ

(run− ν∂nϕu) · y =
∫

Ω

(νΔy − (y · ∇)zs − (zs · ∇)y) · ϕu +
∫

Ω

y · (∇ru − νΔϕu + (∇zs)Tϕu − (zs · ∇)ϕu),

and by taking the supremum over all u = run− ν∂nϕu ∈ V 1/2(Γ), the following estimate can be obtained:

‖y|Γ‖V −1/2(Γ) ≤ C(‖y‖V 0(Ω) + ‖νΔy − (y · ∇)zs − (zs · ∇)y‖V −2
0 (Ω)).

Finally, it remains to extend the trace operator with a density argument.

We are now in position to state the following corollary.

Corollary 4.6. Let s ∈ [0, 1]\{1/2}. The linear operator γs ∈ L(V s(Ω), V s−1/2(Γ)), which is given by Defini-
tion 2.1, satisfies the following compatibility condition:

y −Dγs(y) ∈ V s
0 (Ω) for all y ∈ V s(Ω). (4.13)

Next, let us define solutions to (4.1)-(4.2).

Definition 4.7. Let z0 ∈ V 0(Ω), u ∈ L2(0, T ;V −1/2(Γ)) and f ∈ L2(0, T ;V −2
0 (Ω)). We shall say that

z ∈ L2(0, T ;V 0(Ω)) is a weak solution to (4.1)-(4.2), if and only if,
(i) Pz is a weak solution of the evolution equation:

(Pz)′ = APz + (λ0 − A)PDu+ f ∈ L2(0, T ;V −2
0 (Ω)), (4.14)

Pz(0) = Pz0 ∈ V 0
n (Ω). (4.15)

(ii) (I − P )z is defined by:

(I − P )z = (I − P )Dγn(u) ∈ L2(0, T ;V 0(Ω)). (4.16)

Remark 4.8. Let us underline that (4.16) can be reduced to

(I − P )z = (I − P )Du ∈ L2(0, T ;V 0(Ω)). (4.17)

Indeed, by remarking that γn(u) − u is the tangential component of u, we have D(γn(u) − u) ∈ V 0
n (Ω) which

gives (I − P )D(γn(u) − u) = 0, or equivalently (I − P )Dγn(u) = (I − P )Du.

Theorem 4.9. Let f ∈ L2(0, T ;H−1(Ω)), z0 ∈ V 0(Ω) and u ∈ C([0, T ];V −1/2(Γ)) obeying z0 · n = u(0) · n.
(i) If z ∈ W (0, T ;V 1(Ω), V −1

0 (Ω)) is a weak solution in the sense of Definition 4.7, associated with z0 and
u, then there is a unique p ∈ H−1/2(0, T ;L2

0(Ω)) such that (z, p) satisfies (4.1)-(4.2). Moreover, if z ∈
W (0, T ;V 2(Ω), V 0(Ω)), then we have p ∈ L2(0, T ; H1(Ω)).
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(ii) Conversely, if (z, p) ∈ W (0, T ;V 1(Ω), V −1
0 (Ω)) ×H−1/2(0, T ;L2

0(Ω)) satisfies (4.1)-(4.2), then z is a weak
solution in the sense of Definition 4.7.

Remark 4.10. Equation (4.1) is understood as an equality in the distribution space D′(0,∞;H−1(Ω)) and
the divergence condition and the trace condition in (4.2) are understood as equalities in L2(Ω × (0, T )) and in
L2(0, T ;L2(Γ)) respectively.

Proof. (i) Let z ∈ W (0, T ;V 1(Ω), V −1
0 (Ω)) be a weak solution in the sense of Definition 4.7. In a first step, let

us prove that for (ϕ, r) obeying:

(ϕ, r) ∈ V 2
0 (Ω) ×H1(Ω) and

∫
Γ

r = 0, (4.18)

we have:

d
dt

∫
Ω

z(t) · ϕ =
∫

Ω

z(t) · (νΔϕ − (∇zs)Tϕ+ (zs · ∇)ϕ−∇r) +
∫

Γ

u(t) · (rn − ν∂nϕ) +
∫

Ω

f · ϕ. (4.19)

First, by evaluating the equality (4.14) on the test function ϕ ∈ V 2
0 (Ω) we obtain for all t ≥ 0:

d
dt

∫
Ω

z(t) · ϕ =
∫

Ω

(Pz(t) − PDu(t)) · A∗ϕ+ λ0

∫
Ω

Du(t) · ϕ+
∫

Ω

f · ϕ. (4.20)

Thus, by successively using
∫

Ω

(Pz(t) − PDu(t)) · ∇r = 0, the expression of A∗ϕ, and the fact that (4.17)

guarantees Pz − PDu = z −Du, we make the following first calculations:∫
Ω

(Pz(t) − PDu(t)) ·A∗ϕ =
∫

Ω

(Pz(t) − PDu(t)) · (A∗ϕ−∇r)

=
∫

Ω

(z(t) −Du(t)) · (νΔϕ − (∇zs)Tϕ+ (zs · ∇)ϕ−∇r). (4.21)

Moreover, from (4.11) we have:∫
Ω

Du(t) · (λ0ϕ− νΔϕ+ (∇zs)Tϕ− (zs · ∇)ϕ+ ∇r) =
∫

Γ

u(t) · (rn− ν∂nϕ),

and the above equality combined with (4.21) yields:∫
Ω

(Pz(t)−PDu(t)) ·A∗ϕ+λ0

∫
Ω

Du(t) ·ϕ =
∫

Ω

z(t) · (νΔϕ− (∇zs)Tϕ+(zs ·∇)ϕ−∇r)+
∫

Γ

u(t) · (rn− ν∂nϕ).

Hence, with (4.20) it gives (4.19). Next, let us prove that the trace condition in (4.2) is true. From (4.19), an
integration by parts in space yields:

d
dt

∫
Ω

z(t) · ϕ = −
∫

Ω

(ν∇z(t) : ∇ϕ+ (z(t) · ∇)zs · ϕ+ (zs · ∇)z(t) · ϕ) +
∫

Ω

f · ϕ (4.22)

+
∫

Γ

(u(t) − z(t)) · (rn − ν∂nϕ),

for every (ϕ, r) obeying (4.18). Hence, in the particular case where r = 0 and ϕ is infinitely differentiable,
divergence free and compactly supported in Ω, the boundary integral vanishes and we have:

d
dt

∫
Ω

z(t) · ϕ = −
∫

Ω

(ν∇z(t) : ∇ϕ+ (z(t) · ∇)zs · ϕ+ (zs · ∇)z(t) · ϕ) +
∫

Ω

f · ϕ. (4.23)



STABILIZATION OF THE NAVIER-STOKES EQUATIONS 947

Thus, a density argument guarantees that the above equation remains valid for all ϕ ∈ V 1
0 (Ω), and by comparing

it with (4.22), it follows that for all (ϕ, r) obeying (4.18) we have:∫
Γ

(z(t) − u(t)) · (rn− ν∂nϕ) = 0.

Finally, since the set {rn − ν∂nϕ, (ϕ, r) obeys (4.18)} describes the trace space V 1/2(Γ), it allows to recover
the trace condition in (4.2), see Remark 4.4. Next, it remains to prove that z obeys (4.1). First, we define

Z(·) =
∫ (·)

0

z(t)dt ∈ H1(0, T ;V 1(Ω)) and F (·) =
∫ (·)

0

f(t)dt ∈ H1(0, T ;H−1(Ω)),

and because z ∈ C([0, T ];H−1(Ω)), we deduce that z(t)− z0 − νΔZ(t) + (∇zs)Z(t) + (∇Z(t))zs −F (t) belongs
to C([0, T ];H−1(Ω)). Hence, by recalling that (4.23) is valid for all ϕ ∈ V 1

0 (Ω), by integrating in time over (0, t)
we obtain the pointwise (in time) equality:

〈z(t) − z0 − νΔZ(t) + (∇zs)Z(t) + (∇Z(t))zs − F (t)|ϕ〉H−1(Ω),H1
0(Ω) = 0 for all ϕ ∈ V 1

0 (Ω). (4.24)

As a consequence, there exists P (t) ∈ L2
0(Ω) [25], Remark 1.4 (i), Chapter 1, page 15, obeying:

∇P (t) = z(t) − z0 − νΔZ(t) + (∇zs)Z(t) + (∇Z(t))zs − F (t) ∈ H−1(Ω). (4.25)

Thus, since z ∈ W (0, T ;V 1(Ω), V −1
0 (Ω)) ⊂ H1/2(0, T ;V 0(Ω)), (4.25) guarantees ∇P ∈ H1/2(0, T ;H−1(Ω)),

and from [25], Remark 1.4 (ii), Chapter 1, page 15, we obtain:

P ∈ H1/2(0, T ;L2
0(Ω)).

Hence, we can define the pressure function p = d
dtP belonging to H−1/2(0, T ;L2

0(Ω)), and by differentiat-
ing (4.25) we obtain that (z, p) satisfies (4.1). Notice that it the case where z ∈ W (0, T ;V 2(Ω), V 0(Ω)), we
deduce that P ∈ H1(0, T ; H1(Ω)) and p = d

dtP ∈ L2(0, T ; H1(Ω)) in a similar way. Finally, it remains to recover
the initial condition z(0) = z0 ∈ V 0(Ω). On the first hand, from u ∈ C([0, T ];V −1/2(Γ)), (4.16) and (4.10) for
s = 0, we deduce that (I − P )z(0) = (I − P )Dγn(u)(0) ∈ V 0(Ω). On the other hand, since we have assumed
u(0) ·n = z0 ·n, from (4.9) we obtain (Dγn(u)(0)) ·n = z0 ·n. As a consequence, we have Dγn(u)(0)−z0 ∈ V 0

n (Ω)
which yields (I−P )Dγnu(0) = (I−P )z0. Then we have proved that (I−P )z(0) = (I−P )Dγn(u)(0) = (I−P )z0,
and with Pz(0) = Pz0 ∈ V 0

n (Ω) we can conclude.
(ii) Conversely, if we assume that z ∈ W (0, T ;V 1(Ω), V −1

0 (Ω)) satisfies (4.1)-(4.2), by evaluating (4.1) on
ϕ ∈ V 2

0 (Ω) we get rid of the pressure and obtain (4.23). Thus, by taking into account the trace condition
in (4.1) an integration by parts in space yields (4.19), which, in view of the first step in (i), implies (4.20) or
equivalently (4.14). Finally, (4.16) is a direct consequence of the trace condition in (4.1). �

5. The system defined on the boundary

The main objective of this section is to give a precise definition of the solution to the system:

∂tu− Δbu− σ n = g in ΣT , u(0) = u0,

∫
Γ

u(t) · n = 0, t ≥ 0. (5.1)

We recall that T ∈ (0,∞) is a fixed time horizon and that ΣT = Γ × (0, T ). Notice that in (5.1), σ plays
the role of the Lagrange multiplier associated with the constraint

∫
Γ u · n = 0. First, let us consider the

gradient operator ∇Γ : H1(Γ) −→ L2(Γ) and the Laplace operator ΔΓ : H1(Γ) −→ H−1(Γ) (usually called
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Laplace Beltrami operator) defined on the Riemannian manifold Γ without boundary which is equipped with
the Euclidean metric [24], Chapter 2, page 137. The following equality holds:

〈ΔΓφ|ψ〉H−1(Γ),H1(Γ) = −
∫

Γ

∇Γφ · ∇Γψ for all (φ, ψ) ∈ H1(Γ) ×H1(Γ).

Hence, we define Δb : H1(Γ) −→ H−1(Γ) as the following vector-valued operator

Δbu =
(
ΔΓui

)T

1≤i≤d
for all u =

(
ui

)T

1≤i≤d
∈ H1(Γ),

and we have:

〈Δbu|v〉H−1(Γ),H1(Γ) = −
d∑

i=1

∫
Γ

∇Γui · ∇Γvi for all u =
(
ui

)T

1≤i≤d
∈ H1(Γ) and v =

(
vi

)T

1≤i≤d
∈ H1(Γ).

Remark 5.1. We underline that we consider Γ as a manifold placed in the space Rd equipped with a fixed
orthogonal basis. Hence, each component of Δb is the Laplace Beltrami operator ΔΓ which applies to the
corresponding component in Rd of the vector field u = (u1, . . . , ud)T :

∀x ∈ Γ Δb

⎛⎜⎝ u1(x)
...

ud(x)

⎞⎟⎠ =

⎛⎜⎝ ΔΓu1(x)
...

ΔΓud(x)

⎞⎟⎠ ∈ R
d.

By this way, Δbu(x) does not necessarily belong to the tangent space of Γ, as it is the case for general definition
of the Laplace operator for vector fields on manifolds which is based on the notion of Levi-Civita connection,
see for instance [8].

Thus, by recalling that Pb is the orthogonal projector from L2(Γ) onto V 0(Γ) whose explicit definition is
given by (2.1), we are now in position to introduce the unbounded operator Ab = PbΔb in V 0(Γ) with domain
D(Ab) = V 2(Γ).

Theorem 5.2. The unbounded operator (D(Ab), Ab) = (V 2(Γ), PbΔb) is the infinitesimal generator of an
analytic semigroup on V 0(Γ), and it obeys:

D((λ0 −Ab)θ) = V 2θ(Γ) for all θ ∈ [0, 1]. (5.2)

Proof. For all μ > 0, we introduce the following coercive bilinear form in V 1(Γ):

aμ(v, w) = −〈Δbv|w〉H−1(Γ),H1(Γ) + μ

∫
Γ

v · w for all (v, w) ∈ V 1(Γ) × V 1(Γ).

According to the Lax-Milgram Lemma, for any g ∈ V 0(Γ), there exists a unique u ∈ V 1(Γ) satisfying

aμ(u, v) =
∫

Γ

g · v for all v ∈ V 1(Γ). (5.3)

Thus, replacing v ∈ V 1(Γ) by v − |Γ|−1
( ∫

Γ v · n
)
n for v ∈ H1(Γ) in (5.3), we deduce that (μ− Δb)u = g + σ n

where σ = |Γ|−1〈(μ−Δb)u−g|n〉H−1(Γ),H1(Γ). Hence, since g+σ n ∈ L2(Γ), classical elliptic regularity results on
compact manifold without boundary [24], Chapter 5, Proposition 1.6, yields u ∈ V 2(Γ). Since (5.3) is equivalent
to (μ − Ab)u = g where μ > 0, we have shown that ]0,∞[ is included in the resolvent set of Ab. Finally, since
(D(Ab), Ab) = (V 2(Γ), PbΔb) is self-adjoint, it generates an analytic semigroup on V 0(Γ) and (5.2) holds. �
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Remark 5.3. We shall underline the fact that [24], Chapter 5, Proposition 1.6, which is invoked in the proof
of Theorem 5.2, requires the manifold Γ to be of class C∞. However, since Δb only involves second order
derivatives, it is sufficient to assume Γ only of class C2.

We are now in position to give a definition of weak solution to (5.1).

Definition 5.4. Let u0 ∈ V −1/2(Γ) and g ∈ L2(0, T ;V −2(Γ)). We shall say that u ∈ L2(0, T ;V 0(Γ)) is a weak
solution to (5.1), if and only if, u is a weak solution to the evolution equation

u′ = Abu+ g ∈ L2(0, T ;V −2(Γ)), u(0) = u0 ∈ V −1/2(Γ). (5.4)

Theorem 5.5. Let u0 ∈ V −1/2(Γ) and g ∈ L2(0, T ;V 0(Γ)).
(i) If u ∈W (0, T ;V 1/2(Γ), V −3/2(Γ)) is a weak solution in the sense of Definition 5.4, associated with u0 and g,
then there is a unique σ ∈ L2(0, T ) such that (u, σ) satisfies the first equation in (5.1) in the distribution sense.
(ii) Conversely, if (u, σ) ∈ W (0, T ;V 1/2(Γ), V −3/2(Γ)) × L2(0, T ) satisfies (5.1), then u is a weak solution.

Proof. Since (ii) is obvious, we focus on (i). First, we define U(·) =
∫ (·)
0
u(t)dt and G(·) =

∫ (·)
0
g(t)dt, and by

integrating in time over (0, t) the first equality in (5.4), we obtain:

〈u(t) − u0 − ΔbU(t) −G(t)|v〉H−2(Γ),H2(Γ) = 0 for all v ∈ V 2(Γ).

Thus, replacing v ∈ V 2(Γ) by v − (|Γ|−1
∫
Γ
v · n)

n for v ∈ H2(Γ) in the above equality, we deduce that:

u− u0 − ΔbU −G = Σn where Σ(·) =
1
|Γ| 〈u(·) − u0 − ΔbU(·) −G(·)|n〉H−2(Γ),H2(Γ) ∈ L2(0, T ).

Moreover, by recalling that
∫
Γ u(·) · n = 0 and that 〈u0|n〉H−2(Γ),H2(Γ) = 0 we deduce that

Σ(·) =
1
|Γ| 〈−ΔbU(·) −G(·)|n〉 ∈ H1(0, T ),

and we have u− u0 = ΔbU +G+ Σn. Finally, we set σ = d
dtΣ and we verify that (u, σ) obeys (5.1). �

6. The extended system

The main objective of this section is to rewrite the system (4.1)-(4.2)-(5.1) in the following form:

Y ′ = AY + F, Y (0) = Y0, (6.1)

where Y is the new state variable and F is the new nonhomogeneous source term. First, let us define the linear
operator A of system (6.1) as the following unbounded operator in H0.

Definition 6.1. Let (D(A),A) be the unbounded operator defined in H0 = V 0
n (Ω) × V −1/2(Γ) by

D(A) =

{
(y, u)T ∈ V 2

n (Ω) × V 3/2(Γ) | y − PDu ∈ V 2
0 (Ω)

}
, (6.2)

A =
(
νPΔ − P (∇zs) − P (zs · ∇) (λ0 − νPΔ + P (∇zs) + P (zs · ∇))PD

0 PbΔb

)
. (6.3)



950 M. BADRA

Theorem 6.2. (i) The domain D(A) is dense in H0.
(ii) The unbounded operator (D(A∗),A∗) defined in H0

∗ = V 0
n (Ω) × V 1/2(Γ) by

D(A∗) = V 2
0 (Ω) × V 5/2(Γ), (6.4)

A∗ =
(

νPΔ − P (∇zs)T + P (zs · ∇) 0
D∗(λ0 − νPΔ + P (∇zs)T − P (zs · ∇)) PbΔb

)
, (6.5)

is the adjoint of (D(A),A) with respect to the pivot space V 0
n (Ω) × V 0(Γ).

(iii) (D(A),A) (resp. (D(A∗),A∗)) is the infinitesimal generator of an analytic semigroup on H0 (resp. H0∗).
Let us set Â = λ − A and Â∗ = λ − A∗, where λ > λ0 > 0 is large enough so that (D(A),−Â) (resp.
(D(A∗),−Â∗)) is the infinitesimal generator of analytic and exponentially stable semigroup on H0 (resp. H0∗).
(iv) For all θ ∈ [0, 1] the following equalities hold:

D(Âθ) =
[
D(A) , H0

]
1−θ

=
{

(y, u)T ∈ V 2θ
n (Ω) × V 2θ−1/2(Γ) | y − PDu ∈ V 2θ

0 (Ω)
}
, (6.6)

D(Â∗θ) =
[
D(A∗),H0

∗

]
1−θ

= V 2θ
0 (Ω) × V 1/2+2θ(Γ). (6.7)

Remark 6.3. In order to keep a natural gap equal of 1/2 in term of Sobolev index, between the regularity
of vector fields defined in Ω and their traces on Γ, we choose H0 = V 0

n (Ω) × V −1/2(Γ) as the state space.
However, “duality” and “adjointness” are understood with respect to the V 0

n (Ω) × V 0(Γ)-topology. Indeed,
H0

∗ = V 0
n (Ω) × V 1/2(Γ) is the dual space of H0 with respect to the pivot space V 0

n (Ω) × V 0(Γ), and A∗, which
is defined in H0

∗, is the V 0
n (Ω) × V 0(Γ)-adjoint of A. Hence, the duality pairing 〈·|·〉H0,H0∗ between H0 and H0

∗,
is defined from the following scalar product of V 0

n (Ω) × V 0(Γ):((
y
u

)
,

(
w
v

))
V 0

n (Ω)×V 0(Γ)

=
∫

Ω

y · w +
∫

Γ

u · v.

Let us give relations which allow to pass from the V 0
n (Ω) × V 0(Γ)-topology to the H0-topology. For s ∈ R, we

introduce the following isomorphism:

I(s) : V 0
n (Ω) × V s(Γ) −→ V 0

n (Ω) × V 0(Γ) and I(s)

(
y
u

)
=

(
y

(λ0 − Δb)s/2u

)
,

and we suppose that H0 is equipped with the following scalar product:((
y
u

)
,

(
w
v

))
H0

=
(
I(−1/4)

(
y
u

)
, I(−1/4)

(
w
v

))
V 0

n (Ω)×V 0(Γ)

. (6.8)

Hence, if (D(A�),A�) is the H0-adjoint of (D(A),A), an easy calculation yield:

D(A�) = V 2
0 (Ω) × V 3/2(Γ) and A� = I(1/2)A∗I(−1/2), (6.9)

as well as the following relationship:

eA
�t = I(1/2)eA

∗tI(−1/2), t ≥ 0. (6.10)

Proof of Theorem 6.2. (a) Proof of (i). Let (y, u)T ∈ H0. Since u ∈ V −1/2(Γ), from (4.10) with s = 0 we
deduce that Du ∈ V 0(Ω) and y − PDu ∈ V 0

n (Ω). Moreover, the density of V 2
0 (Ω) in V 0

n (Ω) gives us a sequence
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(zn)n∈N ∈ (V 2
0 (Ω))N converging to y−PDu in V 0

n (Ω), and the density of V 3/2(Γ) in V −1/2(Γ) gives us a sequence
(un)n∈N ∈ (V 3/2(Γ))N converging to u in V −1/2(Γ). Therefore, (zn + PDun, un) ∈ D(A), for all n ∈ N, and
(zn + PDun, un)T converges to (y, u)T in H0.
(b) Proof of (ii). Let us denote by (D(A�),A�) the adjoint of (D(A),A) with respect to the pivot space V 0

n (Ω)×
V 0(Γ). We have D(A�) ⊂ H0

∗ = V 0
n (Ω)×V 1/2(Γ), and we must prove that (D(A∗),A∗), defined by (6.4)-(6.5),

is such that (D(A∗),A∗) = (D(A�),A�). First, for Y ∈ D(A), the equality 〈AY |W 〉H0,H0∗ = 〈Y |A∗W 〉H0,H0∗
obviously holds for every W ∈ V 2

0 (Ω) × V 5/2(Γ). Thus, the inclusion V 2
0 (Ω) × V 5/2(Γ) ⊂ D(A�) holds and we

have A∗W = A�W for every W ∈ V 2
0 (Ω)×V 5/2(Γ). Thus, it remains to show that D(A�) ⊂ V 2

0 (Ω)×V 5/2(Γ).
Let W = (w, v)T ∈ D(A�). According to the definition of D(A�), there is a constant CW > 0, depending
on W and obeying

|〈AY |W 〉H0,H0∗ | ≤ CW ‖Y ‖H0 for all Y ∈ D(A),
or equivalently:∣∣∣∣∫

Ω

(A− λ0)(y − PDu) · w + λ0

∫
Ω

y · w + 〈Abu · v〉V −1/2(Γ),V 1/2(Γ)

∣∣∣∣ ≤ CW (‖y‖V 0
n (Ω) + ‖u‖V −1/2(Γ)), (6.11)

for every (y, u)T ∈ D(A). By choosing y ∈ V 2
0 (Ω) and u = 0 in (6.11), we obtain∣∣∣∣∫

Ω

w · (λ0 −A)y
∣∣∣∣ ≤ (CW + λ0‖w‖V 0

n (Ω))‖y‖V 0
n (Ω),

and the Riesz representation theorem yields (λ0 −A∗)w ∈ V 0
n (Ω). Then we have w ∈ V 2

0 (Ω) and it remains to
prove that v ∈ V 5/2(Γ). By using the following integration by parts in (6.11)∫

Ω

(A− λ0)(y − PDu) · w =
∫

Ω

(y − PDu) · (A∗ − λ0)w, (y, u)T ∈ D(A),

we obtain the estimate

|〈Abu · v〉V −1/2(Γ),V 1/2(Γ)| ≤ KW (‖u‖V −1/2(Γ) + ‖y‖V 0
n (Ω)), (6.12)

where KW = CW + λ0‖w‖V 0
n (Ω) + (1 + ‖D‖L(V −1/2(Γ),V 0

n (Ω)))‖(λ0 − A∗)w‖V 0
n (Ω). Thus, by choosing (y, u)T =

(PDu, u)T ∈ D(A) in (6.12), we deduce that

|〈Abu · v〉V −1/2(Γ),V 1/2(Γ)| ≤ KW (1 + ‖D‖L(V −1/2(Γ),V 0
n (Ω)))‖u‖V −1/2(Γ),

which guarantees that Abv ∈ V 1/2(Γ). Finally, v ∈ V 5/2(Γ), and the inclusion D(A�) ⊂ V 2
0 (Ω) × V 5/2(Γ) is

proved.
(c) Proof of (iii). First, analyticity of (eAt)t≥0 stated in Theorem 4.1 yields the following resolvent estimate:

‖(ν −A)−1‖L(V 0
n (Ω)) ≤ C0

|ν − ω| for all ν ∈ Sθ0,ω =
{
ν ∈ C | ν �= ω, |arg(ν − ω)| < θ0

}
, (6.13)

where C0 > 0, ω > 0 and θ0 ∈ ]π
2 , π[ do not depend on ν. Moreover, invoking the analyticity of (eAbt)t≥0 on

V 0(Γ) which is given by Theorem 5.2, and since ‖(λ − Ab)−1/4 · ‖V 0(Γ) defines a norm on V −1/2(Γ), from the
equality (λ0 −Ab)−1/4(ν − Ab)−1 = (ν −Ab)−1(λ0 −Ab)−1/4 we obtain:

‖(ν −Ab)−1‖L(V −1/2(Γ)) ≤
C1

|ν − ω| for all ν ∈ Sθ0,ω, (6.14)
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where C1 > 0 does not depend on ν. Next, we fix ε > 0, and for F = (f, g)T ∈ H0 and

ν ∈ Sθ0,ω+ε =
{
ν ∈ C | ν �= ω + ε, |arg(ν − ω − ε)| < θ0

}
,

searching a solution Y ∈ D(A) to (ν −A)Y = F is equivalent to search the solution (y, u)T ∈ D(A) to

ν(y − PDu) − A(y − PDu) = f + (λ0 − ν)PDu ∈ V 0
n (Ω), (6.15)

νu −Abu = g ∈ V −1/2(Γ). (6.16)

Hence, with (ν−A)−1 ∈ L(V 0
n (Ω), V 2

0 (Ω)), with (ν−Ab)−1 ∈ L(V −1/2(Γ), V 3/2(Γ)) and with (4.10) for s = 3/2,
system (6.15)-(6.16) yields:

y − PDu = (ν −A)−1f − (ν − λ0)(ν −A)−1PD(ν −Ab)−1g ∈ V 2
0 (Ω),

y = (ν −A)−1f + PD(ν −Ab)−1g − (ν − λ0)(ν −A)−1PD(ν −Ab)−1g ∈ V 2
n (Ω),

u = (ν −Ab)−1g ∈ V 3/2(Γ).

Then, from (6.13), (6.14) and (4.10) with s = 0, we deduce the existence of C > 0, independent of ν, such that

‖(ν −A)−1F‖H0 = ‖y‖V 0
n (Ω) + ‖u‖V −1/2(Γ) ≤

C

|ν − ω| ‖f‖V 0
n (Ω) +

(
1 +

|ν − λ0|
|ν − ω|

)
C

|ν − ω|‖g‖V −1/2(Γ),

≤ C sup
ν∈Sθ0,ω+ε

{(
2 +

|ν − λ0|
|ν − ω|

) |ν − ω − ε|
|ν − ω|

} ‖F‖H0

|ν − ω − ε| ·

This last estimate proves that (D(A),A) is the infinitesimal generator of an analytic semigroup on H0. Finally,
by invoking [20], Chapter 1, Lemma 10.1-2, we have ‖R(ν,A∗)‖L(H0∗) = ‖R(ν,A)∗‖L(H0∗) = ‖R(ν,A)‖L(H0), for
every ν ∈ Sθ0,ω+ε, and the analyticity of (eA

∗t)t≥0 on H0
∗ is a direct consequence of the analyticity of (eAt)t≥0

on H0.
(d) Proof of (iv). Let us equip H0 with the scalar product (6.8) and let us consider (D(A�),A�), the adjoint
of (D(A),A) with respect to the pivot space H0 (see Rem. 6.3). According to (6.9) we have D(A�) = V 2

0 (Ω) ×
V 3/2(Γ) which yields [D(A),H0]1−θ = [D(A�),H0]1−θ = V 2θ

n (Ω) × V 2θ−1/2(Γ) for 0 < θ < 1/4. Then it
allows to invoke [27], Theorem B, (i), and to obtain the identity D(Âθ) = [D(A),H0]1−θ, for every θ ∈ [0, 1].
According to [27], Theorem B, (iv), this last identity is equivalent to the fact that the function z ∈ {z ∈
C | Re z > 0} �→ ‖Â−z‖L(H0) can be extended to a strongly continuous function on {z ∈ C | Re z ≥ 0}.
By invoking [20], Chapter 1, Lemma 10.1-2, we obtain ‖Â∗−z‖L(H0∗) = ‖Â−z∗‖L(H0∗) = ‖Â−z‖L(H0). So we
deduce that z ∈ {z ∈ C | Re z > 0} �→ ‖Â∗−z‖L(H0∗) can be extended to a strongly continuous function on
{z ∈ C | Re z ≥ 0}, and we conclude that D(Â∗θ) = [D(A∗),H0]1−θ, for all θ ∈ [0, 1], from [27], Theorem B,
(iv). Now, it remains to prove the second equality in (6.6) and in (6.7). According to [15], Definition 2.2, we
have (y, u)T ∈ [D(A),H0]θ, if and only if, there exists

(y∗, u∗)T ∈ L2(R+;D(A)) ∩H1/2(1−θ)(R+;H0), (y∗(0), u∗(0)) = (y, u),

which is equivalent to

y∗ ∈ L2(R+;V 2
n (Ω)) ∩H1/2(1−θ)(R+;V 0

n (Ω)), y∗(0) = y,

u∗ ∈ L2(R+;V 3/2(Γ)) ∩H1/2(1−θ)(R+;V −1/2(Γ)), u∗(0) = u,

y∗ − PDu∗ ∈ L2(R+;V 2
0 (Ω)) ∩H1/2(1−θ)(R+;V 0

n (Ω)), z∗(0) = y − PDu.
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Hence, still by invoking [15], Definition 2.2, the above setting is equivalent to

y ∈ [V 2
n (Ω), V 0

n (Ω)]1−θ, u ∈ [V 3/2(Γ), V −1/2(Γ)]1−θ, y − PDu ∈ [V 2
n (Ω), V 0

n (Ω)]1−θ ,

and with [V 2
n (Ω), V 0

n (Ω)]1−θ = V 2θ
n (Ω), with [V 3/2(Γ), V −1/2(Γ)]1−θ = V 2θ−1/2(Γ) and with

[V 2
n (Ω), V 0

n (Ω)]1−θ = V 2θ
n (Ω), we obtain the second equality in (6.6). Finally, the second equality in (6.7)

follows from

[D(A∗),H0
∗]1−θ = [V 2

0 (Ω) × V 5/2(Γ), V 0
n (Ω) × V 1/2(Γ)]1−θ = [V 2

0 (Ω), V 0
n (Ω)]1−θ × [V 5/2(Γ), V 1/2(Γ)]1−θ,

with [V 2
0 (Ω), V 0

n (Ω)]1−θ = V 2θ
0 (Ω) and with [V 5/2(Γ), V 1/2(Γ)]1−θ = V 1/2+2θ(Γ). �

Next, we introduce a shorter notation for the function spaces defined in (6.6) and (6.7).

Definition 6.4. For θ ∈ [0, 1], we define the function spaces:

H2θ =
[
D(A) , H0

]
1−θ

=
{

(y, u)T ∈ V 2θ
n (Ω) × V 2θ−1/2(Γ) | y − PDu ∈ V 2θ

0 (Ω)
}
,

H2θ
∗ =

[
D(A∗) , H0

∗

]
1−θ

= V 2θ
0 (Ω) × V 1/2+2θ(Γ),

and
H−2θ = (H2θ

∗ )′ = V −2θ
0 (Ω) × V −1/2−2θ(Γ) and H−2θ

∗ = (H2θ)′.

The following theorem is a consequence of the analyticity of (eAt)t≥0 (resp. (eA
∗t)t≥0) on H0 (resp. H0

∗).

Theorem 6.5. For every 0 ≤ θ ≤ 1, the following mapping is an isomorphism:

W (0,∞;H2θ,H2(θ−1)) −→ L2(0,∞;H2(θ−1)) × [H2θ,H2(θ−1)]1/2,

Y �−→ (Y ′ + ÂY, Y (0)).

Proof. It is a consequence of maximal regularity results for analytic semigroups which can be found in [6],
Chapter 3, Theorem 2.2, page 166, where we can take T = ∞ because (e−Ât)t≥0 is exponentially stable
on H0. �

Next, we determine the spaces of initial conditions [H2θ,H2(θ−1)]1/2.

Lemma 6.6. The following equality holds:[H2θ,H2(θ−1)
]
1/2

= H2θ−1 for all θ ∈ [0, 1]. (6.17)

Proof. According to [15], Definition 2.2, we have (y, u)T ∈ [H2θ,H2(θ−1)]1/2, if and only if, there is (y∗, u∗)
obeying:

y∗ ∈ L2(R+;V 2θ
n (Ω)) ∩H1(R+;V 2θ−2

0 (Ω)), (6.18)

u∗ ∈ L2(R+;V 2θ−1/2(Γ)) ∩H1(R+;V 2θ−5/2(Γ)), (6.19)

y∗ − PDu∗ ∈ L2(R+;V 2θ
0 (Ω)), (6.20)

(y∗(0), u∗(0)) = (y, u). (6.21)

Moreover, from (6.19) and Remark 4.3, we also have y∗ − PDu∗ ∈ H1(R+;V 2θ−2
0 (Ω)), and the use of [15],

Definition 2.2, with [V 2θ−1/2(Γ), V 2θ−5/2(Γ)]1/2 = V 2θ−3/2(Γ) and with [V 2θ
0 (Ω), V 2θ−2

0 (Ω)]1/2 = V 2θ−1
0 (Ω),

ensures that (6.19)-(6.20)-(6.21) is equivalent to

y ∈ [V 2θ
n (Ω), V 2θ−2

0 (Ω)]1/2, u ∈ V 2θ−3/2(Γ), y − PDu ∈ V 2θ−1
0 (Ω). (6.22)
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Thus, for θ ∈ [1/2, 1], observing that

y = y − PDu+ PDu ∈ V 2θ−1
0 (Ω) + V 2θ−1

n (Ω) ⊂ V 2θ−1
n (Ω),

and
V 2θ−1

n (Ω) = [V 2θ
n (Ω), (V 2(1−θ)

n (Ω))′]1/2 ⊂ [V 2θ
n (Ω), V 2θ−2

0 (Ω)]1/2,

we conclude that (6.22) is true, if and only if

(y, u) ∈
{

(y, u)T ∈ V 2θ−1
n (Ω) × V 2θ−3/2(Γ) | y − PDu ∈ V 2θ−1

0 (Ω)
}

= H2θ−1.

The case θ ∈ [0, 1/2] may be treated similarly, by remarking that

y = y − PDu+ PDu ∈ V 2θ−1
0 (Ω) + V 2θ−1

0 (Ω) = V 2θ−1
0 (Ω),

and
V 2θ−1

0 (Ω) = [V 2θ
0 (Ω), V 2θ−2

0 (Ω)]1/2 ⊂ [V 2θ
n (Ω), V 2θ−2

0 (Ω)]1/2.

Then we conclude that (6.22) is true, if and only if

(y, u) ∈
{

(y, u)T ∈ V 2θ−1
0 (Ω) × V 2θ−3/2(Γ) | y − PDu ∈ V 2θ−1

0 (Ω)
}
,

and by observing that (y, u) ∈ V 2θ−1
0 (Ω) × V 2θ−3/2(Γ) imply y − PDu ∈ V 2θ−1

0 (Ω), it follows that (6.22) is
equivalent to

(y, u) ∈ V 2θ−1
0 (Ω) × V 2θ−3/2(Γ) = (H1−2θ

∗ )′ = H2θ−1. �
Let us collect some useful results in the following corollary.

Corollary 6.7. (i) The linear mapping Y0 �−→ e−ÂtY0 is bounded from H1 into L2(0,∞;H2).
(ii) The operators K : L2(0,∞;H0) −→ L2(0,∞;H0) and K∗ : L2(0,∞;H0

∗) −→ L2(0,∞;H0
∗) defined by

K : F �−→
∫ t

0

e−Â(t−τ)F (τ)dτ and K∗ : F �−→
∫ ∞

t

e−Â∗(τ−t)F (τ)dτ (6.23)

obey K ∈ L(L2(0,∞;H0),W (0,∞;H2,H0)) and K ∈ L(L2(0,∞;H0
∗),W (0,∞;H2

∗,H0
∗)).

(iii) For T ∈ (0,∞), F ∈ L2(0, T ;H0) and Y0 ∈ H0, there exists a unique Y ∈W (0, T ;H1,H−1) solution to

Y ′ = AY + F on D(A∗)′, Y (0) = Y0. (6.24)

Proof. Part (i) follows from Theorem 6.5 and Lemma 6.6 when θ = 1. Part (ii) follows from Theorem 6.5 when
θ = 1: one can verify that K(F ) is the solution to Y + ÂY = F and Y (0) = 0, and that K∗ is the adjoint
of K with respect to the pivot space L2(0,∞;V 0

n (Ω)× V 0(Γ)). Finally, part (iii) follows from Theorem 6.5 and
Lemma 6.6 when θ = 1/2, by remarking that Y = eλ0tŶ where Ŷ + ÂŶ = e−λ0tF and Ŷ (0) = Y0. �
Remark 6.8. In (6.24), A abusively denotes the extension of the operator A to D(A∗)′ (the dual space of D(A∗)
with respect to the pivot space V 0

n (Ω) × V 0(Γ)), obtained with the extrapolation method [18], Section 0.3.

We are now in position to rewrite the two coupled systems (4.14)-(4.15)-(4.16) and (5.4) as an evolution
system.

Theorem 6.9. Let (z0, u0) ∈ V 0(Ω)×V −1/2(Γ) and F = (f, g)T ∈ L2(0, T ;D(A∗)′). Then u is a weak solution
to (5.1) associated with (u0, g) in the sense of Definition 5.4, and z is a weak solution to (4.1)-(4.2) associated
with (z0, u, f) in the sense of Definition 4.7, if and only if:
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(i) the state Y = (Pz, u)T is a weak solution of the evolution equation:

Y ′ = AY + F ∈ L2(0, T ;D(A∗)′), Y (0) =
(
Pz0
u0

)
∈ H0; (6.25)

(ii) the pair (z, u) obeys:

(I − P )z(·) = (I − P )Dγn(u)(·) ∈ L2(0, T ;V 0(Ω)).

Proof. The first statement in (6.25) can be rewritten as follows:

d
dt

〈Y (t)|V 〉H0,H0∗ = 〈Y (t)|A∗V 〉H0,H0∗ + 〈F (t)|V 〉D(A∗)′,D(A∗) for all V ∈ D(A∗),

or equivalently, with Y = (Pz, u)T :

d
dt

∫
Ω

Pz(t) · ϕ+
d
dt

∫
Γ

u(t) · v =
∫

Ω

Pz(t) · A∗ϕ+
∫

Ω

PDu(t) · (λ0 −A∗)ϕ+
∫

Γ

u(t) · PbΔbv

+
∫

Ω

f · ϕ+
∫

Γ

g(t) · v for all (ϕ, v) ∈ V 2
0 (Ω) × V 5/2(Γ).

Finally, we extend the above equality by density to (ϕ, v) ∈ V 2
0 (Ω) × V 2(Γ), and we conclude by setting ϕ = 0

and v = 0 alternatively. �

7. The control problem

The goal of this section is to find a control G ∈ L2(0,∞;V 0
n (Ω) × V 0(Γ)), which can be expressed in a

feedback form, and which stabilizes the system:

Y ′ = AY + ΛG on D(A∗)′, Y (0) = Y0 ∈ H0, (7.1)

where Λ is the control operator defined as the following canonical projection:

Λ : H0 −→ H0 and Λ
(
w
v

)
=

(
0
v

)
. (7.2)

Hence, we introduce the optimal control problem:

(PY0) inf
{
J (Y,G) | G ∈ L2(0,∞;V 0

n (Ω) × V 0(Γ)), (Y,G) satisfies (7.1)
}
,

where
J (Y,G) =

∫ ∞

0

‖CY ‖2
Z +

∫ ∞

0

‖G‖2
V 0

n (Ω)×V 0(Γ). (7.3)

In (7.3), the observation space and the observation operator are given by Z = L2(Ω) × L2(Ω,Rd2
) and

C : H1 −→ Z and C
(
y
u

)
=

(
y + (I − P )Dγn(u)

∇(y + (I − P )Dγn(u))

)
. (7.4)

Proposition 7.1. The operator C belongs to L(H1,Z), and the following properties hold:

‖C · ‖Z ∼ ‖.‖H1 and C∗C ∈ L(H1,H−1
∗ ) ∩ L(H2,H0

∗). (7.5)
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Proof. The first inequality ‖C ·‖Z ≤ C1‖·‖H1 in (7.5) is a straightforward consequence of (4.10), and conversely,
the trace inequality ‖u‖V 1/2(Γ) ≤ C‖y+(I−P )Dγn(u)‖V 1(Ω) provides the second inequality ‖ ·‖H1 ≤ C2‖C ·‖Z .
Next, since the first statement in (7.5) holds, we obviously have C∗C ∈ L(H1,H−1

∗ ). Finally, for (y, u)T ∈ H2

and (w, v)T ∈ H2, we consider the scalar product ((y, u)T |(w, v)T )Z whose expression is given by:∫
Ω

(y + (I − P )Dγn(u)) · (w + (I − P )Dγn(v)) +
∫

Ω

∇(y + (I − P )Dγn(u)) : ∇(w + (I − P )Dγn(v)).

By integrating by parts we deduce that

C∗C
(
y
u

)
=

(
P (−Δy + y) + P (−Δ + I)(I − P )Dγn(u)

(γnD
∗(I − P )(−Δy + y) + ∂ny) + (γnD

∗(I − P )(−Δ + I) + ∂n)(I − P )Dγn(u)

)
,

and C∗C ∈ L(H2,H0∗) follows from (4.10), D∗ ∈ L(V 0(Ω), V 1/2(Γ)) and ∂n ∈ L(V 2(Ω), V 1/2(Γ)). �
Remark 7.2. Assume that Y0 = (Pz0, u0)T , where z0 ∈ V 0(Ω) and u0 ∈ V −1/2(Γ) obeys z0|Γ ·n = u0 ·n. From
Theorems 6.9, 5.5 and 4.9 one can verify that problem (PY0) is equivalent to the following control problem:

(Qz0,u0) inf
{
I(z, g) | g ∈ L2(0,∞;V 0(Γ))

}
where I(z, g) =

∫ ∞

0

‖z‖2
H1(Ω) +

∫ ∞

0

‖g‖2
L2(Γ),

and z ∈W (0,∞;V 1(Ω), V −1
0 (Ω)) satisfies (1.18)-(1.19). Indeed, for Y = (y, u)T and z = y+ (I −P )Dγn(u) we

have the following equalities

‖z‖2
H1(Ω) = ‖z‖2

L2(Ω) + ‖∇z‖2
L2(Ω) = ‖y + (I − P )Dγn(u)‖2

L2(Ω) + ‖∇(y + (I − P )Dγnu)‖2
L2(Ω) = ‖CY ‖2

Z ,

which prove that functionals I(z, g) and J (Y,G) are equal.

In order to characterize the solution of (PY0), we are going to use the optimal control theory over an infinite
time horizon which is developed in [18], Chapter 2. However, we shall underline that we are not exactly in the
framework given there. Indeed, since we have D(C) = D(Â1/2) and A is not self-adjoint, C does not fit the
assumption [18], Chapter 2, equation (2.5.5) (where we are in the case δ = 1/2 and γ = 0), and we cannot
directly apply [18], Chapter 2, Theorem 2.5.1. However, with Corollary 6.7(i) and CÂ−1/2 ∈ L(H0,Z), it can
be shown that

Ce−Ât : continuous H0 −→ L2(0,∞;H0),
and assumption [18], Chapter 2, equation (2.5.1), is recovered. The second reason why we are not in the
framework of [18], Chapter 2, is that we use the pivot space V 0

n (Ω)×V 0(Γ) to define adjointness (see Rem. 6.3).
Indeed, it is explained in [18], Chapter 2, page 122, that adjointness must be understood with respect to the
H0-topology.

Theorem 7.3. Let Y0 ∈ H0. The following results hold.
(i) There exists a unique operator Π in the space

X =
{
L ∈ L(H1,H0

∗)
∣∣ 〈Lξ|ζ〉H0∗,H0 = 〈ξ|Lζ〉H0,H0∗ and 〈Lξ|ξ〉H0∗,H0 ≥ 0 for all (ξ, ζ) ∈ H1 ×H1

}
, (7.6)

solution to the following Riccati equation:

〈Πξ|Aζ〉H0∗,H0 + 〈Aξ|Πζ〉H0,H0∗ − (ΛΠξ|ΛΠζ)V 0
n (Ω)×V 0(Γ) + (Cξ|Cζ)Z = 0 ∀(ξ, ζ) ∈ D(A) ×D(A). (7.7)

(ii) The problem (PY0) admits a unique optimal pair (YY0 , GY0) which obeys GY0 = −ΛΠYY0 and

J (YY0 , GY0) = 〈ΠY0|Y0〉H0∗,H0 = inf
{
J (Y,G) | (Y,G) satisfies (7.1)

}
. (7.8)
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(iii) The unbounded operator (D(AΠ),−AΠ) defined by

D(AΠ) = H2 and AΠ = ΛΠ −A,

is the infinitesimal generator of an analytic and exponentially stable semigroup on H0, and the optimal state YY0

is the unique solution to the closed-loop system:

Y ′ + AΠY = 0, Y (0) = Y0. (7.9)

Moreover, the following equalities hold:

D(Aθ
Π) = H2θ, D(A∗θ

Π ) = H2θ
∗ for all θ ∈ [0, 1]. (7.10)

(iv) The operator Π obeys:

Π ∈ L(H2θ,H2θ
∗ ) for all θ ∈ [0, 1/2]. (7.11)

Remark 7.4. Since Π is the solution to an extended Riccati equation, involving extended operator A, C and
Λ, it can be viewed as an extended operator. One easily verify that there is a triplet (Π1,Π2,Π3) which obeys:

Π =
(

Π1 Π∗
2

Π2 Π3

)
, (Π1,Π2,Π3) ∈ L(V 0

n (Ω)) × L(V 0
n (Ω), V 1/2(Γ)) × L(V −1/2(Γ), V 1/2(Γ)). (7.12)

Proof. (a) Auxiliary control problem (P̄Ȳ0
). For all Y0 ∈ H0, the existence and uniqueness of the optimal

pair (YY0 , GY0) solution to (PY0) is a direct consequence of the finite cost condition given in the appendix in
Corollary 10.4. In order to characterize such an optimal pair, let us use the change of variable method of [18],
Chapter 2, Section 2.5. We recall that to fit the framework given there, the H0-topology should be used to
define the adjoint of A. In the following, (D(A�),A�) denotes the H0-adjoint of (D(A),A) (see Rem. 6.3), we
set Â� = λ−A� where λ > 0 is given in (iii) in Theorem 6.2, and for a given Hilbert space X we denote by X•

the dual X with respect to the H0-topology. Let us consider the system:

Ȳ ′ = AȲ + B̄G on D(A�)• and Y (0) = Ȳ0 ∈ H0, (7.13)

where
B̄ ∈ L(V 0

n (Ω) × V 0(Γ),D(Â�1/2)•) and B̄G = Â1/2ΛG,

and let us define the auxiliary control problem:

(P̄Ȳ0
) inf

{
J̄ (Ȳ , G) | G ∈ L2(0,∞;V 0

n (Ω) × V 0(Γ)) and (Ȳ , G) satisfies (7.13)
}
,

where

J̄ (Ȳ , G) =
∫ ∞

0

‖C̄ Ȳ ‖2
Z +

∫ ∞

0

‖G‖2
V 0

n (Ω)×V 0(Γ) with C̄ = CÂ−1/2 ∈ L(H0,Z). (7.14)

Problem (P̄Ȳ0
) now fits the framework of [18], Chapter 2 (where with the notations there we are in the case

γ := 1/2, Y := H0, U := V 0
n (Ω) × V 0(Γ), Z := Z, R := C̄). If Y0 ∈ H1, then we have Ȳ0 = Â1/2Y0 ∈ H0, and

for all admissible pairs (Ȳ , G) and (Y,G) of (P̄Ȳ0
) and (PY0) respectively we have J̄ (Ȳ , G) = J (Y,G). As a

consequence, existence and uniqueness of (ȲȲ0
, ḠȲ0

) solution to (P̄Ȳ0
) can be deduced from Corollary 10.4, and

J (YY0 , GY0) = J̄ (ȲȲ0
, ḠȲ0

), GY0 = ḠȲ0
and YY0 = Â−1/2ȲȲ0

where Ȳ0 = Â1/2Y0. (7.15)
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From [18], Chapter 2, Theorems 2.2.1(a2) and 2.2.1(b2), we have ḠȲ0
= −B̄�Π̄YȲ0

where Π̄ is the unique
operator of L(H0), within the class of H0-self-adjoint operator L such that Â�1/2L ∈ L(H0), solution to:

(Π̄ξ|Aζ)H0 + (Aξ|Π̄ζ)H0 − (B̄� Π̄ξ|B̄� Π̄ζ)V 0(Γ) + (C̄ξ|C̄ζ)Z = 0 for all (ξ, ζ) ∈ D(A) ×D(A). (7.16)

Moreover, [18], Chapter 2, Theorem 2.2.1(a4), (a8), with the first statement in (7.15) yields

(Π̄Ȳ0|Ȳ0)H0 = J (YY0 , GY0), (7.17)

and from [18], Chapter 2, Theorem 2.2.1(a8), we obtain that Π̄ obeys:

Π̄Y0 = Q̄(0) where Q̄(t) =
∫ ∞

t

e−Â�(τ−t)(C̄�C̄ + 2λ0Π̄)(e−λ0τ ȲȲ0
(τ))dτ. (7.18)

In the above setting, the operators B̄� ∈ L(D(Â�1/2), V 0
n (Ω) × V 0(Γ)) and C̄� ∈ L(Z,H0) are the H0-adjoints

of B̄ and C̄ respectively, which are given by:

B̄� = ΛÂ∗1/2I(−1/2) and C̄� = I(1/2)Â∗−1/2C∗, (7.19)

where I(−1/2) and I(1/2) are the isomorphisms which have been introduced in Remark 6.3. Indeed, because we
have Â�1/2 = I(1/2)Â∗1/2I(−1/2) (see (6.9)), equalities in (7.19) are obtained from the following calculations:

〈B̄G|ξ〉D(Â�1/2)•,D(Â�1/2) = (ΛG|Â�1/2ξ)H0 = (G|ΛÂ∗1/2I(−1/2)ξ)V 0
n (Ω)×V 0(Γ),

(C̄ζ|Z)Z = (CÂ−1/2ζ|Z)Z = (ζ|Â∗−1/2C∗Z)V 0
n (Ω)×V 0(Γ) = (ζ|I(1/2)Â∗−1/2C∗Z)H0 ,

where (G, ξ) ∈ (V 0
n (Ω) × V 0(Γ)) × D(Â�1/2) and (ζ, Z) ∈ H0 × Z. Finally, the optimal state is given by

the expression ȲȲ0
= Φ̄(t)Ȳ0, where (Φ̄(t))t≥t is an analytic and exponentially stable semigroup on H0 [18],

Chapter 2, Theorems 2.2.1(a6) and 2.2.1(b1). Hence, we have

YY0(t) = Φ(t)Y0, t ≥ 0, and Φ = Â−1/2Φ̄Â1/2 is analytic and exponentially stable on H1. (7.20)

(b) Definition of Π (proof of (i) and (iv)). Let us define the operator Π as follows:

Π = Â∗1/2I(−1/2)Π̄Â1/2 ∈ L(H1,H0
∗). (7.21)

Since Π̄ is self-adjoint with respect to the H0-topology, it is easy to see that Π belongs to X . Moreover,
from equation (7.16) with (6.8) and (7.19), we deduce that Π is solution to the Riccati equation (7.7), and its
uniqueness follows from the uniqueness of Π̄. Next, by setting Ȳ0 = Â1/2Y0 for Y0 ∈ H1 in (7.17), we obtain:

J (YY0 , GY0) = 〈ΠY0|Y0〉H0∗,H0 for all Y0 ∈ H1, (7.22)

and from (7.18) with (6.10), (6.23), (7.15) and (7.19) we deduce that Q = Â∗1/2I(−1/2)Q̄ satisfies

ΠY0 = Q(0) where Q = K∗(C∗C + 2λ0Π)(e−Â(·)Y0 + K(ΛGY0)).

Hence, with Corollary 6.7, C∗C ∈ L(H2,H0∗), Π ∈ L(H1,H0∗) and (7.22), we can make the following calculation

‖Q(0)‖H1∗ ≤ C1(‖Y0‖H1 + ‖GY0‖L2(0,∞;V 0
n (Ω)×V 0(Γ))) ≤ C2(‖Y0‖H1 + (〈ΠY0|Y0〉H0∗,H0)1/2) ≤ C3‖Y0‖H1 ,



STABILIZATION OF THE NAVIER-STOKES EQUATIONS 959

and we deduce that Π ∈ L(H1,H1∗). Finally, since Π ∈ X , an easy duality argument yields Π ∈ L(H−1,H−1∗ ),
and (7.11) follows by interpolation.

(c) Closed-loop system (proof of (iii)). If Y0 ∈ H1 and Ȳ0 = Â1/2Y0, then (7.15), (7.19) and (7.21) yields:

GY0 = ḠȲ0
= −B̄�Π̄YȲ0

= −ΛÂ∗1/2I(−1/2)Π̄Â1/2YY0 = −ΛΠYY0 .

As a consequence, for all Y0 ∈ H1 the optimal state YY0 = Φ(·)Y0 is solution to (7.9). Moreover, since
ΛΠ ∈ L(H0), we obviously have D(AΠ) = D(A − ΛΠ) = D(A) = H2 and the analyticity of (e−AΠt)t≥0 on H0

follows from [20], Chapter 3, page 81, Corollary 2.2. Notice that since e−AΠ(·)Y0 is the unique solution to
(7.9) for all Y0 ∈ H0 [20], Corollary 4.1.5, the semigroups Φ(·) and e−AΠ(·) coincide on H1, and e−AΠ(·) is
the unique extension of Φ(·) to H0. Finally, since D(AΠ) = H2 and D(A∗

Π) = H2∗ (which can be deduced
from ΠΛ ∈ L(H0

∗)), then proving (7.10) can be reduced to proving equalities D(AΠ
θ) = [D(AΠ),H0]1−θ and

D(AΠ
∗θ) = [D(AΠ

∗),H0
∗]1−θ for all θ ∈ [0, 1]. According to [27], it is equivalent to show that the holomorphic

function z ∈ {z ∈ C | Re(z) > 0} �→ AΠ
−z ∈ L(H0) can be extended to a strongly continuous function from

{z ∈ C | Re(z) ≥ 0} into L(H0). We verify that:

(t+ AΠ)−1 = (t+ λ0 −A)−1 + (t+ λ0 −A)−1(λ0 − ΛΠ)(t+ AΠ)−1 t ≥ 0,

which yields the following equality:

AΠ
−z = (λ0 −A)−z + I(z), I(z) =

sinπz
π

∫ +∞

0

t−z(t+ λ0 −A)−1(λ0 − ΛΠ)(t+ AΠ)−1dt.

Hence, it remains to show that z �→ I(z) can be extended to a strongly continuous function from {z ∈ C |
Re(z) ≥ 0} into L(H0). The values ρ and σ being respectively the real and imaginary part of z, we invoke the
resolvent property of the generators λ0 −A and AΠ of analytic semigroups [20], Chapter 2, equation (6.2), to
obtain ‖I(z)‖L(H0) ≤ Ceπσ

∫ ∞
0

dt
t−ρ(1+t)2 < +∞. We conclude by virtue of [17], Theorem 17.9.1, Chapter 17.

(d) Extension to Y0 ∈ H0 (proof of (ii)). Let Y0 ∈ H0 and (Y,G) ∈ L2(0,∞;H1)×L2(0,∞;V 0
n (Ω)×V 0(Γ)) be an

admissible pair for (PY0). Since the analyticity of (eAt)t≥0 on H0 ensures that Y ∈ C([1/n, T ];H1)∩C([0, T ];H0)
for all n ∈ N∗ [6], Chapter 1, Proposition 3.8, then Y (1/n)n∈N∗ is a sequence of H1 converging to Y0 in H0.
Thus, for all n ∈ N∗ we verify that t �→ (Yn(t), Gn(t)) = (Y (t + 1/n), G(t + 1/n)) is admissible for (PY (1/n)),
and (7.22) (where we set Y0 := Y (1/n) ∈ H1) with the optimality of (YY (1/n), GY (1/n)) yields:

〈ΠY (1/n)|Y (1/n)〉H0∗,H0 = J (YY (1/n), GY (1/n)) ≤ J (Yn, Gn) =
∫ ∞

1/n

‖CY ‖2
Z +

∫ ∞

1/n

‖G‖2
V 0

n (Ω)×V 0(Γ). (7.23)

Thus, by passing to the limit sup in (7.23), we obtain the strong convergence of YY (1/n) = e−AΠ(·)Y (1/n)
to e−AΠ(·)Y0 in L2(0,∞;H1), and of GY (1/n) = −ΛΠe−AΠ(·)Y (1/n) to −ΛΠe−AΠ(·)Y0 in L2(0,∞;V 0

n (Ω) ×
V 0(Γ)). Hence, by taking the inf over all admissible pair (Y,G) in the resulting inequality, we obtain (7.8) and
(YY0 , GY0) = (e−AΠ(·)Y0,−ΛΠe−AΠ(·)Y0). It follows that e−AΠ(·)Y0 ∈ L2(0,∞;H1) for all Y0 ∈ H0, and the
exponential stability of e−AΠ(·) on H0 can be deduced from [20], Theorem 4.4.1. �

8. Stabilization of the Navier-Stokes equations

The goal of this section is to prove that for initial conditions belonging to an adequate neighborhood of the
origin, the nonlinear system (3.1)-(3.2)-(3.3) admits a unique solution which is exponentially stable. For s ∈
[d−2

2 , 1] and z0 ∈ V s(Ω) the initial condition Y0 = (Pz0, γs(z0))T belongs to Hs, and according to Theorems 6.9,
4.9, 5.5 and (7.12) system (3.1)-(3.2)-(3.3) can be rewritten in the following abstract form:

Y ′ + AΠY = B(Y, Y ), Y (0) = Y0 ∈ Hs, (8.1)
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where B(·, ·) is defined by

B

((
y
u

)
,

(
w
v

))
= −

( (
(y + (I − P )Dγn(u)) · ∇)

(w + (I − P )Dγn(v))
0

)
. (8.2)

The proof of the stability of the solution to (8.1) relies in an adequate choice of the norm of Hs and H1+s. We
first need to define the following operator.

Definition 8.1. For s ∈ [0, 1], we define the following linear operator:

Π(s) : Hs −→ H−s
∗ and Π(s) = AΠ

∗s/2 ΠAΠ
s/2.

Proposition 8.2. For s ∈ [0, 1], the linear operator Π(s) obeys:

Π(s) ∈ L(H2θ+s,H2θ−s
∗ ) for all θ ∈ [0, 1/2]. (8.3)

Proof. (8.3) is a direct consequence of (7.10) and (7.11). �

We are now in position to define the following new scalar product (·|·)Π,s on Hs:

(ξ|ζ)Π,s = 〈Π(s)ξ|ζ〉H−s,Hs∗ for all (ξ, ζ) ∈ Hs ×Hs. (8.4)

Proposition 8.3. For all s ∈ [0, 1], the bilinear form (·|·)Π,s defined by (8.4) is a scalar product on Hs. If we
define ‖ξ‖Π,s =

(
(ξ|ξ)Π,s

)1/2, then the following norm equivalence holds:

‖ · ‖Π,s ∼ ‖ · ‖Hs . (8.5)

Moreover, we also have:
(AΠ · |·)Π,s ∼ ‖ · ‖2

H1+s . (8.6)

Proof. Let us show (8.5) for s = 0. The inequality ‖ · ‖Π,0 ≤ C1‖ · ‖H0 is a straightforward consequence of (7.11)
with θ = 0. The converse one follows from the next calculation where we invoke successively a trace theorem,
the first equation in (7.9), the first statement in (7.5), and (7.8):

‖ξ‖2
H0 ≤ C2(‖Yξ‖2

L2(0,∞;H1) + ‖Y ′
ξ‖2

L2(0,∞;H−1))

≤ C3(‖Yξ‖2
L2(0,∞;H1) + ‖ΛΠYξ‖2

L2(0,∞;H−1))

≤ C4〈Πξ|ξ〉H0∗,H0 .

Next, from ‖·‖Π,0 ∼ ‖·‖H0 , we obtain ‖·‖Π,s = ‖As/2
Π ·‖Π,0 ∼ ‖As/2

Π ·‖V 0
n (Ω), and (8.5) follows from (7.10). Finally,

we invoke the density of D(A) in H1 with Π ∈ L(H1,H1∗) to extend the validity of (7.7) to (ξ, ζ) ∈ H1 ×H1,
and we replace ξ and ζ by As/2

Π ξ to obtain the following explicit expression of (AΠξ|ξ)Π,s:

(AΠξ|ξ)Π,s = 〈AΠξ|Π(s)ξ〉H−1+s,H1−s
∗

=
1
2
‖CAΠ

s/2ξ‖2
Z +

1
2
‖ΛΠAΠ

s/2ξ‖2
V 0(Γ) for all ξ ∈ H1+s.

Hence, (8.6) is a consequence of the first statement in (7.5) with (7.10). �

Next, in order to prove the well posedness of (8.1), as well as a local exponential stabilization result for (8.1),
we also need some estimates of the nonlinearity B(·, ·).
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Lemma 8.4. Let (s1, s2, s3) ∈ [0, 1]3 such that s1 + s2 + s3 ≥ d
2 if si �= d

2 , i = 1, 2, 3 or s1 + s2 + s3 >
d
2 if

si = d
2 , for at least one i. There is C > 0 such that:

|〈B(Y1, Y2)|Y3〉H−s3 ,Hs3∗ | ≤ C‖Y1‖Hs1‖Y2‖H1+s2‖Y3‖Hs3∗ ∀(Y1, Y2, Y3) ∈ Hs1 ×H1+s2 ×Hs3∗ . (8.7)

Proof. According to [7], Chapter 6, Section 6.9, for such s1, s2 and s3 there exists a constant c > 0 depending
on (s1, s2, s3,Ω, d), such that:∣∣∣∣∫

Ω

(w1 · ∇)w2 · w3

∣∣∣∣ ≤ c‖w1‖V s1(Ω)‖w2‖V 1+s2(Ω)‖w3‖V s3(Ω), (8.8)

for all (w1, w2, w3) ∈ V s1(Ω) × V 1+s2(Ω) × V s3(Ω). Hence, since for (Y1, Y2, Y3) ∈ Hs1 × H1+s2 × Hs3∗ where
Yi = (yi, ui)T , i = 1, 2, 3, we have

〈B(Y1, Y2)|Y3〉H−s3 ,Hs3∗ = −
∫

Ω

(
(y1 + (I − P )Dγn(u1)) · ∇

)
(y2 + (I − P )Dγn(u2)) · y3,

from estimate (8.8) we deduce that:

|〈B(Y1, Y2)|Y3〉H−s3 ,Hs3∗ | ≤ c‖y1 + (I − P )Dγn(u1)‖V s1 (Ω)‖y2 + (I − P )Dγn(u2)‖V 1+s2 (Ω)‖y3‖V
s3
0 (Ω).

Finally, (8.7) follows from ‖y1 + (I − P )Dγn(u1)‖V s1(Ω) ≤ C1(‖y1‖V
s1

n (Ω) + ‖u1‖V s1−1/2(Γ)) = C1‖Y1‖Hs1 , from
‖y2 + (I − P )Dγn(u2)‖V 1+s2(Ω) ≤ C2(‖y2‖V

1+s2
n (Ω)

+ ‖u2‖V s2+1/2(Γ)) = C2‖Y2‖H1+s2 , and from ‖y3‖V
s3
0 (Ω) ≤

‖Y3‖Hs3∗ . �
Finally, Theorem 3.1 is a consequence of the following theorem.

Theorem 8.5. Let s ∈ [d−2
2 , 1]. There exist c0 > 0 and μ0 > 0 such that, if δ ∈ (0, μ0) and

Y0 ∈ Vs
δ =

{
Y ∈ Hs

∣∣ ‖Y ‖Hs < c0δ

}
, (8.9)

system (8.1) admits a unique solution in the set

Ss
δ =

{
Y ∈ W (0,∞;H1+s,H−1+s)

∣∣ ‖Y ‖W (0,∞;H1+s,H−1+s) ≤ δ

}
. (8.10)

Moreover, there exist C > 0 and η > 0 such that

‖Y (t)‖Hs ≤ C‖Y0‖Hse−ηt. (8.11)

Proof. Let us treat the cases s > 0 and s = 0 separately.
(i) The case s > 0.

Since −AΠ is the infinitesimal generator of an analytic semigroup of negative type, the following application

W (0,∞;H1+s,H−1+s) −→ L2(0,∞;H−1+s) ×Hs,
Y �−→ (Y ′ + AΠY, Y (0)), (8.12)

is an isomorphism, see [6], Chapter 3, Theorem 2.2, where we can set T = ∞ because (e−AΠt)t≥0 is exponentially
stable. Thus, we consider the mapping

Ψ : Z ∈W (0,∞;H1+s,H−1+s) �−→ YZ ,
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where, for all T ∈ (0,∞), YZ ∈ W (0, T ;H1+s,H−1+s) is the solution to

Y ′ + AΠY = B(Z,Z), Y (0) = Y0 ∈ Hs.

We look for values c0 > 0 and μ0 > 0 such that, for every Y0 ∈ Vs
δ with δ ∈ (0, μ0), Ψ is a contraction in Ss

δ .
Since (8.12) is an isomorphism, and according to (8.7) for (s1, s2, s3) = (s, s, 1 − s), there is C0 > 0 such that

‖Ψ(Z)‖W (0,∞;H1+s,H−1+s) ≤ C0(‖Z‖L∞(0,∞;Hs)‖Z‖L2(0,∞;H1+s) + ‖Y0‖Hs). (8.13)

Hence, the continuous embedding W (0,∞;H1+s,H−1+s) ↪→ L∞(0,∞;Hs) gives C1 > 0 such that

‖Ψ(Z)‖W (0,∞;H1+s,H−1+s) ≤ C0(C1‖Z‖2
W (0,∞;H1+s,H−1+s) + ‖Y0‖Hs),

and since Z ∈ Ss
δ and Y0 ∈ Vs

δ , we have

‖Ψ(Z)‖W (0,∞;H1+s,H−1+s) ≤ C0(C1μ0 + c0)δ. (8.14)

Next, for Z1 and Z2 in Ss
δ we verify that Y = Ψ(Z1) − Ψ(Z2) satisfies

Y ′ + AΠY = B(Z1 − Z2, Z1) +B(Z2, Z1 − Z2), Y (0) = 0,

and since (8.12) is an isomorphism, according to (8.7) when (s1, s2, s3) = (s, s, 1− s), there is C2 > 0 such that

‖Ψ(Z1) − Ψ(Z2)‖W (0,∞;H1+s,H−1+s) ≤ C2(‖Z1 − Z2‖L∞(0,∞;Hs)‖Z1‖L2(0,∞;H1+s)

+ ‖Z2‖L∞(0,∞;Hs)‖Z1 − Z2‖L2(0,∞;H1+s)). (8.15)

Hence, we invoke the continuous embedding W (0,∞;H1+s,H−1+s) ↪→ L∞(0,∞;Hs), and since Z1 and Z2

belong to Ss
δ , we obtain the existence of C3 > 0, such that:

‖Ψ(Z1) − Ψ(Z2)‖W (0,∞;H1+s,H−1+s) ≤ C2C3μ0‖Z1 − Z2‖W (0,∞;H1+s,H−1+s). (8.16)

Then for μ0 = min( 1
2C0C1

, 1
2C2C3

) and c0 < 1
2C0

in (8.14) and (8.16), Ψ is a contraction in Ss
δ and system (8.1)

admits a unique solution in Ss
δ . Next, we multiply the first equation in (8.1) by Π(s)Y (t) and we obtain

1
2

d
dt

‖Y (t)‖2
Π,s + (AΠY (t)|Y (t))Π,s = 〈B(Y (t), Y (t))|Π(s)Y (t)〉Hs−1,H1−s

∗ . (8.17)

Thus, from (8.7) with (s1, s2, s3) = (s, s, 1 − s), from (8.3) with θ = 1/2 and from (8.5) and (8.6), we obtain

|〈B(Y (t), Y (t))|Π(s)Y (t)〉| ≤ Ks‖Y (t)‖Π,s(AΠY (t)|Y (t))Π,s, (8.18)

and (8.17) yields:
d
dt

‖Y (t)‖2
Π,s + 2(1 −Ks‖Y (t)‖Π,s)(AΠY (t)|Y (t))Π,s ≤ 0. (8.19)

If we choose Y0 so that ‖Y0‖Π,s ≤ 1
2Ks

, then the mapping t �→ ‖Y (t)‖Π,s is a nonincreasing function with values
less than 1

2Ks
. Finally, let C4 > 0 and η > 0 such that ‖ · ‖Π,s ≤ C4‖ · ‖s and 2η‖ · ‖2

Π,s ≤ (AΠ · |·)Π,s. If we
choose μ0 = min( 1

2C0C1
, 1

2C2C3
, 1

2c0C4Ks
), then ‖Y0‖s ≤ c0μ0 implies ‖Y0‖Π,s ≤ C4c0μ0 ≤ 1

2Ks
and (8.19) yields

d
dt

‖Y (t)‖2
Π,s + 2η‖Y (t)‖2

Π,s ≤ 0. (8.20)

Finally, (8.11) follows from (8.5).
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(ii) The case s = 0 and d = 2.
For all Z = (z, χ)T ∈ W (0,∞;H1,H−1) and V = (w, v)T ∈ H1

∗, an integration by parts yields

〈
B(Z(t), Z(t))|V 〉

H−1,H1∗
=

⎛⎝ ∫
Ω

(
(z + (I − P )Dγn(χ)) · ∇)

w · (z + (I − P )Dγn(χ))

0

⎞⎠
and with (8.8) for (s1, s2, s3) = (1/2, 0, 1/2) we obtain〈

B(Z(t), Z(t))|V 〉
H−1,H1∗

≤ C‖Z(t)‖H1/2‖w‖V 1
0 (Ω)‖Z(t)‖H1/2.

Thus, from the interpolation inequality

‖ · ‖H1/2 ≤ C‖ · ‖1/2
H0 ‖ · ‖1/2

H1 , (8.21)

we deduce that ‖B(Z(t), Z(t))‖H−1 ≤ C‖Z(t)‖H0‖Z(t)‖H1 and we obtain (8.13) when s = 0. A similar argument
also yields (8.15) when s = 0 and existence and uniqueness of a solution to (8.1) can be deduce as in the case
s > 0. Finally, (8.7) with (s1, s2, s3) = (1/2, 0, 1/2) and (8.3) with s = 0 and θ = 1/2 yields

|〈B(Y (t), Y (t))|Π(0)Y (t)〉| ≤ C‖Y (t)‖2
H1/2‖Y (t)‖H1 ,

and (8.18) when s = 0 follows from (8.21) and from (8.5) and (8.6) with s = 0. �

Remark 8.6. The mapping ξ ∈ Hs �→ ‖ξ‖2
Π,s is a Lyapunov function of system (8.1). Indeed, according to

(8.20), for all Y0 ∈ Vs
δ the solution Y ∈ Ss

δ of (8.1) is such that t �→ ‖Y (t)‖2
Π,s decreases to 0 with values in R+.

Proof of Theorem 3.1. Let s ∈ [d−2
2 , 1]\{1/2} and set Y0 = (Pz0, γs(z0))T . According to Theorems 6.9, 4.9

and 5.5 and to (7.12), the formulation (8.1) is equivalent to (3.1)-(3.2)-(3.3) where z = y + (I − P )Dγn(u).
Moreover, (2.2) and (4.13) guarantee that Y0 ∈ Hs, and that there exists c1 > 0 such that

‖Y0‖Hs ≤ c1‖z0‖V s(Ω).

Next, with Y = (y, u)T and z = y + (I − P )Dγn(u), we obtain c2 > 0 such that

‖z‖W (0,∞;V s+1(Ω),V s−1
0 (Ω)) + ‖u‖W (0,∞;V s+1/2(Γ),V s−3/2(Γ)) ≤ c2‖Y ‖W (0,∞;H1+s,H−1+s).

Moreover, from the continuous embedding W (0,∞;V s+1(Ω), V s−1
0 (Ω)) ↪→ Hs/2+1/2(0,∞;V 0(Ω)) we deduce

that ∂tu ∈ Hs/2−1/2(0,∞;V 0(Ω)), and by recalling that p obeys (3.1) we obtain ∇p ∈ Hs/2+1/2(0,∞;Hs−1(Ω))
and p ∈ Hs/2−1/2(0,∞; Hs(Ω)). Hence, (3.1) and (3.2) with Y = (y, u)T and z = y + (I − P )Dγn(u), provide
c3 > 0 and c4 > 0 such that

‖p‖Hs/2−1/2(0,∞;Hs(Ω)) ≤ c3(‖Y ‖W (0,∞;H1+s,H−1+s) + ‖Y ‖2
W (0,∞;H1+s,H−1+s)),

‖σ‖L2(0,∞) ≤ c4‖Y ‖W (0,∞;H1+s,H−1+s).

As a consequence, for c5 = max(1, c2, c3, c4) the above inequalities with Theorem 8.5 guarantee that if z0
obeys ‖z0‖V s(Ω) ≤ c0

c1c5
δ then we successively obtain ‖Y0‖Hs ≤ c0

c5
δ, Y ∈ Ss

δ
c5

and (z, u, p, σ) ∈ Ds
δ . Finally,

Theorem 3.1 holds with c = c0
c1c5

in (3.4). �
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9. Localization of the control on a part of the boundary

In the previous sections, we deal with a boundary control u acting on the whole boundary Γ. Nevertheless,
it is possible to treat the case of a boundary control which is localized in an open subset of Γ. We introduce a
weight function m ∈ C2(Γ) with values in [0, 1], with support in Γm ⊂ Γ and equal to 1 in Γ1, where Γ1 is an
open subset of Γm. Thus, we define Dm : V 0(Γ) −→ V 0(Ω) by Dmu = w where (w, q) is the solution to

λ0w − νΔw + (w · ∇)zs + (zs · ∇)w + ∇q = 0, ∇ · w = 0,

w|Γ = m(u− σm(u)n), σm(v) =
( ∫

Γ

m

)−1 ∫
Γ

mv · n.

Notice that for all u ∈ V 0(Γ) the boundary value m(u − σm(u)n) is supported in Γm and belongs to V 0(Γ).
Hence, we define the operator (D(Am),Am) in H0 by

D(Am) =

{
(y, u) ∈ V 2

n (Ω) × V 3/2(Γ) | y − PDmu ∈ V 2
0 (Ω)

}
,

Am =
(
νPΔ − P (∇zs) − P (zs · ∇) (λ0 − νPΔ + P (∇zs) + P (zs · ∇))PDm

0 PbΔb

)
.

By following the path of Section 6, we can prove that the V 0
n (Ω)× V 0(Γ)-adjoint of (D(Am),Am) is defined by

D(A∗
m) = V 2

0 (Ω) × V 5/2(Γ), A∗
m =

(
νPΔ − P (∇zs)T + P (zs · ∇) 0

D∗
m(λ0 − νPΔ + P (∇zs)T − P (zs · ∇)) PbΔb

)
, (9.22)

and that (D(Am),Am) (resp. (D(A∗
m),A∗

m)) is the infinitesimal generator of an analytic semigroup on H0 (resp.
H0

∗). Thus, for θ ∈ [0, 1], we introduce the spaces

H2θ
m =

{
(y, u) ∈ V 2θ

n (Ω) × V 2θ−1/2(Γ) | y − PDmu ∈ V 2θ
0 (Ω)

}
, H2θ

∗,m = V 2θ
0 (Ω) × V 2θ+1/2(Γ) = H2θ

∗ ,

H−2θ
m = (H2θ

∗,m)′ and H−2θ
∗,m = (H2θ

m )′, and we remark that H2θ
m = H2θ when θ ∈ [0, 1/4[. As in Corollary 6.7, we

show that for Y0 ∈ H0 and G ∈ L2(0, T ;V 0
n (Ω) × V 0(Γ)), there is a unique Y ∈ W (0, T ;H1

m,H−1
m ) solution to

Y ′ = AmY + ΛG on D(A∗
m)′, Y (0) = Y0 ∈ H0. (9.23)

Next, we define the observation space Ξ = L2(Ω) × L2(Ω,Rd2
) × L2(Ω,Rd2

) and the observation operator:

Cm : H1
m −→ Ξ and CmY =

⎛⎝ y + (I − P )Dmγn(u)
∇(y + (I − P )Dmγn(u))

∇Du

⎞⎠ ,

and we easily verify that ‖Cm.‖Ξ ∼ ‖ · ‖H1
m

and C∗
mCm ∈ L(H1

m,H−1
∗,m) ∩ L(H2

m,H0
m). We have added the third

component ∇Du in order to control ‖u‖V 1/2(Γ), and so that the inequality ‖ · ‖H1
m
≤ C‖Cm · ‖Ξ be true. Finally,

we define the optimal control problem:

(Pm,Y0) inf
{
Jm(Y,G) | G ∈ L2(0,∞;V 0

n (Ω) × V 0(Γ)), (Y,G) satisfies (9.23)
}
,

where
Jm(Y,G) =

∫ ∞

0

‖CmY ‖2
Ξ +

∫ ∞

0

‖G‖2
V 0

n (Ω)×V 0(Γ).
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Solving (Pm,Y0) provides Πm ∈ L(H0,H0∗) which is the unique solution in X (defined by (7.6)) to the following
Riccati equation:

〈Πmξ|Amζ〉H0∗,H0+〈Amξ|Πmζ〉H0,H0∗−(ΛΠmξ|ΛΠmζ)V 0
n (Ω)×V 0(Γ)+(Cmξ|Cmζ)Ξ = 0, ∀(ξ, ζ) ∈ D(Am)×D(Am).

(9.24)
As in Remark 7.4 one shall also underline that there is a triplet (Πm,1,Πm,2,Πm,3) which obeys:

Πm =
(

Πm,1 Πm,2

Π∗
m,2 Πm,3

)
, (Πm,1,Πm,2,Πm,3) ∈ L(V 0

n (Ω)) × L(V 0
n (Ω), V 1/2(Γ)) × L(V −1/2(Γ), V 1/2(Γ)).

(9.25)
Thus, as what has been done in Sections 7 and 8, we introduce the unbounded operator Am,Πm = ΛΠm −Am

in H0 with domain D(Am,Πm) = H2
m, and for s ∈ [d−2

2 , 1] we introduce the operator Π(s)
m = A∗s/2

m,Πm
ΠmAs/2

m,Πm
,

the scalar product (·|·)Πm,s = 〈Π(s)
m · |·〉H−s

m ,Hs∗,m
, and the two norms ‖ · ‖Πm,s = (·|·)1/2

Πm,s and (Am,Πm · |·)1/2
Πm,s,

which are respectively equivalent to ‖ · ‖Hs
m

and ‖ · ‖H1+s
m

. An obvious adaptation of the proof of Theorem 8.5
shows that there exist C > 0, η > 0, c0 > 0 and μ0 > 0 such that, if δ ∈ (0, μ0) and

Y0 ∈ Vs
m,δ =

{
Y ∈ Hs

m | ‖Y ‖Hs
m
< c0δ

}
,

then the system
Y ′ + Am,ΠmY = B(Y, Y ), Y (0) = Y0, (9.26)

admits a unique solution in

Ss
m,δ =

{
Y ∈ W (0,∞;H1+s

m ,H−1+s
m ) | ‖Y ‖W (0,∞;H1+s

m ,H−1+s
m ) ≤ δ

}
,

which obeys ‖Y (t)‖Hs
m

≤ C‖Y0‖Hs
m

e−ηt. Finally, if s �= 1/2, we easily verify that for z0 ∈ V s
m(Ω) (defined

in (3.7)) we have z0 −Dmγ
s(z0) ∈ V s

0 (Ω) and (Pz0, γs(z0))T ∈ Hs
m. As a consequence, for Y0 = (Pz0, γs(z0))T

we rewrite (9.26) in the equivalent formulation (3.8)-(3.9)-(3.10)-(3.11), and Theorem 3.6 follows.

10. Appendix

The goal of the present appendix is to prove a finite cost condition ensuring that (Pm,Y0) admits solutions.
The main argument of the proof relies in a geometrical extension procedure which consists in working with a
system defined in a larger domain Ω̃ = Int(Ω ∪ ω), where ω is an open bounded domain of R

d such that Ω̃ is of
class C4, ω ∩ Ω = ∅ and σ = ∂ω ∩ Γ is an open subset of Γ1. See Figure 1, where σ is the part of Γ going from
A to B in the clockwise direction, where Γ1 is the part of Γ going from A1 to B1 in the clockwise direction and
where Γm is the part of Γ going from Am to Bm in the clockwise direction. We recall that Γ1 is an open subset
of Γ on which the cut-off function m is equal to 1. With such a choice of ω, it will be possible to construct
a boundary control u supported in Γ1, and so that u = m(u − σm(u)n). We set Γ̃ = ∪k

j=1Γ̃
(j) = ∂Ω̃ where

Γ̃(1), . . . , Γ̃(N) denote the connected components of ∂Ω̃, and for s ≥ 0 we define the spaces V s
n (Ω̃), V s

0 (Ω̃) and
V s(Γ̃) in the same way as V s

n (Ω), V s
0 (Ω) and V s(Γ̃), and we introduce the spaces:

V̂ 2(Ω) =
{
y ∈ V s(Ω) | 〈y · n|1〉H−1/2(Γ(j)),H1/2(Γ(j)) = 0, j = 1, . . . , N

}
, (10.27)

V̂ 2(Ω̃) = { y ∈ V s(Ω̃) | 〈y · n|1〉H−1/2(Γ̃(j)),H1/2(Γ̃(j)) = 0, j = 1, . . . , N
}
. (10.28)

Thus, we establish an extension lemma that is lifting a function z ∈ V̂ 2(Ω) to a function z̃ ∈ V̂ 2(Ω̃).

Lemma 10.1. There exists an operator E ∈ L(V̂ 2(Ω), V̂ 2(Ω̃)) such that E(z)|Ω = z for all z ∈ V̂ 2(Ω).
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Figure 1. Geometrical extended domain Ω̃.

Proof. Let z ∈ V̂ 2(Ω). According to [25], Appendix I, Proposition 1.3, Remark 1.5 and Proposition 1.4, page 467,
there exists F ∈ (H3(Ω))k such that ∇× F = z, where k = 1 if d = 2 and k = 3 if d = 3. Thus, we extend F

to a function F̃ ∈ (H3(Ω̃))k by classical ways, and we define E(z) = ∇× F̃ . �

We now define the Oseen operator in Ω̃. From zs ∈ V̂ 2(Ω) we define z̃s = E(zs) ∈ V̂ 2(Ω̃) and (D(Ã), Ã) =
(V 2

0 (Ω̃), νP̃Δ− P̃ (∇z̃s)− P̃ (z̃s ·∇)) in V 0
n (Ω̃), where P̃ is the orthogonal projector from L2(Ω̃) into V 0

n (Ω̃). The
following theorem states the existence of a pair (Y,G) obeying (9.23) and J (Y,G) < +∞.

Theorem 10.2. For all Y0 ∈ H0, there is G ∈ L2(0,∞;V 0
n (Ω) × V 0(Γ)) such that Y ∈ W (0,∞;H1,H−1) and

Y ′ = AmY + ΛG on D(A∗
m)′, Y (0) = Y0 ∈ H0. (10.29)

Proof. In three steps, we are going to exhibit a pair (Y,G) ∈ W (0,∞;H1,H−1) × L2(0,∞;V 0
n (Ω) × V 0(Γ))

satisfying (10.29). Let us fix 0 < t1 < t2 < +∞.

Step 1. Here, we exhibit a control G ∈ L2(0, t1;V 0
n (Ω) × V 0(Γ)) which brings Y (0) = Y0 ∈ H0 to Y (t1) =

(z1, 0)T where z1 ∈ V 2
0 (Ω). Let us assume that 0 < τ ′ < τ ′′ < t1. First, by setting G = (0, 0)T on [0, τ ′],

the analyticity of (eAmt)t≥0 on H0 ensures that Y (τ ′) = (y(τ ′), u(τ ′))T ∈ D(Â3/4
m ) = H3/2

m . Hence, since
u(τ ′) ∈ V 1(Γ) we can choose v ∈ W (τ ′, τ ′′;V 2(Γ), V 0(Γ)) obeying v(τ ′) = u(τ ′) and v(τ ′′) = 0. Thus, by
choosing the control G = (0, v′ − Abv)T ∈ L2(τ ′, τ ′′;V 0

n (Ω) × V 0(Γ)) on [τ ′, τ ′′] we obtain Y (τ ′′) = (y(τ ′′), 0)T

where y(τ ′′) ∈ V 1
0 (Ω). As a consequence, by applying G = (0, 0)T on [τ ′′, t1], we have Y (t) = (eA(t−τ ′′)y(τ ′′), 0)T

on [τ ′′, t1], and with the analyticity of (eAt)t≥0 on V 0
n (Ω), we deduce that Y (t1) = (z1, 0)T where z1 ∈ V 2

0 (Ω).

Step 2. Here, we exhibit a controlG ∈ L2(t1, t2;V 0
n (Ω)×V 0(Γ)) which brings Y (t1) = (z1, 0)T where z1 ∈ V 2

0 (Ω)
to Y (t2) = (Pz2, z2|Γ)T where z2 is the restriction to Ω of a function z̃2 ∈ V 2

0 (Ω̃). First, z1 ∈ V 2
0 (Ω) ⊂

V̂ 2(Ω) with Lemma 10.1 ensures that we can define z̃1 = E(z1) ∈ V̂ 2(Ω̃). Hence, we have z̃1|Γ̃ ∈ V 3/2(Γ̃) =
[V 5/2(Γ̃), V 0(Γ̃)]2/5 and there exists ũ ∈ L2(t1, t2;V 5/2(Γ̃)) ∩ H5/4(t1, t2;V 0(Γ̃)) such that ũ(t1) = z̃1|Γ̃ [15].
Notice that since z̃1|Γ̃ is equal to zero outside σ̃ = ∂ω∩∂Ω̃, even by replacing ũ by ρũ where ρ ∈ C∞(Γ̃×(t1, t2))
is an adequate cut-off function, on can suppose that ũ is equal to zero on Γ\Γ1 and obeys ũ(t2) = 0. By this
way, the velocity z̃ solution to the following Oseen system defined in Ω̃:

∂tz̃ − νΔz̃ + (z̃ · ∇)z̃s + (z̃s · ∇)z̃ + ∇p̃ = 0, ∇ · z̃ = 0 in Ω̃ × (t1, t2),

z̃ = ũ on Γ̃ × (t1, t2), z̃(t1) = z̃1,
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admits on Γ a trace u = z̃|Γ supported in Γ1 and such that u = m(u − σm(u)n). Moreover, with ũ ∈
L2(t1, t2;V 5/2(Γ̃))∩H5/4(t1, t2;V 0(Γ̃)), with z̃1 ∈ V 2(Ω̃) and with Ω̃ of class C4, one can use regularity results
for the Oseen system [23], Theorem 4.1(v), which yields z̃ ∈ L2(t1, t2;V 3(Ω̃)) ∩H3/2(t1, t2;V 0(Ω̃)). Hence, we
have z̃ ∈ C([t1, t2];V 2(Ω̃)), and since ũ obeys ũ(t2) = 0, we deduce that z̃(t2) = z̃2 ∈ V 2

0 (Ω̃). Then by setting
z2 = z̃2|Ω, z = z̃|Ω and recalling u = z̃|Γ and u = m(u − σm(u)n), one easily verify that Y = (Pz, u)T satisfies
the first equation in (10.29) for G = (0, u′−Abu)T ∈ L2(t1, t2;V 0

n (Ω)×V 0(Γ)), and we have Y (t2) = (Pz2, z2|Γ)T

where z2 = z̃2|Ω and z̃2 ∈ V 2
0 (Ω̃).

Step 3. Here, we exhibit a controlG ∈ L2(t2,∞;V 0
n (Ω)×V 0(Γ)) which brings Y (t2) = (Pz2, z2|Γ)T to zero at in-

finity. To overcome this goal, it is sufficient to construct a control f̂ ∈ L2(0,∞;L2(Ω̃)) supported in ω, for which
the solution z̃ to the Oseen system in Ω̃, which obeys z̃(t2) = z̃2 ∈ V 2

0 (Ω̃), belongs to W (t2,∞;V 3
0 (Ω̃), V 1

0 (Ω̃)).
By this way, z = z̃|Ω ∈ W (t2,∞;V 3(Ω), V 1(Ω)) obeys z(t2) = z2 and is solution to the Oseen system in Ω for
the boundary control u = z̃|Γ supported in Γ1, and so that u = m(u− σm(u)n). Moreover, one can verify that
G = (0, u′ − Abu)T ∈ L2(0,∞;V 0

n (Ω) × V 0(Γ)) and that Y = (Pz, u)T ∈ W (t2,∞;H1,H−1) satisfies (10.29).
Let M ∈ C∞(Ω̃) be supported in ω and obeying M |ω1 = 1, where ω1 is an open subset of ω, and let us choose
f̂ which minimizes the cost

F(y, f) =
∫ +∞

0

∫
Ω̃

|y|2 +
∫ +∞

0

∫
Ω̃

|f |2,
where

y′ = Ãy + P̃Mf on D(Ã∗)′, y(0) = y0 ∈ V 0
n (Ω̃). (10.30)

An exact controllability result [9] ensures the existence of a finite time T0 ∈ ]0,∞[, and of a control fT0 ∈
L2(0,∞;L2(Ω̃)) supported in ω1 × (0, T0) for which the solution to (10.30) is zero past T0. Notice that since
M |ω1 = 1 we have fT0 = MfT0 . Hence, we have a finite cost F(yT0 , fT0) < +∞, and we can apply the
theory of [18], Chapter 2. There exists an optimal control given by the feedback expression f̂ = −P̃M2Ry,
where R is a linear operator in L(V 0

n (Ω̃), V 1
0 (Ω̃)), and if we set ÃR = Ã − P̃M2R, the semigroup (eÃRt)t≥0

is analytic and exponentially stable on V 0
n (Ω̃). Hence, classical regularity results [6] ensures that eÃR(·)y0 ∈

W (0,∞;D(Ã3/2
R ),D(Ã1/2

R )) for all y0 ∈ D(ÃR). Moreover, since ÃR is a bounded perturbation of Ã, we deduce
that D(ÃR) = D(Ã) = V 2

0 (Ω̃) and that D(Ã1/2
R ) = V 1

0 (Ω̃), and since equation Ã3/2
R y = χ is equivalent to

−νΔy + ∇p = −(z̃s · ∇)y − (y · ∇)z̃s −M2Ry − Ã
−1/2
R χ,

from z̃s ∈ H2(Ω̃), M2R ∈ L(V 0
n (Ω̃),H1(Ω̃)), Ã−1/2

R χ ∈ D(Ã1/2
R ) = V 1

0 (Ω̃) for all χ ∈ V 0
n (Ω̃), and Ω̃ of

class C3, regularity results for the Stokes system [13] yields the continuous embedding D(Ã3/2
R ) ↪→ V 3

0 (Ω̃). As
a consequence, for all y0 ∈ V 2

0 (Ω̃) we have eÃR(·)y0 ∈ W (0,∞;V 3
0 (Ω̃), V 1

0 (Ω̃)), and z̃ = eÃR(·−t2)z̃2 belongs to
W (t2,∞;V 3

0 (Ω̃), V 1
0 (Ω̃)). �

Remark 10.3. Since E does not map V 2
0 (Ω) onto V 2

0 (Ω̃), we cannot claim that z̃1 = E(z1) ∈ V 2
0 (Ω̃) and skip

the second step of the proof of Theorem 10.2. However, in the particular case of non localized control (where
Γm = Γ1 = Γ ), we have ∂Ω∩ ∂ω = Γ and we can obtain an extension operator E0 ∈ L(V 2

0 (Ω), V 2
0 (Ω̃)). Indeed,

in the proof of Lemma 10.1, it suffices to set E0(z) = ∇×(ρF̃ ) where ρ ∈ C∞(Ω̃) is an adequate cut-off function.

Corollary 10.4. For all Y0 ∈ H0, there is G ∈ L2(0,∞;V 0
n (Ω)× V 0(Γ)) such that Y ∈ W (0,∞;H1,H−1) and

Y ′ = AY + ΛG on D(A∗)′, Y (0) = Y0 ∈ H0.

Proof. It is a consequence of Theorem 10.2 in the particular case m = 1 and Γ1 = Γm = Γ. �
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